
LFMTP 2006

Modelling Generic Judgements

Ulrich Schöpp1

TCS, Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstraße 67, D-80538 München, Germany

Abstract

We propose a semantics for the ∇-quantifier of Miller and Tiu. First we consider the case for classical
first-order logic. In this case, the interpretation is close to standard Tarski-semantics and completeness
can be shown using a standard argument. Then we put our semantics into a broader context by giving a
general interpretation of ∇ in categories with binding structure. Since categories with binding structure
also encompass nominal logic, we thus show that both ∇-logic and nominal logic can be modelled using the
same definition of binding. As a special case of the general semantics in categories with binding structure,
we recover Gabbay & Cheney’s translation of FOλ∇ into nominal logic.

Miller & Tiu [18] have introduced the logic FOλ∇ for reasoning about specifica-
tions in λ-tree syntax (a version of higher-order abstract syntax). The main new
feature of FOλ∇ is the ∇-quantifier for the treatment of object-level eigenvariables.
The design of FOλ∇ is based on a study of the proof-theory of first-order logic and
the result is an elegant and simple calculus.

In addition to the proof theory for FOλ∇, one may be interested in a model-
theoretic semantics, e.g. [6,17,25]. A simple semantics is useful for explaining the
logic and for understanding the meaning of formulae. It may also help in trans-
ferring technology from other, semantics-based, approaches. Nominal Logic [19],
for example, solves a problem similar to that solved by FOλ∇, but is based on a
semantic approach. A clarification of the semantics of FOλ∇ should help in study-
ing the connection of FOλ∇ to Nominal Logic, in order to answer questions such
as whether the elegant proof theory of FOλ∇ can be used for Nominal Logic, or
whether programming in the style of Fresh O’Caml [23,22] is possible with ∇. In
general, a model-theoretic explanation of the ∇-quantifier should make it amenable
for inclusion in solutions that are based on the model-theory of first-order logic, an
example being Brotherston’s very general approach to cyclic proofs [2].

In this paper we give a simple and direct semantic interpretation of FOλ∇. We
focus on classical logic with its easy-to-describe Tarski semantics and show that
well-known theory can be adapted to classical FOλ∇. We focus on the classical

1 Email: schoepp@tcs.ifi.lmu.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:schoepp@tcs.ifi.lmu.de


Schöpp

case, as it is particularly simple to describe. In the second part of this paper we
give a general framework for modelling FOλ∇, which we hope will help in studying
the relationships of models for FOλ∇, such as those of Gabbay & Cheney [6] and
Miculan & Yemane [17].

To explain the interpretation informally, recall from [18] that FOλ∇ is a first-
order logic over simply-typed λ-calculus. Object-level syntax is represented by
λ-tree types (HOAS). For instance, the type of λ-terms can be represented by a
type Tm with two constants app : Tm ×Tm → Tm and lam : (Tm → Tm) → Tm.
In addition to the usual existential and universal quantification, ∃x : τ. ϕ(x) and
∀x : τ. ϕ(x), FOλ∇ also features the quantification ∇x : Tm. ϕ(x). In this paper
we restrict the ∇-quantifier to range only over a subclass of types such as Tm,
which we call λ-tree types. A similar restriction is imposed in [25]. Our restriction
on ∇ is in line with restrictions imposed on the new-quantifier Nof Gabbay &
Pitts, which typically ranges over names only. For the semantics, we use a standard
interpretation for the quantifiers ∃ and ∀. Our interpretation of ∇x : Tm. ϕ(x)
may be expressed as: ‘for all new variables x : Tm the formula ϕ(x) holds.’ The
quantification ranges only over variables, but not over terms of the form app〈x, y〉 or
lam(f). The meaning of the formula ∇x : Tm. ϕ(x) may equivalently be expressed
as: ‘for some new variable x : Tm the formula ϕ(x) holds.’

To formalise this informal description of the semantics, we have to deal
with a number of issues. First, object-level terms are represented using higher-
order abstract syntax. To model the type Tm, and in particular the constant
lam : (Tm → Tm) → Tm, adequately, we must find a model in which the inter-
pretation of the function space (Tm → Tm) contains just α-equivalence classes of
object-level terms. We address this issue using an approach of Hofmann [12], who
has shown that certain presheaves provide a canonical model in which such an inter-
pretation of Tm is available. A second issue is that to model ∇ we want to explain
quantification over variables only. The internal logic of the presheaf-category, in
which the terms are interpreted, is not suitable for this purpose, since it can ex-
press only propositions that are closed under all substitutions. We address this issue
by modelling the terms in a presheaf category, but taking the logic from a so-called
category with binding structure. This approach of modelling terms in one place
and using the logic from another place is also used by Hofmann [12]. We consider
a number of different logics including Nominal Logic, in which case we recover the
interpretation of FOλ∇ in Nominal Logic proposed by Gabbay & Cheney [6].

In Part I of this paper we spell out directly an interpretation of classical FOλ∇.
The aim of this part is to present the interpretation as simple as possible, without
assuming knowledge of FOλ∇. We show that the semantics is close to the standard
Tarski semantics for classical logic and that the well-known completeness argument
goes through almost unchanged. The point of Part I is to stress that just a little
change to the standard Tarski-semantics is enough for modelling the ∇-quantifier.

In Part II, we generalise the development from the first part by giving models
of ∇ in categories with binding structure [20, Chapter 10], which capture a general
definition of binding. Since Nominal Logic also fits into the framework of categories
with binding structure, the development in Part II will therefore show that both ∇
and nominal logic can be modelled using the very same definition of binding.

2



Schöpp

1 Part I
Classical First-Order Logic with ∇

1.1 Simply typed λ-calculus

We fix the notation for a simply typed λ-calculus.

Types: τ := base types | λ-tree types | 1 | τ × τ | τ → τ

Terms: M := x | c | ∗ | 〈M,M〉 | π1(M) | π2(M) | λx:τ.M | M M

Contexts: Σ := · | Σ, x : τ

Terms are identified up to renaming of bound variables. We assume constants c to
be defined in a signature S, and we assume the choice of S and the primitive types
to be such that the types and terms are countable.

In addition to the normal base types, there is a second kind of base types, which
we call λ-tree types. The intended use of λ-tree types is for higher-order abstract
syntax encodings. We use ι to range over λ-tree types.

Contexts are subject to the usual convention that no variable may be declared
more than once. A context that contains only declarations x : ι of λ-tree types is
called a λ-tree context. We use σ to range over λ-tree contexts.

The typing judgement is defined by the following rules.
(x : τ) ∈ Σ
Σ ` x : τ

(c : τ) ∈ S
Σ ` c : τ Σ ` ∗ : 1

Σ ` M : τ Σ ` N : τ ′

Σ ` 〈M,N〉 : τ × τ ′
Σ ` M : τ × τ ′

Σ ` π1(M) : τ
Σ ` M : τ × τ ′

Σ ` π2(M) : τ ′

Σ, x : τ ` M : τ ′

Σ ` λx:τ.M : τ → τ ′
Σ ` M : τ → τ ′ Σ ` N : τ

Σ ` M N : τ ′

A substitution ρ : Σ → Σ′ is a function that assigns to each variable (x : τ) in Σ′ a
term Σ ` M : τ . We use the following notation for substitutions:

[M1/x1] . . . [Mn/xn] : Σ → (x1 : τ1, . . . , xn : τn)

We use the letters ρ and θ to range over substitutions. An order-preserving renaming
is a substitution of the following form (note the order):

[y1/x1] . . . [yn/xn] : (y1 : τ1, . . . , yn : τn) → (x1 : τ1, . . . , xn : τn)

We use the letters α and β to range over order-preserving renamings.
We write T for the category having contexts as objects and substitutions as

morphisms, and we write L for the sub-category of T consisting of λ-tree contexts
and substitutions between them.

The semantic structure corresponding to simply-typed λ-calculus is that of a
cartesian closed category with finite products. An interpretation of the syntax in
such a category C is given by a functor ‖−‖ : T → C that preserves finite products
and exponents.

In order to model higher-order syntax adequately, we will interpret the types as
presheaves on L, i.e. as functors Lop → Sets. This means that the interpretation ‖τ‖

3



Schöpp

of a type τ is a mapping that assigns to each λ-tree context σ a set ‖τ‖σ and that
assigns to each substitution θ : σ → σ′ and each element x ∈ ‖τ‖σ′ an element x[θ] ∈
‖τ‖σ in such a way that the equations x[id ] = x and x[θ ◦ ρ] = x[θ][ρ] hold. A term
Σ ` M : τ is interpreted as a natural transformation ‖M‖ : ‖Σ‖ → ‖τ‖. This means
that the interpretation of a term is given by, for each σ, a function ‖M‖σ : ‖Σ‖σ →
‖τ‖σ, such that these functions behave well with respect to substitution, that is
(‖M‖σ′(x))[θ] = ‖M‖σ(x[θ]) holds for all θ : σ → σ′ and all x ∈ ‖Σ‖σ′.

For a small category C, we write Ĉ for the category of functors Cop → Sets.
The point of using presheaves is that λ-tree syntax can be modelled adequately,

as has been shown in [12]. Consider for example the λ-tree type Tm with con-
stants app and lam, as described in the introduction. For the interpretation ‖Tm‖
we choose the presheaf ‖Tm‖(σ) = {M | σ ` M : Tm} with the canonical substitu-
tion action. Now, the cartesian closed structure on L̂ is such that there are isomor-
phisms ‖Tm × Tm‖σ ∼= ‖Tm‖σ × ‖Tm‖σ and ‖Tm → Tm‖σ ∼= ‖Tm‖(σ, x : Tm).
In particular, the interpretation of the function type Tm → Tm at stage σ consists
just of terms with an additional variable x. Therefore, we can interpret the terms
app and lam by the maps ‖Tm‖ × ‖Tm‖ → ‖Tm‖ and ‖Tm → Tm‖ → ‖Tm‖
given by 〈M,N〉 7→ app〈M,N〉 and M 7→ lam(λx:Tm.M) respectively.

The reader unfamiliar with the presheaf semantics may find it instructive to
think of the term model (up to α-equivalence), in which all types are interpreted
by ‖τ‖σ = {M | σ ` M : τ}.

1.2 Classical First-order Logic with ∇

Logical formulae in context Σ can be defined using a base type o and, for each
relation symbol R, a constant R : τ1 → · · · → τn → o, as well as constants for
the logical connectives ¬ : o → o and ∨,∧ : o × o → o and ∀,∃ : (τ → o) → o
and ∇ : (ι → o) → o etc. Although these constants can be interpreted in our
semantics, it is simpler to consider logical formulae as a separate entity with the
evident inductive definition, which is the view we adopt in this section.

We define a sequent calculus for a classical logic with ∇. The sequents have the
form Σ | Γ −→ ∆, in which Σ is a context and Γ and ∆ are (possibly infinite) sets
of formulae in a local signature σ � A. A local signature σ is a λ-tree context and
σ�A in context Σ presupposes that A is a well-formed formula in context Σ, σ. We
identify statements σ � A up to bound renaming of variables in σ. One may think
of σ � A as the formula ∇σ.A. For ·� A we write just A.

The rules of the sequent calculus, which are given in Fig. 1, are a straightforward
extension to classical logic of the rules in [18].

Just as in FOλ∇, the ∇-quantifier commutes with all other logical connectives,
i.e. one can prove equivalences of the form (∇x : ι. A∧B) ⊃⊂ (∇x : ι. A)∧ (∇x : ι. B)
and (∇x : ι.∃y : τ.A(x, y)) ⊃⊂ (∃h : ι → τ.∇x : ι. A(x, h x)) and likewise for all
the other connectives. This property of ∇ makes it very similar to the new-
quantifier Nof Gabbay & Pitts [7]. The quantifier ∇ differs from N, however,
in the fact that the following equivalences are not provable: ∇x : ι.∇y : ι.A(x, y) ⊃⊂
∇y : ι.∇x : ι.A(x, y) and ∀x : ι. A(x) ⊃ ∇x : ι. A(x) and ∇x : ι. A(x) ⊃ ∃x : ι. A(x).
In Part II we will show that both ∇ and Nare nevertheless instances of the same

4



Schöpp

General Rules

(Axiom) Γ ∩∆ 6= ∅
Σ | Γ −→ ∆

Σ | Γ −→ B Σ | B, ∆ −→ Φ
(Cut)

Σ | Γ, ∆ −→ Φ

Logical Rules

(⊥-L)
Σ | Γ, σ �⊥ −→ ∆

(>-R)
Σ | Γ −→ ∆, σ �>

Σ | Γ −→ ∆, σ � A
(¬-L)

Σ | Γ, σ � ¬A −→ ∆

Σ | Γ −→ ∆, σ � A
(¬-R)

Σ | Γ, σ � ¬A −→ ∆

Σ | Γ, σ � A, σ � B −→ ∆
(∧-L)

Σ | Γ, σ � A ∧B −→ ∆

Σ | Γ −→ ∆, σ � A Σ | Γ −→ ∆, σ � B
(∧-R)

Σ | Γ −→ ∆, σ � A ∧B

Σ | Γ, σ � A −→ ∆ Σ | Γ, σ � B −→ ∆
(∨-L)

Σ | Γ, σ � A ∨B −→ ∆

Σ | Γ −→ ∆, σ � A, σ � B
(∨-R)

Σ | Γ −→ ∆, σ � A ∨B

Σ | Γ −→ ∆, σ � A Σ | Γ, σ � B −→ ∆
(⊃-L)

Σ | Γ, σ � A ⊃ B −→ ∆

Σ | Γ, σ � A −→ ∆, σ � B
(⊃-R)

Σ | Γ −→ ∆, σ � A ⊃ B

Σ, σ ` M : τ Σ | Γ, σ � A[M/x] −→ ∆
(∀-L)

Σ | Γ, σ � ∀x : τ. A −→ ∆

Σ, h | Γ −→ ∆, σ � A[h σ/x]
(∀-R)

Σ | Γ −→ ∆, σ � ∀x : τ. A

Σ, h | Γ, σ � A[h σ/x] −→ ∆
(∃-L)

Σ | Γ, σ � ∃x : τ. A −→ ∆

Σ, σ ` M : τ Σ | Γ −→ ∆, σ � A[M/x]
(∃-R)

Σ | Γ −→ ∆, σ � ∃x : τ. A

Σ | Γ, (σ, x : ι) � A −→ ∆
(∇-R)

Σ | Γ, σ �∇x : ι. A −→ ∆

Σ | Γ −→ ∆, (σ, x : ι) � A
(∇-R)

Σ | Γ −→ ∆, σ �∇x : ι. A

Fig. 1. Sequent calculus

structure (Prop. 2.2).
We omit sequent rules for equality and definitions. Although these rules are

important for practical reasoning and are non-trivial from a proof-theoretic per-
spective, for semantic purposes it is simpler to replace them by axiom-schemes.

1.3 Semantic Interpretation

To give a meaning to the logic, we must first interpret the underlying λ-calculus.
To do this, we assume, for each base type τ , an object ‖τ‖ of L̂. We extend this
assignment to an interpretation of the λ-calculus by the following clauses.

‖ι‖σ = y(x : ι) ∼= {M | σ ` M : ι}, where ι is a λ-tree type
‖1‖σ = 1

‖τ × τ ′‖σ = ‖τ‖σ × ‖τ ′‖σ
‖τ → τ ′‖σ = L̂(y(σ)× ‖τ‖, ‖τ ′‖)

Here, y(σ) = L(−, σ) is the Yoneda-embedding. We note that, as a consequence of
the Yoneda Lemma, there is an isomorphism ‖ι → τ‖(σ) ∼= ‖τ‖(σ, x : ι) for all λ-tree
types ι. We extend the interpretation to contexts by use of cartesian products.

Propositions are interpreted as subsets closed under order-preserving renaming
of variables. That is, a proposition A in context Σ is interpreted by, for each σ,
a subset A(σ) ⊆ ‖Σ‖σ, such that, for each σ, each x ∈ A(σ) and each bijective
variable renaming α : σ′ → σ, we have x[α] ∈ A(σ′). Note that propositions must
be closed only under variable-renaming, not under all substitutions.

The interpretation of base-types, constants and relations is recorded in a struc-

5



Schöpp

ture A. It assigns to each base type τ an object ‖τ‖ in L̂ and to each constant c : τ a
morphism ‖1‖ → ‖τ‖ in L̂. It assigns to each relation symbol R : τ1 → · · · → τn → o
a proposition on x1 : τ1, . . . , xn : τn, as described just above.

The interpretation of formulae is defined by the satisfaction relation σ ρ,Σ A,
in which the stage σ is a λ-tree context, A is a formula in context Σ and ρ is a
Σ-valuation at stage σ defined as follows: a Σ-valuation at stage σ is a function ρ

mapping each variable x : τ in Σ to an element of ‖τ‖(σ). For a term Σ ` t : τ , we
write ρ(t) for the evident element of ‖τ‖(σ).

σ ρ,Σ R(t1, . . . , tn) iff 〈ρ(t1), . . . , ρ(tn)〉 ∈ ‖R‖(σ)
σ ρ,Σ ⊥ never
σ ρ,Σ > always
σ ρ,Σ ¬A iff not σ ρ,Σ A

σ ρ,Σ A ∧B iff σ ρ,Σ A and σ ρ,Σ B

σ ρ,Σ A ∨B iff σ ρ,Σ A or σ ρ,Σ B

σ ρ,Σ A ⊃ B iff σ ρ,Σ A implies σ ρ,Σ B

σ ρ,Σ ∃x : τ.A iff there exists e ∈ ‖τ‖(σ) such that σ ρ[e/x],(Σ, x : τ) A

σ ρ,Σ ∀x : τ.A iff σ ρ[e/x],(Σ, x : τ) A for all e ∈ ‖τ‖(σ)

σ ρ,Σ ∇x : ι. A iff σ, x : ι ρ[x/x], (Σ, x : ι) A

The interpretation of formulae is extended to local signatures by:

σ ρ,Σ (x1 : ι1, . . . , xn : ιn) � A
def⇐⇒ σ ρ,Σ ∇x1 : ι1. . . .∇xn : ιn. A

For a set of formulae Γ, we define σ ρ,Σ Γ as an abbreviation for
∧

G∈Γ(σ ρ,Σ G).
A formula A is valid in A if, for all Σ-valuations ρ at the empty stage, · ρ,Σ A

holds. A sequent Σ | Γ −→ ∆ is valid in A if, for all Σ-valuations ρ at the empty
stage, · ρ,Σ Γ implies the existence of a D ∈ ∆ such that · ρ,Σ D holds. A
structure A is a model of a set of closed formulae Γ, if all G ∈ Γ are valid in the
interpretation relative to A. A formula (respectively sequent) is valid if it is valid
in all structures A.

1.4 Examples

Lambda calculus and its induction principle. As an example of an induction
principle that can be justified in the semantics, we consider the induction principle
for the untyped λ-calculus Tm. The following induction schema is valid for all
formulae P .

Σ |
∀t, t′ : Tm. P (t) ∧ P (t′) ⊃ P (app 〈t, t′〉),

∀f : (Tm → Tm). (∀t : Tm. P (t) ⊃ P (f t)) ⊃ P (lam f)
−→ ∀t : Tm. P (t)

That this induction schema is indeed valid follows because the definition of validity
uses valuations at the empty stage, so that the quantification in this schema is over
closed terms only. It is also possible to quantify over terms with free variables in σ

6



Schöpp

by introducing a local signature σ.

Σ |

σ � ∀t : Tm. isVar(t) ⊃ P (t),

σ � ∀t, t′ : Tm. P (t) ∧ P (t′) ⊃ P (app t t′),

σ � ∀f : (Tm → Tm). (∀t : Tm. P (t) ⊃ P (f t)) ⊃ P (lam f)

−→ σ�∀t : Tm. P (t)

Here, isVar is the predicate expressing that t is a variable. It is interpreted by
‖isVar‖σ = {x | σ ` x : Tm, x is a variable}. Note that the interpretation of isVar
is closed under order-preserving renamings but not under all substitutions.

Finally, if we let

Γσ =

σ � ∀t : Tm. isVar(t) ⊃ P (t),

σ � ∀t, t′ : Tm. P (t) ∧ P (t′) ⊃ P (app t t′),

σ � ∀f : (Tm → Tm). (∇x : Tm. P (f x)) ⊃ P (lam f)

and let Γ be the union of all Γσ for all σ, then the sequent Σ | Γ −→ σ′�∀t : Tm. P (t)
is valid for all σ′.
Standard classical logic. The well-known Tarski-style semantics for classical
logic is a special case of the above definition. Consider the case where there are
no λ-tree types. By the syntactic restrictions, no ∇-quantification is allowed in
this case. Furthermore, L̂ is just the category of sets. Hence, in this case, the
above definition of the satisfaction relation coincides with the well-known standard
interpretation of classical logic.

1.5 Soundness

For soundness, we first show that the ∇-quantifier commutes with all the other
logical connectives. With this property, the proof of soundness is a straightforward
induction on derivations. The soundness proof of Miculan & Yemane [17] is similar.

Lemma 1.1 For any θ : Σ → Σ′, we have σ (θ◦ρ),Σ′ A ⇐⇒ σ ρ,Σ A[θ].

Proof. By induction on the structure of the formula A. The only interesting case
is the base case, which follows because we have (θ ◦ ρ)(t) = ρ(t[θ]). 2

We show that ∇ commutes with the quantifiers, omitting the similar cases for the
other connectives for space-reasons.

Lemma 1.2 The following equivalences hold.

σ ρ,Σ ∇x : ι.∃y : τ.A ⇐⇒ σ ρ,Σ ∃h : ι → τ.∇x : ι. A[h x/y]
σ ρ,Σ ∇x : ι.∀y : τ.A ⇐⇒ σ ρ,Σ ∀h : ι → τ.∇x : ι. A[h x/y]

Proof. We consider the case for the existential quantifier. The other case is dual.

σ ρ,Σ ∇x : ι.∃y : τ.A ⇐⇒ σ, x : ι ρ[x/x],Σ, x : ι ∃y : τ.A

⇐⇒ exists e ∈ ‖τ‖(σ, x : ι) with σ, x : ι ρ[x/x,e/y],Σ, x : ι, y : τ A

7



Schöpp

Consider the substitution [h x/y] : (Σ, h : (ι → τ), x : ι) → (Σ, x : ι, y : τ). By use
of the isomorphism i : ‖τ‖(σ, x : ι) ∼= ‖ι → τ‖σ, we obtain from e the element i(e)
of ‖ι → τ‖σ. The interpretation of application in L̂ is such that we have [h x/y] ◦
ρ[i(e)/h, x/x] = ρ[x/x, e/y]. Using the above lemma, we can continue as follows.

exists e ∈ ‖τ‖(σ, x : ι) with σ, x : ι ρ[x/x,e/y],Σ, x : ι, y : τ A

⇐⇒ exists e ∈ ‖τ‖(σ, x : ι) with σ, x : ι ρ[i(e)/h,x/x],Σ, h : (ι→τ), x : ι A[h x/y]

⇐⇒ exists e′ ∈ ‖ι → τ‖σ with σ, x : ι ρ[e′/h,x/x],Σ, h : (ι→τ), x : ι A[h x/y]

⇐⇒ exists e′ ∈ ‖ι → τ‖σ with σ ρ[e′/h],Σ, h : (ι→τ) ∇x : ι. A[h x/y]

⇐⇒ σ ρ,Σ ∃h : (ι → τ).∇x : ι. A[h x/y]

2

Using this lemma, we obtain by induction on derivations:

Proposition 1.3 (Soundness) Any derivable sequent is valid.

1.6 Completeness

In this section we show that the well-known completeness argument for first-order
logic, see e.g. [5,11], goes through almost unchanged.

Definition 1.4

(i) A theory T is a set of closed formulae such that (· | T −→ A) implies A ∈ T

(ii) A theory T is syntactically consistent if · | T −→ ⊥ is not derivable.

(iii) A theory T is a Henkin Theory if, for each closed formula ∃x : τ.A(x), there
exists a constant · ` c : τ such that (∃x : τ.A(x) ⊃ A(c)) ∈ T holds.

Lemma 1.5 Let T be a syntactically consistent theory for the signature S. There
exists a signature S∗ extending S with countably many new constants and a the-
ory T ∗ for the signature S∗, such that the following hold:

(i) T ∗ is conservative over T ;

(ii) T ∗ is a Henkin theory.

Notice that even though we are extending the signature with closed witnesses only,
by ‖τ‖(σ) ∼= ‖σ → τ‖(·) we can reach all stages of the presheaves. Moreover,
suppose we have ∇σ.∃x : τ.A(x). This is equivalent to ∃h : ι → τ.∇σ.A(h σ), so
that we have a witness c making ∇σ.A(c σ) true.

Lemma 1.6 For any syntactically consistent theory T , there exists a maximally
consistent extension T ∗ ⊇ T for which the following hold:

(i) A 6∈ T ∗ iff ¬A ∈ T ∗;

(ii) A ∧B ∈ T ∗ iff A ∈ T ∗ and B ∈ T ∗;

(iii) A ∨B ∈ T ∗ iff A ∈ T ∗ or B ∈ T ∗;

(iv) A ⊃ B ∈ T ∗ iff {¬A,B} ∩ T ∗ 6= ∅;

8



Schöpp

Lemma 1.7 If T ∗ is a maximally consistent extension of T and T is a Henkin
theory then T ∗ is also a Henkin theory.

Lemma 1.8 Any syntactically consistent set Γ has a model.

Proof. Let T be the theory axiomatised by Γ and extend it to a maximally con-
sistent Henkin theory T ∗. We define a model from T ∗. Base types are interpreted
by ‖τ‖(σ) = {M | σ ` M : τ} and the presheaf action is given by substitution. A
relation R : τ1 → · · · → τn → o is interpreted by

‖R‖(σ) = {〈t1, . . . , tn〉 | ∇σ.R(t1, . . . , tn) ∈ T ∗} (1)

Notice that this presheaf ‖R‖ only has to be closed under variable renaming, not
under all substitutions. That it is indeed closed follows because ∇σ.R(t1, . . . , tn) is
closed under α-conversion.

It remains to show that this definition does indeed define a model of T ∗. It
suffices to show the equivalence · ρ,Σ A ⇐⇒ A[ρ] ∈ T ∗ for all stages σ, all
contexts Σ, all formulae A in context Σ and all Σ-valuations ρ at stage σ. The
assertion follows from this, since, by letting Σ be the empty context, it can be seen
that each formula A ∈ T ∗ is valid in the above model.

The proof of the equivalence goes by induction on the number of logical connec-
tives other than ∇ in a formula A. Since we have the well-known equivalences of
classical logic, we can restrict our attention to the connectives ¬, ∨ and ∃. We pro-
ceed by case-distinction on the outermost connective in A. We show the base-case
and the case for the existential quantifier. The other cases are similar.

• A is ∇σ.R(t1, . . . , tn). Let ρ′ = ρ[σ/σ]. Then we have:

· ρ,Σ ∇σ.R(t1, . . . , tn) ⇐⇒ σ ρ′,(Σ, σ) R(t1, . . . , tn)

⇐⇒ 〈ρ′(t1), . . . , ρ′(tn)〉 ∈ ‖R‖(σ)
⇐⇒ ∇σ.R(t1[ρ′], . . . , tn[ρ′]) ∈ T ∗

⇐⇒ (∇σ.R(t1, . . . , tn))[ρ] ∈ T ∗

• A is ∇σ.B, where B is neither of the form ∇x : ι. C nor R(t1, . . . , tn). We consider
the representative case where B is ∃x : τ.B′. Since the formula A is derivably
equivalent to ∃h.∇σ.B[h σ/x], this case is handled by that for ∃ below.

• A is ∃x : τ.B. From left to right, · ρ,Σ ∃x : τ.B gives e ∈ ‖τ‖· with
· ρ[e/x],(Σ, x : τ) B. By induction hypothesis this implies B[ρ[e/x]] ∈ T ∗. Us-
ing rule ∃-R, we derive · | T ∗ −→ (B[ρ][e/x]) ⊃ ((∃x : τ.B)[ρ]). By maximality
of T ∗, we get (∃x : τ.B)[ρ] ∈ T ∗.

From right to left, suppose (∃x : τ.B)[ρ] ∈ T ∗. Since T ∗ is a Henkin theory,
there exists c ∈ ‖τ‖· such that ((∃x : τ.B)[ρ] ⊃ B[ρ][e/x]) ∈ T ∗. By modus po-
nens and maximality, B[ρ][e/x] ∈ T ∗. By induction hypothesis, · ρ[e/x],(Σ, x : τ) B.
By definition of , we get the required · ρ,Σ ∃x : τ.B.

2

Using this lemma, completeness now follows by a standard argument [5,11].

Proposition 1.9 (Completeness) Any valid sequent · | Γ −→ A is derivable.

9



Schöpp

2 Part II
Models in Categories with Binding Structure

In Part I of this paper we have given a simple model of classical first-order logic
with ∇ that is very close to classical Tarski-semantics. In the second part we
generalise this result by giving a general notion of model in categories with binding
structure. We describe these models in the language of categorical logic, which we
assume the reader to be familiar with, see e.g. [14] for an introduction.

To simplify the presentation, we assume from now on that there is only a single
λ-tree type Tm. In this case, the objects of L may be identified with finite sets.
We write Tm also for the presheaf in L that interprets the type Tm.

2.1 Categories with Binding Structure

Categories with binding structure [20, Chapter 10] axiomatise binding in a general
way. The definition of binding structure can be seen as a direct formalisation of
the statement: ‘Working with an α-equivalence class is the same as working with a
freshly named instance’. This statement, expressing that two modes of working are
equivalent, is being formalised directly as an equivalence of two categories (Def. 2.1).

Let B be a category with finite limits and consider its internal language, i.e. the
codomain fibration on B. The aim is to explain that constructions with ordinary
judgements in the internal language of B are essentially the same as constructions
with judgements that may make use of a fresh name. To formalise ‘judgements with
a fresh name’ we use the glueing construction, see e.g. [24]. Given an endofunctor U

on B, consider the pullback as in the left diagram below. In this diagram, B→ has as
objects the morphisms of B, and a morphism in B→ from f : A → B to g : C → D

is a pair 〈u : A → C, v : B → D〉 of B-morphisms for which v ◦ f = g ◦ u holds. The
functor cod maps objects to their codomain and morphisms 〈u, v〉 to v. The category
B/U has as objects the B-morphisms of the form f : A → UB. Its morphisms from
f : A → UB to g : C → UD are pairs 〈u : A → C, v : B → D〉 of B-morphisms for
which Uv◦f = g◦u holds. The functor Gl(U) maps f : A → UB to B and 〈u, v〉 to v.
Both cod and Gl(U) are fibrations. There is an canonical functor WU : B→ → B/U

making the triangle on the right below commute. Specifically, WU maps an object
f : A → B to Uf : UA → UB.

B/U
_� //

Gl(U)

��

B→

cod

��
B U

// B

B→ WU //

cod !!B
BB

BB
BB

B B/U

Gl(U)}}zz
zz

zz
zz

B

We use the glued fibration Gl(− ⊗ V ) for talking about judgements with a fresh
name, where ⊗ is a monoidal structure and V is an object of B. The intuition is
that A ⊗ B consists of pairs whose components do not share names, and V is an
object of names. Then, the functor W(−⊗V ) adds a fresh name to a judgement. We
write short WV for it.

With this notation, the definition of a category with binding structure is simple:

10



Schöpp

Definition 2.1 A category with binding structure is a triple (B,⊗, V ) consisting of
a category B with finite limits, a monoidal structure ⊗ on B and an object V of B,
such that the functor W(−⊗V ) is an equivalence of fibrations.

Instances of categories with binding structure are given in [20, Chapter 10]. A
prime example is the category of nominal sets (also known as the Schanuel topos,
or FM-Sets) [7], where A⊗B = {〈a, b〉 : A×B | a#b} and V is the set of atoms.

To understand the motivation for Def. 2.1, recall that in categorical logic existen-
tial quantification is modelled by a left adjoint to weakening and, dually, universal
quantification is modelled by a right adjoint to weakening. The functor WV can be
thought of as a non-standard ‘weakening’ functor. Since it is an equivalence, there is
a functor H that is both left and right adjoint to WV . By the view of quantifiers as
adjoints to weakening, H can be viewed as a non-standard quantifier that is both an
existential and a universal quantifier at the same time. It can be shown that H di-
rectly generalises the new-quantifier Nof Gabbay & Pitts. The defining feature of H
is that it preserves all categorical constructions, e.g. H(A ⇒ B) ∼= (HA) ⇒ (HB),
which follows because H is part of an equivalence. This suggests a relation to ∇,
which has the same defining feature, e.g. ∇x. (A ⊃ B) ∼= (∇x.A) ⊃ (∇x.B).

In [21] and [20], the structure of categories with binding structure used as the
basis of a dependent type theory.

Categories with binding structure have rich structure, see [20, Chapter 10]. The
properties we use in this paper are given by the next three propositions from [20].

Proposition 2.2 For each category with binding structure (B,⊗, V ), there exists a
functor N: Sub(Γ⊗ V ) → Sub(Γ) that is left and right adjoint to WV : Sub(Γ) →
Sub(Γ⊗ V ).

In the statement of this proposition we have used the fact that WV , being a right
adjoint, preserves monomorphisms and so restricts to a functor on subobjects.

Proposition 2.3 In each category with binding structure (B,⊗, V ), the functor
(−)⊗ V has a right adjoint V ( (−), which itself has a further right adjoint. We
write ε⊗ for the counit of the adjunction (−)⊗ V a V ( (−).

If B is the category of nominal sets then (V ( X) is (isomorphic to) the abstraction
set [A]X of Gabbay & Pitts. The application map (V ( X)⊗ V → X amounts to
the concretion operation x@a. The binding operation, mapping a ∈ A and x ∈ X

to a.x ∈ [A]X with a#(a.x) and (a.x)@a = x, is given by β in the next proposition.

Proposition 2.4 In each category with binding structure (B,⊗, V ), there is a nat-
ural transformation β : ((−)⊗V )×A → ((−)× (V ( A))⊗V making the following
diagram commute for all objects Γ.

(Γ⊗ V )×A
π2

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX
π1

vvmmmmmmmmmmmmm
βΓ

��
Γ⊗ V (Γ× (V ( A))⊗ V

π2⊗id
//

π1⊗id
oo (V ( A)⊗ V

ε⊗
// A

This proposition has its origin in the work of Menni [16].

11



Schöpp

2.2 Modelling ∇ in a Category with Binding Structure

As in Part I, we interpret the λ-calculus in L̂. As outlined in the introduction,
the internal logic of this category is not appropriate for modelling a logic with
the ∇-quantifier. Instead, we use the internal logic of a category with binding
structure B, which we transfer to L̂ by reindexing along a functor F : L̂ → B, as
in the following change-of-base situation. This idea has been used with different
categories by Hofmann [12] to model the Theory of Contexts [13], see also [3].

E //

p

��

_� Sub(B)

sub
��

L̂
F // B

(2)

We need the subobject logic on B to be strong enough to provide a model for at
least first-order logic. Hence, we assume sub to be a first-order fibration:

Definition 2.5 A fibration q : E → B is a first-order fibration if the following hold.

(i) Each fibre EΓ is a preorder with finite products (>,∧), coproducts (⊥,∨) and
exponents (⊃).

(ii) For each map u : Γ → ∆, the reindexing functor u∗ has a left adjoint ∃u that
satisfies the Beck-Chevalley and Frobenius conditions.

(iii) For each map u : Γ → ∆, the reindexing functor u∗ has a right adjoint ∀u that
satisfies the Beck-Chevalley condition.

We refer to e.g. [14] for a definition of the Beck-Chevalley and Frobenius conditions.
To model ∇-logic in the fibration p defined in (2), we use the following structure.

Definition 2.6 A ∇-model consists of a category with binding structure (B,⊗, V )
and a functor F : L̂ → B with the following additional structure.

(i) The subobject fibration on B is a first-order fibration.

(ii) The functor F preserves finite limits and has a right-adjoint. We use the
notation δA,B : FA×FB → F (A×B) for the natural isomorphism witnessing
product-preservation of F .

(iii) There are a distinguished morphism η : V → FTm and natural transformations
ı : FA ⊗ FB → FA × FB and θ : (V ( FA) → F (Tm ⇒ A) in B for which
the following diagram commutes.

(V ( FA)⊗ V
θ⊗id //

Fε⊗

��

F (Tm ⇒ A)⊗ V
fTm⇒A // F ((Tm ⇒ A)× Tm)

Fε
��

FA FA

Here, fTm⇒A is part of the natural transformation f : F (−)⊗V → F ((−)×Tm)

defined by FΓ⊗ V ı // FΓ× V
id×η // FΓ× FTm δ // F (Γ× Tm).

Using η we can map abstract variables in V into the object FTm, which encodes
the object-level syntax. The morphism θ and the diagram relate binding in the

12



Schöpp

category with binding structure to higher-order abstract syntax.
Next we study the structure of the fibration p in (2). We may assume that the

pullback (2) is constructed such that the fibre EA over an object A in L̂ is the partial
order Sub(FA) of subobjects on FA in B. Given u : Γ → ∆ in L̂, the reindexing
functor u∗ : E∆ → EΓ for p is given by (Fu)∗ : Sub(F∆) → Sub(FΓ) for sub. It is
well-known that the structure of a first-order fibration is preserved under reindexing
along a functor F that preserves finite limits and has a right adjoint [12].

Proposition 2.7 The functor p : E → L̂ is a first-order fibration.

We remark that this proposition can be extended to higher-order logic [12], and
all the concrete models that we consider in this paper are indeed models of higher-
order logic. This means that it is straightforward to extend our results to defining
an interpretation of the type o and to validating higher-order logic.

Definition 2.8 For each object Γ of L̂, define the functor ∇Γ : EΓ×Tm → EΓ to be
the functor Nf∗Γ : Sub(F (Γ× Tm)) → Sub(FΓ).

This definition captures the quantification over some/any fresh variable of type Tm.
Since u∗∇∆ = ∇Γ(u×id)∗ holds for all u : Γ → ∆ in L̂, it is justified to write just ∇.

Now we come to the central property of ∇: it commutes with existential and
universal quantification. This is given by the following generalisation of Lemma 1.2.

Lemma 2.9 For each Γ in L̂, we have ∇∃A = ∃Tm⇒A∇s∗ and ∇∀A = ∀Tm⇒A∇s∗,
where s is the map 〈π1× id , ε ◦ (π2× id)〉 : (Γ× (Tm ⇒ A))×Tm → (Γ×Tm)×A.

We remark that to prove this lemma, we make essential use of the binding map β,
for moving from a quantification over A to one over (Tm ⇒ A).

With the evident translation of formulae in the structure of the first-order fibra-
tion p, we now have the following soundness result for the intuitionistic version of
the sequent calculus. With Lemma 2.9, the proof is a straightforward induction.

Proposition 2.10 For any sequent Σ | Γ −→ A provable in the intuitionistic se-
quent calculus, there is a morphism ‖Γ‖ → ‖A‖ in E‖Σ‖.

In the next section we give concrete examples of ∇-models. These examples do, in
fact, all validate classical logic.

2.3 Instances of the Interpretation

Linear Species. The semantics in Part I is an explication of the interpretation in a
∇-model of linear species. The category of linear species [1] is the presheaf category
Ĉop, where C is the category of finite totally ordered sets with order-preserving
bijections. Along the lines of [20, Prop. 10.3.13], Ĉop can be seen to be a category
with binding structure. The object V is the presheaf with V {x} = {x} and V σ = ∅
if |σ| 6= 1. The set (A ⊗ B)σ consists of pairs 〈x ∈ Aσ1, y ∈ Bσ2〉 with σ = σ1, σ2.
Then, the set (V ( A)σ is isomorphic to A(σ, x).

To obtain a ∇-model in Ĉop, we take F : L̂ → Ĉop to be the canonical inclusion,
arising because each presheaf in L̂ is all the more a presheaf in Ĉop. For the map
η : V → FTm, we take the inclusion function that maps the variable x ∈ V {x} to

13



Schöpp

the term x : Tm in (FTm){x} = {t | x : Tm ` t : Tm}. Finally, we define the map
θ : (V ( FA) → F (Tm → A) to be the isomorphism arising from (V ( FA)σ ∼=
FA(σ, x) in Ĉop and (Tm → A)σ ∼= A(σ, x) in L̂. Because the functor F is so
simple, the conditions of Def. 2.6 are straightforward to verify.

A convenient way of working with the internal language of a topos is the Kripke-
Joyal semantics, see e.g. [15]. When spelled out for the linear species model,
the Kripke-Joyal semantics specialises exactly to the satisfaction relation  from
Sect. 1.3 (Theorem VI.7.1 of [15]). We should say, however, that the notion of va-
lidity in Sect. 1.3 differs from the standard notion of validity from categorical logic.
Although Part I can be adapted for the standard notion of validity, we have opted
for the non-standard definition, since it matches better with existing work on FOλ∇.
Species. Very similar to the model in linear species is that of ordinary species of
structures. In this case, B is the presheaf category D̂op, where D is the category of
finite sets and all bijections. This model differs from the model in linear species in
that the local λ-tree contexts are unordered. As a consequence, this model validates
the equivalence ∇x.∇y. B(x, y) ⊃⊂ ∇y.∇x.B(x, y). Just as for linear species, the
interpretation in D̂op can be described in the style of Part I. We expect that the
completeness argument can be adapted to this case.
Nominal Sets. The prototypical instance of a category with binding structure is
the category of nominal sets S, also known as the Schanuel topos, see [20, Chapter
10]. The category S provides an instance of Def. 2.6 if we take F : L̂ → S to be the
composite of the inclusion functor I : L̂ → Îop, where I is the category of finite sets
and injections, with the sheafification functor a : Îop → S with respect to the atomic
topology on Iop. We refer to e.g. [10,15] for more information on this situation.

We use the notation of Gabbay & Pitts [7] to describe the structure of S.
Specifically, we take V to be the object of atoms A, and we use the freshness
monoidal structure A ⊗ B = {〈a ∈ A, b ∈ B〉 | a#b}. In S, the functor
L(X) = A + (X ×X) + [A]X has an initial algebra [var , app, lam] : L(T ) → T that
can be used to represent untyped λ-terms. It can be shown that FTm is isomorphic
to T , by observing that ITm is already a sheaf. We take η : V → FTm to be the
map V = A var→ T ∼= FTm. We have to omit the definition of θ for space reasons.

The interpretation of ∇ in S provides a translation of ∇-logic to Nominal Logic,
since the internal logic of S is (a version of) Nominal Logic. The translation is similar
to that described by Gabbay & Cheney in [6]. In particular, the definition of the
functor ∇ in Def. 2.8 is such that ∇x. ϕ(x, y) is interpreted as Nn. ‖ϕ‖(η(n), y),
which agrees with the interpretation in [6]. As observed by Gabbay & Cheney, the
interpretation in S is not complete: it validates ∀x. ϕ ⊃ ∇x. ϕ and ∇x. ϕ ⊃ ∃x. ϕ.

3 Conclusion and Further Work

We have explained a simple sound and complete model for classical FOλ∇, and we
have worked towards identifying the essential structure of ∇ by giving an abstract
model in categories with binding structure. We have shown that ∇ and Ncan be
modelled by the same concept of binding.

In further work, the semantics of intuitionistic FOλ∇ should be studied. A

14



Schöpp

starting point in this direction is Cheney’s sound and complete translation from
FOλ∇ into intuitionistic nominal logic [4] together with Gabbay’s complete model
for intuitionistic nominal logic [8]. Perhaps the semantics from Part I can also be
generalised directly to a Kripke-style model.

Regarding other related work, we conjecture that the model for FOλ∇ of Micu-
lan & Yemane [17] fits in the general construction of Part II, but the details remain
to be worked out. Finally, a-logic, proposed by Gabbay & Gabbay [9], has an infor-
mal explanation that appears to be quite similar to our explanation of FOλ∇, and
it would be interesting to make precise the relationship.
Acknowledgements I thank Ian Stark, Marino Miculan, James Cheney and
Lennart Beringer for discussions and the referees for their comments. In partic-
ular, Ian suggested to use presheaves over finite sets with bijections.

References

[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Structures. Cambridge
University Press, 1997.

[2] J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In TABLEAUX’05, volume
3702 of LNCS, pages 78–92. Springer-Verlag, 2005.

[3] A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, I. Scagnetto. Consistency of the Theory of Contexts.
In Journal of Functional Programming, 16(3):327–395, 2006

[4] J.R. Cheney. A simpler proof theory for nominal logic. In FOSSACS 2005, number 3441 in LNCS,
pages 379–394. Springer-Verlag, 2005.

[5] D. van Dalen. Logic and Structure. Springer Verlag, Berlin, 1983.

[6] M.J. Gabbay and J.R. Cheney. A sequent calculus for nominal logic. In LICS 2004, pages 139–148.
IEEE Computer Society Press, 2004.

[7] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13:341–363, 2002.

[8] Murdoch J. Gabbay. Fresh Logic. Pending publication, July 2003.

[9] Murdoch J. Gabbay and Michael J. Gabbay. a-logic. In We Will Show Them: Essays in Honour of
Dov Gabbay, volume 1. College Publications, 2005.

[10] F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and named
sets. In Higher Order and Symbolic Computation, 2006.

[11] H. Herre. Logik. Lecture Notes, University of Leipzig, 1999.

[12] M. Hofmann. Semantical analysis of higher-order abstract syntax. In LICS’99, 1999.

[13] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning about nominal
algebras in HOAS. In ICALP01, 2001.

[14] B. Jacobs. Categorical Logic and Type Theory. Elsevier Science, 1999.

[15] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.
Springer-Verlag, 1992.

[16] M. Menni. About N-quantifiers. Applied Categorical Structures, 11(5):421–445, 2003.

[17] M. Miculan and K. Yemane. A unifying model of variables and names. In FOSSACS’05, volume 3441
of LNCS, pages 170–186. Springer-Verlag, 2005.

[18] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Transactions on Computational
Logic, 6(4):749–783, 2005.

[19] A.M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186:165–193, 2003.

[20] U. Schöpp. Names and Binding in Type Theory. PhD thesis, University of Edinburgh, 2006.

[21] U. Schöpp and I. Stark. A dependent type theory with names and binding. In CSL’04, volume LNCS
of 3210, pages 235–249. Springer-Verlag, 2004.

[22] M.R. Shinwell. The Fresh Approach: functional programming with names and binders. PhD thesis,
University of Cambridge, 2005.

[23] M.R. Shinwell and A.M. Pitts. On a monadic semantics for freshness. Theoretical Computer Science,
342:28–55, 2005.

[24] P. Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.

[25] A. Tiu. A logic for reasoning about generic judgements. In LFMTP’06, 2006.

15


	Part I -- Classical First-Order Logic with  
	Simply typed -calculus
	Classical First-order Logic with 
	Semantic Interpretation
	Examples
	Soundness
	Completeness

	Part II -- Models in Categories with Binding Structure 
	Categories with Binding Structure
	Modelling Nabla in a Category with Binding Structure
	Instances of the Interpretation

	Conclusion and Further Work
	References

