This paper proposes a new framework to investigate the complexity of propositional proof systems, starting from the observation that most of the known lower bounds are shown for sequences of tautologies given uniformly.

A $\Delta_0(\alpha)$ -formula is a bounded formula in the language of Peano Arithmetic with an additional predicate symbol α . For such a formula φ , the well-known *Paris-Wilkie* translation produces a sequence of propositional formulas, where the n^{th} formula expresses that φ holds of the integers up to n.

For a proof system P, the set U_P is defined as the set of those $\Delta_0(\alpha)$ formulas φ whose Paris-Wilkie-translations have polynomial size proofs in P. If P is polynomially bounded, then U_P coincides with the set T of $\Delta_0(\alpha)$ -formulas that are true in the integers, and similarly, if P polynomially
simulates Q, then $U_Q \subseteq U_P$, but the converses of these statements do not
necessarily hold.

First, some known separations [1, 2] and lower bounds [3, 4] for boundeddepth Frege systems are phrased in this framework. As first steps into the proposed research direction, two topics are then studied: the arithmetic complexity of the sets U_P , and logical properties of these sets.

It is easily seen that T is complete for the class Π_1^0 of co-c.e. sets. Here it is shown that for every proof system P, the set U_P is in the class Σ_2^0 in the arithmetical hierarchy, and hard for Π_1^0 . Thus showing $U_P \notin \Pi_1^0$ for some Pwould imply super-polynomial lower bounds for P.

Finally, some closure properties of the sets U_P are shown under various assumptions on P. Moreover, the following result concerning a variant U'_P of U_P , defined w.r.t. a language extended by a function symbol for exponentiation, is obtained: Such a set U'_P is logically closed if and only if it coincides with the set T' of true $\Delta_0(\alpha)$ -formulas in this language, in other words, for all proof systems P the set U'_P axiomatizes T'. The proof of this result uses an upper bound on the size of cut-free LK-proofs that might be of independent interest.

References

- A. Beckmann and S. R. Buss, Separation results for the size of constantdepth propositional proofs, Ann. Pure Appl. Logic 136 (2005), no. 1-2, 30–55. MR2162846
- [2] J. Krajíček, Lower bounds to the size of constant-depth propositional proofs, J. Symbolic Logic 59 (1994), no. 1, 73–86. MR1264964 (95k:03093)

- [3] J. Krajíček et al., An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle, Random Structures Algorithms 7 (1995), no. 1, 15–39. MR1346282 (96i:03053)
- [4] T. Pitassi, P. Beame and R. Impagliazzo, Exponential lower bounds for the pigeonhole principle, Comput. Complexity 3 (1993), no. 2, 97–140. MR1233662 (94f:03019)