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Abstract

In [Hof00], Martin Hofmann introduced a first-order linear functional pro-
gramming language called LFPL that allows one to read off a program’s dynamic
space usage from its signature. In this work we will settle the question “To what
extent can an ordinary linear functional program be translated automatically to
LFPL, thus enabling us to infer the program’s heap space usage?”, which was
already posed by Martin Hofmann in his work.

Our approach is as follows: By a static analysis of the given linear func-
tional program’s type derivation we construct an integer linear program (ILP)
that is solvable if and only if a translation into LFPL exists. We describe the
construction of the LFPL program once a solution to the assorted ILP is known.
Furthermore we also show that the constructed ILPs are solvable in polynomial
time. Finally we discuss an attempt to eliminate the restriction that the given
program must be linearly typed.
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Introduction

Functional programming languages allow swift mathematically oriented implemen-
tations and generate programs that are more easily verified than imperative code.
While a program of a classical imperative language like C must be viewed as an or-
dered set of instructions (e.g. store the value 5 in variable x; increment x by 1; goto
step 17; . . . ), functional programs can be considered as nothing more than a (recur-
sive) definition of a function from some input to some output. Hence one of their
advantages is that the programmer is relieved from any issues concerning the storage
of run-time values. One of their disadvantages is therefore that any implementa-
tion usually excessively wastes memory resources and depends upon an automatic
Garbage Collection1 for salvaging. Since even provably correct code may fail due
to physical memory restrictions, it is therefore desirable to estimate bounds on the
space consumption prior to program execution. Many work has been done so far to
address this problem:

• Atsushi Igarashi and Naoki Kobayashi [I&K00] showed a way to an improved
Garbage Collection via the use of a linear type system,2 but still lack concrete
bounds on the memory consumption. Linearity of types is not strictly enforced,
the system is able to distinguish between linear types that are used at most
once and non-linear ones which may be accessed several times.

• Karl Crary and Stephanie Weirich [C&W00] implemented a type system pro-
ducing executables with certifiable bounds on running time depending on the
input. The system requires the programmer to specify input-depending arith-
metic expressions for function types and verifies whether or not the program
will terminate before a virtual counter set to these depending values reaches
zero. Once the specification is certified it is not needed at run time anymore.
They conjecture that the technique can be generalised to certify bounds on
space consumption (both on stack- and heap-space1).

• Mads Tofte and Jean-Pierre Talpin [T&T97] aim at eliminating the need for a
Garbage Collection; they specify a Region Inference System, which infers the
lifetimes of data structures. Memory is allocated and deallocated in parts called
regions, which can be independently used for storing a multitude of values. The
lifetime of a value then depends on the lifetime of the region it belongs to; while
the lifetime of a region is determined by the program block it spans.

1see A.1 for a reference on commonly used notions throughout this work
2Variables may be used at most once in a linearly typed functional language. Data-objects are

considered as destroyed after one-time use; also see A.1.
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• John Hughes and Lars Pareto [H&P99] give a type system for programs run-
ning in constant space (both on stack- and heap-space). Their approach, a
variant of the aforementioned Region Inference System of Tofte and Talpin,
also guarantees termination, which is desirable for highly sensitive programs,
but must also restrict the expressive power.

• Alan Mycroft and Richard Sharp [M&S00] described a syntactically restricted
functional language which ensures statically fixed memory allocation and still
surpasses primitive recursion. Their approach was focused on the use of their
language for embedded systems heavily using parallel computation.

• Martin Hofmann [Hof00] constructed a translation for linearly typed functional
code into C-code which preallocates all required heap-space, therefore rendering
a Garbage Collection obsolete. Any heap-space used (and reused) must be
given through a program’s input; there are no limitations on the stack size. The
complexity class covered by the functional language provably equals exponential
time.

In each of the cited works the programmer would be required to care about the re-
source consumption of the programmed code by annotating resource related informa-
tion, e.g. to the types. While it might be desirable in some applications of functional
programming techniques to have an explicit control over resources, it is certainly not
in general, because the concept of memory resources is naturally alien to the state-
free philosophy of functional programming. Furthermore it seems that maintaining
program code might also require drastic changes in the resource annotations. There-
fore methods for an automatic inference of these resource annotations seem desirable,
and most authors above already mention an extension of their presented approach
in that way. Mads Tofte and Lars Birkedal [T&B98] already presented an algorithm
implementing the specification of the Region Inference System cited above, which
accepts unannotated input code.

We will now provide a system to infer the required resource annotations in the ap-
proach of Martin Hofmann. Let us therefore recall his work in more detail. As already
said, his approach allows only the determination of the heap-space usage. Determin-
ing the overall space consumption of a functional program would also require to
estimate the maximal stack-space usage. Calculating the maximal stack-space usage
in turn equals to computing the maximal recursion-depth, which then amounts either
to restrict to tail-recursion or to determine the time-usage of the program. We refrain
from this part of the problem by solely concentrating on the heap-space usage of a
given program, as the dynamic space allocation is the main difficulty to be overcome
by a Garbage Collection.
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The linear first-order functional programming language introduced by Martin Hof-
mann in [Hof00] was named LFPL. The language LFPL restricts manipulations of
heap-allocated data structures like lists or trees to in-place modifications only. This
is achieved by the use of a resource type denoted by ♦, which controls the number of
constructors and destructors used: Each destructor additionally returns arguments
of type ♦, whereas each constructor consumes a number of elements of type ♦. Al-
though the elements of type ♦ are indistinguishable within the functional program
itself, each represents a distinct small portion of available heap-space. Martin Hof-
mann then gives a translation of LFPL into malloc()-free C-code3 and proves the
correctness of this translation. He also shows that the expressive power of LFPL is
precisely what can be computed on a linearly space bounded Turing machine having
an unbounded stack as an extra resource, which equals the complexity class ‘expo-
nential time’.

So strictly speaking a LFPL-program automatically allows us to derive a rigid bound
on the heap-space usage: namely zero, as it is impossible to allocate new heap-space
within LFPL as the existence of the translation into malloc()-free C-code shows. Yet
this is not true in a more open sense: By the same observation it follows that any
initial data structures must be provided externally to an LFPL-program. Hence a
LFPL-function may claim additional resources in form of additional arguments of
type ♦. Furthermore dynamical space allocation is allowed in a controlled way in
LFPL, for example by a list-processing function requiring that each list-node of the
input-list additionally contains an element of type ♦. Thus the heap-space usage
of a LFPL-program can be read off from its signature. Note that we deal with a
slight variant of LFPL here, the changes and the complete details of LFPL are given
in Appendix A.2.1.

Now our main goal is seeking relief from explicitly handling the resource type ♦
and hence we consider to what extent the usage of the resource type ♦ can be
inferred automatically via static program analysis. A static program analysis is
sufficient as all heap-space must be preallocated in LFPL. We therefore introduce
the linearly typed language LF without a resource type like ♦ (or any other memory
usage restricting mechanism) and ask ourselves how to translate LF into the language
LFPL, thus deriving the heap-space usage of the LF-program from its translation. For
convenience LF resembles LFPL except that it does not contain the resource type ♦,
thus constructors simply do not need an argument of type ♦. See Definition A.3.1
for a formal definition of LF.

3In the language C new heap space is allocated by a call to the function malloc().
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So given an LF-program P we want to compute its heap-space usage by finding an
‘equivalent’ LFPL-program P ′, where these bounds are clearly determinable from the
signature of the program.

What do we mean by “an ‘equivalent’ program” ? Well, intentionally any program
that “does the same” modulo operations dealing with the resource type ♦ only. As ex-
tensional equality of programs is generally undecidable, we cannot hope to construct
such an according LFPL-program whenever one exists in a feasible way. However this
was not our aim, as we are merely interested in calculating the resource bounds of
the concrete LF-program P and not of any optimised variants of P that may possibly
exist.4 So instead of defining abstract semantics for both languages – which would
then require a justification for our purpose again – we define a map |·| : LFPL→ LF

defining the modulo operation, i.e. that just strips all commands connected to the
handling of the resource type ♦ from the program code. Then we can define our
intended notion of equivalence by α-equivalence (i.e. modulo renaming of bound
variables) of the image of the program code under |·|. Hence we have a semantics of
LFPL in terms of the language LF.

We then can reformulate our primary objective more precisely:

For all LF-programs P , construct a LFPL-program P ′ satisfying |P ′| α≡ P ,
whenever such a P ′ exists.

The truth and meaning of such a statement apparently depends heavily upon the
definition of |·|, but we have a clear intention what this mapping should do and the
definition of |·| can be done in a transparent way as we will show.5

In the following sections we will resolve the task of our primary objective by con-
structing feasible integer linear programs from a given LF-programs P and showing
that it is possible to construct the LFPL-program P ′ if and only if the integer linear
program (ILP) is solvable. We may sometimes refer to the names P and P ′ in this
sense as just stated. The connected ILP will always be denoted by LP M.

We first reduce the problem of finding P ′ only within a fragment of the language
LFPL; that fragment will be called LFPL♦. In LFPL♦ the explicit use of dynamical
resources is prohibited, i.e. List- and Tree-types may not contain spare resources.
LFPL♦ is still capable of defining functions like Insertion-Sort or Quick-Sort, although
its limits will be shown.

4Of course we are interested in methods of creating efficient programs in general, but within the
scope of this work we are already contend by recognising programs with efficient memory usage.

5For an example of a natural translation from LFPL to LF, see Examples A.2.3 and A.3.3
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In Section 2 we consider the full problem for LFPL as stated above. Overloading
the symbols L·M and |·| for the different languages (or language-fragments) should not
present a problem, as each section is more or less self-contained.
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1 The simple case: LFPL♦

This section shall demonstrate our general approach to the problem. For the sake of
simplicity we restrict our search for P ′ to the following fragment of LFPL:

Definition 1.1 (LFPL♦). LFPL♦ is a fragment of LFPL where ♦ is used only as a
function parameter, i.e. the type grammar of LFPL♦ is defined as follows:

zero-order types: P ::= 1 | N | L(P ) | T(P ) | P ⊗ P | P + P

R ::= ♦

first-order types: F ::= (P, . . . , P,R, . . . , R)→ P

The term grammar is identical to LFPL, though it is required that all occurring sub-
terms have types according to this type grammar. Variables of type ♦ may therefore
only occur in terms that explicitly require an argument of type ♦, e.g. function
application terms and the construction and elimination terms for lists and trees.
Adjusting the LFPL type rules for LFPL♦ is then straightforwardly done by restricting
the occurring type variables to types different from ♦, except where explicitly needed
like in the type rules Variable and Function Application. For example the type rule
Pairing for LFPL♦ is

Γ1 `Σ e1 : A1 Γ2 `Σ e2 : A2 A1 6= ♦ A2 6= ♦

Γ1,Γ2 `Σ e1 ⊗ e2 : A1 ⊗ A2

while the LFPL♦ type rule for List-Construction is

Γd `Σ ed : ♦ Γh `Σ eh : A Γt `Σ et : L(A) A 6= ♦

Γd,Γh,Γt `Σ cons(ed, eh, et) : L(A)

and so the term ed must eventually be a variable.

In order to construct P ′ ∈ LFPL♦ according to a given LF-program P , we solely have
to determine the number of arguments of type ♦ that are necessary to call a function
fi ∈ P ′. Therefore we assign an integer variable xi denoting this number to each fi
in the following way:

Definition 1.2 (L·M : LF→ ILP). For P ∈ LF containing exactly n different function
symbols fi, let LP M denote the integer linear program over x ∈ Nn defined by

min

{
n∑
j=1

xj

∣∣∣∣∣
n⋃
i=1

(|fi(v1, . . . , vk)|) ≥ (|defining body of fi(v1, . . . , vk)|) , x ∈ Nn

}
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where the map
L·M : LF-term −→ (Z ∪ x,+,max)

is recursively defined on the composition of e as shortly follows. (Z ∪ x,+,max) =(
Z∪

⋃n
i=1 xi,+,max

)
denotes the commutative monoid of arithmetic expressions over

Z and the indices of x, exclusively built with the operations + and max(), i.e. linear
arithmetic terms containing xi’s with positive factors only, like −3 + max(x1, 1 + x2)

or 3+4+x6 +x4−9+x6 = −2+x4 +2x6, but not terms like 1−x2 or max(0, 1−x1)

which contain the indices of x with a negative factor.

LvM = 0 (Variable)
LcM = 0 for c = ∗ or c an integer constant (Constant)
Le1 ? e2M = Le1M + Le2M for ? ∈ {+,−,×,≥, . . . } (Standard Integer Infix)
Lif e1 then e2 else e3M = Le1M + max

(
Le2M, Le3M

)
(Conditional)

Le1 ⊗ e2M = Le1M + Le2M (Pairing)
Lmatch e1 with v1 ⊗ v2 ⇒ e2M = Le1M + Le2M (Pair-Elimination)
Linl (e)M = LeM (Left-Injection)
Linr(e)M = LeM (Right-Injection)
Lmatch e1 with | inl(v)⇒ e2

| inr(v)⇒ e3M
= Le1M + max

(
Le2M, Le3M

)
(Sum-Elimination)

LnilM = 0 (Empty List)
Lcons(e1, e2)M = 1 + Le1M + Le2M (List-Construction)
Lmatch e1 with |nil⇒ e2

|cons(xh, xt)⇒ e3M
= Le1M + max

(
Le2M, Le3M− 1

)
(List-Elimination)

LleafM = 0 (Leaf)
Lnode(ea, el, er)M = 1 + LeaM + LelM + LerM (Tree-Node)
Lmatch e1 with | leaf ⇒ e2

|node(xa, xl, xr)⇒ e3M
= Le1M + max

(
Le2M, Le3M− 1

)
(Tree-Elimination)

Lfi(e1, . . . , en)M = xi + Le1M + · · ·+ LenM (Function Application)

Note that xi = Lfi(v1, . . . , vni)M holds for 1 ≤ i ≤ n.

Observation 1.3. Gordon Plotkin remarked that resources used to compute arith-
metic expressions might be reused immediately, probably reducing the upper bound
on resource consumption. Therefore we should define

Le1 ? e2M = max
(
Le1M, Le2M

)
for ? ∈ {+,−,×,≥, . . . }

in the case of a Standard Integer Infix operation. It is not yet entirely clear if this
principle may be further expanded to all base type expressions wherever they appear
and without any complications arising, especially in a concrete implementation. We
leave this question to future investigations.
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LP M as defined above is not exactly a linear program, since the inequalities contain the
function max. In order to obtain a true integer linear program we have to successively
replace each inequality of the kind

xi ≥ W0 + max(W1,W2)

by the two inequalities

xi ≥ W0 +W1

xi ≥ W0 +W2

where Wi stands for an arbitrary expression in (Z ∪ x,+,max). Although this leads
to an equivalent integer linear program, the number of inequalities may rise expo-
nentially: If W0 is of the form

(
W7 + max(W5,W6)

)
+ max(W3,W4), i.e. contains

further max-operations, we are forced to replace the two inequalities from above by

xi ≥ W7 +W5 +W3 +W1 xi ≥ W7 +W5 +W3 +W2

xi ≥ W7 +W6 +W3 +W1 xi ≥ W7 +W6 +W3 +W2

xi ≥ W7 +W5 +W4 +W1 xi ≥ W7 +W5 +W4 +W2

xi ≥ W7 +W6 +W4 +W1 xi ≥ W7 +W6 +W4 +W2

This exponential blow up is caused by program constructs like

if
(
if (if e7 then e5 else e6) then e3 else e4

)
then e1 else e2

e.g. when a branching operation is nested within the guard of another branching
operation.6 However it is possible to avoid this exponential blow up by introducing
new variables; the equation

xi ≥
((
W7 + max(W5,W6)

)
+ max(W3,W4)

)
+ max(W1,W2)

considered above can equivalently be replaced by

xi ≥ y +W1 y ≥ z +W3 z ≥ W7 +W5

xi ≥ y +W2 y ≥ z +W4 z ≥ W7 +W6

where y, z ∈ N are freshly introduced variables; this obviously allows construction
within linear time depending on the input.

However, by the tutorial nature of this section and for simplicities sake, we prefer
to keep the dimension of the integer linear program constant to n, hence accept a

6Branching operations are: Conditional, Sum-, List- and Tree-Elimination; see Appendix A.1
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possible exponential blow up of the number of inequalities. It shall be mentioned
that this mechanism is naturally included in the different approach of the problem in
section 2: in this more general approach a polynomial construction time of LP M can be
guaranteed without introducing new variables, albeit there will be variables present
which function in the same way. We will recall this again during the construction of
LP M in section 2.

So finally we have obtained m ≥ n inequalities of the form

xi(l) ≥ cl +
n∑
j=1

alj xj

for 1 ≤ l ≤ m. Furthermore, the definition ensures alj ∈ N and cl ∈ Z. Collecting all
of the above, LP M is an integer linear program of form:

Bx ≥ c+ Ax

where A ∈ Nm×n, x ∈ Nn, c ∈ Zm, B ∈ {0, 1}m×n with blj =

{
1 if i(l) = j

0 otherwise

Note that although m may be big, the matrix A can be considered sparse.

Theorem 1.4. The integer linear program LP M is solvable in polynomial time.

Proof. It is well-known that solving an arbitrary integer linear program is an
NP-complete problem, e.g. see [Sch86], while relaxing to an linear program is known
to be in P . We claim that already x ∈ Nn holds for any optimal solution x obtained
in the relaxed case.

So solve LP M ∪ {x ≥ 0} for x ∈ Qm in polynomial time using a standard algorithm,
with x ≥ 0 defined pointwise. Let x be an optimal solution. Observe that the
equations in LP M ensure that x is non-negative. Since A is a non-negative matrix we
have

Bx ≥ c+ Ax ≥ bc+ Axc ≥ c+ Abxc

where b·c : R+ → N stands for truncation. As A and c are integer so is c + A bxc
and we deduce

Bbxc = bBxc ≥ bc+ Axc ≥ c+ Abxc

due to the property of B that each row is a unit-vector. Therefore bxc is a better
solution than x. As x is assumed to be optimal we conclude that x = bxc.

14



A solution to LP M shall be enough for us to construct P ′, but first we need to determine
the meaning of equivalence of programs of the two languages LF and LFPL♦. As
already described in the introduction, we will do this by giving an embedding |·| :

LFPL♦ → LF. We define:

Definition 1.5 (|·| : LFPL♦ → LF).

|v| = v (Variable)
|c| = c (Constant)
|e1 ? e2| = |e1| ? |e2| (Standard Integer Infix)
|if e1 then e2 else e3| = if |e1| then |e2| else |e3| (Conditional)
|e1 ⊗ e2| = |e1| ⊗ |e2| (Pairing)
|match e1 with v1 ⊗ v2 ⇒ e2|

= match |e1| with v1 ⊗ v2 ⇒ |e2| (Pair-Elimination)
|inl (e)| = inl (|e|) (Left-Injection)
|inr(e)| = inr(|e|) (Right-Injection)
|match e1 with | inl(v)⇒ e2

| inr(v)⇒ e3|
= match |e1| with | inl(v)⇒ |e2| | inr(v)⇒ |e3| (Sum-Elimination)
|nil| = nil (Empty List)
|cons(v♦, e1, e2)| = cons(|e1|, |e2|) (List -Construction)
|match e1 with |nil⇒ e2

|cons(x♦, xh, xt)⇒ e3|
= match |e|1 with |nil⇒ |e2| |cons(xh, xt)⇒ |e3| (List-Elimination)
|leaf| = leaf (Leaf)
|node(vd, ea, el, er)| = node(|ea|, |el|, |er|) (Tree-Node)
|match e1 with | leaf ⇒ e2

|node(x♦, xa, xl, xr)⇒ e3|
= match |e1| with | leaf ⇒ |e2| |node(xa, xl, xr)⇒ |e3| (Tree-Elimination)
|fi (e1, . . . , en)| = fi

(
|e′1|, . . . , |e′m|

)
where e′ is derived from e by eliminating all ei : ♦ (Function Application)

We extend the map |·| to types and (componentwise) to signatures accordingly:

|1| = 1 |A⊗B| = A⊗B |L(A)| = L(A)

|N| = N |A+B| = A+B |T(A)| = T(A)

|♦| = 1 |(A1, . . . , An)→ C| = (A1, . . . , Am)→ C

where A1, ..., Am 6= ♦ and Am+1, . . . , An = ♦ respectively for 0 ≤ m ≤ n.

Now we can deal with the construction of the LFPL♦ program P ′ when given a LF

program P and a solution to LP M. The construction of the LFPL♦ terms is given by
the following lemma.
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Lemma 1.6. Let P ∈ LF with signature Σ and η ∈ Nn a solution of LP M. There
exists a LFPL♦ signature Σ′ with |Σ′| = Σ such that for all sub-terms e contained
in P , having type A in context Γ, there exists a LFPL♦ term e′ satisfying

Γ
LF

`Σ e : A =⇒ Γ, d1 : ♦, . . . , dLeMη : ♦
LFPL♦

`Σ′ e′ : A ∧ |e′| α≡ e

where d1, . . . , dLeMη are assumed to be fresh variable names not occurring in term e.
LeMη denotes the number derived by instantiating the variables of the (Z∪x,+,max)-
term LeM according to η.

Proof. Construct Σ′ accordingly to Σ by adding (xi)η arguments of type ♦ to each
function fi ∈ dom

(
Σ
)
, hence obviously |Σ′| = Σ holds. The existence of e′ then

follows by induction on the composition of e. The LF and LFPL♦ type rules differ
only on List-/Tree-Construction, List-/Tree-Elimination and Function Application.
So all other cases are trivial after the use of the induction hypothesis on the contained
sub-terms of e and a proper renaming of the new introduced variables. Therefore we
only exhibit some representative cases:

Variable: Γ
LF

`Σ v : A

By LvM = 0, |v| = v and Γ(v) = A we see that e′ = e is already the term we
require:

Γ
LFPL♦

`Σ v : A

Conditional: Γ1,Γ2

LF

`Σ if e1 then e2 else e3 : A

By the induction hypothesis we obtain the terms e′1, e′2, e′3 satisfying

Γ1, d1 : ♦, . . . , dLe1Mη : ♦
LFPL♦

`Σ′ e′1 : N

Γ2, d1 : ♦, . . . , dLe2Mη : ♦
LFPL♦

`Σ′ e′2 : A Γ2, d1 : ♦, . . . , dLe3Mη : ♦
LFPL♦

`Σ′ e′3 : A

Since we want to construct the term e′ out of these three sub-terms we need to
rename the di. Let µ = max

(
Le2Mη, Le3Mη

)
then

Γ2, d1+Le1M : ♦, . . . , dµ+Le1M : ♦
LFPL♦

`Σ′ e′′2 : A

Γ2, d1+Le1M : ♦, . . . , dµ+Le1M : ♦
LFPL♦

`Σ′ e′′3 : A

where e′′2 is e′2 after substituting di by di+Le1Mη for i = 1, . . . , Le2Mη and similarly
e′′3 being derived from e′3 by substituting di by di+Le1Mη for i = 1, . . . , Le3Mη. Note
that |e′2|

α≡ |e′′2| and |e′2|
α≡ |e′′3| as the di : ♦ are eliminated by |·|. We conclude

Γ1,Γ2, d1 : ♦, . . . , dLe1Mη+µ : ♦
LFPL♦

`Σ′ if e′1 then e′′2 else e′′3 : A
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since by definition Lif e1 then e2 else e3Mη = Le1Mη+max
(
Le2Mη, Le3Mη

)
= Le1Mη+µ

and |if e′1 then e′2 else e′3|
α≡ if |e′1| then |e′′2| else |e′′3|.

Now let us deal with the slightly less obvious cases only:

List-Construction: Γh,Γt
LF

`Σ cons(eh, et) : L(A)

By the induction hypothesis we have

Γh, d1 : ♦, . . . , dLehMη : ♦
LFPL♦

`Σ′ e′′h : A

Γt, dLehMη+1 : ♦, . . . , dLehMη+LetMη : ♦
LFPL♦

`Σ′ e′′t : L(A)

For the sake of simplicity we already renamed the di like shown in the previous
case. By definition follows Lcons(eh, et)Mη = LehMη + LetMη + 1, hence we obtain

Γh,Γt, d1 : ♦, . . . , dLcons(eh,et)Mη : ♦
LFPL♦

`Σ′ cons(dLehMη+LetMη+1, e
′′
h, e
′′
t ) : L(A)

as |cons(dLehMη+LetMη+1, e
′′
h, e
′′
t )|

α≡ cons(|e′′h|, |e′′t |).

List-Elimination: Γ1,Γ2

LF

`Σ match e1 with |nil⇒ e2
|cons(h, t)⇒ e3 : C

By appeal to the induction hypothesis and after renaming the di we obtain

Γ1, d1 : ♦, . . . , dLe1Mη : ♦
LFPL♦

`Σ′ e′1 : L(A)

Γ2, dLe1Mη+1 : ♦, . . . , dµ : ♦
LFPL♦

`Σ′ e′2 : C

Γ2, h : A, t : L(A) , dLe1Mη+1 : ♦, . . . , dµ+1 : ♦
LFPL♦

`Σ′ e′3 : C

where µ = Le1Mη + max
(
Le2Mη, Le3Mη − 1

)
and hence

Le2Mη ≤ µ− Le1Mη
Le3Mη ≤ µ+ 1− Le1Mη

So we exhibit as required

Γ1,Γ2, d1 : ♦, . . . , dLeMη : ♦
LFPL

`Σ match e′1 with |nil⇒ e′2 |cons(dµ+1, h, t)⇒ e′3

since(∣∣∣∣∣match e′1 with |nil⇒ e′2
|cons(dµ, h, t)⇒ e′3

∣∣∣∣∣
)

= Le1Mη + max
(
Le2Mη, Le3Mη − 1

)
= µ
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and∣∣∣∣∣match e′1 with |nil⇒ e′2
|cons(dµ, h, t)⇒ e′3

∣∣∣∣∣
α≡ match |e′1| with |nil⇒ |e′2|

|cons(h, t)⇒ |e′3|

by definition.

Tree-Node, Tree-Elimination: The cases are similar to List-Construction and
List-Elimination respectively, so we omit them here as well.

Function Application: Γ1, . . . ,Γm
LF

`Σ fi(e1, . . . , em) : B

We assume that Σ(fi) = (A1, . . . , Am)→ B hence

Σ′(fi) = (A1, . . . , Am,♦, . . . ,♦︸ ︷︷ ︸
(xi)η

)→ B

By the induction hypothesis we obtain for i = 1, . . . ,m

Γi, d1 : ♦, . . . , dLeiMη : ♦
LFPL♦

`Σ′ e′i : Ai

We know that Lfi(e1, . . . , em)Mη = (xi)η + Le1Mη + · · ·+ LemMη by definition of L·M,
hence there are enough resources available to form the term

Γ1, . . . ,Γm, d1 : ♦, . . . , dLfi(e1,...,em)M : ♦
LFPL♦

`Σ′ fi(e
′′
1, . . . , e

′′
m, d1, . . . , d(xi)η) : B

where e′′i is derived from e′i by a proper renaming of the di as usual. Using the
definition of |·| we verify that

|fi
(
e′′1, . . . , e

′′
m, d1, . . . , d(xi)η

)
| α≡ fi

(
|e′′1|, . . . , |e′′m|

)
as required to complete this case.
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The main result of this section then follows quickly:

Theorem 1.7. For all LF-programs P holds:

∃P ′ ∈ LFPL♦.|P ′|
α≡ P ⇐⇒ The ILP LP M is solvable

Proof. “⇐”: Assume that η ∈ Nn is a solution of LP M. We construct P ′ by the use of
Lemma 1.6 on the defining body efi of each function fi ∈ P , with context and
type of the defining body according to the signature of fi. Obviously |P ′| α≡ P

as Lemma 1.6 guarantees |efi |
α≡ efi for each function.

“⇒”: Let P ′ ∈ LFPL♦ with |P ′| = P . As |P ′| = P the programs can only differ on
the explicit handling of resources. For each fi ∈ P ′ let

ηi = number of arguments Ai of type ♦ for Σ′(fi) = A1, . . . , Am → B

Now η must be a solution for LP M: By inspection of Definition 1.2 we see that
LP M consists of inequalities giving lower bounds on the number of resources
consumed in each of the computational branches of each function fi ∈ P . The
program P ′ is assumed to be a valid LFPL♦ program. Hence each function must
have enough arguments of type ♦ to satisfy all the lower bounds on the resource
consumption on each of its computational branches, as there is no other source
of resources available in LFPL♦.

Example 1.8 (Insertion-Sort). As a short example we will now examine the well-
known insertion-sort algorithm. Let PIS ,ΣIS ∈ LF be as follows:

ΣIS (sort) = (L(N))→ L(N)

ΣIS (ins) = (N, L(N))→ L(N)

ins(n, l) = match l with |nil⇒ cons(n, nil)

|cons(h, t)⇒ if n ≤ h then cons(n, cons(h, t))

else cons(h, ins(n, t))

sort(l) = match l with |nil⇒ nil

|cons(h, t)⇒ ins(h, sort(t))

Note that the presented program code is strictly speaking not written in a linear
style, as the variables n and h are used twice in the definition of ins: once in the
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guard of the conditional and once in the branches. Of course, variables may always
be shared between computational branches without violating linear typing, but in
this case the variables are used in the guard as well. For the moment just note that
we may relax linear typing to allow the multiple use of variables of base types like N

and 1 (but of course not ♦) without any problems arising by adding a certain type
rule. We will deal with this in detail in Section 3.1, but for simplicity we already
allow us to make use of this rule in the given examples yet without further notice.

Computing LPIS M then results in the integer linear program
1 0

1 0

1 0

0 1

0 1


(
xins
xsort

)
≥


1

1

0

0

−1

+


0 0

0 0

1 0

0 0

1 1


(
xins
xsort

)
(x ∈ N2)

which can be transformed to the equivalent system 1 0

0 1

−1 0

( xins
xsort

)
≥

 1

0

−1

 (x ∈ N2)

having the (unique) optimal solution x =
(

1
0

)
. This leads us straightforwardly to the

LFPL-program as stated below

Σ′IS (sort′) = (L(N))→ L(N)

Σ′IS (ins′) = (N, L(N) ,♦)→ L(N)

ins′(n, l, d) = match l with |nil⇒ cons(d, n, nil)

|cons(d′, h, t)⇒ if n ≤ h then cons(d′, n, cons(d, h, t))

else cons(d′, h, ins′(n, t, d))

sort′(l) = match l with |nil⇒ nil

|cons(d, h, t)⇒ ins′(h, sort′(t), d)

Another program example that this technique already covers is the Quicksort algo-
rithm as presented later in Example 3.1.3. Note that dynamical resource allocation is
prohibited in LFPL♦. As an example for this we consider the simple function twice,
which just doubles each entry of an integer list:
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Example 1.9 (Twice).

twice : (L(N))→ L(N)

twice(l) = match l with |nil⇒ nil

|cons(h, t)⇒ cons
(
h, cons(h, twice(t))

)
Computing Ltwice(v)M yields the inequality

xtwice ≥ 0 + max
{

0, −1 + 1 + 1 + xtwice
}

= max
{

0, 1 + xtwice
}

which is apparently not solvable. The problem is that the number of resources
required to call function twice dynamically depends on the length of the input list:
For each list-node we need an additional resource to place its copy within. (The
problem has nothing to do with the double appearance of variable h, violating a
linear typing. As already mentioned above, copying elements of N can be done
without problems. We could easily restore strict linearity by replacing the second
appearance of h by a constant number, without changing the crucial part of this
example.)

The methods provided in the next section will be capable of handling functions like
twice, which require dynamical allocation of resources depending on their input. We
will return to function twice in Example 3.2.1.

21



2 The complex case: LFPL and L̂FPL

Now we want to expand our search for translations of LF-programs P to the full
range of programs P ′ ∈ LFPL. Let us first discuss some approaches of defining |·| in
a natural way by the example of a cons operation on the List-type, as this already
turns out to be problematic:

2.1 Naturally defining |·| : LFPL→ LF

• The naive approach as in Definition 1.5: |cons(ed, eh, et)| = cons(|eh|, |et|)
Thus simply eliminating the term ed : ♦ which provides the necessary resource
needed to construct a list-node. Now |·| would not preserve the standard se-
mantics of a program as the evaluation of ed could be non-terminating, e.g.

ed = borr(∗) where
borr : 1→ ♦

borr(x) := borr(x)

So we could not know whether there exists at least one terminating LFPL

program P ′ with |P ′| α≡ P or not. This would be unsatisfying as we can always
trivially construct a LFPL program P ′ with |P ′| α≡ P that, whenever a resource
is needed, just ‘borrows’ this resource by a call to the function borr as defined
above at the cost of non-termination.

Note that this was not an issue in Section 1, as the only terms of type ♦ allowed
in LFPL♦ are variables.

• |cons(ed, eh, et)| = |ed|; cons(|eh|, |et|)
This would be an unpleasant solution as well, as there are completely unmoti-
vated artifacts of the resource type handling remaining within the LF-program.
So for a function f like

f : N, L(N)→ L(N) f(x, l) := cons(x, l)

it might be true that ∀f ′ ∈ LFPL.|f ′| 6 α≡ f although the function g

g : N, L(N) ,♦→ L(N) g(x, l, d) := cons(d, x, l)

would naturally be viewed as the LFPL-counterpart of f . After all we are
seeking a LFPL-program according to an LF-program and not vice versa.
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• By a similar argument we are led to abandon the approach of defining |·| to
replace each occurrence of type ♦ by the unit type 1. A definition like this would
already restrict the possible heap-space usage of P ′ within the LF-program P ,
as only the occurrence of a unit type argument would allow the use of one
resource.

The solution to these problems lies within the following observations, which – in
order to state them – require some simple definitions in advance. We will stick to
the naive first approach to |·|, which will turn out to be quite sensible under a mild
assumption on the signature.

Definition 2.1.1. Define

〈·〉 : LFPL-zero-order types −→ N

and say that 〈A〉 is the content of an LFPL-type A. The intuition of 〈A〉 is the
number of resources that are at least contained in any element of type A. The
defining equations are:

〈1〉 = 0 〈N〉 = 0 〈♦〉 = 1

〈L(A)〉 = 0 〈T(A)〉 = 0

〈A⊗B〉 = 〈A〉+ 〈B〉 〈A+B〉 = min
(
〈A〉 , 〈B〉

)
We also extend this map on arbitrary contexts to be the sum of the content of the
type of each variable within the domain of the context:

〈Γ〉 =
∑

x∈dom(Γ)

〈Γ(x)〉

Definition 2.1.2 (Faithful LFPL-signatures). Any LFPL-signature Σ containing no
first-order type with a result type of content greater than zero, i.e.

∀f ∈ dom(Σ).Σ(f) = (A1, . . . , An)→ B =⇒ 〈B〉 = 0

is called a faithful

Lemma 2.1.3. Let Σ be a faithful LFPL-signature, Γ a LFPL-typing context. Fur-
thermore let e be a LFPL-term and A be a LFPL-type then the following holds:

Γ
LFPL

`Σ e : A =⇒ 〈Γ〉 ≥ 〈A〉
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Proof. By induction on the composition of term e:

Variable: Γ `Σ v : Γ(v)

By Definition 2.1.1 it follows immediately that 〈Γ〉 =
∑

x∈dom(Γ) Γ(x) ≥ Γ(v)

Constant I+II, Integer Infix: Γ `Σ e : A

Trivial, as 〈N〉 = 0 and 〈1〉 = 0 in all these cases.

Conditional: Γ1,Γ2 `Σ if e1 then e2 else e3 : C

By the LFPL-typing rules and the induction hypothesis it follows 〈Γ2〉 ≥ 〈A〉,
hence 〈Γ1,Γ2〉 = 〈Γ1〉+ 〈Γ2〉 ≥ 〈A〉 as needed.

Pairing: Γ1,Γ2 `Σ e1 ⊗ e2 : A1 ⊗ A2

By the typing rules and the induction hypothesis we have: 〈Γ1〉 ≥ 〈A1〉 and
〈Γ2〉 ≥ 〈A2〉 therefore we conclude 〈Γ1,Γ2〉 ≥ 〈A1〉+ 〈A2〉 = 〈A1 ⊗ A2〉.

Pair-Elimination: Γ1,Γ2 `Σ match e1 with v1 ⊗ v2 ⇒ e2 : C

Again by appeal to the typing rules and the induction hypothesis we obtain:
〈Γ1〉 ≥ 〈A1 ⊗ A2〉 = 〈A1〉+ 〈A2〉 and 〈Γ2〉+ 〈A1〉+ 〈A2〉 ≥ 〈C〉 thus we derive
that 〈Γ1,Γ2〉 ≥ 〈C〉.

Inl, Inr: Γ `Σ inl(e) : A+B

By the typing rules and the induction hypothesis we derive

〈Γ〉 ≥ 〈A〉 ≥ min
{
〈A〉 , 〈B〉

}
= 〈A+B〉

The case of inr(·) is similar.

Sum-Elimination: Γ1,Γ2 `Σ match e1 with | inl(v)⇒ e2
| inr(v)⇒ e3 : C

By typing rules and induction hypothesis we obtain

〈Γ1〉 ≥ 〈A+B〉 = min
{
〈A〉 , 〈B〉

}
〈Γ2〉+ 〈A〉 ≥ 〈C〉 〈Γ2〉+ 〈B〉 ≥ 〈C〉

Thus either 〈Γ1〉 ≥ 〈A〉 or 〈Γ1〉 ≥ 〈B〉 and in both cases 〈Γ1,Γ2〉 ≥ 〈C〉 as
needed.

Nil, List-Construction: Γ `Σ e : L(A)

Trivial, as 〈L(A)〉 = 0 in both cases.

List-Elimination: Γ1,Γ2 `Σ match e1 with |nil⇒ e2
|cons(d, h, t)⇒ e3 : C

By typing rules and induction hypothesis applied to the nil-branch we obtain
immediately that 〈Γ1,Γ2〉 ≥ 〈Γ2〉 ≥ 〈C〉.
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Leaf, Tree-Node: Γ `Σ e : T(A)

Trivial, as 〈T(A)〉 = 0 in both cases.

Tree-Elimination: Γ1,Γ2 `Σ match e1 with | leaf ⇒ e2
|node(d, a, l, r)⇒ e3 : C

By typing rules and induction hypothesis we obtain 〈Γ2〉 ≥ 〈C〉 from the leaf-
branch. Hence we conclude 〈Γ1,Γ2〉 ≥ 〈C〉.

Function Application: Γ1, . . . ,Γn `Σ f(e1, . . . , en) : B

Trivial, as 〈B〉 = 0 by assumption.

Let us look at our example of the naive approach to |·| again:

|cons(ed, eh, et)| = cons(|eh|, |et|)

as ed : ♦, the term ed cannot be of importance for the result of the computation, since
all elements of type ♦ are indistinguishable and there are no side-effects in a pure
functional language except for non-termination due to recursive function calls. By
Lemma 2.1.3 we know that the needed resource must already be available, as there
are no resource allocation operators in LFPL, so all the term ed eventually can do
is separating this resource from compounds already contained in the context. So by
restricting the signature to a faithful one we know that operations like function calls
are always unnecessary in expressions of type ♦. We will formalise this observation
by defining a new language, where the described problem of defining |·| in the naive
way naturally does not arise.

Before we go on, please note that the imposed restrictions due to faithful signatures
are not at all completely natural: one might be interested in programming functions
like

head : L(A)→ (A⊗ ♦)⊗ L(A) head(l) := match l with

|nil ⇒ head(nil)

|cons(d, h, t) ⇒ (h⊗ d)⊗ t

which is intended to be used only on non-empty lists. In some cases additional
reasoning may allow save and convenient use of such constructs, but our restriction
to faithful signatures prohibits programming styles like these. So a function like head
must be properly implemented like

head : L(A)→ 1 +
(
(A⊗ ♦)⊗ L(A)

)
head(l) := match l with

|nil ⇒ inl(∗)
|cons(d, h, t) ⇒ inr

(
(h⊗ d)⊗ t

)
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when a faithful signature is required. It is not clear to us whether the restriction to
faithful signatures restricts expressive power, but it seems unlikely.

2.2 The language L̂FPL

We introduce a restricted variant of LFPL now, named L̂FPL, which allows us only to
build programs with a faithful signature and that also enforces a ‘normalised’ han-
dling of the resource type ♦, justified by what we have just seen. We will then discuss
the strong connection between LFPL and L̂FPL and prove equality of expressive power
when restricting LFPL to programs with faithful signatures.

Definition 2.2.1 (L̂FPL). We will define the type and term grammar of L̂FPL and
the typing-rules now. The type grammar:

pure zero-order types: P ::= 1 | N | L(R) | T(R) | P ⊗ P | P +R | R + P

rich zero-order types: R ::= (P, n) where n ∈ N
(pure) first-order types: F ::= (P, . . . , P, n)→ P where n ∈ N

To provide a glimpse where this will lead us, the L̂FPL-type (N, 2) is set to correspond
to the LFPL-type N ⊗ (♦⊗ ♦) as well as with all product permutations of this type.
So we extend Definition 2.1.1 to L̂FPL by:

〈(A, n)〉 = n 〈B〉 = 0

where (A, n) is an arbitrary rich L̂FPL zero-order type and B is any pure L̂FPL zero-
order type. We therefore may occasionally allow ourselves to conveniently use the
pure type B instead of the rich type (B, 0), but never vice versa.

Note that it is not possible to include a single sum-type R+R, as the content of such
a type could be non-zero, hence functions returning sum-types could possibly violate
our desired restriction on the signature. So LFPL-types like (A⊗ ♦)+

(
(B ⊗ ♦)⊗ ♦

)
must correspond to the rich L̂FPL-type

(
A+ (B, 1), 1

)
.
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The terms of L̂FPL are given by the following grammar:7

e ::= v Variable

| c Constant

| e1 ? e2 Standard Integer Infix

| if e1 then e2 else e3 Conditional

| e1 ⊗ e2 Pairing

| match e1 with v1 ⊗ v2 ⇒ e2 Pair-Elimination

| inl(e) Left Injection

| inr(e) Right Injection

| match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

Sum-Elimination

| nil Empty List

| cons(eh, et) List-Construction

| match e1 with |nil⇒ e2

|cons(h, t)⇒ e3

List-Elimination

| leaf Leaf

| node(ea, el, er) Tree-Node

| match e1 with | leaf ⇒ e2

|node(a, l, r)⇒ e3

Tree-Elimination

| f(e1, . . . , en) Function Application

Let Σ be an L̂FPL signature mapping a finite set of function identifiers to L̂FPL

first-order types, Γ be an L̂FPL typing context mapping a finite set of identifiers to
L̂FPL pure zero-order types, and n a natural number. An L̂FPL typing judgement
Γ, n `Σ e : A then reads “the L̂FPL term e has type A under signature Σ and in
typing context Γ with n free memory resources available.” If the domains of Γ1 and
Γ2 are disjoint we allow ourselves to write “Γ1,Γ2, n `Σ e : A” meaning that the
typing context of this judgement consists of the disjoint union of Γ1 and Γ2. The
natural number assorted with the context, the natural numbers occurring within the
types and in the side conditions of the following type rules are sometimes referred to
as resource numbers.

In each of the following type rules, let furthermore A,B,C denote arbitrary L̂FPL

pure zero-order types and n, k,m1,m2, . . . ∈ N denote arbitrary values. Then we
7Note that the term-grammar is identical to the term-grammar of LF given in Definition A.3.1!
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allow the following typing judgements for L̂FPL, provided that the premises above,
the rule and all the equations noted at the side of each rule are satisfied.8

Variable
(v ∈ dom(Γ))

Γ, n `Σ v : Γ(v)

Constant I+II

Γ, n `Σ ∗ : 1
(c is a integer constant)

Γ, n `Σ c : N

Standard Integer Infix Operator

Γ1,m1 `Σ e1 : N Γ2,m2 `Σ e2 : N

 n ≥ m1 +m2

and ? is a integer

infix operator


Γ1,Γ2, n `Σ e1 ? e2 : N

Conditional

Γ1,m1 `Σ e1 : N

Γ2,m2 `Σ e2 : A

Γ2,m3 `Σ e3 : A
(
n ≥ m1 +m2

n ≥ m1 +m3

)
Γ1,Γ2, n `Σ if e1 then e2 else e3 : A

Pairing
Γ1,m1 `Σ e1 : A1 Γ2,m2 `Σ e2 : A2

(n ≥ m1 +m2)
Γ1,Γ2, n `Σ e1 ⊗ e2 : A1 ⊗ A2

Pair-Elimination

Γ1,m1 `Σ e1 : A1 ⊗ A2

Γ2, v1 : A1, v2 : A2,m2 `Σ e2 : C
(n ≥ m1 +m2)

Γ1,Γ2, n `Σ match e1 with v1 ⊗ v2 ⇒ e2 : C

Inl I
Γ,m `Σ e : A

(n ≥ m)
Γ, n `Σ inl(e) : A+ (B, k)

Inr I
Γ,m `Σ e : B

(n ≥ m+ k)
Γ, n `Σ inr(e) : A+ (B, k)

8Note that the typing-rules of LF are essentially equal to those presented now, except for the
added linear constraints.
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Inl II
Γ,m `Σ e : A

(n ≥ m+ k)
Γ, n `Σ inl(e) : (A, k) +B

Inr II
Γ,m `Σ e : B

(n ≥ m)
Γ, n `Σ inr(e) : (A, k) +B

Sum-Elimination I

Γ1,m1 `Σ e1 : A+ (B, k)

Γ2, v : A,m2 `Σ e2 : C

Γ2, v : B,m3 `Σ e3 : C
(
n ≥ m1 +m2

n ≥ m1 +m3 − k

)
Γ1,Γ2, n `Σ match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

: C

Sum-Elimination II

Γ1,m1 `Σ e1 : (A, k) +B

Γ2, v : A,m2 `Σ e2 : C

Γ2, v : B,m3 `Σ e3 : C
(
n ≥ m1 +m2 − k
n ≥ m1 +m3

)
Γ1,Γ2, n `Σ match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

: C

Empty List

Γ, n `Σ nil : L(A, k)

List-Construction

Γ1,m1 `Σ eh : A Γ2,m2 `Σ et : L(A, k)
(n ≥ m1 +m2 + (1 + k))

Γ1,Γ2, n `Σ cons(eh, et) : L(A, k)

List-Elimination

Γ1,m1 `Σ e1 : L(A, k)

Γ2,m2 `Σ e2 : C

Γ2, h : A, t : L(A, k) ,m3 `Σ e3 : C
(
n ≥ m1 +m2

n ≥ m1 +m3 − (1 + k)

)
Γ1,Γ2, n `Σ match e1 with |nil⇒ e2

|cons(h, t)⇒ e3

: C
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Leaf

Γ, n `Σ leaf : T(A, k)

Tree-Node

Γ1,m1 `Σ e1 : A

Γ2,m2 `Σ e2 : T(A, k)

Γ3,m3 `Σ e3 : T(A, k)
(n ≥ (1 + k) +

∑
mi)

Γ1,Γ2,Γ3, n `Σ node(e1, e2, e3) : T(A, k)

Tree-Elimination

Γ1,m1 `Σ e1 : T(A, k) Γ2,m2 `Σ e2 : C

Γ2, a : A, l : T(A, k) , r : T(A, k) ,m3 `Σ e3 : C
(
n ≥ m1 +m2

n ≥ m1 +m3 − (1 + k)

)
Γ1,Γ2, n `Σ match e1 with | leaf ⇒ e2

|node(a, l, r)⇒ e3

: C

Function Application

Σ(f) = (A1, . . . , Ap, k) −→ B

Γi,mi `Σ ei : Ai (i = 1, . . . , p)
(n ≥ k +

∑
mi)

Γ1, . . . ,Γp, n `Σ f(e1, . . . , ep) : B

Lemma 2.2.2. Observe that the following rule

Waste
Γ,m `Σ e : A

(n ≥ m)
Γ, n `Σ e : A

is admissible.

Proof. By inspection of all terminating L̂FPL type rules, i.e. those rules which do
not require a typing judgement as a precondition. Due to the fact that all termi-
nating type rules impose no restriction on the natural number counting the available
resources, unused memory resources may be passed on to those.

Set-Theoretic Semantics of L̂FPL

The set-theoretic semantics of L̂FPL is simply an extension of the set-theoretic se-
mantics of LF. We must solely add the interpretation of rich zero-order types.

Definition 2.2.3. The set-theoretic semantics of L̂FPL are identical to the the set-
theoretic semantics of LF, given in Definition A.3.2, extended by

J(P, n)K = JP K
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The set-theoretic semantics of L̂FPL shall only provide us with the formal denotation
of an L̂FPL program. So again we ignore resource related concerns in the semantics
as we did in Definition A.2.2, the set-theoretic semantics of LFPL.

The signature is indeed all that distinguishes an L̂FPL-program from an LF-program.
However, we still can guarantee that a L̂FPL-program does not need to allocate any
additional dynamic space by the close connection to LFPL.

2.3 The strong connection between LFPL and L̂FPL

In order to prove the equality of the expressive power of L̂FPL and LFPL, we will
show how to translate a given L̂FPL-program into a corresponding9 L̂FPL-program
and vice versa.

Transforming L̂FPL to LFPL

It is easy to see that any L̂FPL-program can be transformed into a corresponding
LFPL-program. Replace each L̂FPL type according to the following map.

Definition 2.3.1. Define the map φ : L̂FPL types −→ LFPL types recursively as
follows:

1 7−→ 1 L(A) 7−→ L(φ(A)) A⊗B 7−→ φ(A)⊗ φ(B)

N 7−→ N T(A) 7−→ T(φ(A)) A+B 7−→ φ(A) + φ(B)

(A, r) 7−→ φ(A)⊗ (♦⊗ · · · ⊗ ♦︸ ︷︷ ︸
r

)

(A1, . . . , An, r)→ B 7−→
(
φ(A1), . . . , φ(An),

r︷ ︸︸ ︷
♦, . . . ,♦

)
→ φ(B)

9As already said: it is intuitively clear what ‘corresponding’ means here, i.e. the programs should
be equal modulo all instructions dealing with ♦ only.
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Note that φ is an injective map. We also allow ourselves to write φ(Σ) and φ(Γ)

instead of (φ ◦ Σ) and (φ ◦ Γ) respectively.

To complete the construction of the LFPL-program we need to insert the necessary
match and ⊗ instructions to decompose or compose these products of ♦’s. Finally
operations consuming or recovering elements of ♦ like cons or matchL(·) need the
proper arguments. Since the number of resources consumed or recovered by built-in
functions is exactly the same in both languages, this process is straightforward to
accomplish; so we do not give details here and merely state:

Lemma 2.3.2.

∀Σ,Γ, n, e, A. Γ, n
L̂FPL

`Σ e : A =⇒ φ(Γ), d1 : ♦, . . . , dn : ♦
LFPL

`φ(Σ) e
′ : φ(A)

where the term e′ is constructed according to term e as described above.

Transforming LFPL to L̂FPL

By the way L̂FPL is constructed, a converse translation is only possible if the LFPL-
program has a faithful signature, i.e. that the content of all result types of any
occurring first-order types is zero. So throughout the following we consider programs
with faithful signatures only. We leave unanswered whether the restriction to faithful
signatures reduces expressive power. Although it seems likely to us that expressive
power remains unaffected.

Definition 2.3.3. Define the map ψ : LFPL types −→ L̂FPL pure types as described
below.

1 7−→ 1 N 7−→ N ♦ 7−→ 1

L(A) 7−→ L
(
ψ(A), 〈A〉

)
A⊗B 7−→ ψ(A)⊗ ψ(B)

T(A) 7−→ T
(
ψ(A), 〈A〉

)
A+B 7−→

{(
ψ(A), 〈A〉 − 〈B〉

)
+ ψ(B) 〈A〉 ≥ 〈B〉

ψ(A) +
(
ψ(B), 〈B〉 − 〈A〉

)
otherwise

(A1, . . . , An)→ B 7−→
(
ψ(A1), . . . , ψ(An),−〈B〉+

∑
〈Ai〉

)
→ ψ(B)

Again we extend the map point-wise to contexts Γ and signatures Σ:

ψ(Γ)(x) = (ψ ◦ Γ)(x) = ψ(Γ(x)) ψ(Σ)(f) = (ψ ◦ Σ)(x) = ψ(Σ(f))
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Note that the presented map is not surjective, e.g. ψ
(
L(♦⊗ ♦)

)
= L(1⊗ 1, 2) 6=

L(1, 2), since we simply replace each occurrence of ♦ by 1.

In order to complete the translation we also need a map of LFPL-terms to L̂FPL-
terms in accordance to the definition of ψ. We allow ourselves to reuse the symbol
|·| to denote this map. Although L̂FPL-terms are equally LF-terms, we shall not use
this as a definition for |·| : LFPL → LF by the arguments explained in Section 2.1,
where we concluded that it is unacceptable that |·| : LFPL → LF would map ♦
onto 1. However in the case of a translation from LFPL to L̂FPL there is no need to
conceal the LFPL resource handling operations, as the L̂FPL translation contains this
information anyway. Therefore simply replacing ♦ by 1 is suitable here.

Definition 2.3.4. Define |·| : LFPL-terms −→ L̂FPL-terms inductively as follows:

Variable

|v| =

{
∗ v : ♦

v otherwise

Constant I + II

|∗| = ∗ |n| = n (where n is a integer constant)

Standard Integer Infix Operator

|e1 ? e2| = |e1| ? |e2| (where ? ∈ {+,−,=, . . . })

Conditional
|if e1 then e2 else e3| = if |e1| then |e2| else |e3|

Pairing
|ea ⊗ eb| = |ea| ⊗ |eb|

Pair-Elimination

|match e1 with va ⊗ vb ⇒ e2| = match |e1| with va ⊗ vb ⇒ |e2|

Inl, Inr

|inl(e)| = inl(|e|) |inr(e)| = inr(|e|)

Sum-Elimination

|match e1 with | inl(va)⇒ e2
| inr(vb)⇒ e3|

= match |e1| with | inl(va)⇒ |e2| | inr(vb)⇒ |e3|
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Empty List
|nil| = nil

List-Construction
|cons(e♦, e1, e2)| = cons(|e1|, |e2|)

List-Elimination

|match e1 with |nil⇒ e2
|cons(e♦, eh, et)⇒ e3|

= match |e1| with |nil⇒ |e2| |cons(eh, et)⇒ |e3|

Leaf
|leaf| = leaf

Tree-Node
|node(e♦, ea, el, er, )| = node(|ea|, |el|, |er|)

Tree-Elimination

|match e1 with | leaf ⇒ e2
|node(v♦, va, vl, vr)⇒ e3|

= match |e1| with | leaf ⇒ |e2| |node(va, vl, vr)⇒ |e3|

Function Application

|fi (e1, . . . , en)| = fi
(
|e1|, . . . , |en|

)
Now we are ready to prove that these maps give rise to a sensible translation from
LFPL to L̂FPL:

Lemma 2.3.5. Assume that Σ is a faithful LFPL-signature, then

∀Γ, e, A . Γ
LFPL

`Σ e : A =⇒ ψ(Γ), 〈Γ〉 − 〈A〉
L̂FPL

`ψ(Σ) |e| : ψ(A)

Proof. We prove the claim by induction on the composition of LFPL terms, but note
first that in each case we already know that 〈Γ〉 − 〈A〉 ≥ 0 by Lemma 2.1.3, since
we assumed Σ to be faithful. Hence we concentrate on the validity of the constraints
of the L̂FPL type rules and do not mention Lemma 2.1.3 explicitly anymore when
making use of the induction hypothesis.
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Variable: Γ
LFPL

`Σ v : A

We have to distinguish two cases, but in both cases the required L̂FPL type
rule has no constraints.

A 6= ♦ By Γ(v) = A we deduce ψ(Γ)(v) = ψ(A) and by definition 〈Γ〉 ≥
〈Γ(v)〉 = 〈A〉. So the claim is obviously true as |v| = v.

A = ♦ In this case |v| = ∗ and we may deduce

ψ(Γ), 〈Γ〉 − 1
L̂FPL

`ψ(Σ) ∗ : 1

since again by Lemma 2.1.3 we know that 〈Γ〉−1 ≥ 0 as already mentioned
above.

Constant: Γ
LFPL

`Σ n : N

Trivially we derive

ψ(Γ), 〈Γ〉 − 0
L̂FPL

`ψ(Σ) n : N

as required.

Integer Infix: Γ1,Γ2

LFPL

`Σ e1 ? e2 : N

By the induction hypothesis

ψ(Γ1), 〈Γ1〉 − 0
L̂FPL

`ψ(Σ) |e1| : N

ψ(Γ2), 〈Γ2〉 − 0
L̂FPL

`ψ(Σ) |e2| : N

thus we easily conclude

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 0
L̂FPL

`ψ(Σ) |e1| ? |e2| : N

Conditional: Γ1,Γ2

LFPL

`Σ if e1 then e2 else e3 : A

By the LFPL-typing rules and the induction hypothesis follows

ψ(Γ1), 〈Γ1〉 − 0
L̂FPL

`ψ(Σ) |e1| : N

ψ(Γ2), 〈Γ2〉 − 〈A〉
L̂FPL

`ψ(Σ) |e2| : ψ(A)

ψ(Γ2), 〈Γ2〉 − 〈A〉
L̂FPL

`ψ(Σ) |e3| : ψ(A)
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hence we derive

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 〈A〉
L̂FPL

`ψ(Σ) if |e1| then |e2| else |e3| : ψ(A)

as clearly
〈Γ1,Γ2〉 − 〈A〉 ≥

(
〈Γ1〉 − 0

)
+
(
〈Γ2〉 − 〈A〉

)
holds.

Pairing: Γ1,Γ2

LFPL

`Σ e1 ⊗ e2 : A1 ⊗ A2

Again, we call upon the induction hypothesis to obtain

ψ(Γ1), 〈Γ1〉 − 〈A1〉
L̂FPL

`ψ(Σ) |e1| : ψ(A1)

ψ(Γ2), 〈Γ2〉 − 〈A2〉
L̂FPL

`ψ(Σ) |e2| : ψ(A2)

and conclude

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 〈A1 ⊗ A2〉
L̂FPL

`ψ(Σ) |e1| ⊗ |e2| : ψ(A1)⊗ ψ(A2)

since 〈A1 ⊗ A2〉 = 〈A1〉+ 〈A2〉 by definition.

Pair-Elimination: Γ1,Γ2

LFPL

`Σ match e1 with v1 ⊗ v2 ⇒ e2 : C

We assume that Γ1

LFPL

`Σ e1 : A1 ⊗ A2. By appeal to the typing rules and the
induction hypothesis we deduce

ψ(Γ1), 〈Γ1〉 − 〈A1 ⊗ A2〉
L̂FPL

`ψ(Σ) |e1| : ψ(A2)⊗ ψ(A1)

ψ(Γ2, v1 : A1, v2 : A2), 〈Γ2, v1 : A1, v2 : A2〉 − 〈C〉
L̂FPL

`ψ(Σ) |e2| : ψ(C)

and observe that

〈Γ1,Γ2〉 − 〈C〉 ≥
(
〈Γ1〉 − 〈A1 ⊗ A2〉

)
+
(
〈Γ2, v1 : A1, v2 : A2〉 − 〈C〉

)
holds by the point-wise extension of Definition 2.1.1 to typing contexts and
therefore we conclude as needed

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 〈C〉
L̂FPL

`ψ(Σ) match |e1| with v1 ⊗ v2 ⇒ |e2| : ψ(C)
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Inl, Inr: Γ `Σ inl(e) : A+B

Using the induction hypothesis we derive

ψ(Γ), 〈Γ〉 − 〈A〉
L̂FPL

`ψ(Σ) |e| : ψ(A)

If 〈A〉 ≥ 〈B〉 then ψ(A+B) =
(
ψ(A), 〈A〉 − 〈B〉

)
+ ψ(B) and we derive

ψ(Γ), 〈Γ〉 − 〈B〉
L̂FPL

`ψ(Σ) inl(|e|) :
(
ψ(A), 〈A〉 − 〈B〉

)
+ ψ(B)

by the L̂FPL type rule Inl II since clearly 〈Γ〉−〈B〉 ≥
(
〈Γ〉−〈A〉

)
+
(
〈A〉−〈B〉

)
.

Otherwise, if 〈A〉 < 〈B〉 we straightforwardly apply the rule Inl I.

ψ(Γ), 〈Γ〉 − 〈A〉
L̂FPL

`ψ(Σ) inl(|e|) : ψ(A) +
(
ψ(B), 〈A〉 − 〈B〉

)
The case of Γ

LFPL

`Σ inr(e) : A+B is analogue.

Sum-Elimination: Γ1,Γ2

LFPL

`Σ match e1 with | inl(v)⇒ e2
| inr(v)⇒ e3 : C

Let Γ1

LFPL

`Σ e1 : A+B. We distinguish:

Case 〈A〉 ≥ 〈B〉: By the typing rules and the induction hypothesis we have

ψ(Γ1), 〈Γ1〉 − 〈B〉
L̂FPL

`ψ(Σ) |e1| :
(
ψ(A), 〈A〉 − 〈B〉

)
+ ψ(B)

ψ(Γ2, v : A), 〈Γ2, v : A〉 − 〈C〉
L̂FPL

`ψ(Σ) |e2| : ψ(C)

ψ(Γ2, v : B), 〈Γ2, v : B〉 − 〈C〉
L̂FPL

`ψ(Σ) |e3| : ψ(C)

In order to apply the type rule Sum-Elimination II, we note that the
inequalities

〈Γ1,Γ2〉 − 〈C〉 ≥
(
〈Γ1〉 − 〈B〉

)
+
(
〈Γ2, v : A〉 − 〈C〉

)
−
(
〈A〉 − 〈B〉

)
〈Γ1,Γ2〉 − 〈C〉 ≥

(
〈Γ1〉 − 〈B〉

)
+
(
〈Γ2, v : B〉 − 〈C〉

)
are valid, and deduce as required

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 〈C〉
L̂FPL

`ψ(Σ) match |e1| with : ψ(C)

| inl (v)⇒ |e2|
| inr(v)⇒ |e3|
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Case 〈A〉 < 〈B〉: is a symmetrical analogue.

Nil: Γ
LFPL

`Σ nil : L(A)

Trivial, as the L̂FPL type judgement

ψ(Γ), 〈Γ〉 − 0
L̂FPL

`ψ(Σ) nil : L(ψ(A), 〈A〉)

holds without any constraints.

List-Construction: Γd,Γh,Γt
LFPL

`Σ cons(ed, eh, et) : L(A)

By the LFPL typing rules and by use of the induction hypothesis we obtain

ψ(Γd), 〈Γd〉 − 1
L̂FPL

`ψ(Σ) |ed| : 1

ψ(Γh), 〈Γh〉 − 〈A〉
L̂FPL

`ψ(Σ) |eh| : ψ(A)

ψ(Γt), 〈Γt〉 − 0
L̂FPL

`ψ(Σ) |et| : L(ψ(A), 〈A〉)

Hence we derive

〈Γd,Γh,Γt〉 ≥ 〈Γh〉+ 〈Γt〉+ (1 + 〈A〉)

and therefore conclude

ψ(Γd,Γh,Γt), 〈Γd,Γh,Γt〉
L̂FPL

`ψ(Σ) cons(|eh|, |et|) : L(ψ(A), 〈A〉)

as 〈L(ψ(A), 〈A〉)〉 = 0.

List-Elimination: Γ1,Γ2

LFPL

`Σ match e1 with |nil→ e2
|cons(d, h, t)→ e3 : C

By the LFPL typing rules – assuming that Γ1

LFPL

`Σ e1 : L(A) – and the induction
hypothesis we have

ψ(Γ1), 〈Γ1〉 − 0
L̂FPL

`ψ(Σ) |e1| : L(ψ(A), 〈A〉)

ψ(Γ2), 〈Γ2〉 − 〈C〉
L̂FPL

`ψ(Σ) |e2| : ψ(C)

ψ(∆), 〈∆〉 − 〈C〉
L̂FPL

`ψ(Σ) |e3| : ψ(C)

where ∆ = Γ2, d : ♦, h : A, t : L(A). We observe that by definition

〈∆〉 = 〈Γ2〉+ 〈♦〉+ 〈A〉+ 〈L(A)〉 = 〈Γ2〉+
(
1 + 〈A〉

)
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So we derive

〈Γ1,Γ2〉 − 〈C〉 ≥ 〈Γ1〉+
(
〈Γ2〉 − 〈C〉

)
〈Γ1,Γ2〉 − 〈C〉 ≥ 〈Γ1〉+

(
〈∆〉 − 〈C〉

)
−
(
1 + 〈A〉

)
which allows the desired type judgement

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 〈C〉
L̂FPL

`ψ(Σ) match |e1| with : ψ(C)
|nil ⇒ |e2|
|cons(h, t)⇒ |e3|

Leaf: Γ
LFPL

`Σ leaf : T(A)

By the L̂FPL typing rules we derive directly

ψ(Γ), 〈Γ〉 − 0
L̂FPL

`ψ(Σ) leaf : T(ψ(A), 〈A〉)

Node: Γd,Γa,Γl,Γr
LFPL

`Σ node(ed, ea, el, er) : T(A)

The LFPL typing rules and the application of the induction hypothesis yields

ψ(Γd), 〈Γd〉 − 1
L̂FPL

`ψ(Σ) |ed| : 1

ψ(Γa), 〈Γa〉 − 〈A〉
L̂FPL

`ψ(Σ) |ea| : ψ(A)

ψ(Γl), 〈Γl〉 − 0
L̂FPL

`ψ(Σ) |el| : T(ψ(A), 〈A〉)

ψ(Γr), 〈Γr〉 − 0
L̂FPL

`ψ(Σ) |er| : T(ψ(A), 〈A〉)

therefore the inequality

〈Γd,Γa,Γl,Γr〉 ≥
(
1 + 〈A〉

)
+ 〈Γa〉+ 〈Γl〉+ 〈Γr〉

holds, allowing us to deduce

ψ(Γd,Γa,Γl,Γr), 〈Γd,Γa,Γl,Γr〉 − 0
L̂FPL

`ψ(Σ) node(|ea|, |el|, |er|) : T(ψ(A), 〈A〉)

Tree-Elimination: Γ1,Γ2

LFPL

`Σ match e1 with | leaf ⇒ e2
|node(d, a, l, r)⇒ e3 : C

By the LFPL typing rules and the induction hypothesis we obtain

ψ(Γ1), 〈Γ1〉 − 0
L̂FPL

`ψ(Σ) |e1| : T(ψ(A), 〈A〉)

ψ(Γ2), 〈Γ2〉 − 〈C〉
L̂FPL

`ψ(Σ) |e2| : ψ(C)

ψ(∆), 〈∆〉 − 〈C〉
L̂FPL

`ψ(Σ) |e3| : ψ(C)
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where ∆ = Γ2, d : ♦, a : A, l : T(A) , r : T(A) and observe that 〈∆〉 = 〈Γ2〉 +(
1 + 〈A〉

)
by the definition of 〈·〉. Hence

〈Γ1,Γ2〉 − 〈C〉 ≥ 〈Γ1〉+ 〈Γ2〉 − 〈C〉
〈Γ1,Γ2〉 − 〈C〉 ≥ 〈Γ1〉+ 〈∆〉 − 〈C〉 −

(
1 + 〈A〉

)
and thus we may derive

ψ(Γ1,Γ2), 〈Γ1,Γ2〉 − 〈C〉
L̂FPL

`ψ(Σ) match |e1| with | leaf ⇒ |e2|
|node(a, l, r)⇒ |e3|

: ψ(C)

Function Application: Γ1, . . . ,Γn
LFPL

`Σ f(e1, . . . , en) : B

Assume that Σ(f) = (A1, . . . , An)→ B. By the induction hypothesis we obtain
for i = 1, . . . , n that

ψ(Γi), 〈Γi〉 − 〈Ai〉
L̂FPL

`ψ(Σ) |ei| : ψ(Ai)

Obviously the equation

〈Γ1, . . . ,Γn〉 − 〈B〉 =
(
−〈B〉+

∑
〈Ai〉

)
+
∑(

〈Γi〉 − 〈Ai〉
)

holds and we can finally conclude

ψ(Γ1, . . . ,Γn), 〈Γ1, . . . ,Γn〉 − 〈B〉
L̂FPL

`ψ(Σ) f(|e1|, . . . , |en|) : ψ(B)

since by definition of ψ we know that

ψ(Σ)(f) = (ψ(A1), . . . , ψ(An),−〈B〉+
∑
〈Ai〉)→ ψ(B)

One may note that 〈B〉 = 0, i.e. that Σ is a faithful signature, is not even nec-
essary in this particular step, though it is of course required for the application
of Lemma 2.1.3, hidden within each use of the induction hypothesis.

So it remains to be shown that the obtained translation indeed ‘corresponds’ to the
program we started with. This can only be proved by the use of some accepted formal
semantics for both languages. In this case the semantics should take into account
the resource usage of the programs, hence the set-theoretic semantics of LFPL and
L̂FPL given in Definition A.2.2 and Definition 2.2.3 cannot be used for this purpose.

Regrettably, designing some suitable semantics with this intention in mind is beyond
the scope of this work. Thus we are content by giving the translations of both
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languages into LF, which is equivalent to use of the given set-theoretic semantics.
Of course, these translations must be trusted to preserve the meaning of a program
again. We therefore do not complete the proof of equivalence of L̂FPL and the faithful
fragment of L̂FPL here, but merely conjecture it in presence of the Lemmata 2.3.2
and 2.3.5 and by the simple construction of the translations.

We also avoid defining the map |·| : LFPL −→ LF, but let us briefly discuss at
this point the problems faced by constructing it in accordance to what was said in
section 2.1. The map |·| : LFPL −→ LF must respect the ‘normalising’ of the resource
handling of LFPL programs. Thus replacing the LFPL type A by its ‘normalised’
form10 φ ◦ ψ(A) ⊗ (♦⊗ · · · ⊗ ♦︸ ︷︷ ︸

〈A〉

) within a program must not alter its translation

to LF. So |·| : LFPL → LF must eliminate operations transforming a type into this
‘normalised’ form, while retaining all other operations. How to distinguish those cases
is not clear, e.g. consider a program P that contains the type

(
(♦⊗ 1) + (N⊗ ♦)

)
⊗N

and turn it into a program P̃ that only uses the ‘normal’ form of this type, namely(
(1 + N)⊗ N

)
⊗♦. This can be easily done by inserting the proper match, inl, inr and

⊗ operations, and since we require |P | = |P̃ |, the |·|-map must eliminate such type
conversions. But those type conversions are not easy to distinguish from ordinary
instructions, as for example the first Pair-Elimination has nothing to do with the
resource type at first glance. In addition, |·| must not leave artifacts of the like
match e with u⊗ v ⇒ u⊗ v when they were not present in the original program, as
this would prevent us from comparing programs by α-equivalence only.

On the other hand defining the map |·| : L̂FPL −→ LF, which we require anyway, is
straightforward to accomplish. The problem of type conversions, with respect to the
resource type only, does not arise in this case naturally, since L̂FPL already ensures
a uniform handling of the resources.

Definition 2.3.6. For any L̂FPL-term e let |e| = e, as there are no differences in the
term grammar of LF and L̂FPL.

For the L̂FPL-types we define:

|1| = 1 |(A, n)| = A |N| = N

|A⊗B| = |A| ⊗ |B| |A+B| = |A|+ |B|

|L(A)| = L(|A|) |T(A)| = T(|A|)
10for a true normal form ψ and φ must be altered to eliminate unnecessary occurrences of type 1
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|f(A1, . . . , Am, n)→ B| = f(|A1|, . . . , |Am|)→ |B|

Lemma 2.3.7.

Γ, n
L̂FPL

`Σ e : C =⇒ |Γ|
LF

` |Σ| e : |C|

Proof. Trivial, as each LF typing rule is a weakened form of its corresponding L̂FPL

typing rule.

2.4 The transformation from LF to L̂FPL

We will now examine the process transforming a LF- into a L̂FPL-program. Since the
term grammars of both languages are identical, the problem solely reduces to derive
a L̂FPL-signature Σ̂ so that the program is well-typed. Unfortunately, the following
theorem shows that this is not necessarily an easy task:

The complexity of the L̂FPL-Signature Problem

Theorem 2.4.1. Let P be a LF-program with signature Σ. Finding a L̂FPL-signature
Σ̂ with

∣∣Σ̂∣∣ = Σ so that P is a well-typed L̂FPL-program is an NP-hard task.

We will prove the theorem by reducing the problem 3SAT to our task, for which is
well-known that it is NP-complete. We will pave the way for the proof first:

Definition 2.4.2. Let Φ = (u11 ∨ u12 ∨ u13) ∧ · · · ∧ (un1 ∨ un2 ∨ un3) be an instance
of 3SAT, where ukj equals either vi or ¬vi. We define the LF-program PΦ and its
according signature ΣΦ in the following way:

• For each occurring variable xi ∈ Φ define

fi(∗) := fi(∗)
ΣΦ(fi) := 1→ 1 + 1

hi(v) := hi


hi



match fi(∗) with

| inl (s1)⇒ nil

| inr(s1)⇒ match fi(∗) with

| inl (s2)⇒ cons(∗, nil)

| inr(s2)⇒ nil




ΣΦ(hi) := L(1)→ L(1)
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• For each of the n clauses in Φ define

gi(v) := gi

(
gi

(
cui1[

w
∖
cui2[

w

∖
cui3
[
w

∖
cons(∗,nil)

]]]))
ΣΦ(gi) := L(1)→ L(1)

where

cuij :=

{
match fk(∗) with | inl(sj)→ nil | inr(sj)→ w if uij = vk

match fk(∗) with | inl(sj)→ w | inr(sj)→ nil if uij = ¬vk

Example 2.4.3. Since we can consider each clause of Φ separately to construct PΦ,
we consider as an example the single clause

v1 ∨ ¬v2 ∨ v3

and show how to construct g1. Adding further clauses will similarly result in adding
more functions g2, g3, . . .

g1(v) := g1


g1



match f1(∗) with

| inl (s1)⇒ nil

| inr(s1)⇒ match f2(∗) with

| inl (s2)⇒ match f3(∗) with

| inl (s3)⇒ nil

| inr(s3)⇒ cons(∗, nil)

| inr(s2)⇒ nil




Note that for each xj the function hj is equal to the function g corresponding to the
clause vj ∨¬vj, but we will examine this and the complete intention of PΦ closely in
the proof of Lemma 2.4.5.

Lemma 2.4.4. The program PΦ can be constructed within polynomial time depending
on the length of Φ.

Proof. Let l denote the length of Φ.

There are at most l different variables, requiring us to define l functions fi and hi
respectively. Every definition can be done within constant time c1.

There are at most l different clauses, each containing at most l literals. Let c2 denote
the time needed to write down one cuij and c3 the time needed for defining the header
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and the trailing cons-operation in each function definition. The substitutions do not
raise the computing time, as w occurs in each cuij exactly once. The substitutions
merely provide a convenient notation, but they are not a part of the construction.

This sums up to a computing time of at most c1x+ c2x
2 + c3x steps for PΦ.

Lemma 2.4.5. A 3SAT formula Φ is satisfiable if and only if there is a L̂FPL-
signature Σ̂ with

∣∣Σ̂∣∣ = ΣΦ so that PΦ is a well-typed L̂FPL-program in the presence
of Σ̂.

Proof. Let Σ̂ be such a L̂FPL-signature. By the way fi and hi are constructed, either

Σ̂(fi) = (1, 0)→ 1 + (1, n) or Σ̂(fi) = (1, 0)→ (1, n) + 1

for some n > 0. The first possibility representing vi being true and the other vi
being false. That either one of these two possibilities is due is enforced by the
definition of hi: There is always one branch that consumes at least one resource
(the one containing the cons-operation), which must come from the Sum-Elimination
operations as any resources obtained from the functions arguments are consumed by
the two recursive calls of hi to itself. It is not clear which of the two Sum-Elimination
operations delivers the resource needed. So each hi represents the tautologic clause
vi ∨ ¬vi.

Thus define

ρ(vi) :=

{
true Σ̂(fi) = (1, 0)→ 1 + (1, n) n ∈ N+

false Σ̂(fi) = (1, 0)→ (1, n) + 1 n ∈ N+

As each gi is well-typed under Σ̂, the path leading to the trailing cons-operation must
free at least one resource from one of the preceding Sum-Elimination operations, since
again all resources possibly obtained from the arguments of gi are in turn consumed
by the recursive calls (In fact, gi cannot obtain any resources from its arguments,
since it would require the double amount of resources to satisfy the recursive calls).

Since the path leading to the cons-operation was constructed in correspondence to
the signs of the literals, at least one literal in clause i must therefore evaluate to true
under ρ.

The logical ‘and’ connection between all clauses of Φ results from the fact that each
defining clause for the gi must be well-defined under the same signature Σ̂. So Φρ

must evaluate to true when Σ̂ types PΦ.
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On the converse, if there is a valuation ρ such that Φρ evaluates to true, then define

Σ̂(fi) :=

{
(1, 0)→ 1 + (1, 1) ρ(vi) = true

(1, 0)→ (1, 1) + 1 ρ(vi) = false

Σ̂(fi) := (L(1, 0) , 0)→ L(1, 0)

Σ̂(fi) := (L(1, 0) , 0)→ L(1, 0)

under which PΦ is well-typed, as in each gi at least one resource is freed along the
path to the cons-operation, because at least one literal is true in clause i.

Proof of Theorem 2.4.1. Using Definition 2.4.2 we can transform every instance of
3SAT in an equivalent L̂FPL typing problem by Lemma 2.4.5. This transformation
can be completed within polynomial time by Lemma 2.4.4. Hence 3SAT reduces to
solving L̂FPL typing problems.

It is true that from a semantic viewpoint PΦ is a bit of a nuisance as its execution
cannot terminate in any way. The functions fi have the same purpose as the function
borr presented in Section 2.1. We explicitly tried to exclude such functions within
L̂FPL, but it seems hard to exclude such programs by syntactical means alone without
restricting expressive power to primitive recursion. Further work has to be done here
and it might turn out that the sum-type problem is feasible when it is possible
to restrict the language to sensible function definitions that cannot try to borrow
resources from non-termination.

Since it is our goal to derive a feasible integer linear program for a given LF-program
P , named again LP M for reference, that is solvable if and only if there is an equivalent
L̂FPL-program P̂ , we will eliminate the problem of deciding the order of sums by
simply ignoring it. We will always decide to have the rich type on the right side of
a sum. In this way we might miss a sensible solution, but we can ensure feasibility.
In the case that we do not derive a solution at all we are forced to swap some of
the occurring sum-types in the LF-program P and try again. Trying out all possible
combinations leads in the worst case to exponential run-time, exponential in the
number of sum-types occurring. Since the number of occurring sum-types with a
necessarily rich component other than (A,0) can be reasonably expected to be small
compared to a program’s size, we do not consider this as a sever disadvantage.

Another imaginable disadvantage of this ignorant approach to the problem might
be obtaining a solution that is not optimal though still a solution, e.g. obtaining a
rich subtype

(
B + (A, 0), n

)
where

(
A + (B,m), n−m

)
would be sufficient but not
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necessary. But it will turn out later on that the notion of optimality is controversial
anyway.

Definition 2.4.6. Let L̂FPLR denote the fragment of L̂FPL that does not contain
the type R + P , hence we also reject the typing rules (Inl II), (Inr II) and (Sum-
Elimination II).

Building the ILP for L̂FPLR

In order to derive the L̂FPLR signature for a given LF program P , we will consider
all possible L̂FPLR type derivations for P . Since the defining terms of P remain
unchanged by a translation to L̂FPLR, the structure of the type derivation is already
fixed as we will see. Thus we leave all occurring resource parameters unknown and
gather the arising constraints of the skeleton of the L̂FPLR type derivation. Whenever
a new value would be needed within the premises of a type rule to be applied, we
simply introduce a fresh variable ranging over N. Each instance solving all the
constraints then gives rise to a valid L̂FPLR type derivation for P . The overall
principle of this technique appeared probably first in a work by J. Palsberg and M. I.
Schwartzbach [P&S91], though they faced more complex constraints than just integer
linear inequalities as we will do.

We start by constructing a general L̂FPLR type-scheme for each LF type, whose
instantiations shall cover all possible L̂FPLR type translations that a particular LF

type may have. By an L̂FPLR type-scheme we simply mean any L̂FPLR type were
some of resource parameters are unknown and replaced by variables ranging over N,
e.g. (N, v), L(N, v), 1 + (1, v), (L(N, 2) ,N, v) → L(1, w) are all L̂FPLR type-schemes
when v, w are variables ranging over the natural numbers. Note that any L̂FPLR type
is an L̂FPLR type-scheme as well.

Definition 2.4.7. [·] : LF-types→ L̂FPL-type schemes:

[1] = 1

[N] = N

[A⊗B] = [A]⊗ [B]

[A+B] = [A] + ([B] , x)

[L(A)] = L([A] , x)

[T(A)] = T([A] , x)

[(A1, . . . , An)→ B] =
(

[A1] , . . . , [An] , x
)
→ [B]
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where x is a fresh positive integer variable. We say that [A] is the enriched type or
type-scheme of A. The map is clearly injective.

Extend the map further to LF-signatures by [Σ] (f) := [Σ(f)]. Of course we have to
be more careful by choosing the names for the fresh integer variables: As we want
to refer multiple times to a signature, the names of the fresh integer variables chosen
must always be the same in subsequent consultations of the same enriched signature.
Additionally no variable name must be shared between the enriched type of two
different functions belonging to the same signature.

Example 2.4.8. As an example we provide the enriched signature of the insertion
sort algorithm, whose LF implementation was presented in Example 1.8:

ΣIS (sort) = (L(N))→ L(N) [ΣIS ] (sort) = (L(N, l1) , x1)→ L(N, l2)

ΣIS (ins) = (N, L(N))→ L(N) [ΣIS ] (ins) = (N, L(N, l3) , x2)→ L(N, l4)

Note that at this stage we do not imply that l1 = l2 or l1 = l3 as these will become
naturally a part of the constraints gathered by the type derivation of the program’s
code.

We denote resource parameters of lists and sums by li and si respectively and resource
parameters of functions by xi like we did in Section 1, though this naming convention
is of course completely arbitrary and merely a matter of human convenience. (To
complete the naming convention of resource variables ranging over N, we denote
unknown resource variables of contexts by n or mi.)

Lemma 2.4.9. For all zero-order LF-types A it holds that any instance of [A] is a
pure zero-order L̂FPLR type.

Proof. Trivial, by induction on the composition of LF-types.

Lemma 2.4.10. Let Σ be a LF-signature.

∀Σ̂ ∈ L̂FPLR.
∣∣Σ̂∣∣ = Σ =⇒ Σ̂ is an instance of [Σ]

Proof. We will prove the slightly more general version

∀A ∈ LF-types.∀Â ∈ L̂FPLR-types.
∣∣Â∣∣ = A =⇒ Â is an instance of [A]

by induction on the composition of LF-types:

1, N: Trivial, as the type-schemes of these are constant.
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L(A): By appeal to the induction hypothesis, the only L̂FPLR-types mapped by |·|
to L(A) are L([A] , n) for n ∈ N, and all are clearly instances of the L̂FPLR-
typescheme L([A] , x).

(A1, . . . , An)→ B: Any L̂FPL preimage of a LF first-order type under |·| is of the
form (A′1, . . . , A

′
n, k) → B′ for n, k ∈ N. By definition [(A1, . . . , An)→ B] =(

[A1] , . . . , [An] , x
)
→ [B] and so by the use of the induction hypothesis on

A1, . . . , An, B we are finished.

The remaining cases are similar.

We intend to collect all the inequalities arising along a program’s type derivation.
As the essential core of each LF typing rule is identical to that of the corresponding
L̂FPL typing rule, this turns out to be a successful approach. But before we can do
this we must ensure that this will be a well-defined definition of L·M, hence we have
to show that a L̂FPL (or LF) type derivation is deterministic.

Lemma 2.4.11. Let P ∈ L̂FPLR. Assume that Σ1 and Σ2 are two signatures that
differ only on some of the resources numbers of the contained L̂FPLR types.

Then all valid L̂FPLR type derivations for P under Σ1 and Σ2 have the same structure,
i.e. differ at most by the values of the resource numbers.

Proof. By induction on the compositions of terms: With the exceptions of sums,
there is only one L̂FPL type rule for each term constructor. So the outermost term
constructor uniquely determines the type rule to be applied next to that term. So if
Σ1 is a valid signature and Σ2 is not, then the type derivation under Σ2 can only fail
due to a violation of a side-condition.

The order in which the type derivations for the sub-terms in the premises of a type
rule are derived does not matter, as the type derivations of sub-terms do not interfere
with each other. In the case of sums, the problem of deciding whether variant I or
II of a type rule is appropriate is non-existent in L̂FPLR, as we decided to forfeit the
type R + P in L̂FPLR.

Example 2.4.12. Note that it is possible to obtain two different L̂FPLR type deriva-
tions even for one and the same signature. Consider a program fragment like

match nil with |nil⇒ e1
|cons(h, t)⇒ e2

The type rules allow us to derive a multitude of types for the term nil : the types
L(A, 0) , L(B, 1) , L(C, 2) , . . . are all possible (but the possible use of h or t within the
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term e2 may restrict the type). This may affect the allowed values of the resource
numbers, since a type derivation may even fail when we choose the wrong type (i.e.
not enough resources), as the term e2 may only be typable with plenty of resource
available, though we know for sure that e2 will never be executed.

This problem is quite artificial and not of relevance for the further results. Neverthe-
less it is worth to note that constructs like the one just presented will cause additional
resource variables to appear within LP M which are not contained in a program’s sig-
nature: When building the skeleton of the type derivation of the program fragment
written above, nil will be assigned the type L(A, lj). Within the constraints there
will be inequalities ensuring that lj is at least large enough to satisfy the resources
consumed by a hypothetic (but never happening) computation of e2, but there will be
no upper bounds on lj whatsoever. With respect to Observation 2.4.16, variables like
lj can only be eliminated by removing such senseless constructs from the program’s
code.

Definition 2.4.13 (The ILP LP M). For P ∈ LF with signature Σ define LP M to be
the integer linear program obtained by gathering all the inequalities arising when
typing P under signature [Σ] with the typing rules for L̂FPLR. Any new variable
needed is always assumed to be fresh. Furthermore add assertions that all occurring
variables are non-negative. By Lemma 2.4.11 this is well-defined, as the structure of
the L̂FPLR type derivation determines the set of inequalities.

We leave the objective function for a later discussion and define it for now to be
constant.

Observation 2.4.14. Observe that when dealing with L̂FPL type-schemes some
L̂FPL typing rules like Function-Application, Variable and even List-Construction
require type unification in some cases. However, this type unification is unproblem-
atic and always simple to solve as the L̂FPL type-schemes are only allowed to differ
by the contained integer variable names, hence the unification only requires some
simple equalities among pairs of the integer variables occurring in [Σ].

We could explicitly add these equations to the typing rules11, but they are unneces-
sary when we are dealing with known integers and would only obscure the important
parts. So whenever dealing with L̂FPL type-schemes we assume these equations to
be implicitly added. The following instructive example shall sufficiently describe the
necessary amendments to be added to each LFPL type-rule, and so we refrain from
stating the rules again for type-schemes.

11This could be simplified by the introduction of a recursive function returning the necessary
equations to unify two type-schemes
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Example 2.4.15. We may derive

Γ1, 12 `Σ eh : N + (N, 4)

Γ2, 13 `Σ et : L
(
N + (N, 4), 5

)
(42 ≥ 12 + 13 + (1 + 5))

Γ1,Γ2, 42 `Σ cons(eh, et) : L
(
N + (N, 4), 5

)
but we need a rule like

Γ1,m1 `Σ eh : N + (N, s1)

Γ2,m2 `Σ et : L
(
N + (N, s2), l1

) n ≥ m1 +m2 + (1 + l2)

s1 = s2 = s3

l1 = l2


Γ1,Γ2, n `Σ cons(eh, et) : L

(
N + (N, s3), l2

)
in order to deal correctly with the L̂FPL type-scheme L

(
N + (N, x), y

)
within type

derivations.

Observation 2.4.16. In the example above at least m1 and m2 would be fresh
variables to be added,12 but note that fresh variables of this particular kind can always
be eliminated. Let us explain this at the example above for the freshly introduced
variable m2. Note that in all type rules there is a one-to-one correspondence between
the occurring mi and the sub-terms, so we can concentrate on the sub-term et in the
given example. We have to distinguish two possibilities for et now:

et contains no sub-terms: Then the statement Γ2,m2 `Σ et : L(A, l1) must be
proved (if at all provable) by a terminating type rule. As already observed in
the proof of Lemma 2.2.2, terminating type rules impose no further restriction
on the integer variable connected to the context. Hence we can set the value of
m2 safely to zero, as m2 only appeared on the right-hand side of the inequality
(or inequalities) of the preceding rule.

et contains sub-terms: Now m2 appears for the first time on the left-hand side of
the inequalities for the type rule applied to et. Note that each left-hand side
always consists of only one variable.

• Suppose that the outermost term constructor of et is a non-branching
instruction. Then we have only one inequality of the form m2 ≥ W , where
W stands for an arbitrary integer expression. As we are merely interested
in a program’s signature, we can replace all the previous occurrences of
m2 by W , which are all right-hand side occurrences as previously noted,
thus eliminating m2.

12e.g. for et = nil the variables s2, l1 would also be fresh
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• Otherwise assume that the outermost term constructor of et is a branching
operation, hence we get two inequalities m2 ≥ W1 and m2 ≥ W2. Since we
cannot predict which of those two inequalities will be sharp, we have to
copy each of the inequalities where m2 occurs and replace m2 withW1 and
W2 respectively within the original and the copy. Note that this may cause
an exponential blow up of the number of inequalities, since eliminating
variables contained in both W1 and W2 requires further copying of all
the just copied inequalities again. In this case m2 functions in the same
manner as the fresh variables introduced to prevent the exponential blow
up of the number of inequalities in the construction of LP M in Section 1.
Nevertheless m2 could be eliminated again.

So finally we are left with an integer linear program precisely over the variables of [Σ],
whose values are all that is required in order to determine the L̂FPLR signature of a
LF program.

It shall also be mentioned at this point that we could have turned all inequalities
of the typing rule constraints to equations. The mi would automatically serve as
the required slack-variables. So what we have just described here is an elimination
of slack-variables, as it is possible when remaining with the inequalities as we have
chosen.

Finally note that the elimination is by no means necessary for the following results, so
the exponential blow up of the set of inequalities can be easily avoided by keeping all
additional variables. The integer linear program can still be solved within polynomial
time, as shown soon! However we will use this elimination technique in the presented
examples for the sake of simplicity.
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Now we are ready to state and prove the main theorem of this section:

Theorem 2.4.17. Let P be any LF-program with signature Σ.

∃Σ̂ ∈ L̂FPLR.
∣∣Σ̂∣∣ = Σ ∧ P is a well-typed L̂FPLR-program under Σ̂

⇐⇒
LP M is solvable

Proof.

⇐= Assume that LP M is solvable and let η be a solution. Now P must be well-
typed under [Σ]η as the core of the typing rules for LF and L̂FPLR are identical
except for the constraints added to each typing rule, but η must solve all these
constraints by the construction of LP M.

=⇒ Σ̂ must be an instance of [Σ] by Lemma 2.4.10. Hence the set of inequalities
arising as side-conditions of a type derivation of P under Σ̂ is equal to the set
of inequalities of LP M by Lemma 2.4.11. Thus we derive a valid instantiation of
the variables of LP M.

Thus we have accomplished our main goal and reduced the LF/LFPL-translation
problem to the problem of solving an integer linear program. First we have convinced
ourselves that translating to L̂FPL is equally useful for our purposes as the translation
from L̂FPL to LFPL is trivial and that the languages are of equal expressiveness.
Then we have seen that the task of finding a translation to L̂FPL reduces to the
task of finding a valid L̂FPL signature and that for the sake of feasibility we must
further restrict to the fragment L̂FPLR, as without further limitations on the scope
of accepted LF-programs solving this question is provably NP-complete. Once a
solution to this integer linear program is known, constructing the L̂FPLR-signature is
trivial, as we have shown that the solution induces a valid instantiation of the enriched
LF-signature yielding the L̂FPLR-signature. So we finally face now the question of
solving the constructed integer linear program.

The feasibility of LP M

It is well-known that the problem of solving an arbitrary integer linear program be-
longs to the complexity class NP . Even answering the question whether there exists
an integral solution at all is already known to be NP-complete (e.g. see [Sch86]).
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However it is still possible to show feasibility for some classes of integer linear pro-
grams as we did for LP M in Section 1: In the proof of Theorem 1.4 we showed that the
polyhedron described by the relaxed rational linear program is integral, i.e. that all
vertices of the polyhedron are integral. Since it is always feasibly possible to find an
optimal rational solution among the polyhedron’s vertices, solving the integer linear
program reduces then to solving the relaxed rational linear program.

Alas, this time we cannot hope to prove that the polyhedron described by the relaxed
rational linear program derived from an arbitrary LF-program is integral, as we can
provide a counterexample.

Example 2.4.18. Let P ∈ LF with signature Σ be defined as:

Σ(tpo) = (L(N)) −→ L(N)

tpo(l) = match l with

|nil ⇒ nil

|cons(h1, t1)⇒ match t1 with

|nil ⇒ cons(h1, nil)

|cons(h2, t2)⇒ cons
(
h1, cons

(
h2, cons(h1 + h2, tpo(t2))

))
For an example we have

tpo
(
[7, 5, 2, 2, 7]

)
= [7, 5, 12] ++ tpo

(
[2, 2, 7]

)
= [7, 5, 12, 2, 2, 4] ++ tpo

(
[7]
)

= [7, 5, 12, 2, 2, 4, 7]

where the symbol ++ stands for list concatenation.

Assume further that enriching the signature yields

[Σ] (tpo) = (L(N, l2) , x1) −→ L(N, l3)

So we seek the type derivation for{
l : L(N, l2)

}
, x1 `Σ

(
the defining body of tpo(l)

)
: L(N, l3)

which finally gives us

LP M =


x1 ≥ 0

x1 ≥ − (1 + l2) + (1 + l3)

x1 ≥ −2(1 + l2) + 3(1 + l3) + x1

 with

x1

l2
l3

 ∈ N3
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Note that it is easy to verify the derived inequalities for this short and simple func-
tion: Each of the inequalities corresponds to one possible branch of computation. For
example the second inequality corresponds to the branch ending with the instruction
cons(h1, nil). This operation ‘costs’ (1 + l3) resources while we have already ‘earned’
(1 + l2) resources along that particular computational branch from successfully de-
taching the head of the input list. Now the number of the initial resources x1 must
be at least equal or greater than the overall cost of computing this branch.

Obviously the polyhedron described by these inequalities (and the additional restric-
tions that all variables are non-negative) has a non-integer vertex: χ =

(
0 1

2
0
)t.

which would result in the (invalid) signature

[Σ] (tpo)χ =
(
L
(
N, 1

2

)
, 0
)
−→ L(N, 0)

that could possibly mean that only every other list-node contains an extra resource.

Hence we cannot hope to prove a similar result like Theorem 1.4 in this section.
One could object that it is possible to accept this certain fractional solution and
change the size of the portion of heap-space each resource element represents to
one-half its former size. Martin Hofmann already discussed in his work [Hof00]
the possibility of each resource type element to correspond to a smaller heap-space
portion in order to fit the slightly different space usage of a list-node compared to a
tree-node (or elements of other dynamical structures), but concluded that is seemed
more rewarding to deal with just one resource type that is large enough to hold a
node of any used data structure as the space wastage is always within a constant
multiple of the size of the data. However note that this case is even different, as we
might obtain rationals that would require heap-space portions that are even smaller
than the space units the hardware might be able to address.

Therefore it seems more sensible to insist on integral solutions to the linear program
constructed. Of course in this case we can luckily obtain a solution by rounding up,
but this is not always possible as the next example quickly shows.

Example 2.4.19. Extend P ∈ LF with signature Σ from the previous Example
2.4.18 by adding two other functions tos and sec as follows:

Σ(tos) = (L(N)) −→ L(N)

Σ(sec) = (L(N)) −→ L(N)

[Σ] (tos) = (L(N, l1) , x0) −→ L(N, l3)

[Σ] (sec) = (L(N, l1) , x2) −→ L(N, l2)
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For convenience we have already unified some variables as mentioned in Observa-
tion 2.4.14, due to the definition of tos as tpo ◦ sec to come:

tos(l) = tpo(sec(l))

sec(l) = match l with

|nil ⇒ nil

|cons(h1, t1)⇒ match t1 with

|nil ⇒ cons(h1, nil)

|cons(h2, t2)⇒ match t2 with

|nil ⇒ cons
(
h1, cons(h2, nil)

)
|cons(h3, t3)⇒ cons

(
h1, cons(h2, sec(t3))

)
Illustrating function sec we see

sec
(
[7, 5, 12, 2, 2, 4, 7]

)
= [7, 5] ++ sec

(
[2, 2, 4, 7]

)
= [7, 5, 2, 2] ++ sec

(
[7]
)

= [7, 5, 2, 2, 7]

therefore tos replaces the third list element by the sum of its two predecessors.

After eliminating the intermediate variables – as stated in Observation 2.4.16 – we
finally obtain

LP M =



x0 ≥ x1 + x2

x1 ≥ 0

x1 ≥ − (1 + l2) + (1 + l3)

x1 ≥ −2(1 + l2) + 3(1 + l3) + x1

x2 ≥ 0

x2 ≥ − (1 + l1) + (1 + l2)

x2 ≥ −2(1 + l1) + 2(1 + l2)

x2 ≥ −3(1 + l1) + 2(1 + l2) + x2



with



x0

x1

x2

l1
l2
l3


∈ N6

The non-integer (non-negative) solution to the relaxed rational linear program being:(
1 0 1 0 1

2
0
)t
, which is a vertex of the set of solutions and that in addition

cannot be rounded up to a valid solution to the integer linear program we want to
solve.
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Nevertheless we claim and prove:

Theorem 2.4.20. Let P ∈ LF with signature Σ. A solution for LP M is constructible
in polynomial time, if LP M is solvable at all.

Proof. Assume that LP M is an integer linear program over n variables. Relax LP M to
a linear program and let χ ∈

(
R+
)n denote a solution for it, obtained in polynomial

time using a standard algorithm. Obviously χ ∈
(
Q+
)n as LP M is rational.

Please observe that there are only four type rules involving an integer constant,
namely the rules List-Construction, List-Elimination, Tree-Construction and Tree-
Elimination. Note that variables connected either to list- or tree-types always occur
together with those integer constants, which is in both cases one. So we replace each
occurrence of (1 + χi) by χ′i, adding the inequality χ′i ≥ 1 and thus obtaining a new
integer linear program, named LP M′ for reference. Notice that LP M′ is a homogeneous
linear program, except for those inequalities just added asserting that some variables
have to be equal or greater or than one. Let χ′ denote the solution for LP M′ derived
from χ. Multiply χ′ by the least common multiple of all occurring denominators
to obtain χ̂′ ∈ Nn. Now χ̂′ is a solution for LP M′ as well, since multiplying χ′ by a
natural number greater than one does neither affect the validity of the homogeneous
inequalities nor the validity of the inequalities of the type χ′i ≥ 1. Therefore we can
also derive χ̂ ∈ Nn as a solution for LP M by subtracting one from the values of the
variables of χ̂′ that are connected to list- or tree-types.

Since [Σ] as given in Definition 2.4.7 and LP M as described in Definition 2.4.13 can
be constructed within polynomial time and by Theorem 2.4.17 and Theorem 2.4.20
we deduce:

Corollary 2.4.21. Let P be a LF-program with signature Σ. Finding a L̂FPLR-
signature Σ̂ with

∣∣Σ̂∣∣ = Σ so that P is a well-typed L̂FPLR-program can be done
within polynomial time, if such a signature exists at all.

Now we will apply the procedure described in the proof of Theorem 2.4.20 to Exam-
ple 2.4.19:

56



Example (2.4.19, revisited). Respecting the naming conventions in the proof, we
obtain the ‘almost homogeneous’ system:

LP M′ =



x0 ≥ x1 + x2

x1 ≥ 0

x1 ≥ − l′2 + l′3

x1 ≥ −2l′2 + 3l′3 + x1

x2 ≥ 0

x2 ≥ − l′1 + l′2

x2 ≥ −2l′1 + 2l′2

x2 ≥ −3l′1 + 2l′2 + x2

l′1 ≥ 1

l′2 ≥ 1

l′3 ≥ 1



with



x0

x1

x2

l′1
l′2
l′3


∈ N6

and the solutions to each step as depicted in the proof

χ =



1

0

1

0
1
2

0


χ′ =



1

0

1

1
3
2

1


χ̂′ =



2

0

2

2

3

2


χ̂ =



2

0

2

1

2

1


Reassuring oneself that χ̂ is indeed a solution for LP M is left to the reader, we simply
state the valid computed L̂FPLR signature:

[Σ] (tos)bχ = (L(N, 1) , 2) −→ L(N, 1)

[Σ] (sec)bχ = (L(N, 1) , 2) −→ L(N, 2)

[Σ] (tpo)bχ = (L(N, 2) , 0) −→ L(N, 1)

Choosing the objective function for LP M

We have now proved that it is possible to construct at least one solution to the
integer linear program LP M derived from an arbitrary LF-program P , but we have not
discussed the quality of the solution obtained. Our method of constructing the integer
solution does not involve the objective function of LP M, except for constructing the
initial non-integer solution. We might lose minimality at the end when multiplying
with the least common multiple.
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However, we do not consider this as an important defect, because it seems rather un-
clear how the objective function should be defined to capture our notion of optimality,
as a further exploration of the previous example reveals:

Example (2.4.19, exerted once more). In order to discuss the quality of a solution
of LP M, we first state all the solutions of the relaxed linear program by the complete
polyhedron given by points in homogeneous coordinates,13 the points being written
in rows and the first column corresponding to the added dimension.

The polyhedron was computed with aid of the free software package polymake,
see [G&J00]. 

1 1 0 1 0 1/2 0

0 1 0 1 1 3/2 1

0 1 0 1 1 3/2 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 1/2 1/2 0

0 0 0 0 3/2 3/2 1

0 0 0 0 1 1 0

0 0 0 0 1 0 0


Defining the objective function to minimise the sum of all variables on the left-hand
side of a first-order type, – like we did in Section 1 – would obviously result in the
solution χ̌ =

(
0 0 0 1 1 0

)t
(as a conic combination of the 7th and the 9th

row). However, this solution might be unsatisfying: compare the L̂FPL-signatures of
tos for χ̂ and χ̌:

[Σ]bχ (tos) = (L(N, 1) , 2) −→ L(N, 1)

[Σ]χ̌ (tos) = (L(N, 1) , 0) −→ L(N, 0)

In the first case a call to function tos might cost two additional resources, but it also
preserves all the resources contained within the list, which are many more resources
in general. Additionally, preserving the type of the list is necessary for recursive
applications of the function to lists. Nevertheless the second case might still be of
better use in a scenario that applies tos to many lists having altogether an average
length of two only.

13The polyhedron is obtained as the projection of the conic hull of the given set of points to
the hyperplane with normal vector ( 1 0 ··· 0 )t and also containing ( 1 0 ··· 0 )t, i.e. embedding the
n-dimensional polyhedron in (n+1)-dimensional space with the property that each point belonging
to the polyhedron has a coordinate of the form ( 1 α β ··· ζ )t, hence in this example every conic
combination of rows having the form ( 1 x0 x1 x2 l1 l2 l3 )t belongs to the set of solutions.
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So we conclude that the notion of optimality rather depends on the environment in
which a particular function is used in and therefore we see no point in a general
discussion of this problem now. Furthermore Martin Hofmann pointed out that
that constructing an ‘optimal’ signature according to a given objective function is a
NP-hard problem:

Theorem 2.4.22. Let P be a LF-program with signature Σ. Finding a L̂FPLR-
signature Σ̂ with

∣∣Σ̂∣∣ = Σ so that P is a well-typed L̂FPLR-program under Σ̂ and
additionally that Σ̂ is optimal with respect to a given objective function on the vari-
ables of [Σ] is an NP-hard task.

Proof. Again by reducing 3SAT. Let Φ = (u11 ∨ u12 ∨ u13) ∧ · · · ∧ (un1 ∨ un2 ∨ un3)

be an instance of 3SAT. Construct PΦ and ΣΦ now in the following way:

• Suppose that there are m different variables vk ∈ Φ, define for each

fk(∗) := fk(∗) f̄k(∗) := f̄k(∗)
ΣΦ(fk) := 1→ L(1) ΣΦ(f̄k) := 1→ L(1)

hk(v) := hk

hk


match fk(∗) with |nil⇒ nil |cons(h1, t1)⇒
match f̄k(∗) with |nil⇒ nil |cons(h2, t2)⇒

cons
(
∗, cons

(
∗, cons(∗, nil)

))



ΣΦ(hk) := L(1)→ L(1)

• For each of the n clauses in Φ define

gi(v) := gi

(
gi

(
cui1[

w
∖
cui2[

w

∖
cui3
[
w

∖
cons(∗,cons(∗,cons(∗,cons(∗,nil))))

]]]))
ΣΦ(gi) := L(1)→ L(1)

where

cuij :=

{
match fk(∗) with |nil→ nil |cons(hj, tj)→ w if uij = vk

match f̄k(∗) with |nil→ nil |cons(hj, tj)→ w if uij = ¬vk

We illustrate the construction again by considering the function g1 corresponding to
the clause

v1 ∨ ¬v2 ∨ v3
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g1(v) := g1

g1


match f1(∗) with |nil⇒ nil |cons(h1, t1)⇒

match f̄2(∗) with |nil⇒ nil |cons(h2, t2)⇒
match f3(∗) with |nil⇒ nil |cons(h3, t3)⇒

cons
(
∗, cons

(
∗, cons(∗, cons(∗, nil))

))




hence again each hk represents the clause vk ∨ ¬vk. Therefore, if

[ΣΦ] (fk) = (1, xk)→ L(1, lk) [ΣΦ] (f̄k) = (1, x̄k)→ L
(
1, l̄k

)
the inequality lk + l̄k ≥ 1 must hold for any instance Σ̂Φ of [ΣΦ] that allows a valid
L̂FPLR type derivation for PΦ: since there is one computational branch of hk which
consumes at least 3 resources, these must be obtained by matching fk and f̄k, because
xk, x̄k are forced to be zero due to the recursive calls. Now the two match operations
deliver only two resources from the detached list-nodes, hence either one of the lists
must contain spare resources.

By the same reasoning for gi follows that if Σ̂Φ additionally satisfies lk + l̄k = 1 for
each i, then

ρ(vi) :=

{
true Σ̂Φ(fk) = (1, 0)→ L(1, 1)

false Σ̂Φ(f̄k) = (1, 0)→ L(1, 1)

is valid valuation that satisfies Φ.

So if we choose the objective function

f[ΣΦ] :=
m∑
k=1

lk + l̄k

then

lk + l̄k ≥ 1 =⇒ f[ΣΦ] ≥ n and hence f[ΣΦ] = n =⇒ lk + l̄k = 1

Thus Φ is satisfiable if and only if there exits a L̂FPLR signature Σ̂Φ such that PΦ is
well-typed under Σ̂Φ and f[ΣΦ](Σ̂Φ) = m.

We furthermore expect that choices for signatures are dramatically reduced when
dealing with praxis-life linear functional programs, where the functions are interwo-
ven due to mutual calls. Thus we regard it sufficient to provide at least one L̂FPL

signature, whenever one exists at all.

We close Section 2 now by computing the L̂FPL-signature of another program exam-
ple: The computation of the Huffman-Coding tree as given in [B&W88, p.242].14

14Due to the absence of a library we have to merge some standard functions like map into other
functions, but otherwise we try to stay as closely to the code presented in [B&W88] as possible
when translating into a LF-style notation.
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Example 2.4.23 (Huffman tree). A well-known method of data compression is the
prefix coding method, where the “key” consists of a tree bearing parts of the coded
information at its leaf15 and the actual “data” being given by a list of prefix codes,
representing paths in the tree leading to one of the leaves. The idea is that parts
that occur more often within the original data are stored at higher levels in the tree,
thus being coded by shorter tree paths. An optimal method of generating this tree
is known as the Huffman-Coding.

We suppose that we receive a list of pairs of integers, the first of the pair representing
the part of data to be encoded as a unit within the tree and the second representing
its frequency. In order to build the Huffman tree we will compute the following: First
we sort the list of pairs by the frequencies (the second of the pair) and turn the first
number of each pair (the data) into a tree with a single node holding the number.
Then we will successively merge two trees of that list into one, until we are left with
one single tree. As a subfunction we need the function insert which is essentially a
slightly modified version of the function ins from Example 1.8 (Insertion-Sort).

Let P ∈ LF with signature Σ be defined as:

Σ(huffman) = (L(N⊗ N)) −→ T(N)

Σ(maptree) = (L(N⊗ N)) −→ L(T(N)⊗ N)

Σ(combine) = (L(T(N)⊗ N)) −→ T(N)

Σ(insert) = (T(N)⊗ N, L(T(N)⊗ N)) −→ L(T(N)⊗ N)

15As we deal with trees having unlabelled leafs only the actual information must be stored in
nodes having two leafs as their branches.
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huffman(l) = combine(maptree(l))

maptree(l) = match l with

|nil⇒ nil

|cons(h, t)⇒ match h with c⊗ w ⇒
insert

(
node(c, leaf, leaf)⊗ w, maptree(t)

)
combine(l) = match l with

|nil⇒ leaf

|cons(h1, t1)⇒ match h1 with r1 ⊗ w1 ⇒
match t1 with

|nil⇒ r1

|cons(h2, t2)⇒ match h2 with r2 ⊗ w2 ⇒
combine

(
insert(node(0, r1, r2)⊗ (w1 + w2), t2)

)
insert(p, l) = match l with⇒

|nil⇒ cons(p, nil)

|cons(h, t)⇒
match p with r1 ⊗ w1 ⇒
match h with r2 ⊗ w2 ⇒
if w1 ≥ w2

then cons
(
r1 ⊗ w1, cons(r2 ⊗ w2, t)

)
else cons

(
r2 ⊗ w2, insert(r2 ⊗ w2, t)

)
Let the enriched signature [Σ] be as follows. Again, the necessary unifications due
to the mutual use of list- and tree-types as described in Observation 2.4.14 have
already been done, reducing the dimension from 17 to 7 and hence imposing many
restrictions like we had predicted at the end of Section 2.4.

[Σ] (huffman) = (L(N⊗ N, l1) , x1) −→ T(N, b1)

[Σ] (maptree) = (L(N⊗ N, l1) , x2) −→ L(T(N, b1)⊗ N, l2)

[Σ] (combine) = (L(T(N, b1)⊗ N, l2) , x3) −→ T(N, b1)

[Σ] (insert) = (T(N, b1)⊗ N, L(T(N, b1)⊗ N, l2) , x4) −→ L(T(N, b1)⊗ N, l2)

62



Leading us to the following integer linear program

LP M =



x1 ≥ x2 + x3

x2 ≥ 0

x2 ≥ −(1 + l1) + x4 + (1 + b1) + x2

x3 ≥ 0

x3 ≥ −(1 + l2)

x3 ≥ −2(1 + l2) + x3 + x4 + (1 + b1)

x4 ≥ (1 + l2)

x4 ≥ (−1 + 2)(1 + l2)

x4 ≥ (−1 + 1)(1 + l2) + x4



with



x1

x2

x3

x4

l1
l2
b1


∈ N8

The polyhedron of the relaxed linear program – given in homogeneous coordinates
again – then is 

1 0 0 0 1 1 0 0

0 0 0 0 1 2 1 1

0 0 0 0 1 1 1 0

0 0 0 0 2 2 1 0

0 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0


being already integral in this case. So we directly obtain the solution ( 0 0 0 1 1 0 0 )t

leading to the signature

[Σ]χ (huffman) = (L(N⊗ N, 1) , 0) → T(N, 0)

[Σ]χ (maptree) = (L(N⊗ N, 1) , 0) → L(T(N, 0)⊗ N, 0)

[Σ]χ (combine) = (L(T(N, 0)⊗ N, 0) , 0) → T(N, 0)

[Σ]χ (insert) = (T(N, 0)⊗ N, L(T(N, 0)⊗ N, 0) , 1) → L(T(N, 0)⊗ N, 0)

Note that this is also optimal (in any sense), as for a list with n nodes the tree to
be computed must occupy exactly 2n − 1 resources. One resource is wasted in the
second computational branch of combine (the one ending with r1). In this branch
we have already computed the Huffman tree, but it is still stored in a list of length
one. Destroying this list to reveal the tree gives us one resource (from the list-node),
but we cannot return this resource due to our restriction to faithful signatures. One
could save this resource of course by returning the singleton list instead of the tree,
but this would require an awareness of the problem in LF — and furthermore the use
of meta-reasoning enabling us to deal properly with such singleton lists.
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3 On remaining problems and unventured ideas

Let us first recall all problems and open questions encountered so far, before we
discuss any further:

Plotkins remark 1.3: Gordon Plotkin pointed out that we could change the part
of Definition 1.2 regarding the standard integer infix ? ∈ {+,−,×,≥, . . . } for
elements of type N from

Le1 ? e2M = Le1M + Le2M to Le1 ? e2M = max
{
Le1M, Le2M

}
since all the heap-space used during the computation of an element of a base
type might be reclaimed immediately. It is not entirely clear if this idea can
be generalised to all computations of elements of heap-free types,16 and should
therefore be further investigated.

Section 2.1: Is the expressive power of LFPL in terms of the set-theoretic semantic
reduced by the restriction to programs having a faithful signature? Or in other
words, does the expressive power of L̂FPL still equal exponential time? The
answer seems to be no, but we have not really examined the problem yet! Are
there any other disadvantages of faithful signatures that we might have missed
noticing?

Section 2.4, Transforming LF to L̂FPL: By proving that the L̂FPL signature
problem is NP-complete we discovered that it is still possible to ‘borrow’ re-
sources from non-terminating program fragments like discussed at length in
Section 2.1. Is it possible to banish such dangerous techniques from L̂FPL and
is it even sensible to try to?

Section 2.4, Building the ILP for L̂FPLR: We showed that the L̂FPL signature
problem is NP-complete and therefore reduced to L̂FPLR. Are there any sen-
sible heuristics that could help deciding which way round a sum-type should
be set? Which sum-types should be swapped first when solving LP M fails com-
pletely for the next try?

3.1 Eliminating the necessity for a linear typing

The linear typing of LFPL causes some inconvenience, as it is not native to the
functional programming style. A linear typing is also completely unmotivated in a

16see forward to Section 3.1 for the definition “heap-free type”
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language like LF, but it was our aim to be able to program in LF without giving
thought to the use of heap-space resources, while comfortably receive the heap space
usage by an automated computation. Therefore it would be nice to eliminate the
restriction of linear typing.

Additionally, throughout most of the presented examples, we violated linearity by
the multiple use of variables of the base types N and 1. We already mentioned this
in Example 1.8 and promised to justify this later. Now we do this by referring to the
contraction rule, which was already a part of the typing rules of LFPL invented by
Martin Hofmann.

Contraction
Γ, x : A, y : A

LFPL

`Σ e : C
(A is a heap-free type)

Γ, x : A
LFPL

`Σ e[
y
∖
x
] : C

Where “A is a heap-free type” means that the type A does not contain the type
constructors L(·) ,T(·) nor ♦, and hence can be copied without affecting the heap-
space usage. Of course, the copy does require some space within the stack and has
to be done by the interpreter or compiler as usual in implementations of functional
languages.

Now the question arises how this rule can be transported to L̂FPL and whether or
not it is possible to extend it further eventually eliminating the restriction to linear
typing. But before we can try this, we need to formalise and generalise the property
of types being heap-free.

Definition 3.1.1. Define

〈〈·〉〉 : L̂FPL-zero-order types −→ N ∪∞

and say that 〈〈A〉〉 is the maximal content of an L̂FPL-type A. The intuition of 〈〈A〉〉
is the number of resources that are at most contained in any element of type A. The
defining equations are:

〈〈1〉〉 = 0 〈〈N〉〉 = 0

〈〈A⊗B〉〉 = 〈〈A〉〉+ 〈〈B〉〉 〈〈A+B〉〉 = max
(
〈〈A〉〉 , 〈〈B〉〉

)
〈〈L(A)〉〉 =∞ 〈〈T(A)〉〉 =∞
〈〈(A, n)〉〉 = n+ 〈〈A〉〉

A type A is called heap-free if and only if 〈〈A〉〉 = 0.
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Now we can define the L̂FPL type rules

0-level Contraction

Γ, x : A, y : A,m
L̂FPL

`Σ e : C
(n ≥ m+ 〈〈A〉〉)

Γ, x : A, n
L̂FPL

`Σ e[
y
∖
x
] : C

1-level Contraction (for lists)

Γ, x : L(A, l1) , y : L(A, l1) ,m
L̂FPL

`Σ e : C
(
n ≥ m

l0 ≥ 1 + 2l1 + 〈〈A〉〉

)
Γ, x : L(A, l0) , n

L̂FPL

`Σ e[
y
∖
x
] : C

which relieves us from rigid linearity: The 0-level Contraction allows the multiple
use of L̂FPL types like N,N⊗N, etc. and even of non-heap-free types like N + (N, 5),
provided that there are enough resources available to construct another copy of it.
The 1-level Contraction for lists then allows the implicit copying of lists of simpler
types, provided that there are enough resources available to construct the required
list-nodes. (Again, performing the copy-operation is the responsibility of the inter-
preter or compiler.) Since we do not know the length of the list, these resources must
be contained within the list to be copied, for example

L(N, 1) ; two copies of type L(N)

L(N⊗ N, 3) ; two copies of type L(N⊗ N, 1)

L(N + (N, 2), 9) ; two copies of type L(N + (N, 2), 3)

The 1-level Contraction for trees is similar with each node required to contain enough
resources for two minor copies of itself. One can even imagine Contraction-rules of
higher levels, e.g. allowing multiple use of variables of types like list of lists or tree of
lists of trees, but note that already the first-level Contraction-rule destroys the va-
lidity of Theorem 2.4.20 regarding the feasibility of LP M (while zero-level Contraction
does not affect feasibility). The use of Contraction-rule of a level other than zero is
even questionable as the next example shows.
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Example 3.1.2 (Quick-Sort). Take a look at the Quick-Sort implementation pre-
sented in [B&W88, p.154] translated into LF-style code:

qsort : (L(N)) −→ L(N)

filter : (L(N) ,N + N) −→ L(N)

qsort(l) = match l with

|nil⇒ nil

|cons(h, t)⇒ qsort
(
filter(t, inl(h))

)
++ cons(h, nil)

++ qsort
(
filter(t, inr(h))

)
filter(l, k) = match k with

| inl(x)⇒ match l with

|nil⇒ nil

|cons(h, t)⇒ if h < x then cons(h, filter(t, inl(x)))

else filter(t, inl(x))

| inr(x)⇒ match l with

|nil⇒ nil

|cons(h, t)⇒ if h < x then filter(t, inr(x))

else cons(h, filter(t, inr(x)))

where ++ : (L(A) , L(A)) −→ L(A) shall represent an infix operation of list concate-
nation, which could be added to LF and LFPL as a primitive operation without any
problems. We introduced ++ here to stay as close as possible to the notation of
quicksort in [B&W88] and also to keep the focus on the important parts of the
example.

A plain translation of the code into LF, LFPL or L̂FPL is not possible, as the example
is not linearly typable. The list t is passed twice to subsequent calls to the func-
tion filter, each of which processing the whole list. As filter constructs a new
list, the argument is thus destroyed; otherwise filter would lack the resources for
constructing its result list. In a non-linear language this problem simply does not
arise, as arguments are copied anyway and in addition the allocation of new space
resources is generally permitted.

Now even the 1-level Contraction rule would not be of help here: In each recursive step
we would need another copy of the remaining list fragments. But note that copying
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the list lowers the numbers of resources contained in each step, hence statically
limiting the numbers of copies of type L(A, n) that can be obtained. However the
numbers of copies needed in quicksort depends dynamically on length of the input
list. Hence the 1-level Contraction rule is of no use in recursively defined functions,
except for a terminating branch.

Of course, the algorithm quicksort can be easily implemented in L̂FPL – simply by
replacing the use of filter (with mutually exclusive conditions) by using a func-
tion like split_at :

(
N, L(N, 0) , 0

)
−→ L(N, 0) ⊗ L(N, 0) which splits the input list

into two list by the given pivot – but it still requires a change to a more economic
programming style, e.g. using split_at instead of filter:

Example 3.1.3 (Quick-Sort – L̂FPL).

qsort : (L(N, 0) , 0) −→ L(N, 0)

split_at : (N, L(N, 0) , 0) −→ L(N, 0)⊗ L(N, 0)

qsort(l) = match l with

|nil⇒ nil

|cons(h, t)⇒
match split_at(h, t) with u⊗ l⇒
qsort(u) ++ cons(h, nil) ++ qsort(l)

split_at(p, l) = match l with

|nil⇒ nil⊗ nil

|cons(h, t)⇒
match split_at(p, t) with u⊗ l⇒

if h ≤ p then cons(h, u)⊗ l
else u⊗ cons(h, l)

Please note that the plain program code given above would also serve as another
example being successfully handled by the methods of Section 1, when turning it
into an LF program by changing the signature to

qsort : (L(N)) −→ L(N)

split_at : (N, L(N)) −→ L(N)⊗ L(N)

and defining Le1 ++ e2M = Le1M + Le2M, as list-concatenation does not allocate any
additional heap-space.
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Before continuing with the next open question we should also mention that in the
special case of a conditional operation, Martin Hofmann showed in [Hof00, Section 6
– “Additive rule for conditionals”] that it is in principle possible to allow variables
of any type to be shared between guard and branches of a conditional, though with
expensive cost. However, conditional operations are the most likely were a violation
of a strict linear typing probably occurs, so combined with the contraction rules the
comfort achieved might be worth considering.

3.2 Polymorphism with respect to ♦

In the previous example of quicksort another problem showed up: Even if the 1-
level Contraction rule would help in principle, we would run into type problems with
the recursive calls of the function quicksort to itself.

In general it might be possible that for a certain LF program P the integer linear
program LP M is only solvable if we allow multiple types for one and the same LF-
function f , distinguished only by a different number of resources in its input.

Example 3.2.1. Recall the function twice mentioned in Example 1.9, which simply
doubles each element of a list of natural numbers, provided that the 0-level Contrac-
tion rule is present as usual in our examples:

twice : (L(N, 1) , 0)→ L(N)

twice(l) = match l with |nil⇒ nil

|cons(h, t)⇒ cons
(
h, cons(h, twice(t))

)
Now for a function call like twice

(
twice(l)

)
we would need to define the function

twice twice, just with different L̂FPL-signatures, but with the same defining body

twice1 : (L(N, 1) , 0)→ L(N)

twice2 : (L(N, 3) , 0)→ L(N, 1)

Note that this solution is unpleasing, as we want to implement in LF rather than
directly in L̂FPL, and hence cannot distinguish these functions. One could also
imagine that there exists an example where it is impossible to use distinct function
symbols, due to recursion and conditionals. So allowing the inference of types which
are polymorphic in the number of resources could be very useful, resulting in the
above example in the type

twice : (L(N, 2n+ 1) , 0)→ L(N, n)
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In this context we also conjecture that result values may always be resource free, i.e.
that a type like L(N, n+ 1) will never occur on the right-hand side of first-order type.
Thus resources in results are possibly only required if the result itself is used as an
input for further computations. It might be interesting to investigate this further.

In his work [Hof00] Martin Hofmann already showed how general polymorphism and
high-order functions could be included in LFPL, though we leave the integration of
these features into L̂FPL – and the specialities arising like just described – open for
future research.

3.3 Labelled Leaf Trees

We should also mention shortly the reason for switching to unlabelled leaf trees in
our version of LFPL contrary to the labelled leaf tree type contained in [Hof00] and
show how to avoid the problem:

Trees with labelled leafs cannot be allowed in L̂FPL as then we must change the
Definition 2.1.1 of 〈·〉:

〈T(A)〉 = 〈A〉 6= 0

as any element of the tree type T(A) then contains at least one element of type A.
Hence we must prohibit trees as return types of functions or risk losing the faithfulness
of the signature, which was essential for our approach of the general problem.

Of course we could have introduced two-sorted trees T(R,P ) in the type grammar of
L̂FPL, where the leaves are labelled by pure zero-order types and only the nodes are
allowed to contain rich zero-order types, which avoids the problem depicted above.
An element of T(A,B) could then possibly be a leaf with an element of type B, but
since B must be a pure type satisfying 〈B〉 = 0, the minimal content of the tree then
is 〈T(A,B)〉 = min

(
〈A〉 , 〈B〉

)
= min

(
〈A〉 , 0

)
= 0 as required.

The two-sorted tree simply seemed unappealing to introduce, as its notation is farther
away from the tree type presented in [Hof00] than the unlabelled leaf tree. Although
it would have been nice for Example 2.4.23 constructing the Huffman tree.

3.4 Computing the heap-space usage from L̂FPL signatures

Once we know a valid L̂FPL (or L̂FPLR) signature for an LF program P , we do not
exactly know its heap-space usage – we merely know how to compute it! Let us
again consider the simple example of the list-node doubling function twice from
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section 3.2: From the signature twice : (L(N, 1) , 0) → L(N) we may deduce at a
glance that computing twice requires an additional amount of heap-space equal to
the size of the input list, since each list-node (occupying one ♦) must hold one spare
resources (again the size of a ♦). So once we know the specific input and hence the
length of the list, we know the heap-space used up by a computation of twice.

Since all initial data structures for P must be provided externally, any useful imple-
mentation of L̂FPL must therefore provide an automatism that, given a concrete data
structure to be applied, computes the amount of heap-space additionally needed to
apply P to this data (and allocates it). Computing the overall additional heap-space
usage for e.g. a list of trees of lists, once given the length of each list, the size of each
tree and the LFPL signature of the function the data is to be applied to, is certainly
not a difficult task, yet it remains to be done.

3.5 Conclusion

With these questions just partly discussed, we close our examination of the problem
here. From a practical viewpoint the achievements already made seem quite promis-
ing: The presented language L̂FPL reduces the resource handling of LFPL to its very
essence without apparently losing expressive power as the provided examples show,
hence we are left with a mathematically well manageable system in respect to the
normalised resource management.

The results that constructing and solving the occurring integer linear programs are
feasible and complete (in the sense that we will obtain a L̂FPLR translation whenever
one exists) furthermore promises a useful implementation. One could imagine an
interactive environment for programming in a LF-like language that – combined with
a solver for linear programs – already automatically monitors the consumption on
the heap-space while a program is being implemented. Then whenever solving the
ILP fails, examining its structure and the violated inequalities might help to easily
identify the problem and the source of a memory leak.

Hence constructing linear functional programs that guarantee a limit on their heap-
space usage becomes even more conveniently realizable at little more effort. Of course
there are even more issues to be settled to add usability, e.g. neglecting the limitation
to first-order functions. In this specific example, Eike Ritter [Rit00] showed how to
include high-order functions in LFPL, yet it is not entirely clear whether or not
such techniques can be adopted to our presented approach without failing or losing
feasibility.
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Appendix

A.1 Common notions

Stack-/Heap-space and Pointers: In classical programming languages like C, the
memory usage is distinguished into two kinds:

• The space required to hold the values of a subroutine’s local variables is
called the stack. Whenever a subroutine is started, the stack grows to hold
the local variables of fixed size (booleans, integers, pointers,. . . ). When
the subroutine is finished that portion becomes free again. Due to the
nature of nested subroutine calls, the portion that has been allocated at
last is the portion to be released first, which makes it very easy to organise
the stack usage efficiently.

• All data structures of varying size such as lists or trees are placed in a part
of the memory called heap. Those parts are usually addressed by the use
of pointers which are data structures of small determined size just storing
the memory address where such a certain portion of heap space starts
(e.g. the head of a list). Since both the size and the life-time of heap-
space structures are unknown (e.g. lists may be passed on to subroutines
which may change their length, etc.), organising the heap efficiently is a
more difficult task. Note furthermore that pointers have to be used with
great care to avoid aliasing effects.

Garbage Collection: During a program’s execution both stack and heap may grow.
Since memory resources are limited, as soon as there is no room for further
growth a program may fail due to the lack of free memory. Therefore it is im-
portant to efficiently organise the heap, so that data structures are immediately
removed when they are not required any longer. This is not a trivial task and
in some languages, like C, the task of deleting obsolete data is therefore left
entirely to the programmer, which usually requires noticeable effort keeping
track of the lifetime of each data object.

On the other hand there are languages, like Java, which try to ease the pro-
grammer’s burden and provide an automatic management of the heap-space.
An algorithm usually called Garbage Collection is periodically triggered and
tries to determine which data structures have become obsolete, e.g. by tracing
the present pointers, so that the space occupied by these may be reused.

There are of course some problems to be faced to construct a sensible Garbage
Collection: Deleting data still in the program’s use is certainly hazardous, and
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a Garbage Collection cannot safely delete a data structure from the heap if
there are still pointers left pointing to that structure, since it cannot determine
(without a program analysis) whether or not a program will use these pointers.
Note that pointers are usually also stored within the heap-space, e.g. each list-
node contains a pointer to the next list-node, while only the head of the list
may be stored in the stack or again within another heap-space data structure
like a list of lists. Even if a direct pointer does not exist at all, the data might
still be needed, e.g. it is not unusual in C to increment, decrement or even add
and subtract pointers to address arrays, although arrays can be considered as
a block and any pointer pointing somewhere inside this block can be regarded
as a direct pointer towards the array. Another problem arises in the form of
circular structures, e.g. a circular list, which may not be used anymore, but
cannot be safely deleted either since it contains pointers to itself.

So in general any safe Garbage Collection will not be able to reclaim the
maximal space that is (semantically) garbage. Programs heavily relying on
a Garbage Collection, like interpreters for functional languages, therefore even-
tually run out of memory space during long computations.

See also [T&T97, Introduction] for a fine explanation of the general problem.

Aliasing: Consider a function which should take a list as an argument and returns
the tail of the list. In C we could simply implement this function by returning
a pointer to the second list-node. If the program manipulates afterwards the
original list, also the tail is manipulated, since both pointers refer to the same
memory locations. Whenever such effects due to multiple pointers towards one
memory location occur unwontedly, we call them aliasing side effects.

Signature:17 A signature, usually denoted by the symbol Σ, is a map from a finite
set of function identifiers to the set of types of a certain programming language
like LFPL or LF. The type then usually denotes the input and the output of
the function referred to by its identifier.

Typing context:17 A typing context, usually denoted by the symbol Γ, maps a finite
set of variable identifiers to the set of types of a programming language. When
dealing with program fragments it is necessary to record the type of a variable
present in that program fragments scope. This is usually done by extending
the current context.

17This shall only give a rough general intuition of the notion when used in the context of a specific
functional programming language like LFPL or LF. A language definition must contain the precise
definition if that concept is to be used for that particular language.
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A common notation for a context where x has type N and y has type N⊗ N is{
x : N, y : N ⊗ N

}
. We often omit the brackets. If Γ1 and Γ2 denote contexts

of the same programming language having disjoint domains, we simply write
Γ1,Γ2 to denote the context consisting of the disjoint union of Γ1 and Γ2.

Typing judgement: A typing judgement written as Γ `Σ e : A, means that the
program term e has the type A under the signature Σ and typing context Γ.

For a specific programming language, usually a set of typing rules state which
typing judgements are true. We use the well-known notation

Typing judgments required
(Side conditions)

Typing judgment derived

Linear typing: A linear typing means that a variable may be used at most once.
Typing rules of a linearly typed language have the form

Γi `Σ ei : Ai (i = 1, . . . , n)

Γ1, . . . ,Γn `Σ e
compared to

Γ `Σ ei : Ai (i = 1, . . . , n)

Γ `Σ e

where the ei are sub-terms of e. Thus the context of e is split up for the
sub-terms, whereas in the right example each sub-term might use all variables
contained in the context of e. Note that even in linearly typed languages typing
judgements resembling the right side might occur: For example a conditional
operation might allow a variable to be shared among its branches, as only one
branch will be executed.

A linear typing is, for an example, necessary in languages like LFPL, where
a resource type ♦ exists which can only be used once. A non-linear typing
would otherwise allow the copying of resources, clearly rendering the concept
of resources useless.

For a sensible non-linear example please see Example 3.1.2 (Quick-Sort) and
see how the algorithm may be reformulated in a linear manner in this specific
case (Example 3.1.3).

Program: A program, denoted by P , consists of a signature Σ and a collection of
terms ef for each function symbol f ∈ dom(Σ), for each of which the typing
judgement Γ `Σ εf : A can be derived with Γ and A according to Σ(f).

For a specific language like LFPL this will be formulated more precisely as

∀f ∈ dom(Σ) . Σ(f) = (A1, . . . , An) −→ B =⇒

v1 : A1, . . . , vn : An
LFPL

`Σ ef : B

where the vi are the only free variables occurring in ef .
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Branching operation: By a branching operation we mean any program term whose
evaluation a priori requires only the evaluation of a part of its sub-terms,
e.g. the branching operations of LFPL are Conditional, Sum-, List- and Tree-
Elimination.

A List-Elimination operation like match e1 with |nil ⇒ e2
|cons(h, t) ⇒ e3 is

a branching operation because it distinguishes whether the expression e1 is an
empty list or not. In the first case of e1 being equal to the empty list nil the
whole expression evaluates to e2. Otherwise e1 is a non-empty list, hence of
the form cons(h, t), where h is the head of the list and t its tail. The whole
expression then evaluates to e3, which may contain h and t as free variables
which then assume the appropriate values. The other elimination operations
function similarly.

Shorthands for Lists: In the presented examples we use the shorthands nil = [ ]

and cons
(
1, cons(2, nil)

)
= 1 :: 2 :: [ ] = [1, 2]. Furthermore ++ denotes the

concatenation of lists, e.g.: [1, 2, 3] ++[4, 5, 6] = [1, 2, 3, 4, 5, 6].

A.2 The language LFPL

LFPL is a Linearly typed first-order Functional Programming Language, presented
by Martin Hofmann in [Hof00]. The peculiarity of LFPL is the resource type ♦, which
allows a translation of LFPL into malloc()-free C Code. Please see the Introduction of
this work for more explanations about this feature or examine the provided examples
at the end of this section.

We deal with a slight variant of LFPL here, compared to what is written in [Hof00].
The changes are:

• We add the unit type 1 with its single element denoted by ∗ as another base
type.

• We do not mention the Contraction-rule until introduced in Section 3.1, though
we implicitly use it throughout the presented examples. The lack of the
Contraction-rule does not limit the expressive power of LFPL, the rule rather
provides convenience.

• The recursive binary tree type T(·) has unlabelled leafs only, hence constructing
a tree node requires only one element of type ♦, since the subtrees of a node
are reducible to pointers then and the one resource required is just needed to
hold the tree-node itself. (see Section 3.3 on labelled-leaf trees).
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Definition A.2.1 (LFPL). The LFPL type grammar:

zero-order types: A ::= 1 | N | ♦ | L(A) | T(A) | A⊗ A | A+ A

first-order types: F ::= (A, . . . , A)→ A

The terms of LFPL are given by the following grammar:

e ::= v Variable

| c Constant

| e1 ? e2

(
for ? ∈ {+,−,×,≥, . . . }

)
Standard Integer Infix

| if e1 then e2 else e3 Conditional

| e1 ⊗ e2 Pairing

| match e1 with v1 ⊗ v2 ⇒ e2 Pair-Elimination

| inl(e) Left Injection

| inr(e) Right Injection

| match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

Sum-Elimination

| nil Empty List

| cons(ed, eh, et) List-Construction

| match e1 with |nil⇒ e2

|cons(d, h, t)⇒ e3

List-Elimination

| leaf Leaf

| node(ed, ea, el, er) Tree-Node

| match e1 with | leaf ⇒ e2

|node(d, a, l, r)⇒ e3

Tree-Elimination

| f(e1, . . . , en) Function Application

In each of the following type rules, let Σ denote a LFPL signature mapping a finite set
of function identifiers to LFPL first-order types, Γ be a LFPL typing context mapping
a finite set of identifiers to LFPL zero-order types, e, ea, eb, . . . representing arbitrary
LFPL terms according to the grammar stated above, and A,B,C denoting arbitrary
LFPL zero-order types. We allow the following typing judgements for LFPL provided
that the premises and side conditions are met.
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Variable
(v ∈ dom(Γ))

Γ `Σ v : Γ(v)

Constant I+II

Γ `Σ ∗ : 1
(c is a integer constant)

Γ `Σ c : N

Standard Integer Infix Operator

Γ1 `Σ e1 : N Γ2 `Σ e2 : N
(
? is a integer

infix operator

)
Γ1,Γ2 `Σ e1 ? e2 : N

Conditional
Γ1 `Σ e1 : N Γ2 `Σ e2 : A Γ2 `Σ e3 : A

Γ1,Γ2 `Σ if e1 then e2 else e3 : A

Pairing
Γ1 `Σ e1 : A1 Γ2 `Σ e2 : A2

Γ1,Γ2 `Σ e1 ⊗ e2 : A1 ⊗ A2

Pair-Elimination

Γ1 `Σ e1 : A1 ⊗ A2 Γ2, v1 : A1, v2 : A2 `Σ e2 : C

Γ1,Γ2 `Σ match e1 with v1 ⊗ v2 ⇒ e2 : C

Inl, Inr

Γ `Σ e : A

Γ `Σ inl(e) : A+B

Γ `Σ e : B

Γ `Σ inr(e) : A+B

Sum-Elimination

Γ1 `Σ e1 : A+B Γ2, v : A `Σ e2 : C Γ2, v : B `Σ e3 : C

Γ1,Γ2 `Σ match e1 with | inl(v)⇒ e2
| inr(v)⇒ e3 : C

Empty List

Γ `Σ nil : L(A)

List-Construction

Γd `Σ ed : ♦ Γh `Σ eh : A Γt `Σ et : L(A)

Γd,Γh,Γt `Σ cons(ed, eh, et) : L(A)
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List-Elimination

Γ1 `Σ e1 : L(A) Γ2 `Σ e2 : C Γ2, d : ♦, h : A, t : L(A) `Σ e3 : C

Γ1,Γ2 `Σ match e1 with |nil⇒ e2
|cons(d, h, t)⇒ e3 : C

Leaf

Γ `Σ leaf : T(A)

Tree-Node

Γd `Σ ed : ♦ Γa `Σ ea : A

Γl `Σ el : T(A)

Γr `Σ er : T(A)

Γd,Γa,Γl,Γr `Σ node(ed, ea, el, er) : T(A)

Tree-Elimination

Γ1 `Σ e1 : T(A) Γ2 `Σ e2 : C

Γ2, d : ♦, a : A, l : T(A) , r : T(A) `Σ e3 : C

Γ1,Γ2 `Σ match e1 with | leaf ⇒ e2
|node(d, a, l, r)⇒ e3 : C

Function Application

Σ(f) = (A1, . . . , Ap) −→ B Γi `Σ ei : Ai for i = 1, . . . , p

Γ1, . . . ,Γp `Σ f(e1, . . . , ep) : B
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Standard Set-Theoretic Semantics of LFPL

The standard set-theoretic semantics of LFPL is given in [Hof00, 3.2]. Although we do
not make explicit use of the set-theoretic semantics of LFPL throughout this work, we
restate them here for the used variant of LFPL and for your convenience. Note that
the set-theoretic interpretation given ignores all resource related issues connected
with type ♦; its purpose is merely to provide a formal functional denotation of LFPL

programs.

Definition A.2.2 (Set-theoretic interpretation of LFPL). The LFPL types are inter-
preted by the following sets:

J1K = {0}
JNK = Z
J♦K = {0}

JL(A)K = finite lists over JAK

JT(A)K = finite binary trees with

JAK -labelled nodes and unlabelled leaves

JA⊗BK = JAK× JBK

JA+BK =
{
inl(a)

∣∣ a ∈ JAK
}
∪
{
inr(b)

∣∣ b ∈ JBK
}

JA1, . . . , An → BK = partial functions from JA1K× · · · × JAnK to JBK

A function η is a valuation of a context Γ if η(v) ∈ JΓ(v)K holds for each v ∈ dom(Γ);
a function ρ is a valuation of a signature Σ if ρ(f) ∈ JΣ(f)K holds for all f ∈ dom(Σ).

Given both a valuation η of the context Γ and a valuation ρ of the signature Σ, we
can define the meaning JeKη,ρ ∈ JAK∪{⊥} of an LFPL term e provided that Γ `Σ e : A

holds, otherwise JeKη,ρ =⊥. The mapping J·Kη,ρ is then defined inductively on the
composition of LFPL terms as follows:
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JvKη,ρ = η(v)

JcKη,ρ = c

Je1 ? e2Kη,ρ = Je1Kη,ρ ? Je2Kη,ρ

Jif e1 then e2 else e3Kη,ρ =

{
Je2Kη,ρ if Je1Kη,ρ = 0

Je3Kη,ρ otherwise

Je1 ⊗ e2Kη,ρ =
(
Je1Kη,ρ , Je2Kη,ρ

)
Jmatch e1 with v1 ⊗ v2 ⇒ e2Kη,ρ = Je2Kη∪{v1 7→a,v2 7→b},ρ for Je1Kη,ρ = (a, b)

Jinl(e)Kη,ρ = inl
(
JeKη,ρ

)
Jinr(e)Kη,ρ = inr

(
JeKη,ρ

)
t

match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

|

η,ρ

=

{
Je2Kη∪{v 7→a},ρ if Je1Kη,ρ = inl(a)

Je3Kη∪{v 7→a},ρ if Je1Kη,ρ = inr(a)

JnilKη,ρ = [ ]

Jcons(ed, eh, et)Kη,ρ = JehKη,ρ :: JetKη,ρ

u

w
v

match e1 with

|nil⇒ e2

|cons(d, h, t)⇒ e3

}

�
~

η,ρ

=



Je2Kη,ρ if Je1Kη,ρ = [ ]

Je3Kη′,ρ if Je1Kη,ρ = a :: l

and η′ = η ∪


d 7→ 0

h 7→ a

t 7→ l


JleafKη,ρ = leaf

Jnode(ed, ea, el, er)Kη,ρ = node
(
JeaKη,ρ , JelKη,ρ , JerKη,ρ

)
u

w
v

match e1 with

| leaf ⇒ e2

|node(d, a, l, r)⇒ e3

}

�
~

η,ρ

=



Je2Kη,ρ if Je1Kη,ρ = leaf

Je3Kη′,ρ if Je1Kη,ρ = node(u, v, w)

and η′ = η ∪


d 7→ 0

a 7→ u

l 7→ v

r 7→ w


Jf(e1, . . . , en)Kη,ρ = ρ

(
f
)(

Je1Kη,ρ , . . . , JenKη,ρ
)

An LFPL program P with signature Σ, and for all f ∈ dom(Σ) the defining term
of function f being ef , is then interpreted as the least valuation ρ such that for all
functions f ∈ dom(Σ) holds ρ(f)(x1, . . . , xn) = JefKη,ρ where η(vi) = xi.
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Program Examples

For getting a good intuition how the programming language LFPL works, please
consider the following short program examples. Note that the LF translation of each
program is also given at the end of Appendix A.3.

Example A.2.3 (Reverse – LFPL). The function reverse takes a list of natural
numbers and reverses its order. The recursion is programmed in accumulator style
via the function rev_aux which receives another list representing the partial result
(the accumulator) as a second argument. (See Example A.3.3 for a detailed step by
step example computation of reverse.)

reverse : (L(N)) −→ L(N)

rev_aux : (L(N) , L(N)) −→ L(N)

reverse(l) = rev_aux(l, nil)

rev_aux(l, acc) = match l with

|nil⇒ acc

|cons(d, h, t)⇒
rev_aux(t, cons(d, h, acc))

Please note how the resource (d : ♦) from splitting the head of the argument list
is used to construct the resulting list: In the C translation given by Martin Hof-
mann [Hof00], each element of type ♦ corresponds to a small distinct portion of
heap-space, just large enough to hold a single list- or tree-node. Splitting a list into
head and tail returns an element of type ♦, which corresponds to the location where
the head was stored on the heap (at run-time of the C translation). Since the linear
typing rules deny further access to the whole list (l) after the splitting match opera-
tion, and allows only access to the remaining tail (t), we may reuse the heap location
of the head now for another purpose. (It may also be used to rebuild the former list
again, hence simulating a read-only access.) So in this case we see that the execution
of the C translation of reverse does not consume any additional heap-space, as the
output is constructed by the use of the heap-space locations freed by splitting the
input. We say that the output is constructed in-place. Of course, these observations
only apply with the specific C translation in mind.

Example A.2.4 (Conway’s Sequence – LFPL). The language LFPL allows functions
with dynamical resource consumption depending on their input. As an example we
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consider the computation of Conway’s Sequence [Con87]:

[1], [1, 1], [2, 1], [1, 2, 1, 1], [1, 1, 1, 2, 2, 1], [3, 1, 2, 2, 1, 1], [1, 3, 1, 1, 2, 2, 2, 1], . . .

Each successor can be viewed as the proverbial description of its predecessor: “The
list [2, 1] consists of one 2 followed by one 1” ≈ [1, 2, 1, 1]

Below we will define the function verbal, which computes the successor of a given
list, e.g. verbal

(
[2, 1]

)
= [1, 2, 1, 1]. Note that the result in this case is twice the

size of the input, hence we cannot hope to compute verbal without allocating new
resources. (In fact, the growth is exponential: C ·λn for λ ≈ 1.303577269, see [Var91]
for details.) However, as pointed out in the introduction, LFPL does not allow the
allocation of new memory resources! Let us see first how the problem arises:

Warning: The following lines are an example of incorrect LFPL code. It demonstrates
the difficulties arising when translating LF naively into LFPL, as the shown code is
almost identical to the valid LF code of the same function, given in Example A.3.4.

verbal′ : (L(N)) −→ L(N)

vbaux′ : (N, L(N)) −→ L(N)

verbal′(l) = vbaux′(1, l)

vbaux′(n, l) = match l with

|nil⇒ nil

|cons(d1, c1, t1)⇒
match t1 with

|nil⇒ cons
(
d1, n, cons(d1, c1, nil)

)
|cons(d2, c2, t2)⇒

if c1 = c2

then vbaux′
(
n+ 1, cons(d1, h2 ⊗ d2, t2)

)
else cons

(
d1, n, cons

(
d1, h1, vbaux

′(1, cons(d2, h2 ⊗ d2, t2)
)))

This is incorrect code because it is not linearly typable, hence not a well-typed
program according to Definition A.2.1: In the 5th line of the definition of function
vbaux the variable d1 is used twice, once as the first sub-term of the cons function and
once again within its third sub-term. The type rule for List-Construction requires
that the contexts needed to type both sub-terms must be disjoint, which is violated
here. (As explained in Appendix A.1, we write Γ1,Γ2 for the union of Γ1 and Γ2 only
if Γ1 and Γ2 are disjoint.) In addition, in the last line of the code the variables d1

and d2 are both used twice, violating linearity again.
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We promised that LFPL allows the dynamical allocation memory resources, so let us
see now how verbal can be implemented in a well-typed LFPL program:

verbal : (L(N⊗ ♦)) −→ L(N)

vbaux : (N, L(N⊗ ♦)) −→ L(N)

verbal(l) = vbaux(1, l)

vbaux(n, l) =

match l with

|nil⇒ nil

|cons(d11, h1, t1)⇒ match h1 with d12 ⊗ c1 ⇒
match t1 with

|nil⇒ cons
(
d12, n, cons(d11, c1, nil)

)
|cons(d21, h2, t2)⇒ match h2 with d22 ⊗ c2 ⇒

if c1 = c2

then vbaux
(
n+ 1, cons(d21, h2 ⊗ d22, t2)

)
else cons

(
d12, n, cons

(
d11, h1, vbaux

(
1, cons(d21, h2 ⊗ d22, t2)

)))
So each node of the input list is required to hold an additional spare resource, which
thus allows us to construct an output list of at most twice the size of the input. The
function verbal thus demands the preallocation of the additional resources needed,
and then uses in-place updates of the input only. Therefore a malloc()-free C compi-
lation can be provided. The requirement for preallocation of memory can always be
easily spotted within a functions LFPL signature, by the presence or absence of the
type ♦. Unlike in the shown example, some functions may require the preallocation
of a fixed amount of memory, e.g. a call to a function of type (N, L(N) ,♦) → L(N)

would always consume two resources. The function ins′ from Example 1.8 is of that
type.

Throughout this work, we will use a very simple function called twice instead of
verbal to demonstrate the dynamical allocation of memory depending on the input
(Example 1.9 and Example 3.2.1). Rather than computing a specific series, twice
merely doubles each list-node, but its signature is equal to verbal.

Alas, there is another problem we did not mention so far with this technique: A call
like verbal

(
verbal([1, 1])

)
is invalid in LFPL:

a) The first reason being that [1, 1] should be a constant of type L(N⊗ ♦) different
from nil, which we simply cannot define within LFPL. We cannot even define
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constants of type L(N), apart from nil:

naturals : (N) −→ L(N)

naturals(n) = if (n = 0) then nil else cons
(
_, n, natural(n− 1)

)
Apart from violating linearity, which is non-lethal in the case of N as we
will see in Section 3.1, we cannot provide an element of type ♦ to perform
the cons operation, as there are no constants of type ♦ available in LFPL.
Hence any data structures must be provided externally to an LFPL program,
by a mechanism which cares for the controlled allocation of memory. We then
guarantee that executing a LFPL program on these data structures will not
require any additional memory resources.

b) In the above example, one may argue that we could change the signature to
naturals : (N,♦) −→ L(N), which would provide the required resource. Now
in this case the program would not be typable again, as the recursive call would
then also require an element of type ♦.

In a similar manner, we cannot use verbal twice on the same data structure,
as the first call changes its type from L(N⊗ ♦) to L(N). Hence, in LFPL we
cannot formulate a program that uses verbal recursively, like

iter_mapverbal(l) = match l with

|nil⇒ nil

|cons(d, h, t)⇒ cons
(
d, h, verbal(iter_mapverbal(t))

)
However for f : (L(N))→ L(N) we would obtain

iter_mapf([a, b, c]) = a :: f
(
b :: f

(
c :: f([ ])

))
as expected. We will discuss such recursion related type problems more closely
in Section 3.2.

A.3 The language LF

LF is a linearly typed first-order functional programming language, similar to LFPL

except for the resource type ♦, which is not included in LF. Therefore we cannot
deduce much about the resource consumption of LF programs, contrary to LFPL

programs. Please consider the provided examples at the end of this section to see
what we receive in trade for giving up the type ♦.
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Definition A.3.1 (LF). The LF type grammar:

zero-order types: A ::= 1 | N | L(A) | T(A) | A⊗ A | A+ A

first-order types: F ::= (A, . . . , A)→ A

The terms of LF are given by the following grammar:

e ::= v Variable

| c Constant

| e1 ? e2

(
for ? ∈ {+,−,×,≥, . . . }

)
Standard Integer Infix

| if e1 then e2 else e3 Conditional

| e1 ⊗ e2 Pairing

| match e1 with v1 ⊗ v2 ⇒ e2 Pair-Elimination

| inl(e) Left Injection

| inr(e) Right Injection

| match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

Sum-Elimination

| nil Empty List

| cons(e1, e2) List-Construction

| match e1 with |nil⇒ e2

|cons(h, t)⇒ e3

List-Elimination

| leaf Leaf

| node(ea, el, er) Tree-Node

| match e1 with | leaf ⇒ e2

|node(a, l, r)⇒ e3

Tree-Elimination

| f(e1, . . . , en) Function Application

In each of the following type rules, let Σ denote a LF signature mapping a finite set of
function identifiers to LF first-order types, Γ be a LF typing context mapping a finite
set of identifiers to LF zero-order types, e, ea, eb, . . . representing arbitrary LF terms
according to the given grammar, and A,B,C denoting arbitrary LF zero-order types.
Then we allow the following typing judgements for LF provided that the premises
and side conditions of each rule are met.
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Variable
(v ∈ dom(Γ))

Γ `Σ v : Γ(v)

Constant I+II

Γ `Σ ∗ : 1
(c is a integer constant)

Γ `Σ c : N

Standard Integer Infix Operator

Γ1 `Σ e1 : N Γ2 `Σ e2 : N
(
? is a integer

infix operator

)
Γ1,Γ2 `Σ e1 ? e2 : N

Conditional
Γ1 `Σ e1 : N Γ2 `Σ e2 : A Γ2 `Σ e3 : A

Γ1,Γ2 `Σ if e1 then e2 else e3 : A

Pairing
Γ1 `Σ e1 : A1 Γ2 `Σ e2 : A2

Γ1,Γ2 `Σ e1 ⊗ e2 : A1 ⊗ A2

Pair-Elimination

Γ1 `Σ e1 : A1 ⊗ A2 Γ2, v1 : A1, v2 : A2 `Σ e2 : C

Γ1,Γ2 `Σ match e1 with v1 ⊗ v2 ⇒ e2 : C

Inl, Inr

Γ `Σ e : A

Γ `Σ inl(e) : A+B

Γ `Σ e : B

Γ `Σ inr(e) : A+B

Sum-Elimination

Γ1 `Σ e1 : A+B Γ2, v : A `Σ e2 : C Γ2, v : B `Σ e3 : C

Γ1,Γ2 `Σ match e1 with | inl(v)⇒ e2
| inr(v)⇒ e3 : C

Empty List

Γ `Σ nil : L(A)

List-Construction
Γh `Σ eh : A Γt `Σ et : L(A)

Γh,Γt `Σ cons(eh, et) : L(A)
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List-Elimination

Γ1 `Σ e1 : L(A) Γ2 `Σ e2 : C Γ2, h : A, t : L(A) `Σ e3 : C

Γ1,Γ2 `Σ match e1 with |nil⇒ e2
|cons(h, t)⇒ e3 : C

Leaf

Γ `Σ leaf : T(A)

Tree-Node

Γa `Σ ea : A

Γl `Σ el : T(A)

Γr `Σ er : T(A)

Γa,Γl,Γr `Σ node(ea, el, er) : T(A)

Tree-Elimination

Γ1 `Σ e1 : T(A) Γ2 `Σ e2 : C

Γ2, a : A, l : T(A) , r : T(A) `Σ e3 : C

Γ1,Γ2 `Σ match e1 with | leaf ⇒ e2
|node(a, l, r)⇒ e3 : C

Function Application

Σ(f) = (A1, . . . , Ap) −→ B Γi `Σ ei : Ai for i = 1, . . . , p

Γ1, . . . ,Γp `Σ f(e1, . . . , ep) : B
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Standard Set-Theoretic Semantics of LF

Since the given set-theoretic semantics of LFPL takes no account for the heap-space
usage and hence rather ignores the type ♦, the set-theoretic semantics of LF are
almost equal to those presented in Definition A.2.2. Nevertheless we state the set-
theoretic semantics of LF here, especially since they are an identical part of the
set-theoretic semantics of L̂FPL.

Definition A.3.2 (Set-theoretic interpretation of LF). The LF types are interpreted
by the following sets:

J1K = {0}
JNK = Z

JL(A)K = finite lists over JAK

JT(A)K = finite binary trees with

JAK -labelled nodes and unlabelled leaves

JA⊗BK = JAK× JBK

JA+BK =
{
inl(a)

∣∣ a ∈ JAK
}
∪
{
inr(b)

∣∣ b ∈ JBK
}

JA1, . . . , An → BK = partial functions from JA1K× · · · × JAnK to JBK

A function η is a valuation of a context Γ if η(v) ∈ JΓ(v)K holds for each v ∈ dom(Γ);
a function ρ is a valuation of a signature Σ if ρ(f) ∈ JΣ(f)K holds for all f ∈ dom(Σ).

Given both a valuation η of the context Γ and a valuation ρ of the signature Σ, we
can define the meaning JeKη,ρ ∈ JAK ∪ {⊥} of an LF term e provided that Γ `Σ e : A

holds, otherwise JeKη,ρ =⊥. The mapping J·Kη,ρ is then defined inductively on the
composition of LF terms as follows:
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JvKη,ρ = η(v)

JcKη,ρ = c

Je1 ? e2Kη,ρ = Je1Kη,ρ ? Je2Kη,ρ

Jif e1 then e2 else e3Kη,ρ =

{
Je2Kη,ρ if Je1Kη,ρ = 0

Je3Kη,ρ otherwise

Je1 ⊗ e2Kη,ρ =
(
Je1Kη,ρ , Je2Kη,ρ

)
Jmatch e1 with v1 ⊗ v2 ⇒ e2Kη,ρ = Je2Kη∪{v1 7→a,v2 7→b},ρ for Je1Kη,ρ = (a, b)

Jinl(e)Kη,ρ = inl
(
JeKη,ρ

)
Jinr(e)Kη,ρ = inr

(
JeKη,ρ

)
t

match e1 with | inl (v)⇒ e2

| inr(v)⇒ e3

|

η,ρ

=

{
Je2Kη∪{v 7→a},ρ if Je1Kη,ρ = inl(a)

Je3Kη∪{v 7→a},ρ if Je1Kη,ρ = inr(a)

JnilKη,ρ = [ ]

Jcons(eh, et)Kη,ρ = JehKη,ρ :: JetKη,ρ
u

w
v

match e1 with

|nil⇒ e2

|cons(h, t)⇒ e3

}

�
~

η,ρ

=


Je2Kη,ρ if Je1Kη,ρ = [ ]

Je3Kη′,ρ if Je1Kη,ρ = a :: l

and η′ = η ∪
{
h 7→ a

t 7→ l

}
JleafKη,ρ = leaf

Jnode(ea, el, er)Kη,ρ = node
(
JeaKη,ρ , JelKη,ρ , JerKη,ρ

)
u

w
v

match e1 with

| leaf ⇒ e2

|node(a, l, r)⇒ e3

}

�
~

η,ρ

=



Je2Kη,ρ if Je1Kη,ρ = leaf

Je3Kη′,ρ if Je1Kη,ρ = node(u, v, w)

and η′ = η ∪


a 7→ u

l 7→ v

r 7→ w


Jf(e1, . . . , en)Kη,ρ = ρ

(
f
)(

Je1Kη,ρ , . . . , JenKη,ρ
)

An LF program P with signature Σ, and for all f ∈ dom(Σ) the defining term of
function f being ef , is then interpreted as the least valuation ρ such that for all
functions f ∈ dom(Σ) holds

ρ(f)(x1, . . . , xn) = JefKη,ρ

where η(vi) = xi.
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Program Examples

We return now to Examples of Appendix A.2 and state what we would naturally
view as their translations into LF:

Example A.3.3 (Reverse – LF). Again, the function reverse takes a list of nat-
ural numbers and reverses its order. reverse is implemented via the tail-recursive
function rev_aux, which receives another list as a second argument.

reverse : (L(N)) −→ L(N)

rev_aux : (L(N) , L(N)) −→ L(N)

reverse(l) = rev_aux(l, nil)

rev_aux(l, acc) = match l with

|nil⇒ acc

|cons(h, t)⇒
rev_aux(t, cons(h, acc))

Note that there is no trace remaining of the resource handling, hence we cannot
easily determine how much heap space is consumed by an execution of reverse with
arbitrary input lists.

The computation of function reverse works as shown below. For simplicity, we use
the shorthands nil = [ ] and cons

(
1, cons(2, nil)

)
= [1, 2] as usual.

reverse
(
[1, 2, 4]

)
= rev_aux([1, 2, 4], [ ])

= rev_aux([2, 4], [1]) = rev_aux([4], [2, 1]) = rev_aux([ ], [4, 2, 1])

= [4, 2, 1]

A call to reverse is passed to rev_aux with the empty list denoted by nil as the
required second argument. The function rev_aux distinguishes whether its first
argument l is equal to the empty list or not. In the first case the call simply evaluates
to the second argument acc. While in the second case the list l is split into head h
and tail t, and the function call then evaluates to a recursive call to rev_aux with t
as the first argument and h attached to acc as the second argument.

Example A.3.4 (Conway’s Sequence – LF). Now the first attempt to compute a
step in Conway’s Sequence as given in Example A.2.4 is successful in LF: Recall that
the problem in Example A.2.4 was the multiple use of variables of the resource type,
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violating linearity. Since we must not provide resource elements in order to construct
a list in LF, this problem does not arise, and the program is linearly typable in LF:

verbal : (L(N)) −→ L(N)

vbaux : (N, L(N)) −→ L(N)

verbal(l) = vbaux(1, l)

vbaux(n, l) =

match l with

|nil⇒ nil

|cons(c1, t1)⇒
match t1 with

|nil⇒ cons
(
n, cons(c1, nil)

)
|cons(c2, t2)⇒

if c1 = c2

then vbaux
(
n+ 1, cons(c2, t2)

)
else cons

(
n, cons

(
c1, vbaux

(
1, cons(c2, t2)

)))
So the use of verbal on a list does not change its type and we are therefore allowed
to use verbal recursively like in iter_mapverbal, which was not possible in LFPL:

iter_mapverbal(l) = match l with

|nil⇒ nil

|cons(d, h, t)⇒ cons
(
d, h, verbal(iter_mapverbal(t))

)
Constants of lists or trees may also be directly defined within LF, without relying to
an external source:

naturals : (N) −→ L(N)

naturals(n) = if (n = 0) then nil else cons
(
n, natural(n− 1)

)
yielding

naturals(5) = [5, 4, 3, 2, 1]

So programming in LF is easier than programming in LFPL, but we cannot deduce
much about the memory consumption of LF programs like we are able to do with
LFPL programs. Therefore we aim at an automatic translation for LF into LFPL,
whenever possible, and which warns the programmer whenever no bounds on memory
consumption are deduceable in this way, so that he may avoid such memory leaks.
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Index of Program Examples

Conway’s Sequence
LF, 90
LFPL, 81

Head, Separating the Head of a List
LFPL, 25

Huffman-Tree Coding
L̂FPL, 61

Insertion-Sort
LFPL♦, 19

Naturals, a constant list
LF, 91
LFPL, 84

Quick-Sort
LF-style, 67
L̂FPL, 68

Reverse, Reversing the order of a list
LF, 90
LFPL, 81

tos, Replacing third elements in Lists
L̂FPL, 54

Twice, Doubling the entries of a list
LFPL♦(non-example), 20
L̂FPL, 69
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