
ON THE RELATION OF INTERACTION SEMANTICS TO

CONTINUATIONS AND DEFUNCTIONALIZATION

ULRICH SCHÖPP
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Abstract. In game semantics and related approaches to programming language seman-
tics, programs are modelled by interaction dialogues. Such models have recently been used
in the design of new compilation methods, e.g. for hardware synthesis or for programming
with sublinear space. This paper relates such semantically motivated non-standard compi-
lation methods to more standard techniques in the compilation of functional programming
languages, namely continuation passing and defunctionalization. We first show for the
linear λ-calculus that interpretation in a model of computation by interaction can be de-
scribed as a call-by-name CPS-translation followed by a defunctionalization procedure that
takes into account control-flow information. We then establish a relation between these
two compilation methods for the simply-typed λ-calculus and end by considering recursion.

1. Introduction

A successful approach in the semantics of programming languages is to model programs
using interaction dialogues. It is fundamental to Game Semantics [23, 2], the Geometry of
Interaction [17] and related lines of research. The idea goes back to the study of dialogical
models of constructive logic [27], which explain the meaning of a logical sentence by how
one can attack and defend it in a debate [6]. A proof of a sentence is a strategy for defending
it against any possible attack. In programming language semantics, types take the place of
sentences and attacks can be seen as requests for information. The meaning of a program
is a strategy that explains how to answer any possible request. Programs are interpreted
compositionally, so that the answer to a request depends only on how the parts of the
programs answer to suitable requests. Computation is thus modelled as an interaction
dialogue.

While interaction dialogues are typically considered as abstract mathematical objects,
it has also been argued that they are useful for implementing actual computation. To
compute the result of a program it is enough to have an implementation of the strategy
that interprets it, i.e. a implementation that takes requests as input and that computes the
strategies’ answer as output. The compositional definition of the interactive interpretation
guides the construction of such an implementation. For example, one may implement the
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strategy for each program part by a separate module. The compositional translation of
programs explain how to assemble such modules to obtain the implementation of a whole
program. The modules interact with each other by a suitable form of message passing and
implement the computation by playing out actual interaction dialogues. Implementations
of this kind have been proposed for example in [12, 13, 8].

One main motivation for studying the implementation of interaction models is to guide
the design of compilation methods for programming languages. Interaction models are
typically quite concrete and suitable for implementation in simple low-level languages, but,
at the same time, they have rich structure and provide accurate models for sophisticated
programming languages, see e.g. [2, 23, 32].

The approach of using interactive semantics as an implementation technique for pro-
gramming languages has been proposed in a variety of contexts. Mackie [28] uses ideas from
the Geometry of Interaction for the implementation of functional languages. In later work
it was noticed that such ideas are useful especially for the implementation of functional lan-
guages with strong resource constraints. Ghica et al. have developed methods for hardware
synthesis based on Game Semantics [14, 16]. A related semantic approach has been used
to design a functional programming language for sublinear space computation [8]. Other
work has been motivated by the idea that strategies are implemented by communicating
modules. This has inspired work on fully abstract translations from PCF to the π-calculus,
such as [22, 5]. It has also been used to apply ideas from Game Semantics and the Geom-
etry of Interaction for distributed computing [12]. In another direction, the Geometry of
Interaction is being used as a basis for structuring quantum computation [20, 42]. This list
of examples is certainly not exhaustive; it illustrates the wide range of applications of the
implementation of interactive dialogues.

The aim of this paper is to relate compilation methods based on interaction semantics
to standard techniques in the efficient compilation of functional programming languages. It
has been observed before, for example by Melliès [29] and Levy [26], that interaction models
are related to continuation passing, an important standard technique in the compilation of
functional programming languages [3]. In this paper we make a further connection to
defunctionalization [36].

We consider the compilation of higher-order languages, such as PCF. A compiler would
transform such a language to machine code by way of a number of intermediate languages.
Typically, the higher-order source code would first be translated to first-order intermediate
code, from which the machine code is then generated. This paper is concerned with the first
step, the translation from higher-order to first-order code. We show that the composition of
two well-known transformations, namely CPS-translation [35] and defunctionalization [36],
is closely related to an interpretation of the source language in a model that implements
interaction dialogues.

The interactive model we study in this paper is an instance of the Int construction [25].
This model is very basic and captures only what is needed for its intended application as an
implementation technique. We believe that it is a good choice, as the Int construction has
been identified as the core of a number of interactive semantics, so that our results apply
to a number of interactive models. Indeed, in [1] it was shown that the (particle style)
Geometry of Interaction can be seen as an instance of the Int construction with further
structure. Abramsky-Jagadeesan-Malacaria (AJM) games [2] are also closely related to the
Int construction. AJM games refine the Int construction by removing unwanted interaction
dialogues and by integrating a quotient to capture a good notion of program equality, see
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the construction in [2]. If one is interested only in implementing strategies, then one may
restrict ones attention to the core given only by the Int construction.

In order to define an interpretation of a higher-order source language in an interactive
model given by the Int construction, we build on work reported in [8]. As the resulting
interpretation implements call-by-name, we relate it to a call-by-name CPS-translation – a
variant of the one by Hofmann and Streicher [21].

Let us outline concretely how CPS-translation, defunctionalization and the interpreta-
tion in an interactive model are related by looking at the very simple example of a function
that increments a natural number: λx:N. 1 + x. We next outline how this function is trans-
lated by the two approaches and how the results compare.

1.1. CPS-Translation and Defunctionalization. A compiler for PCF might first trans-
form λx:N. 1 + x into continuation passing style, perhaps apply some optimisations, and
then use defunctionalization to obtain a first-order intermediate program, ready for compi-
lation to machine language.

Hofmann and Streicher’s call-by-name CPS-translation [21] translates the source term
λx:N. 1 + x to λ〈x, k〉. (λk.k 1) (λu. x (λn. k (u+n))) : ¬(¬¬N×¬N), where we write ¬A for
A→ ⊥. This term defines a function, which takes as argument a pair 〈x, k〉 of a continuation
k : ¬N that accepts the result and a variable x : ¬¬N that supplies the function argument.
To obtain the actual function argument, one applies x to a continuation (here λn. k (u+n))
to ask for the actual argument to be thrown into the supplied continuation.

Defunctionalization [36] translates this higher-order term into a first-order program.
The basic idea is to give each function a name and to pass around not the function itself,
but only its name and the values of its free variables. To this end, each λ-abstraction is
named with a unique label: λl1〈x, k〉. (λl2k.k 1) (λl3u. x (λl4n. k (u+ n))). The whole term
defines the function named with label l1. It can be represented simply by the label l1. The
function with label l3 has free variables x and k and is represented by the label together
with the values of x and k, which we write as l3(x, k).

Each application s t is replaced by a procedure call apply(s, t), as s is now only the name
of a function and not a function itself. The procedure apply is defined by case distinction on
the function name and behaves like the body of the respective λ-abstraction in the original
term. In the example, we have the following definition of apply:

apply(f, a) = case f of l1 ⇒ let 〈x, k〉 = a in apply(l2, l3(x, k))

| l2 ⇒ apply(a, 1)

| l3(x, k)⇒ apply(x, l4(k, a))

| l4(k, u)⇒ apply(k, u+ a)

This definition should be understood as the recursive definition of a function apply with
two arguments. The definition is untyped, as in Reynold’s original definition of defunction-
alization [36].

To understand concretely how this definition represents the original term, it is perhaps
useful to see what happens when a concrete argument and a continuation are supplied:
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(λl1〈x, k〉. (λl2k.k 1) (λl3u. x (λl4n. k (u+n)))) 〈λl5k. k 42, λl6n. print int(n)〉. The defini-
tion of apply then has two cases for l5 and l6 in addition to the cases above:

apply(l, a) = case l of . . .

| l5 ⇒ apply(a, 42)

| l6 ⇒ print int(n)

The fully applied term defunctionalizes to apply(l1, 〈l5, l6〉). Executing it results in 43 being
printed. When we evaluate apply(l1, 〈l5, l6〉), the first case in the definition of apply applies
and results in the call apply(l2, l3(l5, l6)). For this call, the second case applies, so that
the call apply(l3(l5, l6), 1) is made. The computation continues in this way with calls to
apply(l5, l4(l6, 1)), apply(l4(l6, 1), 42), apply(l6, 43), and finally print int(43).

This outlines a naive defunctionalization method for translating a higher-order language
into a first-order language with (tail) recursion. This method can be improved in various
ways. The above apply-function performs a case distinction on the function name each
time it is invoked. However, in the example it is possible to determine the label in the first
argument of each appearance of apply statically, so that the case distinction is not necessary.
Instead, we may define one function applyl for each label l and replace apply(l(x), a) by
applyl(x, a). The label l thus does not need to be passed as an argument anymore. A
defunctionalization procedure that takes into account control flow information in this way
was introduced by Banerjee et al. [4]. If we apply it to this example and moreover simplify
the result by removing unneeded function arguments, then we get four mutually recursive
functions:

applyl1() = applyl2() applyl2() = applyl3(1)

applyl3(u) = applyl5(u) applyl4(u, n) = applyl6(u+ n)
(1.1)

The term itself simplifies to applyl1(). The interface where these equations interact with
the environment consists of the labels l1 (the entry label), l6 (the return label), l5 (the
entry label for argument function x) and l4 (the return label for the argument function x).
Applying the term to concrete arguments as above amounts to extending the environment
with the following equations:

applyl5(u) = applyl4(u, 42) applyl6(n) = print int(n)

The point of this paper is that the program (1.1) is just what we get from interpreting
the source term in a model of computation by interaction.

1.2. Interpretation in an Interactive Computation Model. In computation by in-
teraction the general idea is to study models of computation that interpret programs by
interaction dialogues and to consider actual implementations of such dialogue interaction.
For example, a function of type N → N may be implemented in interactive style by a pro-
gram that, for a suitable type S, takes as input a value of type unit + (S × nat) and gives
as output a value of type nat+ (S× unit). The input inl(〈〉) to this program is interpreted
as a request for the return value of the function. An output of the form inl(n) means that n
is the requested value. If the output is of the form inr(s, 〈〉), however, then this means that
the program would like to know the argument of the function. It also requests that the
value s be returned along with the answer. Programs here do not have state and have no
persistent memory to store any data until a request is answered. The program can however
encode any data that it needs later in the value s and ask for this value to be returned
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unchanged with the answer to its request. For the outside, the value s is opaque. We do
not know anything about what is encoded in the value s, only that we have to give it back
with the answer to the request. To answer the program’s request, we pass a value of the
form inr(s,m), where m is our answer.

The particular function λx:N. 1 + x is implemented by the program specified in the
following diagram, where S is nat. This diagram is to be understood so that one may pass
a message along any of its input wires. The message must be a value of the type labelling the
wire. When a message arrives at an input of box, the box will react by sending a message
on one of its outputs. Thus, at any time there is one message in the network. Computation
ends when a message is passed along an output wire.

l3

add

one

nat

nat nat× unitnat× nat unit

unit l1
l4

l2

l6
l5

In this diagram, add has three input ports of type unit, nat × nat and nat respectively
from top to bottom. It may output a message on one of its three output ports, which have
type nat, nat× unit and unit from top to bottom. Its behaviour is given as follows: if it
receives message 〈〉 on the topmost input port (a request for the sum), then it outputs 〈〉
on the bottom output port (a request to provide the first summand); if it receives n on the
bottom input port (the first summand), then it outputs 〈n, 〈〉〉 on the middle output port
(a request to provide the second summand and to hold on to the first summand until the
request is answered); and if it receives 〈n,m〉 on the middle input port (both summands),
it outputs n+m on the topmost output port. The box labelled one maps the request 〈〉 to
the number 1.

This interactive implementation of λx:N. 1 + x may be described as the interpretation
of the term in a semantic model Int(T) built by applying the general categorical Int con-
struction to a category T that is constructed from the target language, see Section 6.

Compare the above interaction diagram to the definitions in (1.1) obtained by defunc-
tionalization. The labels l1, l4 and l3 there correspond to the three input ports of the
add-box (from top to bottom), l2 is the input of box one, and l5 and l6 are the destination
labels of the two outgoing wires. One may consider the apply-definitions in (1.1) a particular
implementation of the diagram, where a call to applyl(m) means that message m is sent to
point l in the diagram. A naive implementation would introduce a label for the end of each
arrow in the diagram and implement the message passing accordingly.

1.3. Overview. The subject of this paper is the relation of the two translations that we
have just outlined. The paper studies the following situation of two translations from a
source language that is a variant of PCF into a simple first-order target language with tail
recursion.

source

target

Int interpretation CPS-translation;
defunctionalization
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After giving definitions of the source and target language in the following two sections,
we find it useful to present and analyse the above situation step by step. We define the two
translations and study their relationship for a number of fragments of the source language
of increasing strength.

core ⊆ lin ⊆ stl ⊆ source

In Section 6 we start by studying the translation for the source fragment core. This
fragment contains just a bare minimum of linear λ-abstraction and application. It is nev-
ertheless instructive to consider this fragment as a setting in which to develop the infras-
tructure for the translation of higher-order functions.

In Section 7 we consider the fragment lin, which extends core with a base type of
natural numbers. Rather than studying the above situation directly with lin in place of
source, we argue that it is useful to take a detour over a calculus linexp, which is a
version of lin with additional type annotations. These type annotations are useful for
understanding the Int-interpretation.

In Section 8 we then add contraction and come to the simply typed fragment stl of the
source language. We first continue to use additional type annotations and extend linexp to
stlexp. We then come back to the unannotated source fragment stl by showing how stl
can be translated into stlexp (Prop. 8.7).

In Section 9 we finally then extend the translation to the full source language by adding
recursion.

2. Target Language

Programs in the target language consist of mutually tail-recursive definitions of first-order
functions, such as the apply-equations above. One should think of the target language as
a simple variant of SSA-form compiler intermediate languages, e.g. [7], in which function
definitions are often presented as labelled blocks that end with a jump to a label.

The target language does not model function calls or a calling convention; it models
only what one would use for the compilation of a single unit. Certain function labels are
designated as entry or exit points. In the following example target program the labels const
and pow are intended as entry points.

const(x) = const ret(23)

pow(〈x, y〉) = pow loop(〈x, y〉)
pow loop(〈x, y〉) = case iszero(x) of inl(z)⇒ pow ret(y)

; inr(z)⇒ pow loop(〈x− 1, y ∗ y〉)
The function labels const ret and pow ret are exit points that are assumed to be defined
externally and that are used to return the results of computations.

A target program will be a set of equations together with lists of entry and exit labels
that specify the interface of the program. Target programs are defined in detail in the rest
of this section. Upon first reading, the reader may wish to skim this section only.

Target programs are typed. The set of target types is defined by the grammar below.
Recursive types will be needed at the end of Section 8 only. Target expressions are standard
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terms for these types, see e.g. [34]:

Types: A,B ::= α
∣∣ unit

∣∣ nat
∣∣ A×B ∣∣ A+B

∣∣ µα.A
Expressions: e, e1, e2 ::= x

∣∣ 〈〉 ∣∣ n ∣∣ e1 + e2
∣∣ iszero(e)∣∣ 〈e1, e2〉 ∣∣ let 〈x, y〉 = e1 in e2∣∣ inl(e)

∣∣ inr(e)
∣∣ case e of inl(x)⇒ e1; inr(y)⇒ e2∣∣ foldA(e)

∣∣ unfoldA(e)

In the syntax, α ranges over type variables, x over expression variables, and n over natural
numbers as constants. We identify terms up to renaming of bound variables. The term
let 〈x, y〉 = e1 in e2 binds the variables x and y in e2 and case e of inl(x)⇒ e1; inr(y)⇒ e2
binds variable x in e1 and variable y in e2. The term iszero(e) is intended to have type
unit + unit, with inl(〈〉) representing true.

We remark that the type nat is used solely to encode values of the source type of natural
numbers N. For applications to compilation, one may be interested in restricting the natural
numbers to, say, 64-bit integers. Such a restriction can be made without affecting the results
in this paper.

Target expressions are typed with a standard type system, see Figure 1. A judgement
Γ ` e : A therein expresses that e has type A in context Γ, where Γ is a finite mapping from
variables to target types.

For convenience, we allow ourselves ML-like data type notation for working with recur-
sive types. For example, for a type of lists we may write

β list = datatype nil of unit | cons of β × (β list)

instead of µα. unit + β × α, as cons(x, l) is more readable than foldµα. unit+β×α(inr(〈x, l〉)).
For the operational semantics of target expressions we define a standard call-by-value

small-step reduction relation. We use the concepts of target values and evaluation contexts:

Values: v, w ::= 〈〉
∣∣ n ∣∣ 〈v, w〉 ∣∣ inl(v)

∣∣ inr(v)
∣∣ foldA(v)

Evaluation Contexts: C ::= []
∣∣ C + e

∣∣ v + C
∣∣ iszero(C)∣∣ 〈C, e〉 ∣∣ 〈v, C〉 ∣∣ let 〈x, y〉 = C in e∣∣ inl(C)

∣∣ inr(C)
∣∣ case C of inl(x)⇒ e1; inr(y)⇒ e2

The small-step reduction relation is then defined to be the smallest relation −→ satisfying
the following clauses:

n1 + n2 −→ n3 if n3 is the sum of n1 and n2

iszero(0) −→ inl(〈〉)
iszero(n) −→ inr(〈〉) if n is non-zero

let 〈x, y〉 = 〈v1, v2〉 in e −→ e[v1/x, v2/y]

case inl(v) of inl(x)⇒ e1; inr(y)⇒ e2 −→ e1[v/x]

case inr(v) of inl(x)⇒ e1; inr(y)⇒ e2 −→ e2[v/x]

unfold(fold(v)) −→ v

C[e1] −→ C[e2] if e1 −→ e2

Proposition 2.1. For each ` e : A there exists a unique value v satisfying e −→∗ v.
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x : A in Γ
Γ ` x : A Γ ` 〈〉 : unit

Γ ` n : nat
Γ ` e1 : nat Γ ` e2 : nat

Γ ` e1 + e2 : nat
Γ ` e : nat

Γ ` iszero(e) : unit + unit

Γ ` e1 : A Γ ` e2 : B

Γ ` 〈e1, e2〉 : A×B
Γ ` e1 : A×B Γ, x : A, y : B ` e2 : C

Γ ` let 〈x, y〉 = e1 in e2 : C

Γ ` e : A
Γ ` inl(e) : A+B

Γ ` e : B
Γ ` inr(e) : A+B

Γ ` e : A+B Γ, x : A ` e1 : C Γ, y : B ` e2 : C

Γ ` case e of inl(x)⇒ e1; inr(y)⇒ e2 : C

Γ ` e : A[µα.A/α]

Γ ` foldµα.A(e) : µα.A

Γ ` e : µα.A

Γ ` unfoldµα.A(e) : A[µα.A/α]

Figure 1: Typing of Target Expressions

Having defined target expressions, we are now ready to define target programs. These
consist of a set of first-order function definitions. Fix an infinite set L of function labels.

Definition 2.2. A function definition for label f ∈ L is given by an equation of one of the
two forms

f(x) = g(e), f(x) = case e of inl(y)⇒ g(e1); inr(z)⇒ h(e2),

wherein g, h ∈ L and e, e1 and e2 range over target expressions.

We allow ourselves to use syntactic sugar, writing f() for f(〈〉) and f(x, y) = t for
f(z) = t[let 〈x, y〉 = z in x/x, let 〈x, y〉 = z in y/y], for example.

Definition 2.3. A target program P = (i,D, o) consists of a set D of function definitions
together with a list i ∈ L∗ of entry labels and a list o ∈ L∗ of exit labels. Both i and o
must be lists of pairwise distinct labels. The set D of definitions must contain at most one
definition for any label and must not contain any definition for the labels in o.

The list i assigns an order to the function labels that may be used as entry points for
the program and o identifies external labels as return points.

We use an informal graphical notation for target programs, depicting for example the
program (const pow f, D, const ret pow ret) as shown below.

const

pow pow loop

const ret

pow ret

f
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The boxes correspond to the function definitions. The arrows indicate for example that one
may send a value v to label pow , which amounts to the function call pow(v). As a result a
value will be sent to pow loop.

Target programs are well-typed if each function symbol f can be assigned an argument
typeA(f) such that each definition is well-typed: A definition of the form f(x) = g(e) is well-
typed if x : A(f) ` e : A(g) is derivable; and a definition of the form f(x) = case e of inl(y)⇒
g(e1); inr(z)⇒ h(e2) is well-typed if x : A(f) ` e : C1+C2 and y : C1 ` e1 : A(g) and z : C2 `
e2 : A(h) are derivable for some C1 and C2. If P is the program (f1 . . . fn, D, g1 . . . gm), then
we write P : (A1 . . . An) → (B1 . . . Bm) if the argument types of f1, . . . , fn, g1, . . . , gm are
A1, . . . , An, B1, . . . , Bm respectively.

We define a simple evaluation semantics for target programs. A function call is an
expression of the form f(v), where f is a function label and v is a value. A relation −→P

formalises the function calls as they happen during the execution of a program P . It is the
smallest relation satisfying the following conditions: if P contains a definition f(x) = g(e)
then f(v) −→P g(w) for all values v and w with e[v/x] −→∗ w; and if P contains a definition
f(x) = case e of inl(y)⇒ g(e1); inr(z)⇒ h(e2) then f(v) −→P g(w) for all values v and w
with ∃u. e[v/x] −→∗ inl(u) ∧ e1[u/y] −→∗ w, and f(v) −→P h(w) for all values v and w
with ∃u. e[v/x] −→∗ inr(u) ∧ e2[u/z] −→∗ w.

A call-trace of program P is a sequence f1(v1)f2(v2) . . . fn(vn), such that fi(vi) −→P

fi+1(vi+1) holds for all i ∈ {1, . . . , n− 1}.
Definition 2.4 (Program Equality). Two programs P,Q : (A1 . . . An) → (B1 . . . Bm) are
equal if, for any input, they give the same output, that is, suppose the entry labels of P andQ
are f1, . . . , fn and g1, . . . , gn respectively and the exit labels are h1, . . . , hm and k1, . . . , km
respectively, then, for any v, w, i and j, P has a call-trace of the form fi(v) . . . hj(w) if and
only if Q has a call-trace of the form gi(v) . . . kj(w).

Programs are thus equal, if the same input value on the same input port leads to the
same output value (if any) on the same output port in both programs.

The following notation is used in Section 7. For any list of target types X = B1 . . . Bn
and any target type A, we write A ·X for the list (A×B1) . . . (A×Bn). Given a program
P : X → Y , we write A · P : A · X → A · Y for the program that passes on the value
of type A unchanged and otherwise behaves like P . It may be defined by replacing each
definition of the form f(x) = g(e) in P with f(u, x) = g(u, e) for a fresh variable u,
and each definition of the form f(x) = case e of inl(y) ⇒ g(e1); inr(z) ⇒ h(e2) with
f(u, x) = case e of inl(y)⇒ g(u, e1); inr(z)⇒ h(u, e2), again for fresh u.

We observe that target programs can be organised into a category T that has enough
structure so that we can apply the Int construction [25, 19] (with respect to coproducts) to
it and obtain a category Int(T) that models interactive computation.

Target programs can be organised into a category T. Its objects are finite lists of
target types. A morphism from X to Y is given by a program P : X → Y . Two programs
P : X → Y and Q : X → Y represent the same morphism if and only if they are equal in
the sense of Definition 2.4. Thus, the morphisms from X to Y of T are the equivalence
classes of programs of type X → Y with respect to program equality.

Lemma 2.5. T is a category.

Proof outline. The identity on X = A1 . . . An is the program (f1 . . . fn, ∅, f1 . . . fn). For
the composition of P : X → Y and Q : Y → Z, we first note that we can rename the



10 ULRICH SCHÖPP

labels P and Q such that we have P = (i,DP ,m) and Q = (m,DQ, o). The composition
Q ◦ P : X → Z is then given simply by the program (i,DP ∪DQ, o).

Lemma 2.6. The category T has finite coproducts, such that the initial object 0 is given
by the empty list and the object X + Y is given by the concatenation of the lists X and Y .
Moreover, T has a uniform trace [19] with respect to these coproducts.

Proof outline. A simple proof can be given by observing that there is a faithful embedding
from T to the category of sets and partial functions. The equations that are required to
show then follow from the fact that the category of sets and partial functions has the desired
structure.

While we would like to emphasise the mathematical structure of target programs given
by the Int construction, in the rest of the paper we shall spell it out concretely rather than
referring to categorical notions in order to make the paper easier to read.

3. Source Language

Our source language is a variant of PCF, a simply-typed λ-calculus with a basic type N of
natural numbers and associated constants, as well as a fixed-point combinator for recursion.
The intended evaluation strategy is call-by-name.

The source language has the following types and terms.

Types: X,Y ::= 1
∣∣ X → Y

∣∣ N
Terms: s, t ::= ∗

∣∣ λx:X. t
∣∣ s t ∣∣ n ∣∣ s+ t

∣∣ if0 s then t1 else t2
∣∣ fixX

We write ¬X as an abbreviation for the type X → ⊥. Again, we identify terms up to
renaming of bound variables.

The typing judgement has the form Γ ` t : X, where Γ is a finite list of variable
declarations x1 : X1, . . . , xn : Xn. We formulate the typing rules so that it is easy to consider
fragments of the source language of varying expressiveness. The core rules are those of a
linear λ-calculus and are given in Figure 2. The rules for natural numbers appear in Figure 3.
We allow an addition operation s + t instead of the standard successor operation succ(s),
as this gives a simple example to explain the issues with the compilation of multinary
operation. Rules for contraction and for the fixed point combinator are given in Figures 4
and 5.

4. CPS-Translation

We use a variant of Hofmann and Streicher’s call-by-name CPS-translation [21], which
translates the source language extended with the following rules for product types as well
as a type ⊥ without any rules.

Γ ` s : X ∆ ` t : Y×i
Γ, ∆ ` 〈s, t〉 : X × Y

Γ ` s : X × Y ∆, x : X, y : Y ` t : Z×e
Γ, ∆ ` let 〈x, y〉 = s in t : Z

For each source type X, the type X of its continuations is defined by:

1 = ¬1 N = ¬N X → Y = ¬X × Y
A continuation for type X → Y is thus a pair of a continuation of type Y , using which the
result can be returned, and a function ¬X to access the argument. A function can request
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ax
x : X ` x : X

1i ` ∗ : 1

Γ ` t : Yweak
Γ, x : X ` t : Y

Γ, y : Y, x : X, ∆ ` t : Z
exch

Γ, x : X, y : Y, ∆ ` t : Z

Γ, x : X ` t : Y→i
Γ ` λx:X. t : X → Y

Γ ` s : X → Y ∆ ` t : X→e
Γ, ∆ ` s t : Y

Figure 2: Source Language (core) – Linear Core

num ` n : N
Γ ` s : N ∆ ` t : Nadd

Γ, ∆ ` s+ t : N
Γ ` s : N ∆1 ` t1 : N ∆2 ` t2 : N

if
Γ, ∆1, ∆2 ` if0 s then t1 else t2 : N

Figure 3: Source Language (lin) – Natural Numbers

Γ, y : X, z : X ` t : Y
contr

Γ, x : X ` t[x/y, x/z] : Y

Figure 4: Source Language (stl) – Contraction

fix ` fixX : (X → X)→ X

Figure 5: Source Language – Recursion

its argument by applying this function to a continuation of type X. The argument will then
be provided to this continuation.

For computation in continuation passing style, we often use the type ¬X, which we
denote by X.

The CPS-translation translates the source language into itself, translating any typing
derivation of x1 : X1, . . . , xn : Xn ` t : Y into a derivation of x1 : X1, . . . , xn : Xn ` t : Y . It
is defined by induction on the given typing derivation. Figure 6 shows how each typing rule
on the left is translated to a derived rule on the right.

This CPS-translation differs from the standard call-by-name CPS-translation of [21] in
the use of η-expansion in the rules for variables and contraction. These expansions will
allow us to use compositional reasoning in Sections 6-8. The term η(t,X) is defined by
induction on the type X:

η(t,X) = t if X is a base type (1, N or ⊥)

η(t,X × Y ) = let 〈x, y〉 = t in 〈η(x,X), η(y, Y )〉
η(t,X → Y ) = λx. η(t η(x,X), Y ) where x is fresh.
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x : X ` x : X =⇒ x : X ` η(x,X) : X

` ∗ : 1
=⇒ ` λk. k ∗ : 1

Γ ` t : Y
Γ, x : X ` t : Y =⇒ Γ ` t : Y

Γ, x : X ` t : Y
Γ, y : Y, x : X, ∆ ` t : Z
Γ, x : X, y : Y, ∆ ` t : Z =⇒ Γ, y : Y , x : X, ∆ ` t : Z

Γ, x : X, y : Y , ∆ ` t : Z
Γ, x : X ` t : Y

Γ ` λx:X. t : X → Y
=⇒ Γ, x : X ` t : Y

Γ ` λ〈x, k〉. t k : X → Y

Γ ` s : X → Y ∆ ` t : X
Γ, ∆ ` s t : Y =⇒ Γ ` s : X → Y ∆ ` t : X

Γ, ∆ ` λk. s 〈t, k〉 : Y

` n : N =⇒ ` λk. k n : N
Γ ` s : N ∆ ` t : N

Γ, ∆ ` s+ t : N =⇒ Γ ` s : N ∆ ` t : N
Γ, ∆ ` λk. s (λx. t (λy. k (x+ y))) : N

Γ ` s : N ∆1 ` t1 : N ∆2 ` t2 : N
Γ, ∆1, ∆2 ` if0 s then t1 else t2 : N

=⇒
Γ ` s : N ∆1 ` t1 : N ∆2 ` t2 : N

Γ, ∆1, ∆2 ` λk. s (λx. if x then t1 (λy. k y) : N
else t2 (λy. k y))

Γ, y : X, z : X ` t : Y
Γ, x : X ` t[x/y, x/z] : Y =⇒ Γ, y : X, z : X ` t : Y

Γ, x : X ` t[η(x,X)/y, η(x,X)/z] : Y

` fixX : (X → X)→ X
=⇒ ` λ〈f, k〉. fixX (λg.λk1. f 〈λk2. g k, λx. k1 x〉) k

: (X → X)→ X

Figure 6: CPS-translation

The last equation is more general than what we need in this paper. We use only the special
case η(t,X → ⊥) = λx. t η(x,X), as we apply η-expansion only to terms with types of the
form Z. For example, we have η(x,N) = η(x,¬¬N) = λx1. x (λx2. x1 x2).

In the examples in the Introduction, we have not applied this η-expansion for better
readability.

5. Defunctionalization

In the translation from source to target, we first apply CPS-translation and then use defunc-
tionalization. In this paper we use the flow-based defunctionalization procedure introduced
by Banerjee, Heintze and Riecke [4]. This procedure uses control flow information, so the
CPS-translated term is first annotated with control flow information and then defunction-
alized using this information.

In this section we define a particularly simple special case of the flow-based defunc-
tionalization procedure. It is too weak to handle the whole source language, but it allows
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for a simple explanation of the relation to the Int construction. We will extend the de-
functionalization procedure in Section 8 to cover the CPS-translation of the whole source
language.

Control flow information is added to the terms in the form of labelling annotations. In
the simple variant of the defunctionalization procedure that we describe here, each function
abstraction and application is annotated with a single label from L. Thus, the terms λx:X. t
and s t are replaced by λlx:X. t and s@l t respectively, where l ranges over L. The function

type X → Y is replaced by X
l−→ Y , again for any l ∈ L. We write ¬lX for X

l−→ ⊥.
We require that each abstraction be uniquely identified by its label, that is, we allow

only terms in which no two abstractions have the same label. In the application s@l t the
label l expresses that the function s applied here is defined by an abstraction with label l.
The typing rules for abstraction and application are modified as follows to enforce that
terms are annotated with correct control flow information.

Γ, x : X ` t : Y
Γ ` λlx:X. t : X

l−→ Y

Γ ` s : X
l−→ Y ∆ ` t : X

Γ, ∆ ` s@l t : Y

Allowing function types and applications to be annotated with a single label only
is a real restriction. For example, it is not possible to label and type terms such as
λx. 〈x (λy. 0), x (λz. 1)〉. The two abstractions λy. 0 and λz. 1 would each have to be given
a unique label, say l1 and l2 respectively. But then in the two uses of the variables x, its

types would have to be X
l1−→ Y and X

l2−→ Y respectively. With the above rules, this is
not possible, as l1 and l2 are different labels. In general, one needs to allow types such as

X
{l1,l2}−−−−→ Y with more than a single label for more than one possible definition site, as in

e.g. [4]. We come back to this in Section 8, but up until then the variant with a single label
suffices and simplifies the exposition.

In the rest of this section we explain how terms of the labelled source language (with
product types) can be defunctionalized into programs in the target language. We defer the
question of how to annotate the terms obtained by CPS-translation with labels to later
sections (Lemmas 6.2 and 8.3).

The defunctionalization of a term t in the labelled source language consists of a target
expression t∗, which denotes the defunctionalized term itself, and a set of target equa-
tions D(t), which contains the apply-definitions for defunctionalized function application.

x∗ = x

n∗ = n

(if0 s then t else u)∗ = case iszero(s∗) of inl( )⇒ t∗; inr( )⇒ u∗

〈s, t〉∗ = 〈s∗, t∗〉
(let 〈x, y〉 = t in s)∗ = let 〈x, y〉 = t∗ in s∗

(s@l t)
∗ = applyl(s

∗, t∗)

(λlx:A. t)∗ = 〈x1, . . . , xn〉 where FV(λx:A. t) = {x1, . . . , xn}
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In the last case for abstraction we assume some fixed global ordering on all variables, so
that the order of the tuple is well-defined.

D(x) = ∅
D(n) = ∅

D(if0 s then t else u) = D(s) ∪D(t) ∪D(u)

D(〈s, t〉) = D(s) ∪D(u)

D(let 〈x, y〉 = t in s) = D(t) ∪D(s)

D(s@l t) = D(s) ∪D(t)

D(λlx:A. t) = D(t) ∪ {applyl(〈x1, . . . , xn〉, x) = t∗}
In general, the set D(t) need not consist of function definitions in the strict sense of Defi-
nition 2.2; it may contain nested case distinctions, for example. This technical issue could
easily be solved in general at the expense of making the technical development a little more
complicated. However, we shall use defunctionalization only for terms t for which D(t) does
in fact only consist of function definitions, so we stick with the above simple definitions.

Note that for closed terms of function type the target expression t∗ is just 〈〉. Since all
closed terms t obtained by CPS-translation are of function type, we therefore consider the
definition set D(t) as the main result of defunctionalization.

Example 5.1. With label annotations the example from the Introduction becomes the
term t given by

λl1z. let 〈x, k〉 = z in (λl2k′. k′@l3 1) @l2 (λl3u. x@l5 (λl4n. k@l6 (u+ n))).

Its type is ¬l1(¬l5¬l4N× ¬l6N). The set D(t) consists of the definitions

applyl1(〈〉, 〈x, k〉) = applyl2(〈〉, 〈x, k〉), applyl2(〈〉, k′) = applyl3(k′, 1),

applyl3(〈x, k〉, u) = applyl5(x, 〈k, u〉), applyl4(〈k, u〉, n) = applyl6(k, u+ n).

Compared to the definitions given in (1.1) in the Introduction, it appears that more data is
being passed around in these apply-equations. However, consider once again the application
of t to the concrete arguments from the Introduction. Then one gets the additional equations

applyl5(〈〉, k) = applyl4(k, 42), applyl6(〈〉, n) = print int(n),

and the fully applied term defunctionalizes to applyl1(〈〉, 〈〈〉, 〈〉〉). Thus, all the variables in
the apply-equations only ever store the value 〈〉 or tuples thereof, and these arguments may
just as well be omitted.

An important point to note is that the defunctionalization procedure yields a set of
definition equations, but that it does not specify an interface of entry and exit labels.
When one applies defunctionalization to a whole closed source programs of ground type, as
is usually done in compilation, choosing an interface is not important. One would typically
just choose a single entry label main and a single exit label exit. If one is interested
in compositionality, however, then open terms and terms of higher types must be also
considered. Then one needs to fix an interface that explains how the free variables are
accessed and how higher types are to be used. In the above example term t, a suitable
choice of entry and exit labels would be l1l4 and l5l4 respectively. We shall explain how to
define an interface from the image of the CPS-translation in the next section.
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ax

Y − Y +

X+

Γ+
X−

Γ−

→i

JtK
Y − Y +

∆+

Γ+

X+

Γ−

→e

JsK ∆−
JtK

weak

1i

exch
Y − Y +

X+

Γ+
X−

Γ−
JtK

Y − Y +

∆+

Y +
∆−

Y −JtK
X+

Γ+
X−

Γ−1− 1+

X− X+

X+ X−

Figure 7: Int-interpretation of core

Of course, the defunctionalization procedure described above is quite simple. In ac-
tual applications one would certainly want to apply optimisations, not least to remove
unnecessary function arguments. An example of such an optimisation is lightweight defunc-
tionalization of Banerjee et al. [4]. We shall argue that the Int construction captures one
such optimisation of the defunctionalization procedure.

6. The Core Linear Fragment

To explain the basic idea of how CPS-translation and defunctionalization relate to a model
of interactive computation (namely Int(T)), we first consider the simplest non-trivial case.
We consider the core fragment of the source language, whose syntax is

Types: X,Y ::= 1
∣∣ X → Y

Terms: s, t ::= ∗
∣∣ λx:X. t

∣∣ s t
and whose rules are just those of Figure 2. We call this source fragment core.

6.1. Interactive Interpretation. First we describe directly the interpretation of this frag-
ment of core in Int(T). A type X is interpreted by an interface (X−, X+), which consists
of two finite lists X− and X+ of target types. Closed terms of type X will be interpreted
as programs of type P : X− → X+. The interfaces are defined by induction on the type:

1− = unit (X → Y )− = Y −X+

1+ = unit (X → Y )+ = Y +X−

Here, X−Y − denotes the concatenation of the lists X− and Y − (and likewise for the other
cases).

For a context Γ = x1 : X1, . . . , xn : Xn, we write Γ− and Γ+ for the concatenations
X−n . . . X

−
1 and X+

n . . . X
+
1 .

The interpretation of core is defined by induction on typing derivations. A typing
derivation of Γ ` t : X is interpreted by a morphism

JΓ ` t : XK : X−Γ+ → X+Γ−

in T (which amounts to a morphism from (Γ−,Γ+) to (X−, X+) in the category Int(T)).
This interpretation is given in Figure 7. The boxes in this figure represent the inductive
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interpretation of the direct sub-derivations of the individual rules.
It is a slight abuse of notation to write JΓ ` t : XK, even though the interpretation is

defined not just from the sequent, but from its derivation. We believe that it is possible
to justify this notation by proving that any two derivations of the same sequent the same
interpretation, but in this paper we concentrate on the relation of the interpretation to
CPS-translation and defunctionalization and always work with derivations.

6.2. CPS-translation and Defunctionalization. The aim is now to demonstrate that
this interpretation in Int(T) is closely related to CPS-translation followed by defunctional-
ization.

To apply flow-based defunctionalization, we must find suitable labellings of terms and
types. We introduce special notation for labellings of types of the form X.

Definition 6.1. For any type X and any x−, x+ ∈ L∗ with length(x−) = length(X−)
and length(x+) = length(X+), we define a type X[x−, x+] in the labelled variant of core
inductively as follows:

(1) Define 1[q, a] to be ¬q¬a1.

(2) If X[x−, x+] is defined and Y [y−, y+] is defined and of the form ¬qY ′, then define

X → Y [y−x+, y+x−] to be ¬q(X[x−, x+]× Y ′).
For example, 1→ 1[qa′, aq′] denotes ¬q(¬q′¬a′1× ¬a1).

Although X[x−, x+] is defined to be abbreviation for a labelled type, one may alter-
natively think of it as the type X together with a labelling of the ports of the interface
(X−, X+).

Readers familiar with game semantics may also want to compare the syntax trees of
the types X[x−, x+] with game semantic arenas. The syntax tree induces a natural partial

ordering on the labels appearing in it: l1 < l2 if there is a path from a node labelled
l1−→

to one labelled
l2−→ in the syntax tree. The Hasse diagrams of this ordering may be defined

inductively as follows:

q

a

1[q, a]: X → Y [y−x+, y+x−]:

X[x−, x+]

Y [y−, y+]

q

q′

a′
a

Example: 1 → 1[qa′, q′a]

These diagrams correspond to the game semantic arenas for the corresponding types [23].
More information about the relation of game arenas and continuations can be found par-
ticularly in work of Levy [26] and Melliès [29].

If Γ is x1 : X1, . . . , xn : Xn, then we write short Γ[x−n . . . x
−
1 , x

+
n . . . x

+
1 ] for the context

x1 : X1[x
−
1 , x

+
1 ], . . . , xn : Xn[x−n , x

+
n ]. We say that a sequent Γ[γ−, γ+] ` t : X[x−, x+] is

well-labelled if the labels in γ−, γ+, x−, x+ are pairwise distinct.

Lemma 6.2. If Γ ` t : X is derivable in core, then the derivation of Γ ` t : X obtained
by CPS-translation can be annotated with labels such that it derives the well-labelled sequent
Γ[γ−, γ+] ` t : X[x−, x+] for some γ−, γ+, x−, x+ ∈ L∗.
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The proof is a straightforward induction on derivations. We note that the η-expansion
in the CPS-translation of variables is essential for this lemma to be true. For example, with
the η-expansion a well-labelled x : 1[q, a] ` x : 1[q′, a′] is derivable; without it this would
only be possible if q = q′ and a = a′. That η-expansions of variables can be labelled as
needed follows from the more general property established in the proof of Lemma 8.2 below.
The defunctionalization of x consists of definitions of applyq′ and applya, which just forward
their arguments to applyq and applya′ respectively. We believe that it is simpler to consider
the case with these indirections first and study their removal (which is non-compositional,
due to renaming) in a possible second step.

We now define a function CpsDefun that combines CPS-translation and defunctional-
ization. Given any core-derivation of a judgement Γ ` t : X, let Γ[γ−, γ+] ` t : X[x−, x+]
be the judgement from the above lemma for a suitable choice of labels. The function
CpsDefun maps the source derivation of Γ ` t : X to the target program (x−γ+, D(t), x+γ−),
where D(t) is the set of equations obtained by the defunctionalization of t. It is not hard
to see that the set D(t) is indeed a target program whose definition does not depend on the
choice of labels.

We define a single function CpsDefun rather than a composition of two general func-
tions Cps and Defun, as in general there is no canonical choice of entry and exit labels for
defunctionalization. Thus, the composition Defun◦Cps would only return a set of equations
and not yet a target program. With a combined function, it suffices to choose entry and
exit labels for terms that are in the image of the CPS-translation.

Define a further function Erase on target programs that erases all function arguments.

Erase(i, E, o) := (i, {f() = g() | f(x) = g(e) ∈ E}, o)
In fact, Erase also removes all equations defined by case distinction, but these do not appear
in D(t) for this source language.

The composition Erase ◦ CpsDefun of these two functions takes (a typing derivation of)
a source program, applies the CPS-translation, defunctionalizes and then ‘optimises’ the
result by erasing all function arguments. The resulting program is in fact correct and it is
what one obtains using the interpretation in Int(T):

Proposition 6.3. Suppose Γ ` t : X is derivable in core. Then the target program
Erase(CpsDefun(Γ ` t : X)) has type X−Γ+ → X+Γ− and defines the same morphism in T
as the Int-interpretation of Γ ` t : X.

Since morphisms of type X−Γ+ → X+Γ− in T are defined to be equivalence classes of
programs up to program equality (Definition 2.4), the Int-interpretation JΓ ` t : XK is an
equivalence class of programs. The assertion of the proposition is therefore that the program
Erase(CpsDefun(Γ ` t : X)) is an element of the equivalence class JΓ ` t : XK.
Proof. The proof goes by induction on the derivation of Γ ` t : X. We continue by case
distinction on the last rule in the derivation and show just the representative cases for
variables and functions.

• Case ax.

x : X ` x : X

In this case Erase(CpsDefun(Γ, x : X ` x : X)) has the form (x−1 x
+
2 , D, x

+
1 x
−
2 ) for

D = {applyx−1 (i)() = applyx−2 (i)(), applyx+2 (i)() = applyx+1 (i)() | i = 1, . . . , n},
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where we denote by w(i) the i-th element in the sequence w and where n is the
common length of x−1 , x+1 , x−2 and x+2 . This is clearly in the equivalence class of the
Int-interpretation.
• Case →i.

...
Γ, x : X ` t : Y

Γ ` λx:X. t : X → Y
A CPS-translation of the derivation must have the following form in which Y [y−, y+] =
¬qtY ′ and y− = qtz for qt ∈ L and z ∈ L∗.

...

Γ[γ−, γ+], x : X[x−, x+] ` t : Y [y−, y+] k : Y ′ ` k : Y ′

Γ[γ−, γ+], x : X[x−, x+], k : Y ′ ` t@qt k : ⊥
Γ[γ−, γ+] ` λq〈x, k〉. t@qt k : X → Y [qzx+, y+x−]

By induction hypothesis, we know that the program (y−x+γ+,Erase(D(t)), y+x−γ−)
is in the equivalence class of programs obtained by Int-interpretation of the given
derivation of Γ, x : X ` t : Y .

We have to show that (qzx+γ+,Erase(D(λq〈x, k〉. t@qt k)), y+x−γ−) is in the
equivalence class of programs obtained by Int-interpretation of Γ ` λx:X. t : X → Y .
But we have

Erase(D(λq〈x, k〉. t@qt k)) = {applyq() = applyqt()} ∪ Erase(D(t))

by definition. The definition of the Int-interpretation is such that the required
assertion thus clearly holds.
• Case →e.

...
Γ ` s : X → Y

...
∆ ` t : X

Γ,∆ ` s t : Y
A CPS-translation of this derivation has the form

...

Γ[γ−, γ+] ` s : X → Y [y−x+, y+x−]

...

∆[δ−, δ+] ` t : X[x−, x+] k : Y ′ ` k : Y ′

∆[δ−, δ+], k : Y ′ ` 〈t, k〉 : X[x−, x+]× Y ′
Γ[γ−, γ+], ∆[δ−, δ+], k : Y ′ ` s@qs 〈t, k〉 : ⊥

Γ[γ−, γ+], ∆[δ−, δ+] ` λqk. s@qs 〈t, k〉 : Y [qz, y+]

where y− = qsz and Y [qz, y+] = Y ′ and qs ∈ L.
Applying the induction hypothesis to the left and right sub-derivations of the

given derivation shows that (y−x+γ+,Erase(D(s)), y+x−γ−) implements the Int-
interpretation of Γ ` s : X → Y and (x−δ+,Erase(D(t)), x+δ−) implements the
Int-interpretation of ∆ ` t : X.

The program obtained by CPS-translation and defunctionalization is

(qzδ+γ+, {applyq() = applyqs()} ∪D(s) ∪D(t), y+δ−γ−).
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By definition, Erase(D(λqk. s@qs 〈t, k〉)) has the form {applyq() = applyqs()} ∪
Erase(D(s))∪Erase(D(t)). This corresponds to the Int-interpretation of the sequent
Γ,∆ ` s t : Y .

While only for the very small source fragment core, we have now seen how one can
associate interfaces with higher-order types and show that the Int-interpretation implements
these interfaces in the same way as CPS-translation and defunctionalization. In Lemma 6.2
we have seen how η-expansion helps with compositional reasoning.

7. Base Types

We now work towards extending the result to a more expressive source language, starting
with a fragment that extends core with non-trivial base types. Define lin to be the source
fragment with the syntax shown below and the typing rules from Figures 2 and 3.

Types: X,Y ::= 1
∣∣ X → Y

∣∣ N
Terms: s, t ::= ∗

∣∣ λx:X. t
∣∣ s t ∣∣ n ∣∣ s+ t

∣∣ if0 s then t1 else t2

That is, we add the type of natural numbers N with constant numbers, addition and case
distinction, but still consider only a linear source language.

The example in the Introduction shows that for lin it is not possible to remove all
arguments from the apply-functions, as we have done for core. At least certain natural
numbers must be passed as arguments.

7.1. Interactive Interpretation. Let us first consider the interpretation of lin in Int(T).
To this end we extend the definition of the interface (X−, X+) as follows:

1− = unit N− = unit (X → Y )− = Y −X+

1+ = unit N+ = nat (X → Y )+ = Y +X−

The single value of type N− encodes the request to compute a particular number. The
values of type N+ are the possible answers.

It is not completely straightforward to extend the Int-interpretation described in the
previous section. Consider for example the case of an addition s + t of two closed terms
` s : N and ` t : N. Suppose we already have programs (qs, Ds, as) and (qt, Dt, at) for s and t.
It is not possible to construct a program for s+ t from these programs without modifying at
least one of them. The problem is that after evaluating the first summand, we have no way
of storing the result while we invoke the second program to compute the second summand.
A natural way of constructing a program for s+t would be to take the program (q,D, a) with
equations applyq() = applyqs(), applyas(x) = applyqt(x, 〈〉), applyat(x, y) = applya(x + y),
the equations from Ds, and the equations from nat · Dt (recall the notation nat · − from
Section 2). Here we use nat · Dt instead of Dt in order to keep the value x of the first
summand available until the second summand is computed, so that we can compute the
sum.

One solution to this issue was proposed by Dal Lago and the author in the form of
IntML [8]. We consider here a simple special case of this system. The basic idea is to
annotate the domain of each function type X → Y with a subexponential A, which is a
target type, so that function types have the form A ·X → Y .
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ax
x : unit ·X ` x : X

num ` n : N

Γ ` t : Yweak
Γ, x : A ·X ` t : Y

Γ, y : B · Y, x : A ·X, ∆ ` t : Z
exch

Γ, x : A ·X, y : B · Y, ∆ ` t : Z
Γ, x : A ·X ` t : Y→i

Γ ` λx : X. t : A ·X → Y
Γ ` s : A ·X → Y ∆ ` t : X→e

Γ, A ·∆ ` s t : Y

Γ ` s : N ∆ ` t : Nadd
Γ, nat ·∆ ` s+ t : N

Γ ` s : N ∆1 ` t1 : N ∆2 ` t2 : N
if

Γ, ∆1, ∆2 ` if0 s then t1 else t2 : N

Figure 8: linexp – lin with subexponential annotations

We define linexp, a variant of lin with subexponential annotations. It has the same
terms as lin, but the grammar of types is modified as follows.

X,Y ::= 1
∣∣ A ·X → Y

∣∣ N
In this grammar, A ranges over target types.

The subexponential annotations may be explained such that a term s of type A·X → Y
is a function that uses its argument within an environment that contains an additional value
of type A. The function s may be applied to any argument t of type X. In the interactive
interpretation, the application s t is such that whenever s sends a query to t, it needs to
preserve a value of type A. It does so by sending the value along with the query, expecting
it to be returned unmodified along with a reply. For example, addition naturally gets the
type unit ·N→ nat ·N→ N, as it needs to remember the already queried value of the first
argument (having type nat) when it queries the second argument.

It is interesting to note that Appel and Shao [39, §3.2] use a similar approach of pre-
serving values by passing them as arguments for the optimisation of programs in CPS style.

Conceptually, subexponentials may be understood as a generalisation of the exponen-
tials of Linear Logic. The special case ω · X → Y , where the subexponential is the type
ω = µα. unit + α of unbounded natural numbers, may be understood as !X → Y . This
view corresponds to the construction of the exponential !X in Game Semantics [2] or in
Geometry of Interaction situations [1]. We make the generalisation to subexponentials be-
cause it allows us to make only the assumptions that are really needed, e.g. with respect
to assuming recursive types in the target language. It also allows us to avoid unnecessary
encoding operations. In the above outline of the translation of s + t, we could have used
ω ·Dt instead of nat ·Dt, but then in the definition of applyas we would need to encode x
of type nat into a value of type ω and in the definition of applyat we would need to decode
again.

The typing rules of linexp are annotated version of the rules of lin, formulated to
keep track of subexponential annotations. In linexp contexts are finite lists of variable
declarations of the form x : A · X. The typing rules with subexponential annotations are
are shown in Figure 8. In these rules, we write A · Γ for the context obtained by replacing
each declaration x : B ·X with x : (A×B) ·X.

With subexponential annotations, it is straightforward to define the Int-interpretation.
Extend the definition of (−)− and (−)+ to linexp by

(A ·X → Y )− = Y −(A×X+) Γ− = An ×X−n . . . A1 ×X−1
(A ·X → Y )+ = Y +(A×X−) Γ+ = An ×X+

n . . . A1 ×X+
1 ,
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X− X+

unit×X+ unit×X−

ax

Y − Y +

A×X+

Γ+

A×X−

Γ−

→i

JtK Y −

Z+

(A ·∆)+

Γ+

A×X+

Γ−

→e

JsK

∆−

JtK

X− X+

∆+ ∆−

×i
sY − Y +

Γ+ Γ−t

×e

t
s

Z−

∆+

Γ+

A

Γ−
(A ·∆)−
Y +

add

N+= N+ × N−

N+N−
JsK 0?

N+

N+

N+

if

N+N−
JsK '

N+N−
JtK

N+ × N+
+

N−

N−

qs as
q1

q2

a1

a2

a
idN− q

id
q qs as qt at a

num

n
q a

Jt2K

Jt1K

N− N+

N− N+

N+ × unit

Figure 9: Int-interpretation of linexp

where Γ is x1 : A1 ·X1, . . . , xn : An ·Xn.
The interpretation of the rules is shown graphically in Figure 9. The interpretation

of rule ax remains essentially the same, but now uses the isomorphism unit × A ' A
to treat the subexponential. The cases for →i and →e must also be modified to take
subexponentials into account. In the case for →e the box labelled with A represents the
program obtained by applying the operation A · (−) to the content of the box. In this
case we moreover make the isomorphisms (A · ∆)+ ' A · ∆+ and (A · ∆)− ' A · ∆−
implicit. In the cases for add and if we omit the contexts Γ, ∆, ∆1 and ∆2 for better
readability. They are handled as in the case for →e. We omit the rules for pairs, which
are also modified like the ones for functions [8]. In the case for if, we write “0?” for the
program given by applyas(x) = case iszero(x) of inl(y)⇒ applyq1(y); inr(z)⇒ applyq2(z). A
concrete definition of the Int-interpretation in terms of target equations can also be found
in the proof of Proposition 7.2 below.

7.2. CPS-translation and Defunctionalization. Let us now outline how this interpre-
tation using the Int-construction relates to the translation given by CPS-translation and
defunctionalization, wherein the subexponential annotations are ignored.

A constant number n has the CPS-translation λqk. k@a n : N[q, a], where N[q, a] =
¬q¬aN. This defunctionalizes to applyq(〈〉, k) = applya(k, n). The Int-interpretation yields
the definition applyq() = applya(n), which differs only in that arguments have been removed.

For addition s + t a CPS-translation is λqk. s@qs (λasx. t@qt (λaty. k@a (x+ y))). De-
functionalization leads to the following set of equations. For the sake of illustration we
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assume that s and t are closed.

D(s) ∪D(t) ∪ { applyq(〈〉, k) = applyqs(s
∗, 〈k〉),

applyas(〈k〉, x) = applyqt(t
∗, 〈k, x〉),

applyat(〈k, x〉, y) = applya(k, x+ y)}.
The program obtained in this way has the same shape as the program obtained by Int-
interpretation. The program in Figure 9 is annotated with labels to show the correspondence
to the equations. The programs are not exactly equal. For example, applyq takes a pair
as an argument, while the program obtained by Int-interpretation expects a single value of
type N−. We study the relation of the two programs in the rest of this section.

In a similar manner, the term if0 s then t1 else t2 is CPS-translated to the labelled
term λqk. s@qs (λasx. if0 x then t1 @q1 (λa1y. k@a y) else t2 @q2 (λa2y. k@a y)). Defunction-
alization gives us the equations

D(s) ∪D(t1) ∪D(t2) ∪ { applyq(〈〉, k) = applyqs(s
∗, 〈k〉),

applyas(〈k〉, x) = case ifzero(x) of inl( )⇒ applyq1(t1
∗, 〈k〉)

; inr( )⇒ applyq2(t2
∗, 〈k〉)

applya1(〈k〉, y) = applya(k, y),

applya2(〈k〉, y) = applya(k, y)},
and it can be observed that they correspond to the Int-interpretation given in Figure 9.

The observation that the programs obtained by Int-interpretation and CPS-translation
followed by defunctionalization have the same shape can be made precise as follows.

Definition 7.1. We say that two target programs have the same skeleton whenever they
have the same interface and the following holds: if one of the programs contains the def-
inition f(x) = g(e), then the other contains f(x) = g(e′) for some e′; and if one of the
programs contains f(x) = case e of inl(x)⇒ g(e1); inr(y)⇒ h(e2), then the other contains
f(x) = case e′ of inl(x)⇒ g(e′1); inr(y)⇒ h(e′2) for some e′, e′1 and e′2.

We note that for linexp Lemma 6.2 continues to hold and that CpsDefun can be defined
exactly as for core above.

Proposition 7.2. For any derivation of Γ ` t : X in linexp there exists a program Int(Γ `
t : X) that is a representative of the Int-interpretation JΓ ` t : XK (which is a morphism
in T and as such an equivalence class of programs up to program equality) and that has the
same skeleton as CpsDefun(Γ ` t : X).

Proof. Recall that CpsDefun first translates the derivation of Γ ` t : X to a labelled deriva-
tion of the CPS-translated term Γ[γ−, γ+] ` t : X[x−, x+], which is then mapped to the
program (x−γ+, D(t), x+γ−).

Here we show how to translate the derivation of Γ[γ−, γ+] ` t : X[x−, x+] to a set
of equations I(t), such that the assertion of the proposition is satisfied when we choose
Int(Γ ` t : X) := (x−γ+, I(t), x+γ−). The definition of I(t) is given by induction on the
original derivation by the following clauses:

• Rule ax.

x : unit ·X[q1 . . . qn, a1 . . . an] ` η(x,X) : X[q′1 . . . q
′
n, a
′
1 . . . a

′
n]
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We define I(x) := {applyq′i(x) = applyqi(〈〉, x) | i = 1, . . . , n} ∪ {applyai(〈〉, x) =

applya′i(x) | i = 1, . . . , n}
• Rule num.

` n : N[q, a]

Define I(n) := {applyq() = applya(n)}.
• Rule →i.

Γ, x : A ·X[x−, x+] ` t : Y [qtz, y
+]

Γ ` λx. t : (A ·X → Y )[qzx−, y+x+]

Define I(λx. t) := I(t) ∪ {applyq() = applyqt()}.
• Rule →e.

Γ ` s : (A ·X → Y )[qszx
+, y+x−] ∆[δ−, δ+] ` t : X[x−, x+]

Γ, A ·∆ ` s t : Y [qz, y+]

In the Int-interpretation we must account for the isomorphisms (A ·∆)− ' A ·∆−
and (A ·∆)+ ' A ·∆+. The set of equations A · I(t) gives rise to a program of type
(A ·X−)(A ·∆+)→ (A ·X+)(A ·∆−). It is easy to define from it a program of type
(A ·X−)(A ·∆)+ → (A ·X+)(A ·∆)−: Each definition applyq(u, x) = e for q ∈ δ−
is replaced by applyq(〈u, v〉, y) = e[〈v, y〉/x]; and each call applya(u, x) for a ∈ δ+ is
replaced by applya(〈u, fst(x)〉, snd(x)), where fst and snd are the evident projections.
Write I(A · t) for the program obtained in this way.

With this notation, we can conclude this case by defining

I(s t) := I(s) ∪ I(A · t) ∪ {applyq() = applyqs()}.
• Rule add.

Γ ` s : N[qs, as] ∆ ` t : N[qt, at]

Γ, nat ·∆ ` s+ t : N[q, a]

We use the notation I(nat · t), which is as in the case for →e above, and define:

I(s+ t) := I(s) ∪ I(nat · t) ∪ { applyq() = applyqs(),

applyas(x) = applyqt(x, 〈〉),
applyat(x, y) = applya(x+ y)}

• Rule if.

Γ ` s : N[qs, as] ∆1 ` t1 : N[q1, a1] ∆2 ` t2 : N[q2, a2]

Γ, ∆1, ∆2 ` if0 s then t1 else t2 : N[q, a]

Let I(if0 s then t1 else t2) be

Is ∪ It1 ∪ It2 ∪ { applyq() = applyqs(),

applyas(x) = case iszero(x) of inl(y)⇒ applyq1(y)

; inr(z)⇒ applyq2(z),

applya1(x) = applya(x),

applya2(x) = applya(x)}.
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The proposition establishes a simple connection between the general shape of the pro-
grams.

Let us now compare the values that are being passed around during program execution.
Consider closed terms of type N. It follows by soundness of each of the two translations
that the program obtained by defunctionalization and that for the Int-interpretation will
return the same number as their end result. If we consider the programs with the same
skeleton constructed above, then we can say more, however. We can show that during the
computation the two programs jump to the same labels in the same order. The argument
values of these jumps are not exactly the same, however. One may consider the values
appearing in the program obtained by Int-interpretation as simplifications of the values
appearing at the same time in the traces of the program obtained by defunctionalization.
The following example illustrates the correspondence informally.

Example 7.3. Consider the source term ((λx. 1 + x) 42) of type N. The result of CPS-
translation and labelling is the term

λl0k. t@l1 〈λl5k′′. k′′@l4 42, k〉 : ¬l0¬l6N ,

where t is spelled out in Example 5.1. Defunctionalization gives us the following definitions.

applyl0(〈〉, k) = applyl1(〈〉, 〈〈〉, k〉), applyl1(〈〉, 〈x, k〉) = applyl2(〈〉, 〈x, k〉),
applyl2(〈〉, k′) = applyl3(k′, 1), applyl3(〈x, k〉, u) = applyl5(x, 〈k, u〉),

applyl4(〈k, u〉, n) = applyl6(k, u+ n), applyl5(〈〉, k′′) = applyl4(k′′, 42).

The program of the same skeleton obtained by Int-interpretation is:

applyl0() = applyl1(), applyl1() = applyl2(),

applyl2() = applyl3(1), applyl3(m) = applyl5(m),

applyl4(m,n) = applyl6(m+ n), applyl5(m) = applyl4(m, 42).

Both programs have entry label l0 and exit label l6.
Let us now compare how these programs compute their result. A call trace of the first

program, in which a closed continuation represented by 〈〉 is given as argument, is:

applyl0(〈〉, 〈〉) applyl1(〈〉, 〈〈〉, 〈〉〉) applyl2(〈〉, 〈〈〉, 〈〉〉) applyl3(〈〈〉, 〈〉〉, 1) applyl5(〈〉, 〈〈〉, 1〉)
applyl4(〈〈〉, 1〉, 42) applyl6(〈〉, 43)

The call trace of the second program is:

applyl0() applyl1() applyl2() applyl3(1) applyl5(1) applyl4(1, 42) applyl6(43)

The point is that the traces are the same, up to simplification of values by removing un-
needed 〈〉-values.

In the rest of this section we study the relation of the traces of the programs obtained
by the two translations. The example illustrates that the traces of both programs jump
to the same labels in the same order. The main issue is to compare the argument values
of each such jump. We compare not the argument values themselves (keeping track of the
technical details appears to be non-trivial), but only what needs to be stored in order to
encode these values, i.e. what a compiler needs to store in machine code.

For any target value v, we define a multiset V(v) of the numbers it contains as follows:
if v = n then V(v) = {n}, if v = 〈v1, v2〉 then V(v) = V(v1) ∪ V(v2), and V(v) = ∅
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otherwise (values of recursive types or sum types cannot appear). The definition of V(v) is
motivated by considering how the value v would eventually be encoded on a machine. A
good compiler back-end would need to store in memory only the values in V(v), as the rest of
the information in v is given statically by the type. We say that a value v simplifies a value
w if V(v) ⊆ V(w). For example, the value 〈2, 〈3, 3〉〉 simplifies 〈1, 〈〈2, 〈〉〉, 〈3, 〈2, 3〉〉〉〉, but
not 〈2, 3〉. We say that a call trace f1(v1) . . . fn(vn) simplifies the call trace g(w1) . . . gn(wn)
if, for any i ∈ {1, . . . , n}, fi = gi and vi simplifies wi.

With this terminology, we can express that the Int-interpretation of any term simplifies
its CPS-translation and defunctionalization in the sense that it differs only in that unused
function arguments are removed and function arguments are rearranged.

We shall analyse the behaviour of the program Int(Γ ` t : X). We use the notation
Int(A · (Γ ` t : X)) for the program obtained from A · Int(Γ ` t : X) by inserting the
isomorphisms (A · Γ)+ → A · Γ+ and A · Γ− → (A · Γ)−, as described in the proof of
Proposition 7.2 above (case →e).

Theorem 7.4. Let ` t : N, let (q,Dt, a) := CpsDefun( ` t : N) and let Int( ` t : N) be
the program from Proposition 7.2. Then, any call-trace of Int( ` t : N) beginning with
applyq() simplifies the call-trace of CpsDefun( ` t : X) of the same length that begins with
applyq(〈〉, 〈〉).

This theorem allows us to consider the Int-interpretation as a simplification of the
program obtained by defunctionalization. This simplification seems quite similar to other
optimisations of defunctionalization, in particular lightweight defunctionalization [4]. How-
ever, we do not know any variant of defunctionalization in the literature that gives exactly
the same result. One may consider the Int-interpretation as a new approach to optimising
the defunctionalization of programs in continuation passing style.

To prove the theorem we use a few lemmas. The first two are substitution lemmas.

Lemma 7.5. If Γ, x : X ` s : Y and ` t : X are derivable in lin, then so is Γ ` s[t/x] : Y .
Moreover, there exist a set of labels E ⊆ L and a bijective renaming ρ : L → L, such that:
If applyl1(v1) . . . applyln(vn) is a trace of CpsDefun(Γ, x : X ` s : Y ) ∪ CpsDefun( ` t : X),
then c1 . . . cn is a trace of CpsDefun(Γ ` s[t/x] : Y ), where

ci =

{
applyρ(li)(vi) if li /∈ E,

ε otherwise.

Furthermore, all traces of CpsDefun(Γ ` s[t/x] : Y ) arise in this way.

Proof outline. This lemma is proved by induction on the derivation of Γ, x : X ` s : Y . The
only interesting case is that where the last rule is ax and s is x. In this case the definitions
in CpsDefun(Γ ` s[t/x] : Y ) and CpsDefun(Γ, x : X ` s : Y ) ∪ CpsDefun( ` t : X) differ only
in that the latter contains equations of the form applyl(x) = applyl′(x) that come from the
η-expansion of x. The traces of the two programs thus differ only up to removal of these
indirections. For the set E we choose the labels of the calls that must be removed. A
renaming ρ may be necessary to deal with different choices of names in CpsDefun.

Lemma 7.6. If Γ, x : A · X ` s : Y and ` t : X are derivable in linexp, then so is
Γ ` s[t/x] : Y . Moreover, the set of labels E ⊆ L and the bijective renaming ρ : L → L
from Lemma 7.5 have the following property: If applyl1(v1) . . . applyln(vn) is a trace of
Int(Γ, x : X ` s : Y ) ∪ Int(A · ( ` t : X)), then Int(Γ ` s[t/x] : Y ) has a trace of the form
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c1 . . . cn, where

ci =

{
applyρ(li)(wi) if li /∈ E,

ε otherwise.

and V(vi) = V(wi). Furthermore, all traces of Int(Γ ` s[t/x] : Y ) arise in this way.

This lemma is again proved by induction on the derivation of the first sequent. The
statement is slightly weaker, as the traces of the two sets of equations may differ also up
to applications of the isomorphism (unit × A) ' A, as can be seen by considering the
case where the last rule deriving Γ, x : X ` s : Y is ax and s is x. Thus, we only get
V(vi) = V(wi).

The next lemma says that any closed program of type N will indeed eventually give an
answer, as would already follow from soundness, and moreover, the continuation that accepts
the final answer is just passed along in the course of the computation; the computation itself
does not depend on the continuation.

Lemma 7.7. Let ` t : N and let t be labelled such that ` t : N[q, a] is derivable. Then the
following are true.

(1) Any call trace of D(t) beginning with a call of the form applyq(〈〉, k), for some k,
can be extended to end with a call applya(k, v) for some value v.

(2) If applyq(〈〉, k1) . . . applyl(v1, v2) and applyq(〈〉, k2) . . . applyl′(v
′
1, v
′
2) are two call traces

of D(t) of the same length, then l = l′ and there exist expressions e1 and e2 and
variables x1 and x2, such that v1 = e1[k1/x1] and v2 = e2[k2/x2] holds.

Note that the second point implies that if f(w) is a call in a call trace beginning with
applyq(〈〉, k), then k must simplify w.

Proof. In the proof we do not need subexponential annotations, so we formulate it for lin.
For each type X we define a set R(X) of closed terms as follows: R(N) consists of all

closed terms t that satisfy the assertion of the lemma; R(X → Y ) consists of all closed
terms s of type X → Y such that t ∈ R(X) implies s t ∈ R(Y ). For any lin-context Γ, we
define R(Γ) to be the set of all substitutions σ that map each variable declared in Γ to a
closed term, such that x : X ∈ Γ implies σ(x) ∈ R(X).

The proof of the lemma then goes by showing by induction on the derivation that each
derivable Γ ` t : X has the property ∀σ ∈ R(Γ). tσ ∈ R(X). The case for λ-abstraction
follows using Lemma 7.5.

Proof of Theorem 7.4. The proof goes by induction on the size of the term t. We continue
by case distinction and consider representative cases. To simplify the notation, we just
write Int(t) instead of Int(Γ ` t : X).

• t is s1 + s2, i.e. the derivation of ` t : N ends with rule add.
We observe that a labelling of the term (s1 + s2) must have the following form

` λqk. s1 @q1 (λa1x. s2 @q2 (λa2y. k@a (x+ y))) : N[q, a],

where q and a are fresh and where s1 and s2 are labelled such that ` s1 : N[q1, a1]

and ` s2 : N[q2, a2] are derivable.
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The program D(s1 + s2) consists of the set of equations

D(s1) ∪D(s2) ∪ { applyq(〈〉, k) = applyq1(〈〉, 〈k〉),
applya1(〈k〉, x) = applyq2(〈〉, 〈k, x〉),
applya2(〈k, x〉, y) = applya(k, x+ y)}.

On the other hand, the program Int(s1 + s2) consists of the equations

Int(s1) ∪ Int(nat · s2) ∪ { applyq() = applyq1(),

applya1(x, 〈〉) = applyq2(x),

applya2(x, y) = applya(x+ y)}.
By the above Lemma 7.7, we know that the call-trace of D(t) beginning with

applyq(〈〉, 〈〉) must have the form

applyq(〈〉, 〈〉) τ1 τ2 applya(〈〉, x+ y),

where τ1 and τ2 must have the following forms:

τ1 = applyq1(〈〉, 〈〈〉〉) . . . applya1(〈〉, x)

τ2 = applyq2(〈〉, 〈〈〉, x〉) . . . applya2(〈〈〉, x〉, y)

Applying the induction hypothesis for s1 shows that the trace of Int(s1) starting with
applyq1() simplifies the trace of D(t) starting with applyq1(〈〉, 〈〉). Using Lemma 7.7,
we get the desired property for τ1. Similarly, the induction hypothesis for s2 shows
that the trace of Int(s2) starting with applyq2() simplifies the trace of D(t) starting
with applyq2(〈〉, 〈〉). By Lemma 7.7, the trace from applyq2(〈〉, 〈〈〉, x〉) differs only in
that it replaces 〈〉 with 〈〈〉, x〉 in each call and at least one position. But this shows
that the trace of Int(nat · s2) starting with applyq2(x) simplifies τ2. Together this
shows the desired property of the whole trace.
• t cannot be a λ-abstraction, as its type is N.
• t is an application. In this case, t must have the form (λx.s) t1 . . . tn, as it is a closed

term. Notice that the term s[t1/x] t2 . . . tn is shorter and ` s[t1/x] t2 . . . tn : N is
still derivable. Hence, we can apply the induction hypothesis to it.

It follows from Lemmas 7.5 and 7.6 and the definition of the translations of λ-
abstraction and application that the desired result for (λx.s) t1 . . . tn follows from
the result for s[t1/x] t2 . . . tn obtained by induction hypothesis.

8. Simple Types

In this section, we strengthen the source language by adding contraction, explain how the
Int-interpretation can be extended and how it relates CPS-translation and defunctional-
ization. With increasing expressiveness of the source language, the syntactic details of
defunctionalization become harder to manage. For defunctionalization we now need a more
expressive control flow analysis, and the translation uses the recursive types in the target
language. We shall argue that a type system with subexponential annotations, adapted from
IntML, offers a simple and conceptually clear way of managing such details. We concentrate
in this section only on the relationship between program interfaces and skeletons.
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We consider the source fragment stl of the simply-typed λ-calculus with the following
syntax and the typing rules from Figures 2–4.

Types: X,Y ::= 1
∣∣ X → Y

∣∣ N
Terms: s, t ::= ∗

∣∣ λx:X. t
∣∣ s t ∣∣ n ∣∣ s+ t

∣∣ if0 s then t1 else t2

8.1. CPS-translation and Defunctionalization. The CPS-translation defined in Sec-
tion 4 restricts to stl. The defunctionalization procedure described in Section 5, however,
is too simple to handle contraction. The control-flow annotations therein are not sufficient;
they need to be extended so that applications can be annotated with more than one label.

Banerjee et al. [4] use a calculus with control flow annotations, in which applications
are annotated with sets of labels instead of just a single label. Thus, s@{l1,...,ln} t means
that s is a term whose evaluation may have any of the functions with label l1, . . . , ln as a
result. Such an application is defunctionalized into a case distinction on the function that
actually appears for s during evaluation:

(s@{l1,...,ln} t)
∗ = case s∗ of l1(~x)⇒ applyl1(l1(~x), t∗); . . . ; ln(~y)⇒ applyln(ln(~y), t∗).

Note that such a case distinction is possible only if labels are actually passed as values. To
encode labels, one typically uses algebraic data types whose constructors correspond to the
function labels. To handle the full simply-types λ-calculus, one must allow for recursive
algebraic data types. An example is given in Example 8.6 on page 35.

We define a variant of the labelled λ-calculus of Banerjee et al. [4], which is suitable for
the target language considered here (the target language in [4] has union types, while we
use disjoint sums here).

Instead of sets of labels, we annotate applications with label terms formed by the
following grammar, in which l ranges over all the labels from L.

L1, L2 ::= l
∣∣ L1 + L2

Write LT for the set of all label terms.
In the labelled version of stl with product types, each abstraction λlx:X. t is still

annotated with a unique label l ∈ L. Applications s@L t, however, are now annotated with
a label term. Function types are also annotated with a label term instead of just a single
label. Moreover, we extend the type system with explicit coercion terms coerclL(t) and
coercrL(t). The syntax of the labelled stl with products is therefore given as follows.

Types: X,Y ::= 1
∣∣ X L−→ Y

∣∣ X × Y ∣∣ N
∣∣ ⊥

Terms: s, t ::= ∗
∣∣ λlx:X. t

∣∣ s@L t
∣∣ 〈s, t〉 ∣∣ let 〈x, y〉 = s in t∣∣ n ∣∣ s+ t

∣∣ if0 s then t1 else t2∣∣ coerclL(t)
∣∣ coercrL(t)

The typing rules for the new and modified terms are:

Γ, x : X ` t : Y
Γ ` λlx:X. t : X

l−→ Y

Γ ` s : X
L−→ Y ∆ ` t : X

Γ, ∆ ` s@L t : Y
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Γ ` t : X L1−→ Y

Γ ` coerclL1+L2(t) : X
L1+L2−−−−→ Y

Γ ` t : X L2−→ Y

Γ ` coercrL1+L2(t) : X
L1+L2−−−−→ Y

The type X
(l1+l2)+l3−−−−−−→ Y thus is the type of functions with label l1, l2 or l3. Annotating this

type with the term (l1 + l2) + l3, as opposed to the set {l1, l2, l3}, is convenient for technical
reasons, as our target language has disjoint sum types and not union types, which means
that we cannot assume associativity.

We shall often omit the subscript L in the terms coerclL(t) and coercrL(t), when it can
be reconstructed from type information.

With these changes to the label annotations, we can extend the defunctionalization
procedure to cover the whole source language. The new terms are defunctionalized as
follows (the notation l(x1, . . . , xn) is explained below).

(s@L t)
∗ = applyL(s∗, t∗)

(λlx:X. t)∗ = l(x1, . . . , xn) where FV(λlx:X. t) = {x1, . . . , xn}
(coerclL(t))∗ = inl(t∗)

(coercrL(t))∗ = inr(t∗)

Definitions:

D(s@L t) = D(s) ∪D(t) ∪D(L)

D(λlx:X. t) = D(t) ∪ {applyl(l(x1, . . . , xn), x) = t∗}
D(coerclL(t)) = D(t) ∪D(L)

D(coercrL(t)) = D(t) ∪D(L)

where

D(l) = ∅
D(L1 + L2) = D(L1) ∪D(L2) ∪ {applyL1+L2

(f, x) = case f of inl(f1)⇒ applyL1
(f1, x)

; inr(f2)⇒ applyL2
(f2, x)}

The term l(x1, . . . , xn) plays the role of a constructor in a functional language. For each
label l ∈ L we assume a data type τl with a single constructor called l with arguments
of appropriate type to make the above definition type correct. In ML-notation one would
write

τl = datatype l of A

for a suitable type A. We extend the definition of τl to label terms by letting τL1+L2 =
τL1 + τL2 . The definition of these types is such that in a definition of applyL(f, x), the
variable f will have type τL.

If one writes out all the data type definitions for a given term, then one may obtain a
set of mutually recursive data type definitions, as the type τl may appear in the argument
type A of its constructor (see Example 8.6). In cases where the definitions are not actually
recursive, it would be possible to remove the constructors and work just with tuples instead.

Example 8.1. Let us illustrate the modified defunctionalization by considering the CPS-
translation of λx:N. x+ x. For this example, η-expansion is not important, so we omit it
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for simplicity. The CPS-translated and simplified term may be annotated with label terms
as follows:

λl1〈x, k〉. x@l4 coercl(λl2m.x@l4 coercr(λl3n. k@l5 (m+ n)))

Its type is (((N l2+l3−−−→ ⊥)
l4−→ ⊥)× (N l5−→ ⊥))

l1−→ ⊥. As a concrete argument one may think
of 〈λl4k. k@l2+l3 42, λl5n. print int(n)〉. Note the use of the label term l2 + l3. The two
applications of x could not be typed using the simple labelled λ-calculus from Section 5.

Defunctionalization turns the term into the following definitions.

applyl1(l1(), 〈x, k〉) = applyl4(x, inl(l2(x, k)))

applyl2(l2(x, k),m) = applyl4(x, inr(l3(m, k)))

applyl3(l3(m, k), n) = applyl5(k,m+ n)

applyl4(l4(), k) = applyl2+l3(k, 42)

applyl2+l3(k, n) = case k of inl(f1)⇒ applyl2(f1, n)

; inr(f2)⇒ applyl3(f2, n)

applyl5(l5(), n) = print int(n)

The types of the constructors are:

τl1 = datatype l1 of unit τl2 = datatype l2 of τl4 × τl5
τl3 = datatype l2 of nat× τl5 τl4 = datatype l4 of unit

τl5 = datatype l5 of unit

In this example, these types are not actually recursive, so we could remove the constructors,
replacing l2(x, k) just by the tuple 〈x, k〉, etc.

Next we show how any CPS-translated stl-term can be suitably annotated with labels,
so that defunctionalization can be applied.

We carry over the notation X[x−, x+] from Section 6, but now allow x− and x+ range
over L∗T instead of L∗.

In order to label the CPS-translated terms, we now have to deal with the new case for
contraction. Recall the CPS-translation of contraction from Figure 6:

Γ, y : X, z : X ` t : Y
Γ, x : X ` t[x/y, x/z] : Y =⇒ Γ, y : X, z : X ` t : Y

Γ, x : X ` t[η(x,X)/y, η(x,X)/z] : Y
The use of η expansions allows us to label the CPS-translated terms in a compositional way,
much like in Lemma 6.2. For the sake of illustration, consider the case where Γ is empty
and where X is N, so that X is ¬¬N. Suppose we have already labelled the premise of the
CPS-translation, say as in

y : ¬q1¬a1N, z : ¬q2¬a2N ` t : Y [y−, y+].

Note that the types of the variables y and z will in general be annotated with different
labels. This means that these variables have different types and we cannot use contraction
to make them into a single variable x. However, we can annotate the η-expansion of x,
i.e. the term η(x,¬¬N), in the following two ways, in which a′1 and a′2 are fresh labels and q
is any label term.

x : ¬q¬a′1+a′2N ` λ
q1k. x@q coercl(λa

′
1y. k@a1 y) : ¬q1¬a1N

x : ¬q¬a′1+a′2N ` λ
q2k. x@q coercr(λa

′
2y. k@a2 y) : ¬q2¬a2N
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If we substitute the first term for y and the second term for z, then the resulting term is a
labelled version of x : ¬q¬a′1+a′2N ` t[η(x,X)/y, η(x,X)/z] : Y [y−, y+], i.e. the conclusion of
the CPS-translation of contraction. This outlines how we can substitute η-expansions of x,
whereas we could not just substitute x for both y and z,

Of course, it remains to be shown that it is possible to find a labelling of the whole
term even when the type of x contains label terms, such as a′1 + a′2 instead of just fresh
labels. Note that in the type of x we could not have put a single label in place of a′1 + a′2,
as a′1 and a′2 are the unique labels of two different abstractions.

The next two lemmas show that it is indeed always possible to label CPS-translated
terms appropriately. The following lemma first generalises the above labelling of η-expansion
from N to an arbitrary type X. In the subsequent lemma, this is then used to deal with
the case of contraction as outlined above.

For any term t of labelled stl, we write |t| for the stl-term obtained by removing all
label annotations and deleting all coercions. Likewise, we write |X| for the type obtained
by removing all label annotations. In the following lemma, we also extend the operation +
to sequences of label terms: If r ∈ L∗T is L1 . . . Ln and r′ ∈ L∗T is L′1 . . . L

′
n, then we write

r + r′ for (L1 + L′1) . . . (Ln + L′n).

Lemma 8.2. For any stl-type X there exists labels a′1, a
′
2, q1, q2 ∈ L∗ and labelled terms t1

and t2, such that |t1| = |t2| = η(x,X) and such that the judgements

x : X[q, a′1 + a′2] ` t1 : X[q1, a1] and x : X[q, a′1 + a′2] ` t2 : X[q2, a2]

are derivable for all label terms q, a1, a2 ∈ L∗T for which the types X[q, a′1 + a′2], X[q1, a1]

and X[q2, a2] are defined.

Proof. For any labelled type Y we define the list of label terms in positive/negative positions

in it: P (N) = P (⊥) = N(N) = N(⊥) = ε (the empty list), N(Y
L−→ Z) = LP (Y )N(Z) and

P (Y
L−→ Z) = N(Y )P (Z).

Informally, the η-expansion of a variable is such that the label terms in positive position
appear only as annotations of applications. There are no restrictions on the label terms in
an application, so an η-expansion can be typed for arbitrary label terms in positive position.
For the terms in negative position, there are constraints however. For each label term in
a negative position the term contains a λ-abstraction. Since each abstraction must be
annotated with a unique label, this leads to the constraint that the label terms in negative
position can be obtained by coercion from the unique label of the abstraction in the term.

Formally, this can be expressed as follows: Let X be any stl-type and let X1 and X2

be labelled types with |X1| = |X2| = X. Then there exists a term t with |t| = η(x,X)
such that x : X1 ` t : X2 is derivable whenever the list L1 . . . Ln := P (X1)N(X2) has the
property that there are pairwise distinct labels l1, . . . , ln such that, for all i ∈ {1, . . . , n},
the label li is a sub-term of the label term Li.

The proof goes by induction on the type X. We spell out the case for function types.

• Case Y → Z. We have P (Y1
L1−→ Z1)N(Y2

L2−→ Z2) = N(Y1)P (Z1)L2 P (Y2)N(Z2),
by definition. The assumption on this list implies that P (Y2)N(Y1) has the property
needed to apply the induction hypothesis to Y . Hence, there exists a labelled term ty
with |ty| = η(y, Y ) and y : Y2 ` ty : Y1.

Likewise, the list P (Z1)N(Z2) is such that we can apply the induction hypothesis
to obtain a term tz with |tz| = η(z, Z) and z : Z1 ` tz : Z2.
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If we define t′ = λl. tz[f @L1 ty/z], we therefore have |t′| = η(f, Y → Z) and

f : Y1
L1−→ Y1 ` t′ : Y2 l−→ Y2.

By assumption, we know that we can choose l to be sub-term of L2, without
violating the constraint that each λ-abstraction must be uniquely identified by its
label. The result therefore follows by applying coercions to t′.

The assertion now follows as a special case, where only coercions from a′1 to a′1 + a′2 and
from a′2 to a′1 + a′2 are used.

With this lemma we can show that each derivation obtained by CPS-translation can
be typed in the labelled variant of stl.

Lemma 8.3. If Γ ` t : X is derivable in stl, then there exist label terms x−, γ+ ∈ L∗T ,

such that, for all label terms x+, γ− ∈ L∗T for which Γ[γ−, γ+] and X[x−, x+] are defined,

the sequent Γ[γ−, γ+] ` t′ : X[x−, x+] is derivable for some labelled term t′ with |t′| = t.

Proof. The proof goes by induction on the derivation of Γ ` t : X. We consider representa-
tive cases. To simplify the notation we write just Γ[γ−, γ+] ` t : X[x−, x+] to express that
there exists a labelled term t′ with |t′| = t for which Γ[γ−, γ+] ` t′ : X[x−, x+] is derivable.

• Case ax. This case follows directly from Lemma 8.2.
• Case→e. By induction hypothesis, there exist label terms y−x+1 , γ

+ ∈∗ L such that

Γ[γ−, γ+] ` s : X → Y [y−x+1 , y
+x−1 ] is derivable for all label terms y+x−, γ− ∈ L∗T

for which all types in the sequent are defined. Also by induction hypothesis, there
exists label terms x−2 , δ

+ ∈ L∗T , such that for all label terms x+2 , δ
− the sequent

∆[δ−, δ+] ` t : X[x−2 , x
+
2 ] is derivable. In particular, we can choose x+2 to be x+1 and

x−1 to be x+2 and obtain Γ[γ−, γ+], ∆[δ−, δ+] ` s t : Y [y−, y+]. Thus, we have shown
that there exist label terms y−, δ+γ+, such that the sequent is derivable for all label
terms y+, δ−γ−, as was required to show.
• Case contr. By induction hypothesis, there exist label terms y−, γ+, x+1 , x

+
2 such

that Γ[γ−, γ+], x1 : X[x−1 , x
+
1 ], x2 : X[x−2 , x

+
2 ] ` t : Y [y−, y+] is derivable for all label

terms y+, γ−, x−1 , x
−
2 . By Lemma 8.2, there exist labels a′1, a

′
2 ∈ L∗ and we can

annotate η(x,X) to become t1 and t2 so that that x : X[x−, a′1 +a′2] ` t1 : X[x−1 , x
+
1 ]

and x : X[x−, a′1 + a′2] ` t2 : X[x−2 , x
+
2 ] are derivable.

We annotate the two copies of η(x,X) in the CPS-translation of contraction as
t1 and t2.

Overall we obtain that there exist label terms y−, γ+, a′1 + a′2, such that

Γ[γ−, γ+], x : X[x−, a′1 + a′2] ` t[x/x1, x/x2] : Y [y−, y+]

is derivable for all y+, γ−, x−, which shows the assertion.

This lemma justifies the definition of CpsDefun also for stl: Given a derivation of
Γ ` t : X, annotate its CPS-translation using the lemma, so that Γ[γ−, γ+] ` t : X[x−, x+]
becomes derivable, and take CpsDefun(Γ ` t : X) := (x−γ+, D(t), x+γ−).
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Γ, y : A ·X, z : B ·X ` t : Y
contr

Γ, x : (A+B) ·X ` t[x/y, x/z] : Y

Γ, x : A ·X ` t : Y
struct A / B

Γ, x : B ·X ` t : Y

Figure 10: Additional Rules of stlexp over linexp

8.2. Interactive Interpretation. We now show how the Int-translation can be extended
to stl and how it relates to defunctionalization. To this end, we again consider a variant of
the type system with subexponential annotations. We extend linexp to stlexp by adding
subexponential annotations to the contraction rule and by adding a new rule struct for
weakening of subexponential annotations. Rule struct makes the type system more well-
behaved and also increases the expressive power of the system. It is needed at the end of
this Section in the proof of Proposition 8.7.

The new rules of stlexp are shown in Figure 10. To understand the annotations on
contr, recall the explanation of subexponentials as making explicit the environment in
which a variable is being used. The judgement in the premise of contr tells us that
the variables y and z are used in environments with additional values of type A and B
respectively. The subexponential A + B in the conclusion tells us that x may be used in
two ways: first in an environment that contains an additional variable of type A and second
in one with an additional variable of type B. The coproduct identifies the two copies of x.
Rule struct has a side condition ACB, which expresses that A is a retract of B, i.e. that
any value of type A can be encoded into one of type B. Formally, ACB holds if and only
if there exist target expressions x : A ` s : B and y : B ` r : A, such that r[s[v/x]/y] −→∗ v
holds for any target value v of type A. Notice in particular, that for isomorphic types
A ' B, we have both ACB and B CA.

The Int-translation of the new rules of stlexp is shown in Figure 11. Rule contr is
interpreted by use of the isomorphism (A+B)×C ' A×C+B×C, which is implemented
using case distinction. A message of type (A+B)×X+ has the form 〈inl(a), x〉 or 〈inr(b), x〉.
Depending on the case, the message is forwarded to the occurrence of either y or z. In the
interpretation of rule struct, one chooses s and r to witness ACB as defined above. The
interpretation will be sound for any such choice of s and r, see.

8.3. Relating the Translations. We have now defined two translations from stlexp to
the target language. To relate them, we begin by spelling out a simple example to illustrate
that both translations treat contraction in the same way.

Example 8.4. Consider again the source term λx:N. x+ x. Its Int-interpretation may be
depicted as follows.

N

nat×N−nat×N+

unit×N−
N−

(unit+nat)×N−

unit×N+

l1 l5

l4
l2

l3(unit+nat)×N+
'

add

q′

q′′'
a′

a′′
a′+a′′
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Y −

Y +

A×X−

contr

JtK '
B ×X−

(A + B) ×X−'
A×X+

B ×X+

(A + B) ×X+

struct

JtK s× idr × id
A×X−A×X+

Y +

B ×X−B ×X+

Y −

Γ−Γ+

Γ+ Γ−

Figure 11: Int-Interpretation of new rules in stlexp

The box labelled add is defined as in the Introduction, up to uses of the isomorphism
unit×N+ ' N+. The interpretation of rule contr inserts the two boxes labelled ', which
denote the canonical isomorphism of their type.

This program implements the term λx:N. x+ x as follows: To compute the result of
the function when applied to the actual argument 42, one connects the output of type
(unit+ nat)×N− to the input of type (unit+ nat)×N+ such that when the value 〈k′, 〈〉〉
arrives at the output port, then the value 〈k′, 42〉 is fed back to the input port.

Consider now the CPS-translation of the term λx:N. x+ x. If we omit the η-expansions
in the translation of variables for simplicity, then we obtain the term

λl1〈x, k〉. t1 @q′ (λ
l2m. t2 @q′′ (λ

l3n. k@l5 (m+ n))) (8.1)

of type (((N a′+a′′−−−−→ ⊥)
q′−→ ⊥) × (N l5−→ ⊥))

l1−→ ⊥, wherein t1 and t2 are the η-expansions

(λq
′
k. x@l4 coercl(λa

′
n. k@l2 n)) and (λq

′′
k. x@l4 coercr(λa

′′
n. k@l3 n)) respectively. These

two η-expansions come from the CPS-translation of contraction. Defunctionalization of the
term in (8.1) leads to the equations

applyl1(〈〉, 〈x, k〉) = applyq′(q
′(x), l2(x, k))

applyl2(l2(x, k),m) = applyq′′(q
′′(x), l3(m, k))

applyl3(l3(m, k), n) = applyl5(k,m+ n),

and the subterms t1 and t2 add the following equations:

applyq′(q
′(x), k) = applyl4(x, inl(a′(k))) applya′(a

′(k), n) = applyl2(k, n)

applyq′′(q
′′(x), k) = applyl4(x, inr(a′′(k))) applya′′(a

′′(k), n) = applyl3(k, n)

applya′+a′′(k, n) = case k of inl(f1)⇒ applya′(f1, n)

; inr(f2)⇒ applya′′(f2, n)
(8.2)

In order to understand how this program works, it is perhaps again useful to apply the
above term to the argument 〈λl4k. k@a′+a′′ 42, λl5n. print int(n)〉. Defunctionalization
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then yields two additional equations.

applyl4(〈〉, k) = applya′+a′′(k, 42)

applyl5(〈〉, n) = print int(n)

Note how this program computes the result in the same way as the one obtained by Int-
interpretation above. Both programs have the same skeleton. The points corresponding to
the apply-equations are labelled in the Int-interpretation above. Notice in particular how
the equations (8.2) that come from the η-expansion in the CPS-translation of contraction
correspond to the isomorphisms added by the interpretation of rule contr in the Int-
interpretation.

Proposition 8.5. For any Γ ` t : X derivable in stlexp, there exists a target program
Int(Γ ` t : X) that is a representative of the Int-interpretation of the derivation of the
sequent and that has the same skeleton as CpsDefun(Γ ` t : X).

Proof. The proof goes by induction on the derivation, just as for Proposition 7.2. The only
new case is that for contraction. To handle this case, consider the defunctionalization of
the two η-expansions x : X[q, a′1 + a′2] ` t1 : X[q1, a1] and x : X[q, a′1 + a′2] ` t2 : X[q2, a2]
from Lemma 8.2. Let us write q1(i) for the i-th label term in the list q1, and likewise for
the other lists. Observe that the defunctionalization of the terms t1 and t2 yield equations
of the following shape for all possible indices i:

applyq1(i)(−,−) = applyq(i)(−, inl(−))

applyq2(i)(−,−) = applyq(i)(−, inr(−))

apply(a′1+a′2)(i)(x,−) = case x of inl(y)⇒ applya1(i)(y,−)

; inr(z)⇒ applya2(i)(z,−)

applya′1(i)(−,−) = applya1(i)(−,−)

These equations have the same skeleton as an appropriate choice of equations for the Int-
interpretation of rule contr. One can thus choose a representative of the Int-interpretation
having the same skeleton as the program obtained from CPS-translation and defunctional-
ization.

The proposition establishes a relation of the Int-interpretation and CPS-translation
followed by defunctionalization for terms typeable in stlexp. An obvious question is how
much of stl is covered by this result. In the rest of this section we show that with rule
struct and recursive types in the target language, in fact any stl-term can be typed in
stlexp.

We first give an example to show how recursive target types appear in the two trans-
lations. When we discussed defunctionalization for stl, we have already remarked that
recursive types are needed in the target language to treat the full simply-typed λ-calculus.
The following example (i) illustrates the use of struct and recursive types in stlexp; and
(ii) shows that recursive types may appear even in the defunctionalization of the simply-
typed λ-calculus.

Example 8.6. An example that illustrates why without recursive types in the target
language not every stl-term would be typeable in stlexp is the application t s, where
t = λg. g (λx. g (λy.x)) and s = λf. f (f (λx.x)). The terms t and s can be given types
(unit+α) · (α · (α ·X → X)→ X)→ X and (unit+β) · (β ·X → X)→ X respectively, for
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a certain type X. In these types the subexponential annotations have been simplified using
only the isomorphism (−)× unit ' (−), which can be used by means of rule struct.

Without recursive types in the target language, the application t s could not be typed,
as this would require us to unify (unit+ β) · (β ·X → X)→ X with α · (α ·X → X)→ X,
which would require unifying β and unit + β. With recursive types, however, we can
simply let B := µβ. unit + β and instantiate the type variable β to be B. Since we have
unit +B CB, we can use rule struct to give s the type B · (B ·X → X)→ X and with
this give t s the type X .

It is interesting to note that CpsDefun maps t s to a program that also uses recursive
types. An annotation of the CPS-translation of t s in the labelled version of stl is:

t = λl1〈g, k〉. g@l4 〈coercl(λl2〈x, k1〉. g@l4 〈coercr(λl3〈y, k3〉. x@l5+l6 k3), k1〉), k〉
s = λl4〈f, k〉. f @l2+l3 〈coercl(λl5k2. f @l2+l3 〈coercr(λl6〈x, k1〉. x@l8 k1), k2〉), k〉

t s = λl7k. t@l1 〈s, k〉
The types τ(−) that appear in the defunctionalization are:

τl1 = datatype l1 of unit τl2 = datatype l2 of τl4

τl3 = datatype l3 of (τl5 + τl6) τl4 = datatype l4 of unit

τl5 = datatype l5 of (τl2 + τl3) τl6 = datatype l6 of unit

The types τl3 and τl5 are mutually recursive.
The reader familiar with Game Semantics may recognise the term t as one of the Kier-

stead terms of order three that is often used to illustrate the need for justification pointers
in Hyland-Ong-games. The other Kierstead term of order three t′ = λg. g (λx. g (λy.y))
can be given type (unit+α) · (α · (unit ·X → X)→ X)→ X. With this term it is possible
to give a type to t′ s without recursive types by setting α := unit + unit and β := unit.

We end this section by showing that with rule struct and recursive types in the target
language, stlexp can indeed type any stl-term. Suppose Γ ` t : X is a typing judgment
of stlexp. Write |X| and |Γ| for the type and context of stl obtained by removing all
subexponential annotations, i.e. replacing any A · Y → Z with Y → Z and removing
subexponentials in the context. With this notation we have:

Proposition 8.7. If Γ ` t : X is derivable in stl, then there exist ∆ and Y with Γ = |∆|
and X = |Y |, such that ∆ ` t : Y is derivable in stlexp.

Proof. Using rule struct, the following rules are derivable.

ax unitC α1
x : α1 ·X ` x : X

Γ ` s : A ·X → Y x1 : A1 ·X1, . . . , xn : An ·Xn ` t : X→e
A×A1 C α1, . . . ,
A×An C αnΓ, x1 : α1 ·X1, . . . , xn : αn ·Xn ` s t : Y

Γ ` s : N x1 : A1 ·X1, . . . , xn : An ·Xn ` t : N
add

nat×A1 C α1, . . . ,
nat×An C αnΓ, x1 : α1 ·X1, . . . , xn : αn ·Xn ` s+ t : N

Γ, y : A ·X, z : B ·X ` t : Z
contr (A+B) C α1

Γ, x : α1 ·X ` t[x/y, x/z] : Z
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We only need struct to derive these rules.
If we use these derived rules with fresh target type variables for the αi and disregard

the C-side-conditions for now, then together with the unchanged rules weak, exch →i,
if, num, we can construct a skeleton of a typing derivation for t. This exists because t is
typeable in stl.

To make this into a proper stlexp type derivation, it just remains to solve all the
C-constraints. The constraints all have the form A C α, i.e. the right-hand side of any
constraint is a type variable. With recursive types, it is easy to solve such constraints: Let
A1 C α, . . . , An C α be all constraints with α on the right-hand side. A solution for it is
α := µα.A1 + · · ·+An. In this way, we can solve the constraints for the type variables one
after the other and so obtain a correct typing derivation.

We note that the proof provides a simple type inference procedure for stlexp. It
is adapted from the simple type inference algorithm in [9]. Since [9] is concerned with
logspace-computation, recursive types are not allowed there, and the constraints are solved
by trying to unify α with A1 + · · · + An instead of setting α := µα.A1 + · · · + An. This
simple heuristic does not work for all stl terms and we need to allow recursive types to
prove the above proposition in general.

9. Recursion

We conclude by explaining how the Int-interpretation and the subexponential annotations
can be extended to handle the fixed point combinator of PCF.

Subexponential annotations for the fixed-point combinator can be given by

fix
fixX : (A list) · (A ·X → X)→ X

where A list abbreviates µα. unit +A× α.
The Int-interpretation of this term can be defined as follows:

(A list)×X+

X−

〈nil, a〉
〈cons(x, l), a〉

〈l, x, q〉 〈l, x, a〉

〈nil, q〉
〈cons(x, l), q〉

q a

(A list)×A×X−

(A list)×X−

X+

(A list)×A×X+

Here, lists are used to implement a call stack. The function that we take the fixed point
of has type A ·X → X. This tells us that it needs to store a value of type A whenever it
requests its argument. Thus, an activation record should be a stack of values of type A,
which we encode as a list.

The appearance of the type (A list) can also be explained from the subexponential
type system. Clearly, the fixpoint combinator should have type fix : B · (A ·X → X)→ X
for some B. It should be defined to satisfy the equation fix f = f (fix f). Consider
typing judgements for the two terms in this equation. For the left-hand term we have
f : B · (A ·X → X) ` fix f : X. As f appears twice in the right-hand term, we must use
contraction to type it: f : (1 + A × B) · (A · X → X) ` f (fix f) : X. Notice now that
we can give both terms the same type (using struct) if we can solve the type equation
B ' 1 + A× B. We are thus naturally lead to choosing B := A list. That case distinction
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appears in the above implementation of the fixed-point combinator is due to the duplicated
use of the variable f .

The Int-interpretation implements recursion in a similar way as CPS-translation and
defunctionalization. The CPS-translation of the fixed point combinator is

λq1〈f, k〉. fixX (λq4g. λk1. f 〈λq3k2. g k2, λq2x. k1 x〉) k .

A possible defunctionalization (without using control flow information) of this term is:

apply(q1(), 〈f, k〉) = apply(q4(f), k) apply(q2(k1), x) = apply(k1, x)

apply(q3(g), k2) = apply(g, k2) apply(q4(f), k1) = apply(f, 〈q3(q4(f)), q2(k1)〉)
Informally, the first three definitions to correspond to the inputs of the Int-interpretation
above. A call to apply(q1(), 〈f, k〉) starts the recursion, a call to apply(q2(k1), x) corresponds
to the step function (that the fixed point is taken of) returning a result, and a call to
apply(q3(g), k2) corresponds to the step function requesting its argument. The final equation
does not contribute to the external interface of the program and is used to implement the
fixed point. The call stack, which above is encoded using lists, appears more implicitly in
the continuations here.

10. Conclusion

We have observed that the non-standard compilation methods based on computation by in-
teraction are closely related to CPS-translation and defunctionalization. The interpretation
in an interactive model may be regarded as a simple direct description of the combination of
CPS-translation, defunctionalization and a final optimisation of arguments. It may be seen
as a simple nameless formulation of a combined CPS-translation and defunctionalization
and it provides an alternative way of encoding continuations.

We have seen in this paper that working out the technical details of defunctionalization
with explicit labels can become quite technical. The interactive interpretation admits a
high-level description that abstracts from implementation details. Interactive model con-
structions may perhaps be useful in simplifying uses of defunctionalization. In the other
direction, being aware that interactive models are related to standard compilation meth-
ods may help to improve non-standard compilation schemes based on interactive methods,
such as [14, 8]. We may hope that some of the many existing techniques for compiler
implementation can be adapted usefully to the non-standard schemes.

Types with subexponential annotations, in this form originally introduced in IntML [8],
provide a logical account for the issues of managing value environments that are inherent to
defunctionalization. With subexponential annotations, the type of a higher-order term fully
specifies the interface of the target program obtained from it. The type system contains
enough information in order to give a fully compositional definition of the translation to
the target language.

The subexponential type system makes explicit issues that appear with defunctional-
ization and separate compilation. For example, in order to suppose we want to compile a
function f : A · X → Y separately from the rest of the program. Then one may compile
the main program f : B · (A · X → Y ) ` t : Z and ` f : A · X → Y separately. A linker
can combine the resulting two programs knowing only their types. Of course, the problems
associated with defunctionalization and separate compilation do not just disappear. Sup-
pose, for example, we only know the term f , but not the program t in which it will be used.
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Suppose further that X has the form C · N → N. Then the choice of the subexponential
annotation C will limit which arguments f can be applied to; f can only be applied to
arguments of type D · N→ N with D C C. Choosing C without knowledge of t is possible,
for example, if the target language has a type Heap with DCHeap for any type D (anything
can be stored on the heap). Then one may simply choose C to be Heap. This is not the
only possible choice; for performance reasons one may consider performing a more precise
analysis in a linker or similar. The point is that the subexponential type system allows
us to express such issues at a high level and to apply different possible solutions. Another
example for this point is the explanation of the appearance of recursive target types in
Section 8, which was given in terms of subexponential type annotations.

Subexponentials refine the exponentials in AJM games [2], where !X is implemented
using ω ·X, where ω is a type of unbounded natural numbers. If we had used full exponen-
tials in the Int-interpretation above, then we would have obtained a compilation method
that encodes function values as values in ω, which is akin to storing closures on the heap.
Subexponentials give us more control to avoid such encodings where unnecessary. The
subexponential type system in this paper has its origin in Bounded Linear Logic [18, 38].
It is also similar to the type system for Syntactic Control of Concurrency (SCC) [15]. A
main difference appears to be that while SCC controls the number of program threads,
subexponentials account for both the threads and their local data.

The observation that there is a connection between game models and continuations is
not new. It appears, for example, in Levy’s work on a jump-with-argument calculus [26]
and in Melliès work on tensorial logic [29]. Connections of game models to compilation have
also been made, e.g. [30]. Furthermore, it is well-known that continuation passing is related
to message passing, see e.g. [41]. However, we are not aware of work that makes explicit a
connection to defunctionalization.

We believe that the connection between game models and machine languages deserves
to be better known and studied further. The call traces in this paper, for example, should
have the same status as plays in Game Semantics. This suggests that techniques from
Game Semantics help to analyse the possible traces of compiled machine code. For Java-
like languages, there is recent work that connects fully abstract trace semantics [24] and
Game Semantic models [33]. We hope that similar connections can be identified for the
traces of machine code generated by compilers.

Work on concurrency and process calculus emphasises the interactive nature of compu-
tation. Milner’s translation of the λ-calculus in the π-calculus [31] can be understood as a
CPS-translation [37]. This connection was made more than once: see [37, §10] for historical
notes. The interactive model that we have studied in this paper can be seen as a very static
form of communicating processes, without process mobility or channel reconfiguration. In
Milner’s translation, channel names identify continuations and these are passed around ex-
plicitly. We have seen in this paper that by taking into account control flow information,
it is possible to avoid passing continuations names, as they can be determined statically.
It is an interesting direction for further work to find out if Milner’s translation relates to
CPS-translation and defunctionalization without control flow information. In this direction,
it may perhaps be possible to connect to the interesting results of Berger et al. [5].

In further work, we should like to understand possible connections to Danvy’s work on
defunctionalized interpreters [11], or more generally to work on continuations and abstract
machines, e.g. [10, 40]. A relation is not obvious: Danvy considers the defunctionalization of
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particular implementations of interpreters, while here we show that the whole compilation
itself may be described extensionally by the Int construction.

In another direction, an interactive view of CPS-translation and defunctionalization
may also help in identifying mathematical structure of efficient compilation methods. In
particular, capturing call-by-value defunctionalizing compilation, perhaps similar to [7],
should be interesting. Other interesting issues are efficient separate compilation and poly-
morphism: the interpretation in Int(T) is compositional and polymorphism can also be
accounted for [38].

Finally, this paper clarifies the definition of IntML [8], which was introduced to capture
logspace. In [8] we observed that IntML supports control operators, such as callcc, but
their status remained somewhat unclear. It now turns out that the callcc combinator of [8]
may be understood as the defunctionalization of a standard CPS implementation of callcc.

Acknowledgements. I would like to thank the anonymous referees for their constructive
feedback and suggestions, which helped to improve the presentation of the results.
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