
The Complexity of Satis�ability Problems with
Two Occurrences

Jan Johannsen
LMU M�unchen

Let CNF(2) be the class of formulas F ∈ CNF such that every variable
occurs at most twice in F, and CNF(E2) the class of formulas in CNF in
which every variable occurs exactly twice.
We study the complexity of variants of the satis�ability problem for formulas
in CNF(2). In a previous paper [1], we have shown that SAT(2), i.e. SAT
restricted to instances in CNF(2), is complete for deterministic logspace.
The same holds for the problem NAE-SAT(2), not-all-equal satis�ability for
formulas in CNF(2).
In this note we study the complexity of ⊕SAT(2), i.e., XOR-satis�ability
and XSAT(2), i.e., exact satis�ability (XSAT), for formulas in CNF(2). A
formula in CNF is XOR-satis�able (resp. exact satis�able), if there is an
assignment that sets an odd number of literals (resp. exactly one literal) in
each clause to true.
We shall show that ⊕SAT(2) is complete for symmetric logspace SL, and
XSAT(2) is equivalent to the problem PM of deciding whether a graph
contains a perfect matching.
A tagged graph G = (V, E, T) is an undirected multigraph (V, E) with a
distinguished set T ⊆ V of vertices. We refer to the vertices in T as the
tagged vertices.
For a formula F ∈ CNF(2), we de�ne the tagged graph G(F) by

� G(F) has a vertex vC for every clause C in F.

� If clauses C and D contain the same literal a, then there is an edge ea

between vC and vD.

� if C contains a literal a, and D contains the complementary literals �a,
then we add a new vertex va and connect it to vC by an edge ea and
to vD by an edge e�a, as shown below.

vC vDvx

1

� If C contains a literal, that does not occur in another clause, then vC

is tagged.

SL-completeness of ⊕SAT(2)

If G is a (tagged) graph, then we call a coloring of the edges by two colors
0, 1 admissible if every (untagged) vertex has an odd number of incident
edges colored by 1. Obviously, for F ∈ CNF(2), we have that G(F) has an
admissible coloring i� F is in ⊕SAT(2).
De�ne the problem EvenCC (resp. TEvenCC) as the problem to determine
for a given (tagged) graph G, whether every (untagged) connected compo-
nent has an even number of vertices.

Proposition 1. A tagged graph G has an admissible coloring i� it is in
TEvenCC.

Proof. Let G have an admissible coloring, and let C be an untagged com-
ponent of odd size. Since C has even number of vertices of odd degree, the
number of vertices of even degree is odd. Therefore, in the edge subgraph
consisting of the edges colored 0, the component C has an odd number of
vertices of odd degree, which is impossible. Hence every untagged compo-
nent is of even size, and G is in TEvenCC.
For the other direction, we let G be in TEvenCC, and construct an admis-
sible coloring of G. First, it is easy to see, analogous to the proof of Lemma
9 in [1], that every tagged component has an admissible coloring.
Note that if there is an admissible coloring for a spanning forest of G, then
it can be extended to an admissible coloring of G by giving all the missing
edges the color 0. Therefore, it su�ces to give an admissible coloring for
a tree T of even size, which is done by induction on the size of T . We
distinguish two cases.
If all vertices in T have odd degree, then all edges can be colored by 1.
Otherwise, we show that there is an edge e such that deleting e leaves
two trees of even size, which have admissible colorings by the induction
hypothesis. These can be extended to T by coloring e with 0.
To see that the edge e exists, let v be a vertex of even degree, and let
e1, . . . , ek be the incident edges, and let Ti be the subtree reached by fol-
lowing ei from v. Since |T1| + . . . + |Tk| = |T | − 1 is odd, and k is even, there
must be some i such that |Ti| is even. Thus deleting ei cuts T into two trees
of even size.

Corollary 2.

2

� ⊕SAT(E2) is equivalent to EvenCC under FO-reductions.

� ⊕SAT(2) is equivalent to TEvenCC under FO-reductions.

Proposition 3. TEvenCC is complete for SL.

Proof. The obvious algorithm for TEvenCC tests for every vertex v, whether
the number of vertices reachable from v is even, or whether there is a tagged
vertex among them. If for some v neither holds then reject, otherwise ac-
cept. This can be done in logarithmic space with an oracle for UGAP, thus
TEvenCC ∈ LSL, and by the result of Nisan and Ta-Shma [2], LSL = SL.
For hardness, we reduce UGAP to EvenCC as follows: Given a graph G and
vertices s and t, we construct a graph G ′ as follows: we take two copies G0

and G1 of G, and for each vertex v in G, we put an additional edge between
the two copies v0 and v1 of v. Then we add two new vertices s∗ and t∗, and
edges between s∗ and s0 and s1, as well as between t∗ and t0 and t1.
If t is reachable from s, then every connected component of G ′ is of even
size, otherwise the connected components containing s∗ and t∗ are of odd
size. Thus the construction reduces UGAP to EvenCC.

Corollary 4. ⊕SAT(2) is complete for SL.

Equivalence of XSAT(2) to Perfect matching

For an assignment α to the variables of F, consider the edge subgraph of
G(F) containing those edges ea for which the literal a is set to true by α.
If α satis�es F exactly, then this edge subgraph is a matching in G(F) that
matches every untagged vertex.
Thus we de�ne the following variant of the perfect matching problem for
tagged graphs:

TPM: Given a tagged graph G, is there a matching in G that
matches every untagged vertex?

Proposition 5.

� XSAT(E2) is equivalent to PM under FO-reductions.

� XSAT(2) is equivalent to TPM under FO-reductions.

The construction of G(F) from F gives the reduction in one direction for
both statements, since for F ∈ CNF(E2), the graph G(F) contains no tagged
vertices. For the other direction, given a tagged graph G = (V, E, T), we

3

de�ne a formula F(G) ∈ CNF(2) as follows: for every edge e ∈ E, there is a
variable xe. For every vertex we form a clause Cv containing the variables
xe for the edges e incident on v. Finally, for every tagged vertex v ∈ T ,
we add a variable xv to the clause Cv. It is easily seen that G(F(G)) = G,
and hence the construction gives the opposite reductions. Note that the
reduction produces only formulas with only positive literals.
We now show that XSAT(2) is equivalent to the more natural problem PM as
well, in two steps. Unfortunately, we need slightly more complex reductions.

Proposition 6. TPM is equivalent to rTPM under FO-reductions.

We only need to reduce TPM to rTPM, the other direction is trivial. Given
a tagged graph G, construct a graph G ′ by untagging every tagged vertex v

and connecting it by an edge to a new tagged vertex v ′, as shown below.
... ...Ã

v v v ′

A tagged perfect matching in G exactly corresponds to a tagged perfect
matching in G ′, where each tagged vertex v unmatched in G is matched to
the corresponding vertex v ′ in G ′. Thus the construction reduces TPM to
rTPM.

Proposition 7. rTPM is equivalent to PM under FO(Mod2)-reductions.

Given an instance G of rTPM, we construct G ′ as follows: if |V | is even, we
connect all tagged vertices in a large clique, otherwise, we add a new vertex,
and connect this new vertex together with the tagged vertices in a large
clique. If |V | is even, then T and |V \T | will have the same parity, so a tagged
perfect matching will leave an even number of tagged vertices unmatched.
Otherwise, it will leave an odd number of tagged vertices unmatched. In
either case, a tagged perfect matching in G can be extended to a perfect
matching in G ′. Thus the construction reduces rTPM to PM. The other
direction is trivial.

Corollary 8. XSAT(2) is equivalent to PM under FO(Mod2)-reductions.

References

[1] J. Johannsen. Satis�ability problems complete for deterministic loga-
rithmic space. Accepted for the 21st International Symposium on The-
oretical Aspects of Computer Science (STACS 2004), 2004.

[2] N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under comple-
ment. Chicago Journal of Theoretical Computer Science, 1995.

4

