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Abstract

In game semantics and related approaches to programming language semantics, computa-
tion is modelled by interaction dialogues. Such models of computation have been used to
guide the implementation of programming languages. The idea is to implement interac-
tion dialogues directly and thus realise computation by interaction. In this thesis we study
computation-by-interaction as an approach to structuring low-level computation. We cap-
ture semantic structure of interactive computation in terms of a typed λ-calculus int and
study its use for organising low-level computation. We start by considering the practical
application of int as a language for low-level programming. Next we show that it allows
fine-grained control over space usage by using it to characterise the complexity class of
the functions computable in logarithmic space. We then show how int can be used to
translate functional languages with call-by-name and call-by-value evaluation strategy to
a low-level language. We observe that the translation for call-by-name is closely related
to standard compilation techniques, namely cps-translation and defunctionalization. We
use the translation of call-by-value as an example to illustrate the use of the structure
identified by int for non-trivial reasoning about low-level programs.
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1 Introduction

Modern programming languages are built on high-level abstractions that allow one to
implement, control and analyse complex systems. While high-level abstractions have long
been a focus of programming language theory, low-level computation has not received as
much attention. However, recent advances in formal verification and certification have
highlighted the need for a good understanding of the structure of low-level computation.
The CompCert project has demonstrated that the development of a formally certified
compiler for C is now within reach of formal methods (Leroy, 2009). In such developments
one must account for all details of low-level implementation and prove their correctness
formally. This requires an identification of the logical principles of low-level languages that
are needed to implement high-level abstractions.

Formal certification does not stop at correctness. Resource usage is another essential
aspect of computation. While formal certification of correctness has come within reach
of existing methods, the analysis and certification of resource usage remains a challenging
problem. Since resource usage is a property of low-level computation, its analysis requires a
good understanding of how high-level abstractions are implemented by low-level programs.

The study of low-level computation has led to the realisation that low-level computation
has interesting logical structure. Methods from logic and programming language theory
are being applied to low-level languages in various ways. For example, types are being
used in assembly language (Morrisett et al., 1998) and in order to guide the translation
from high-level languages to machine code (Morrisett et al., 1999). Optimisation passes
on low-level code are verified in formal logics (Zhao et al., 2013). The relation of code at
various levels of abstraction is being captured using multi-language semantics (Perconti
and Ahmed, 2014). There is work on resource analysis that connects reasoning about low-
level programs with high-level reasoning, e.g. in the CerCo project (Amadio et al., 2013).
This is by no means an exhaustive list, but it illustrates the use of logical tools in the
context of low-level languages.

This thesis is about structural aspects of low-level computation. We study a simple low-
level language with first-order data types and the ability to jump to fixed labels. It is mod-
elled on the SSA-form low-level intermediate languages used by many compilers (Rastello,
2015; Appel, 1998). Such languages have a low abstraction level by design. They allow
explicit control over the low-level details that are important for efficiency, e.g. memory
management on stack and heap. Nevertheless, their uses in compilation exhibit patterns
that suggest that it is useful to organise them using higher-order structure. The suggestion
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is not to abstract from low-level details, as one would like to control these explicitly, but
to capture patterns of low-level program construction and of reasoning about them.

Let us outline some of the structural patterns of low-level computation.

Composition and Parameterisation For many purposes it is useful to consider low-
level programs as being composed of a number of program fragments. For instance, one
may like to formulate a compiler for a higher programming language as a compositional
translation. Each part of a source program is being translated to a low-level program
fragment and these fragments are composed to make up the whole compiled program. To
define such a translation, one defines a low-level program fragment for the primitive parts
of the source language and explains how they can be composed to make up the whole
compiled program.

But what is a low-level program fragment? It should be program code together with
some information of how it can be completed. While it is possible to define fragments
in an ad-hoc way, we argue that it is useful to capture a notion of program fragment
systematically in terms of parameterisation of programs over programs. We consider low-
level program fragments as low-level programs that are parameterised over the rest of the
low-level program with which it is to be composed, see Chapter 3.

Specification and Reasoning Capturing how low-level programs can be composed also
relates to the question of how to specify the behaviour of low-level program fragments. If
the translation of (parts of) a high-level language produces only fragments of low-level
programs, then it may not be immediately clear what it means for the translation to be
correct, especially because low-level programs expose many implementation details. Ideally,
specification and reasoning should be compositional, just as the translation. One possible
approach to achieve this would be to require that a program fragment behaves correctly
once it has been composed with suitable programs implementing the parts that are missing
from the fragment. To make this idea precise, one needs to explain how programs can be
composed and one needs to specify the allowed behaviour of the missing parts.

Notice that this natural approach quickly leads to tricky higher-order reasoning. The
missing parts may themselves be parameterised by program fragments that may in fact be
provided by the program fragment with which we combine them with. Parameterisation of
this kind appears naturally in Chapters 6 and 7. To keep reasoning manageable, it appears
to be essential to have a good formalisation of program parameterisation and composition.

Code vs. Data Another issue that is important for low-level computation is the distinc-
tion between code and data and the interplay between them. While in von Neumann ar-
chitectures all code eventually becomes data, there is nevertheless a conceptual distinction
between program code and data. For example, when writing a compiler one often wants
to achieve separate compilation, i.e. that program modules can be compiled separately to
low-level programs and that a full program can be obtained by linking the low-level pro-
grams. Separate compilation can be considered at various degrees of separation. A strong
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form of separate compilation would be such that the compiler translates each module into
a machine code file, which can then be linked with the system linker, perhaps even against
code generated by a C compiler. A weaker form of separate compilation would be given
by a compiler that produces a separate bytecode file for each source module. Such byte-
code files can be executed using an interpreter, but it may not be possible to link them
directly against machine code generated by a C compiler. There is a qualitative difference
between the two kinds of separate compilation. In the first case, the compiler produces
fully separate machine code. In the second case all modules are executed by the same code
(the interpreter) and the separate compilation just produces separate data (the bytecode).
To be able to express such differences, one needs to be able to distinguish conceptually
between code and data.

A distinction between code and data also appears when one studies the fine-grained
structure of the translation of higher-order languages into low-level languages. Minamide
et al. (1996) introduce closure conversion, a key step in translating higher-order programs
into first-order low-level programs, by: ‘Closure conversion is a program transformation
that achieves a separation between code and data.’ For questions of efficiency and resource
usage, it is important to understand what is static code and what is data.

The interplay between code and data appears throughout this thesis, first in Chapter 3,
where definitions are given, and then in Chapters 6 and 7 where translations of call-by-name
and call-by-value are studied.

Data Representation Low-level computation exhibits issues that are often hidden at
a higher level. At a low-level, encoding details are visible and one needs to take this into
account in reasoning and specification, see Chapter 7 for an example. Other questions,
such as efficient memory management, manifest themselves in low-level programs. It is
interesting to study the logical principles underlying such issues.

In this thesis we argue that low-level computation can be organised using simple and
natural higher-order structure. The emphasis is on the organisation of low-level compu-
tation, as opposed to the abstraction from low-level details. The aim is to allow explicit
control of low-level details, while at the same time making use of higher-order constructs
to control parameterisation, code composition and similar issues.

1.1 Computation-by-Interaction

In the work summarised in this thesis, we consider computation-by-interaction as a partic-
ular approach to structuring low-level computation. This approach is based on ideas from
Game Semantics (Blass, 1992; Hyland and Ong, 1995; Abramsky et al., 2000) and related
approaches, such as the Geometry of Interaction (Girard, 1989; Abramsky et al., 2002). At
first sight, it is not obvious how these concepts are related to low-level computation. Iden-
tifying a relation between them is one of the contributions of this thesis; in Chapter 6 we
outline a formal relation (Schöpp, 2014b) between an interactive semantics and standard
techniques in compiler construction.
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Game semantics is based on the idea of modelling computation by interaction dialogues.
This approach goes back to the study of constructive models of logic (Lorenzen, 1961). The
idea is to explain a logical sentence by how one may attack it in a dialogue and how it may
be defended. A proof of a sentence is a strategy that explains how to defend against any
possible attack. In programming language semantics (Hyland and Ong, 1995; Abramsky
et al., 2000), types take the place of sentences and attacks become requests for information.
Thus, programs of a certain type are interpreted as strategies that tell how to answer any
possible request for information for this type.

One important aspect of game semantics is compositionality. The strategy for a com-
posite program can be built from the strategies of its parts. To answer a request for
information, one sends requests to the parts of the program and combines their answers
to compute the answer of the initial request. This way of explaining the meaning of a
program can be seen as letting the parts of the program enter into a dialogue.

This interactive explanation of programs moreover suggests an approach to their im-
plementation. To compute the result of a program, it suffices to implement its strategy
as a program that maps requests to answers. Compositionality can be used to guide such
an implementation. To implement the strategy of a program, one implements the strategy
of each of its parts and then composes the obtained programs into a single program that
plays out their interaction. This is possible with very few assumptions about the compu-
tational model. Even restricted low-level languages are expressive enough to implement
such computation by interaction.

This idea of using interactive semantics as an implementation technique, can be found
in the literature in a number of forms. Interaction has been implemented using ab-
stract machines (Mackie, 1995; Danos et al., 1996), hardware circuits (Ghica, 2007; Ghica
and Smith, 2014), Offline Turing Machines (Dal Lago and Schöpp, 2010a, 2013), the π-
calculus (Berger et al., 2001), distributed programs (Fredriksson and Ghica, 2013), quan-
tum circuits (Yoshimizu et al., 2014), to name just a few. The wide range of examples
illustrates that there are many ways of implementing interaction dialogues. In the π-
calculus it may be implemented using message passing between communicating processes.
In hardware circuits, strategies are implemented by static circuits, whose interaction is
realised by connecting them with electrical wires.

In this thesis we look at computation-by-interaction as a technique for structuring low-
level computation. That many instances of computation-by-interaction were developed
independently illustrates that this approach identifies useful structure, and also that it
should be useful to understand the underlying concepts in general and independently of
the particular application. Instead of starting with certain interactive models and studying
how they can be implemented by low-level programs, we start with a low-level language
and ask what structure we can construct by constructing an interactive model from it.
The idea is to use the structure of this interactive model as an approach to organising the
low-level language.

The low-level language that we consider here is derived from SSA-form compiler inter-
mediate languages, such as the one of Ziarek et al. (2008). In this language, interaction
dialogues take the form of program traces. On should think of the implementation of a
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strategy as a fragment of a goto program. To request information, one jumps to a certain
point in this fragment. It will compute the answer and jump to an external return label
to give the reply, the answer being encoded in the value of some variable.

1.2 Int-Construction

The plan is therefore to construct an interactive model from the low-level language and
to study its structure. To construct such a model, we use the Int-construction of Joyal
et al. (1996), see (Dal Lago and Schöpp, 2010a, 2013). It can be seen as a simple core
of both Abramsky-Jagadeesan-Malacaria games (Abramsky et al., 2000) and also of the
particle-style Geometry of Interaction (Abramsky et al., 2002).

The Int-construction generalises the construction of the integers from the semiring
(N,+, 0) of natural numbers. Integers may be represented by pairs (x−, x+) of natural
numbers x− ∈ N and x+ ∈ N, the intention being that the pair (x−, x+) represents the
integer x+−x−. The order on integers may be defined using the order on natural numbers:
(x−, x+) ≤ (y−, y+) if and only if x+ + y− ≤ x− + y+. This order can be used to explain
when two pairs represent the same integer. The set of integers are defined by taking a
quotient that identifies such pairs,

The Int-construction of Joyal et al. (1996) generalises this construction from natural
numbers to traced monoidal categories. Let us outline one instance of this construction,
which is particularly relevant for the purposes of this thesis. It is the instance where natural
numbers are replaced by the category Pfn of sets and partial functions, where addition
becomes disjoint union and where 0 becomes the empty set.

In this instance, pairs of natural numbers are replaced by pairs (X−, X+) of two sets X−

and X+. One may think of such a pair as specifying the interface of an interactive entity.
The elements of X− are the requests that one can send to the entity and the elements
of X+ are the possible answers.

What was an inequality between integers, now becomes a way of transforming one
interface into another. A morphism from (X−, X+) to (Y −, Y +) is given by a partial
function

f : X+ + Y − → X− + Y + .

Such a function explains how one can answer requests for interface (Y −, Y +) if one al-
ready knows how to answer requests for interface (X−, X+). Suppose we have a function
e1 : X− → X+ that explains how to answer requests for interface (X−, X+). Then f allows
us to construct a function e2 : Y − → Y + that answers requests for interface (Y −, Y +). The
construction may be depicted as follows.

X+

Y +Y −

X−
f

e1

(1.1)

A concrete implementation in Standard ML can be given thus:
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fun e2 y =

let fun loop m =

case f m of

inr(y) => y

| inl(x) => loop (inl(e1 x))

in loop (inr(y)) end

Notice that e1 may be invoked several times from f . One may think of e2 as being imple-
mented as an interactive process in which f and e1 engage in a dialogue.

A particular special case of morphisms are morphisms from (∅, ∅) to (X−, X+). Such
morphisms can be seen as entities that implement the interface (X−, X+). Indeed, there
exists a unique partial function e1 : ∅ → ∅, so the morphism induces an implementation
X− → X+ as described just above.

The composition of two morphisms f : (X−, X+) → (Y −, Y +) and g : (Y −, Y +) →
(Z−, Z+) is implemented as depicted below.

fY +

Z+Z−

Y −
g

X−X+

Composition is thus realised as an interactive process rather than a sequential one, which
will be important in Chapter 5.

This outlines how the Int-construction organises Pfn into a model of interactive com-
putation. The same idea can be used with a low-level language in place of Pfn. Then, sets
become types and partial functions become low-level programs that implement a partial
functions. But overall the idea is the same; one should just think of the functions in Pfn
as being implemented in a low-level language.

The motivation for organising a low-level language into a model of interactive compu-
tation with the Int-construction is to identify useful structure. Such structure has been
studied in the context of Game Semantics (Abramsky et al., 2000) and the Geometry of
Interaction (Abramsky and Jagadeesan, 1994; Abramsky et al., 2002). It was shown that
interactive models have rich structure, enough to give precise models of a wide range of
programming languages, e.g. (Hyland and Ong, 2000; Abramsky et al., 2000; Laird, 2001;
Abramsky et al., 2004; Murawski and Tzevelekos, 2013).

Let us briefly outline some of the basic structure that the Int-construction provides.

Pairs To work with pairs, one may use monoidal structure (Mac Lane, 1998) that is
defined by X ⊗ Y = (X− + Y −, X+ + Y +). Informally, X ⊗ Y is the interface of an
interactive entity that implements both the interface X and the interface Y . The set
(X ⊗ Y )− of the possible queries for X ⊗ Y consists of the queries of both X and Y .
The possible answers for (X ⊗ Y ) include the possible answers from both X and Y . In
particular, if we know how to answer queries for interface X, and also for interface Y , then
we can also answer queries for the interface X ⊗ Y .



1.2 Int-Construction 7

Functions The Int-construction produces monoidal closed structure (Mac Lane, 1998),
which is given by X ( Y = (X+ + Y −, X− + Y +). The implementations of this interface
may be thought of as an interactive kind of functions. A function from X to Y explains
how one can transform any entity of type X into one of Y . Implementations of the
interface X ( Y achieve this as described for morphisms above. Suppose we have an
implementation of interface X ( Y , i.e. a function f : X+ + Y − → X− + Y + and an
implementation e1 : X− → X+ of interface X. Then we obtain an implementation of
interface Y by connecting f and e1 as shown in (1.1).

The definition of X ( Y may also be described in game semantic terms. In Abramsky-
Jagadeesan-Malacaria games (Abramsky et al., 2000), a play for a function starts with a
request for the result, here an element of Y −. The function may answer this request with
an element of Y +, or decide to query its argument with a query from X−. In the latter
case, the query may be answered by providing the answer in X+ as a new ‘request’ to the
function. The definition of X ( Y by (X+ + Y −, X− + Y +) is just right to allow this
kind of interaction. The definition of X ( Y here does not include any requirement on
the order of messages. Game semantics imposes such requirements, e.g. by asking that
answers are not given without preceding question. Here we focus on the implementation
of interactive behaviour and do not impose such restrictions a priori.

The simple definitions of⊗ and( identify already enough structure to interpret a linear
higher-order λ-calculus, i.e. a functional programming language without duplication. Its
terms are interpreted as morphisms in the Int-construction. Thus, one may use them to
construct low-level programs that implement interaction strategies. We shall argue that
this useful for working with low-level languages.

Duplication To interpret not just a linear λ-calculus, we need a construct for the dupli-
cation of interfaces. To this end, we may define A ·X = (A×X−, A×X+) for any set A.
The idea is that A ·X is X ⊗ · · · ⊗X, where there is one copy of X for each element of A.
The elements of A can be seen as the names of the copies. A request 〈a, r〉 ∈ A × X−

means that r is requested from the a-th copy of X. An answer would be given in the
form 〈a, s〉 ∈ A×X+.

This outlines some of the structure that one can naturally identify in the interactive
universe obtained by applying the Int-construction to Pfn. Further structure will be
defined using a typed λ-calculus in Chapter 3.

In this thesis we argue that the notion of computation-by-interaction identified by
the Int-construction is useful for structuring low-level computation. It allows us to capture
notions of parameterisation of programs over code and also over data, it identifies interfaces
in a way that is useful for specification, it allows us to distinguish between code and data
and to formalise the interaction between these two concepts. We argue that being able to
capture these notions is useful for structuring low-level programming tasks. We show that
it allows structured low-level programming (Chapter 4), that it is useful for programming
with sublinear space (Chapter 5), that it is closely related to existing efficient compilation
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techniques (Chapter 6), and that it makes available logical principles for reasoning about
low-level programs (Chapter 7).

1.3 Overview

This thesis is intended to summarise the results of the publications listed in the Synopsis
on page vii, to explain them in a common context and how they relate to each other. The
aim is to motivate the results, to explain them informally and put them into relation. For
technical details we refer to the original publications.

In Chapter 2, we begin by giving a definition of the low-level language.
In Chapter 3, we identify structure in the low-level language by organising it using a

higher-order λ-calculus int. The rest of the thesis can be seen as an investigation of int.
In Chapter 4, we argue that int captures useful a useful approach to low-level pro-

gramming. We outline how the higher-order structure of int can be used for programming
in a way that still allows access to low-level details. We demonstrate this using an imple-
mentation of coroutines as an example.

In Chapter 5, we consider applications to resource usage analysis. We consider the
space usage of programs and outline that int provides a fine-grained way of controlling
the space usage of higher-order programs. We show that this can be used to obtain an
expressive characterisation of the functions computable in logarithmic space.

In Chapters 6 and 7, we consider the use of int for the compilation of higher-order
functional languages with call-by-name and call-by-value evaluation strategies.

In Chapter 6, we consider the compilation of a call-by-name functional language using
int. We outline that the resulting compilation method can be seen as a structured recon-
struction of a call-by-name cps-translation followed by a defunctionalization procedure.
This shows that the approach of modelling computation by interaction allows a structured
presentation of a defunctionalizing compilation method, including a simple correctness
proof.

Chapter 7 is motivated by the relation of interactive computation and defunctionaliza-
tion outlined in Chapter 6. It presents an implementation of call-by-value in int. This
implementation demonstrates what we gain from capturing interactive structure using int;
the proof of correctness provides a showcase for the logical principles identified by int.



2 Low-Level Programs

For low-level programming, we use a simple first-order language. This language is similar
to the SSA-form intermediate languages that are used in many compilers, see e.g. (Ziarek
et al., 2008). The current formulation is based on that in Schöpp (2014a). Conceptually,
it may be seen as a goto language, formulated for use in compilation.

Low-level programs are typed and work with values of the following first-order types.

Value Types A,B ::= α
∣∣ nat

∣∣ unit
∣∣ A×B ∣∣ 0

∣∣ A+B
∣∣ µα.A

Values v, w ::= x
∣∣ n ∣∣ ∗ ∣∣ 〈v, w〉 ∣∣ inl(v)

∣∣ inr(v)

Low-level programs are built from blocks of the form f (x : A) = b, where f is the block
label, x is a formal parameter, A is the type of the formal parameter and b is the body
of the block, formed according to the following grammar. We sometimes hide the type
annotation A for better readability.

b ::= let x=op(v) in b∣∣ let 〈x, y〉=v in b∣∣ case v of inl(x)⇒b1; inr(y)⇒b2∣∣ case v of fold(x)⇒ b∣∣ g(v)

In this grammar v ranges over values, g over block labels and op over primitive operation
constants. The variables x and y are bound in the respective expressions. The set of
operation constants that take arguments of type A and return values of type B is defined
by a set Prim(A,B). We use the following primitive operations.

{print} ⊆ Prim(nat, unit)

{add, sub,mul, div} ⊆ Prim(nat× nat, nat)

{eq, lt} ⊆ Prim(nat× nat, unit + unit)

Furthermore, we write short G for the type of binary lists µα. (unit + unit)×α. Any closed
value can be encoded as a value of this type. For any closed type A, we assume primitive
operations encodeA ∈ Prim(A,G) and decodeA ∈ Prim(G, A) that implement encoding and
decoding. We assume them as primitive operations for technical convenience; it would also
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be possible to implement them in the low-level language. We assume that these are all
primitive operations.

A program p consists of a set of blocks together with two distinguished block labels
entryp and exitp. The program must be such that there are no two block definitions with
the same label and that there is no definition of the exit label. We write short (x 7→ v) for
the program with a single block entry (x : A) = exit(v) and use informal pattern matching
notation, such as writing (〈x, y〉 7→ v) for (z 7→ let 〈x, y〉=z in v).

For example, a program to compute the factorial can be written as follows.

fac (x : nat) = facacc(〈x, 1〉)
facacc (z : nat× nat) = let 〈x, acc〉=z in

let b=eq(〈x, 0〉) in

case b of inl(u)⇒ ret(acc)
; inr(v)⇒ let acc′=mul(〈x, acc〉) in

let x′=sub(〈x, 1〉) in

facacc(〈x′, acc′〉)
The entry label is fac and the exit label is ret .

It is sometimes convenient to work with programs with more than one entry or exit
label. A program with two entry labels entry1 and entry2 with argument types A and B
respectively can be made into a program with a single entry label with argument type
A+B by adding the block

entry (z : A+B) = case z of inl(x)⇒ entry1(x)
; inr(y)⇒ entry2(x) .

Similarly, two exit labels exit1 and exit2 with argument types A and B respectively can be
turned into a single one with argument type A+B by adding blocks

exit1 (x : A) = exit(inl(x)), exit2 (x : B) = exit(inr(x)) .

We shall use programs with more than one entry or exit label with the understanding that
they are converted to programs with single labels as outlined.

2.1 Typing

Programs are typed in the canonical way.

Values The typing rules for values are shown below. In these rules, Σ is a value context,
which is a finite list of variable declarations x : A. As usual, each variable may be declared
at most once in Σ.

x : A in Σ
Σ ` x : A Σ ` n : nat Σ ` ∗ : unit

Σ ` v : A Σ ` w : B
Σ ` 〈v, w〉 : A×B
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Σ ` v : A
Σ ` inl(v) : A+B

Σ ` v : B
Σ ` inr(v) : A+B

Σ ` v : A[µα.A/α]

Σ ` fold(v) : µα.A

Programs To identify well-typed programs, we first define a judgement Σ | Φ ` b that
identifies well-typed bodies of blocks. Therein, Φ is a label context, which is a list of
declarations of the form f : ¬A, expressing that the block with label f takes arguments of
type A. For each label, Φ must contain at most one declaration.

Σ ` v : A op ∈ Prim(A,B) Σ, x : B | Φ ` b
Σ | Φ ` let x=op(v) in b

Σ ` v : A×B Σ, x : A, y : B | Φ ` b
Σ | Φ ` let 〈x, y〉=v in b

Σ ` v : A+B Σ, x : A | Φ ` b1 Σ, y : B | Φ ` b2

Σ | Φ ` case v of inl(x)⇒b1; inr(y)⇒b2

Σ ` v : µα.A Σ, x : A[µα.A/α] | Φ ` b
Σ | Φ ` case v of fold(x)⇒ b

Σ ` v : A
Σ | Φ, f : ¬A,Ψ ` f(v)

A program p is well-typed in context Σ if there exists a label context Φ such that, for
each block definition f (x : A) = b in p, both Σ, x : A | Φ ` b is derivable and f : ¬A is
in Φ.

We write p : A → B if p is a program whose entry and exit labels accept values of
type A and B respectively.

The typing judgement allows for programs with free value variables. This is useful for
the construction of low-level programs. A program is closed if it is well-typed in the empty
value context.

2.2 Operational Semantics

The operational semantics is defined for closed low-level programs. The operational se-
mantics of a closed program p is given by a relation b1

o−→p b2, which expresses that body
term b1 reduces to body term b2, while giving the sequence of closed values o as output
using the print-operation. We write ε for the empty sequence and o1o2 for concatenation
of o1 and o2.



12 2. Low-Level Programs

The relation b1
o−→p b2 is defined to be the smallest relation such that b1

o1−→p b2
o2−→p b3

implies b1
o1o2−−→p b3, such that f(v)

ε−→p b[v/x] if p contains a block definition f (x : A) = b,
and such that the following basic transitions hold.

let 〈x, y〉=〈v, w〉 in b
ε−→p b[v/x, w/y]

case inl(v) of inl(x)⇒b1; inr(y)⇒b2
ε−→p b1[v/x]

case inr(w) of inl(x)⇒b1; inr(y)⇒b2
ε−→p b2[v/y]

case fold(v) of fold(x)⇒ b
ε−→p b[v/x]

let x=print(v) in b
v−→p b[unit/x]

let x=add(〈m,n〉) in b
ε−→p b[m+ n/x]

We omit the reductions for sub, mul, div, eq and lt. For encodeA and decodeA, we choose
for each closed value v : A an encoding dve : G and define:

let x=encodeA(v) in b
ε−→p b[dve/x]

let x=decodeA(dve) in b
ε−→p b[v/x]

The only property of encodeA and decodeA that we will use is that encoding followed by
decoding is the identity.

The operational semantics is a specification of the meaning of low-level programs. In
an implementation on a machine, variables would typically be stored in registers or on the
machine stack. In similar low-level languages like llvm (Lattner and Adve, 2004), the
register allocator is responsible for the storage of variables, so that their values will be
stored in machine registers if possible and on the stack otherwise.

We consider two closed programs p, q : A→ B extensionally equal, if they have the same
observable effects and return the same values: Whenever entryp(v)

o−→p b then entryq(v)
o−→q

b′ for some b′, whenever entryp(v)
o−→p exitp(w) then entryq(v)

o−→q exit q(w), and the same
two conditions with the roles of p and q exchanged.

2.3 Graphical Notation

We use standard graphical notation (Selinger, 2011) for working with low-level programs.
A program p : A1 + · · ·+ An → B1 + · · ·+Bm is depicted as follows.

An

A1

Bm

p

B1

...
...

Basic programs are drawn as follows. The identity program idA : A → A is shown on the
left below. The evident swapping program swapA,B : B + A → A + B appears in the
middle. A single block b is drawn by a solid box as shown on the right. For coherent
isomorphisms, such as A× (B ×C)→ (A×B)×C, we write just • instead of the box, as
they are determined by the types.
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A B
B A

A A A b B

The following figure shows constructions of low-level programs in terms of graphical
notation.

q1

q2

r1 r2 s

x:A

t

For two programs q1 : A → B and q2 : C → D, their vertical composition is the sum
q1 + q2 : A + C → B + D, which is the program obtained by renaming all labels in q1

and q2 so that no label appears in both programs. The resulting program is considered as
a program with two entry and exit labels, from which we obtain a program with one entry
and exit label as described above.

The horizontal composition of r1 : A → B and r2 : B → C stands for the sequential
composition r2 ◦ r1 : A → C and is defined similarly. Loops are defined by jumping from
the exit to entry label.

We use a box notation as shown on the right in the figure. For any program t : B → C
in context Σ, x : A, the box denotes a program t : A × B → A × C in context Σ. This
program is defined by giving all blocks an additional argument of type A, which is bound
to variable x. This value is passed on unchanged in between all blocks in p. The box may
be explained so that it binds the A-part of an input to the variable x, executes the program
and then retrieves the value from x again when the program returns. If the variable x does
not appear free in program t, then we write just A instead of x:A as an annotation of the
box.

The graphical notation is similar to proof nets for linear logic (Girard, 1996; Melliès,
2006).
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3 A Calculus for
Computation-by-Interaction

This chapter describes higher-order structure of low-level programs in terms of a λ-calculus
int. This calculus distinguishes between code and data and makes their interaction explicit.
It captures forms of parameterisation of low-level programs, both over data and over other
programs. It formalises value passing and also code composition by linking of separate
low-level programs. These concepts are derived from the semantic structure of the Int-
construction. While int is a simple calculus, we argue in Chapters 4–7 that it identifies
interesting structure of low-level computation.

In this chapter we introduce int. This version of the calculus was first presented
in (Schöpp, 2014c). It can be seen as a variant of intml, studied in (Dal Lago and Schöpp,
2010a,b; Schöpp, 2011; Dal Lago and Schöpp, 2013), which is itself based on λ-calculi for
linear logic, such as Dual Light Affine Logic of Atassi et al. (2006). It may also be un-
derstood as identifying core structure underlying Stratified Bounded Affine Logic (Schöpp,
2007).

3.1 The Calculus Int

The calculus int is a typed λ-calculus with the following two classes of types.

Value Types A,B ::= α
∣∣ nat

∣∣ unit
∣∣ A×B ∣∣ 0

∣∣ A+B
∣∣ µα.A

Interface Types X, Y ::= TA
∣∣ A→ X

∣∣ A ·X ( Y
∣∣ ∀α.X

The value types are exactly as in the low-level language. The interface types represent
the interfaces of low-level programs. Terms of these types will represent programs that
implement these interfaces. Thus, the terms of interface types represent static low-level
program code with a particular interface.

We write short X ( Y for unit ·X ( Y .
We start with an informal explanation of interface types. The type TA represents

programs that may be started and that may return a value of type A. The type A → X
represents programs that are parameterised over a value of type A. If we have a value of
type A, then we can specialise any program of type A→ X to obtain a program of type X.
The type A ·X ( Y , on the other hand, allows for the parameterisation of programs over
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programs. It represents programs that expect to be linked to a program of type X. When
linked, they become a program of type Y . The value type A in A·X ( Y will be explained
below. We refer to it as a subexponential and it may be thought of as a generalisation of
the exponential ! of Linear Logic (Girard, 1987). That is, one may understand the types
of the form A ·X ( Y much like the function spaces !X ( Y in linear type systems, e.g.
(Barber, 1996; Atassi et al., 2006).

More formally, we say that a program with interface X is a low-level program of type
X− → X+, where X− and X+ are value types that are defined as follows.

(TA)− = unit (TA)+ = A

(A→ X)− = A×X− (A→ X)+ = X+

(A ·X ( Y )− = A×X+ + Y − (A ·X ( Y )+ = A×X− + Y +

(∀α.X)− = X−[G/α] (∀α.X)+ = X+[G/α]

Thus, a program with interface X has an entry label with argument type X− and an exit
label with argument type X+. In working with these types, it is sometimes convenient
to implicitly apply the isomorphisms (unit × A) ∼= A ∼= (A × unit) to simplify the presen-
tation. In particular, we shall use the isomorphisms (A → TB)− = A × unit ∼= A and
(unit ·X ( Y )− = unit×X+ +Y − ∼= X+ +Y − and (unit ·X ( Y )+ = unit×X−+Y + ∼=
X− + Y +.

A program with interface TA is a program with an entry label to start to computation
and an exit label that returns the result of type A of the computation.

The interface A→ X differs from X only in that the entry label expects an additional
value of type A. It formalises parameterisation of programs over values.

The interface A · X ( Y formalises parameterisation of programs over programs. A
program p with interface A ·X ( Y has the type shown on the left below. It represents
a function in the sense that whenever q is a program with interface X, then we obtain a
program with interface Y by linking the two as shown on the right below.

A×X+ A×X−
Y +Y −

A×X+

Y +Y −

A

A×X−

p p

q

(3.1)

Note in particular that when p jumps to q with a value 〈a, v〉 : A×X−, then q will return
with a value of the form 〈a, w〉 : A×X+, i.e. a is unchanged. The value a can be used by p
like a callee-save value in low-level programming. The program p does not have state and
cannot store any data across a call to q. By choosing the type A appropriately, any value
that p needs to preserve can be encoded in the value a, which is returned unchanged with
any return value.

We call the type A in A ·X ( Y a subexponential annotation. One may think of A ·X
as a generalisation of the exponential !X of linear logic. The instance G ·X may be used
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as a stand-in for !X. For this instance, the type system for int will support contraction.
For other instances, such as (unit + unit) ·X, contraction is not available, however. There
is similarity to the subexponentials of Nigam and Miller (2009).

Finally, the type ∀α.X allows for data polymorphism. In low-level programs we use
the type G to represent polymorphic data, as G can encode the values of any type. We
substitute G for any occurrence of a type variable, so that polymorphic programs can
process any kind of data. The advantage of using universal quantification over using G
explicitly is that one can reason about programs using parametricity. Polymorphism will
be essential in Chapter 7.

The terms and typing judgements of int are defined in Figures 3.1-3.3. The typing
judgements of int have the form

Σ | Γ ` t : X ,

where Σ is a value-context as in Section 2.1, and Γ is an interface context of the form
x1 : A1 ·X1, . . . , xn : An · Xn. This context Γ expresses that each xi is a program with
interface Xi. Each variable in Γ appears under a subexponential, whose meaning is as for
functions above. We write B · Γ for the context x1 : (B × A1) ·X1, . . . , xn : (B × An) ·Xn.

The intention is that a term Σ | Γ ` t : X represents a low-level program JtK with the
following interface that is well-typed in context Σ.

JtKAn ×X+
n An ×X−

n

...
...

A1 ×X+
1 A1 ×X−

1

Y +Y −

In this figure, we write A for the type obtained from A by substituting G for all free type
variables. In the following, we shall implicitly assume that in low-level programs all free
type variables are replaced by G. That is, we shall usually write just A for A.

The interface of program JtK should be understood like the interface of functions above.
The intention is that eventually, for each variable xi : Ai · Xi, a program with interface
Xi will be connected, just like in q is connected to p in (3.1) above. Notice in particular
that JtK can therefore assume that the value of type Ai remains unchanged between a jump
to xi and a return. All subexponentials will maintain this invariant.

In the rest of this section, we explain the typing rules of int. The low-level program JtK
is defined by induction on the typing derivation. For each typing rule we explain which
low-level program it translates to.

The typing rules in Figure 3.1 give access to the basic computations of the low-level
language in int. Rule ret is the computation that just returns a value. Its conclusion is
translated to the following program, in which we assume that all free type variables in v
are replaced with G.

Aunit ∗ 7→ v
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Σ ` v : Aret
Σ | − ` return v : TA

Σ | Γ ` s : TA Σ, x : A | ∆ ` t : TB
bind

Σ | Γ, A ·∆ ` let x=s in t : TB

Σ ` v : A p ∈ Prim(A,B)
prim

Σ | − ` p(v) : TB

Figure 3.1: Computations

Rule bind allows the composition of computations. The term let x=s in t first runs s,
binds the returned value of type A to variable x and then runs t. This is implemented by
connecting the low-level programs for s and t as follows.

JsK A
unit JtK A×BA× unit

x:A

B
π2

In this figure, the inputs and outputs for the contexts Γ and ∆ in the programs JsK and JtK
are not shown. These inputs and outputs are just passed to the outside. With the box
around JtK, this explains why the conclusion of rule bind has context Γ, A ·∆, as opposed
to Γ,∆. By passing through the box, the type of the connections for ∆ changes to the
types for A ·∆ (up to coherent isomorphisms of the form A× (B×X−) ∼= (A×B)×X−).
Rule prim gives access to the primitive operations of the low-level language. Its low-level
program is defined much like that for rule ret.

Σ ` v : A×B Σ, x : A, y : B | Γ ` t : X×e
Σ | Γ ` let 〈x, y〉=v in t : X

Σ ` v : A+B Σ, x : A | Γ ` t1 : X Σ, y : B | Γ ` t2 : X
+e

Σ | Γ ` case v of inl(x)⇒ t1; inr(y)⇒ t2 : X

Σ ` v : µα.A Σ, x : A[µα.A/α] | Γ ` t : X
µe

Σ | Γ ` case v of fold(x)⇒ t : X

Figure 3.2: Value Eliminations

Figure 3.2 contains rules for the elimination of values in int. We show the translation
of +e to low-level programs:
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JsK
...

JtK

...

X− c1X−

c2

cn

...

...

...

i1 X+

i2

in

...

This figure shows also the inputs and outputs for the contexts, as they are not just passed
to the outside. The block labelled with ck is a case distinction over the value v, which can
be computed using the variables in Σ. The block ik just forwards the values from each of
the two inputs to its one output.

ax
Σ | x : unit ·X ` x : X

Σ | ∆ ` s : X Σ | Γ, x : A ·X, y : B ·X ` t : Y
contr

Σ | Γ, (A+B) ·∆ ` copy s as x, y in t : Y

Σ | Γ ` t : X
weak

Σ | Γ,∆ ` t : X
Σ | Γ,∆ ` t : X

exch
Σ | ∆,Γ ` t : X

Σ | Γ, x : A ·X ` t : Y
struct ACB

Σ | Γ, x : B ·X ` t : Y

Σ, x : A | Γ ` t : X→i
Σ | A · Γ ` fnx:A. t : A→ X

Σ | Γ ` t : A→ X Σ ` v : A→e
Σ | Γ ` t(v) : X

Σ | Γ, x : A ·X ` t : Y
(i

Σ | Γ ` λx:A·X. t : A ·X ( Y

Σ | Γ ` s : A ·X ( Y Σ | ∆ ` t : X
(e

Σ | Γ, A ·∆ ` s t : Y

Σ | Γ ` t : X
∀i α not free in Σ,Γ

Σ | Γ ` Λα. t : ∀α.X
Σ | Γ ` t : ∀α.X

∀e
Σ | Γ ` t A : X[A/α]

Σ | Γ ` t : X− → TX+

direct (∗)
Σ | Γ ` directX(t) : X

Figure 3.3: Structural and Logical Rules

The rules for the new interface types of int appear in Figure 3.3. Rule ax just forwards
requests and answers to and from x. If one connects a program for x as described above,
then the variable rule will give back extensionally the same program.
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X− X+

unit×X−unit×X+

Rule copy implements duplication by sharing. It is translated to the following low-level
program, in which c implements case distinction over the value of type (A + B) in the
input, and i is an injection. Notice how a single copy of JsK serves the two variables x
and y in the term t.

JtK
A×X+

...
...

B ×X+

Y +Y −

...
...

c
(A+B)×X+

A×X−

B ×X−
i

(A+B)×X−
JsK

A+B

Rule struct allows weakening of subexponentials. Its side condition A C B expresses
that A is a retract of B, which means that there exist low-level programs s : A → B
(section) and r : B → A (retraction), such that r ◦ s = id holds. Rule struct amounts
to inserting r and s as shown below. It is sound, as the invariant for subexponentials is
such that programs with interface X are connected to JtK only so that they return any
input value of type B unchanged with the return value. When JtK sends a value of type
〈a, x〉 : A×X−, the answer will thus have the form 〈r(s(a)), y〉 : A×X+, i.e. 〈a, y〉, which
shows that rule struct preserves the invariant. We note that the semantic definition of
ACB using a section-retraction pair is used only to obtain a flexible calculus. For specific
applications, it is useful to choose syntactic approximations of this notion that are more
tractable, e.g. for type inference, see (Dal Lago and Schöpp, 2010a,b) for possible choices.

JtKA×X+

...
...

Y +Y −

...
...

r × id
A×X−

s× id
B ×X+ B ×X−

Rules →i and →e implement parameterisation of programs over values. Rule →i binds
the input value of type A to variable x and evaluates JtK. When JtK returns, the value can
safely be discarded.

JtKA×X−

x:A

A×X+

X+π2

Rule →e computes the value v and provides it to JtK.

JtKA×X−
X+X− x 7→ 〈v, x〉
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Rules(i and(e implement parameterisation of programs over programs. Since the int
typing judgements already formalise such a parameterisation, rule (i is essentially the
identity. Only the interface of the program JtK is interpreted differently in that the inputs
and outputs for the variable x are now counted not towards the context, but toward the
type A · X ( Y . Rule (e implements application by linking of function and argument
as shown below.

JsK

A×X− JtK

A

Y +Y −

A×X+

The rules ∀i and ∀e implement value polymorphism by encoding into values of type G. Rule
∀i is again the identity, as for(i, as we have assumed that all type variables are substituted
for by G. The instantiation rule ∀e works by encoding any value of the instantiated type A
into a value of type G before sending it to JtK and by decoding them again in any output
of JtK.

(X[A/α])− X−[encodeA/α] X+[decodeA/α]JtK (X[A/α])+

Here we write B[encodeA/α] for the program of type B[G/α]→ B[A/α], which lifts encodeA
in the context given by B.

It remains to explain rule direct for direct definition. This rule allows one to define
the program JtK for any type X directly. The sequents in the premise and in the conclusion
of rule direct have isomorphic interfaces, so that JtK can be considered as a program with
either interface. Rule direct just allows us to interpret the term t in a different way. If it
has type X− → TX+, then it can also be viewed as having type X. The point is that this
allows us write higher-order programs that could otherwise not be written. Rule direct
has a side condition (∗) that will be defined at the end of Section 3.4.1.

This concludes the description of the typing rules of int. We give example int pro-
grams in the next chapters. With direct definition it is possible to define interesting
higher-order combinators, e.g. for tail recursion, recursion, call/cc, block-scoped variables,
coroutines, etc. (Dal Lago and Schöpp, 2010a, 2013; Schöpp, 2014c). Examples appear in
Chapter 4. With such combinators, programming in int is similar in spirit to approaches
using Idealized Algol (Reynolds, 1997).

3.2 Related Work

3.2.1 Effect Calculi

Effect calculi, such as Call-by-Push-Value (cbpv) (Levy, 2004) or the Enriched Effect
Calculus (eec) (Egger et al., 2009) study the properties of computational effects in higher-
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order computation. They feature a very similar distinction between values and computa-
tions as int. The fragment of int with the following types can be seen as a fragment of
these calculi as well.

A,B ::= α
∣∣ nat

∣∣ unit
∣∣ A×B ∣∣ 0

∣∣ A+B
∣∣ µα.A

X, Y ::= TA
∣∣ A→ X

In cbpv and eec, the types X and Y are called computation types.
One main conceptual difference between these effect calculi and int is that the con-

struction of int is based on a low-level language with tail recursion. This assumption of tail
recursion allows us to use the Int-construction and construct the function type A ·X ( Y ,
which does not appear in effect calculi. Note that the Int-construction makes essential use
of tail recursion for the implementation of composition, as outlined in Section 3.1. The
Enriched Effect Calculus features a linear function space X ( Y , but this appears to be
different from the function space considered here. In this sense, int is stronger than the
above-cited effect calculi.

int is also weaker than the effect calculi, in that there is no way to turn an interface
type into a value type. In effect calculi it is very important that computations like A→ X
can be turned into values, which is not possible in int. It should be possible to add
such a feature to int, e.g. by adding a value type UX whose values encode programs
with interface X. However, int is intended to capture structure of low-level computation,
e.g. for applications in compilation. Being able to be explicit about low-level details, such
as the representation of closures, is one of the main reasons for using low-level languages.
For this reason, we study int without a built-in way of turning programs into values, as
implementing such encodings is the very task of low-level languages.

The relation of int to effect calculi can be clarified by studying the categorical structure
underlying both approaches. This is done in (Schöpp, 2011), where the structure captured
by intml is described in categorical terms. In essence, int can be considered as being
constructed from effect calculi with tail recursion by an application of the Int-construction
to the category of computations. This is explained in (Schöpp, 2011), and also in (Dal
Lago and Schöpp, 2013, §3.7). While categorical structure has been very important for the
development of int, not least because it is based on the categorical Int-construction, for
the presentation in this thesis we focus on the type theoretic formulation using the calculus
int and refer to loc. cit. for further information.

3.2.2 Tensorial Logic

Mellies’ Tensorial Logic (Melliès, 2012) is a logic that conceptually appears to be very close
to int. Tensorial logic is a primitive linear logic of tensor and negation with formulae of
the following form.

X, Y ::= A
∣∣ X ⊗ Y ∣∣ ¬X ∣∣ 1

If one considers programs in continuation-passing style in int, then it is natural to
consider the type ⊥A := A → T0, which is the interface of programs that can be started
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with a value of type A and that never return. We have found that to implement call-by-
value in continuation-passing style in int, the fragment with the following interface types
is useful, see (Schöpp, 2014a); the encoding of call-by-value is also outlined in Chapter 7.

X, Y ::= ⊥A
∣∣ X ( Y

∣∣ ∀α.X
If one adds a type X⊗Y (we have not done so only for simplicity), then one could restrict
the function space to X ( ⊥A, i.e. to a form of negation. It appears that one obtains a
type system that is very close to the work on Tensorial Logic.

While a formal relationship remains to be established, it appears that Tensorial Logic
and such fragments of int are related in many ways. For example, Melliès describes
the use of many copies of ⊥, similar to ⊥A in int, in his slides on Tensorial Logic with
Algebraic Effects (Melliès, 2012), see also (Melliès, 2014). There is also a fundamental
relation between Tensorial Logic and game semantics, as shown by Melliès (2012), which
further suggests a close relation of the approaches.

3.2.3 Coeffect Calculi

Subexponentials in int can be seen as a generalisation of the exponentials of linear logic.
Such generalisations have been found useful for a number of different applications, which
has motivated work to capture them by more general calculi (Petricek et al., 2013; Ghica
and Smith, 2014; Brunel et al., 2014). This work is based on the observation that exponen-
tials and their generalisations appear as comonadic notions of computation. In reference to
the fact that monads capture computational effects, this work has coined the term coeffect
for these notions of computation.

The type system int, and its predecessor intml, can be seen as particular coeffect type
systems. We conjecture that A ·X can be described as a parametric comonad in the sense
of Katsumata (2014), which would make a connection precise. The details remain to be
worked out in future work.

It is interesting to note that int does not appear to be a direct instance of the coeffect
type systems in loc. cit. The value contexts of int and intml interact with subexponentials
and other coeffect type system do not have such value contexts. Investigating such issues
is another interesting direction for further work.

3.2.4 IntML

Finally, we comment briefly on the relation of int and intml (Dal Lago and Schöpp,
2010a, 2013), on which int is strongly based. First, the types A → X and ∀α.X are
new in int. These new types are useful in Chapter 7, for example. A second difference
is that in intml the terms are separated into two levels. There are terms for low-level
programming and terms for interactive programming, the latter of which corresponds to the
terms of int. This choice of terms corresponds closely to the Int-construction. Low-level
terms are used to write programs in a category C of computations and interactive terms
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denote programs in int(C), the category obtained from C by the Int-construction. The
formulation in int comes without a separate class of terms for writing low-level programs
and is closer syntactically to effect calculi. We outline in Section 4.2 that low-level programs
can nevertheless still be written in int. For the purposes of this thesis, the differences
between int and intml are mainly syntactic.

3.3 Operational Semantics

So far, the terms of int have been given a meaning by translation to the low-level language.
To justify the use of the λ-calculus in int, we should convince ourselves that the calculus
justifies a reasonable equational theory.

A first possible way to do this is to consider int as a programming language, to specify
an operational semantics for it, and to show that the translation to the low-level language
correctly implements this operational semantics. This approach was worked out for intml
in (Dal Lago and Schöpp, 2010a, 2013). Here we outline the approach in terms of int. For
simplicity, we consider int without the print-operation.

An operational semantics for this language may be defined by a binary reduction re-
lation −→ between well-typed closed terms. We define −→ as the smallest relation that
includes the following reductions

add(〈m,n〉) −→ m+ n

eq(〈n, n〉) −→ inl(∗)
eq(〈m,n〉) −→ inr(∗) if m 6= n

let x=return v in t −→ t[v/x]

let 〈x, y〉=〈v, w〉 in t −→ t[v/x, w/y]

case inl(v) of inl(x)⇒ t; inr(y)⇒s −→ t[v/x]

case inr(w) of inl(x)⇒ t; inr(y)⇒s −→ s[w/y]

case fold(v) of fold(x)⇒ t −→ t[v/x]

copy s as x, y in t −→ t[s/x, s/y]

(λx:A·X. t) s −→ t[s/x]

(fnx:A. t)(v) −→ t[v/x]

(Λα. t) A −→ t[A/α]

(analogous cases for the other primitive operations are omitted) and that is closed under
the following congruence rules:

s −→ s′

s t −→ s′ t
t −→ t′

s t −→ s t′
s −→ s′

let x=s in t −→ let x=s′ in t

There are no general reduction rules for direct. Reductions for direct must be considered
on a case-by-case basis for each instance.
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For this operational semantics, we have the following correctness result: If − | − ` s : X
and s −→ t, then − | − ` t : X and the low-level programs JsK and JtK are extensionally
equal.

The proof is carried out in detail for intml in (Dal Lago and Schöpp, 2013, Theorem
11). The new cases arising from the added types A → X and ∀α.X can be treated
similarly.

3.4 Equational Theory

One motivation for studying int is to use it as a tool for reasoning about low-level pro-
grams. To this end, we are interested not just in the reduction of closed terms, but also
in equivalences of programs. We would like to identify an equational theory for int that
allows reasoning about low-level program equivalence in a useful way.

First we notice that for program equivalence, we should like to consider a relation
coarser than extensional equality of low-level programs. For example, it is reasonable
to expect the β-equality (λx:A·X. t) s = t[s/x] to hold in general, not just for closed
terms. However, if t may have free variables, then J(λx:A·X. t) sK and Jt[s/x]K may not
be equal programs. Indeed, suppose that x does not appear in t. Then, the code for
s in J(λx:A·X. t) sK would normally never be used and the β-equation would amount to
reasonable dead code elimination. But if s has free variables, then we can interact with
the code for s from the outside, by answering requests that have never been asked. In
Jt[s/x]K, such requests will go unanswered, as the code for s has been erased, while in
J(λx:A·X. t) sK this code is still present and may react to certain requests. This means
that the β-equation only expresses a reasonable form of low-level program equivalence, but
not an equality of low-level programs.

In (Schöpp, 2011, 2014c,a) we work towards identifying an equational theory for int
that captures a useful notion of low-level program equivalence.

The equational theory for int has βη-equations for terms in context. For(-functions,
these equations take the following form.

Σ | Γ, x : A ·X ` t : Y Σ | ∆ ` s : X
(β

Σ | Γ, A ·∆ ` (λx:A·X. t) s = t[s/x] : A ·X ( Y

Σ | Γ ` t : A ·X ( Y
(η

Σ | Γ ` (λx:A·X. t x) = t : A ·X ( Y

All other equations are similarly to be understood in context. We state them here without
contexts for brevity.

let x=(return v) in t = t[v/x]

let x=t in return x = t

(fnx:A. s)(v) = s[v/x]
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fnx:A. t(x) = t if x is not free in t

(Λα. t) A = t[A/α]

Λα. t α = t if α is not free in t

let 〈x, y〉=〈v, w〉 in t = t[v/x, w/y]

let 〈x, y〉=z in t[〈x, y〉/z] = t

case inl(v) of inl(x)⇒s; inr(y)⇒ t = s[v/x]

case inr(w) of inl(x)⇒s; inr(y)⇒ t = t[w/y]

case z of inl(x)⇒ t[inl(x)/z]; inr(y)⇒ t[inr(y)/z] = t

case fold(v) of fold(x)⇒ t = t[v/x]

case z of fold(x)⇒ t[fold(x)/z] = t

The article (Schöpp, 2011) explains how to justify such equations for intml. In essence,
low-level programs are identified up to an extensional quotient. The idea is to define
equality by induction on the type and to consider programs of function type as equal if they
produce equal results when applied to equal arguments. An issue addressed in (Schöpp,
2011) is how to avoid such a quotient from being so strong that it excludes interesting direct
definitions, such as a combinator for call/cc. In the definition of equality in (Schöpp, 2011),
low-level programs are allowed to abort the computation, which weakens the quotient as
desired, but still justifies the equational theory. Another possibility to achieve the same
effect is to assume certain effects, such as output, in the low-level language, which is the
approach taken in (Schöpp, 2014c).

Motivated by applications to call-by-value, see Chapter 7, in (Schöpp, 2014c,a) we
further develop the equational theory to include also polymorphism and parametricity.

3.4.1 Relational Parametricity

For the application in Chapter 7, it is useful to restrict polymorphism in int to be para-
metric and to appeal to parametricity in reasoning, as advocated by Wadler (1989). For
example, suppose we have a term t : ∀α.⊥α ( ⊥α (where ⊥α abbreviates α → T0), then
t A translates to a low-level program of type 0 +A× unit→ A× unit + 0. By parametric-
ity, we know that this program cannot inspect or modify the A-part of any input. If the
program returns a value of type A, then this must have been the value that was supplied
as input.

To formalise such parametricity reasoning, we follow the approach of using relational
parametricity (Reynolds, 1983). In the rest of this section, we outline how relational
parametricity can be defined for int (Schöpp, 2014c,a).

A value type relation is given by a triple (A,A′, R) of two closed value types A and A′

and a binary relation R between the closed values of type A and those of type A′. We
write R ⊆ A × A′ for the triple (A,A′, R). Depending on the application, we may allow
for R only admissible relations, see (Schöpp, 2014c).
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A type environment ρ is a mapping from type variables to value type relations. If σ
and σ′ are both mappings from type variables to closed value types, then we write ρ ⊆ σ×σ′
if, for any α, ρ(α) is a relation Rα ⊆ σ(α)× σ′(α). We use the notation Aσ to denote the
value type obtained from A by replacing any free α with σ(α).

For each value type A and type environment ρ, we define a relation JAKρ between the
closed values of type Aσ and type Aσ′ as usual:

JαKρ = ρ(α)

JAKρ = {〈v, v〉 | v value of type A} if A ∈ {0, unit, nat}
JA+BKρ = {〈inl(v), inl(v′)〉 | 〈v, v′〉 ∈ JAKρ} ∪

{〈inr(w), inr(w′)〉 | 〈w,w′〉 ∈ JBKρ}
JA×BKρ = {〈〈v, w〉, 〈v′, w′〉〉 | 〈v, v′〉 ∈ JAKρ, (w,w′) ∈ JBKρ}
Jµα.AKρ = {〈fold(v), fold(v′)〉 | 〈v, v′〉 ∈ JA[µα.A/α]Kρ}

The definition of relations can be extended to int-types. For each ρ ⊆ σ × σ′, we
define a relation JXKρ between programs of type Xσ− → Xσ+ and programs of type

Xσ′− → Xσ′+. In essence the definition follows the standard idea that related inputs must
be mapped to related results.

For the base case, we define p JTAKρ p′ to hold if and only if both programs have the
same effects and produce related results, i.e. that the following conditions hold.

1. If entryp(∗)
o−→p t then entryp′(∗)

o−→p′ t
′ for some t′.

2. If entryp(∗)
o−→p exitp(v) then entryp′(∗)

o−→p′ exitp′(v
′) and v JAKρ v′.

3. Conditions 1. and 2. hold with the roles of p and p′ exchanged.

This definition is extended inductively to all interface types:

• p JA→ XKρ p′ if and only if:

∀v, v′. v JAKρ v′ =⇒ val(p, v) JXKρ val(p′, v′) ,

where val denotes value application:

p
A×X−

X+X− x 7→ 〈v, x〉
val(p, v) =

• p JA ·X ( Y Kρ p′ if and only if:

∀p1, p
′
1. p1 JXKρ p′1 =⇒ appAσ(p, p1) JY Kρ appAσ′(p′, p′1) ,

where app denotes linking application:
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A×X+

Y +Y −

A

A×X−

p

q

appA(p, q) =

• p J∀α.XKρ p′ if and only if:

∀S ⊆ A× A′. inst(∀α.X)σ(p,A) JXKρ[α 7→S] inst(∀α.X)σ′(p′, A′) ,

where inst denotes type instantiation:

(X[A/α])− X−[encodeA/α] X+[decodeA/α]p (X[A/α])+

inst∀α.X(p,A) =

With these definitions, we define two terms Σ | Γ ` s : X and Σ | Γ ` t : X to be equal,
if, after abstracting over all free variables, we obtain terms whose low-level programs are
related by J∀~α.Σ→ (Γ( X)Kρ, for any ρ. Here Γ ( X denotes the type obtained by
abstracting X over all variables in Γ using (; and Σ → X denotes the type obtained by
abstracting X over all value types in Σ using→. Finally, ~α is the list of free type variables
in the type. More details appear in (Schöpp, 2014c,a).

Having defined relational parametricity, we can now explain the side condition (∗) on
rule direct. This side condition requires that the defined term directX(t) is equal to
itself, i.e. that it respects the relation JXKρ for all ρ. Rule direct is also the reason
for restricting to admissible relations in the definition of parametricity in some situations.
This restriction makes it easier to establish that terms defined by direct definition respect
the relation, see (Schöpp, 2014c, Lemma 16).

3.5 Type Inference

We end the description of int by briefly discussing type inference. The aim is to point out
that the subexponential annotations of int should not be seen as a restriction on typing,
as is typical in linear type systems, but as adding low-level information. This is because
subexponential annotations can be reconstructed for any term that is typeable without
them (subject to a restriction on the types X that are allowed in direct definition terms
directX(t), see (Schöpp, 2014c, §6)).

A trivial way of finding subexponential annotation is to always use G for them, i.e. to
restrict attention to typing sequents of the special form Σ | x1 : G·X1, . . . , xn : G·Xn ` t : Y .
There are rules, such as ax and(e, whose conclusion does not have this form, even when
all premises are of this form. However, with the encode and decode operations, it is not
hard to see that we have unitCG and (G×G)CG and (G + G)CG. Therefore, we can use
rule struct to immediately bring the conclusion of any rule back into the special form.
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This is one way to see that subexponentials are no restriction on typeability. In essence,
this means that one can restrict one’s attention to usual exponentials.

However, with many uses of (G×G)CG and (G + G)CG, the terms of int translate to
low-level programs that contain many encoding and decoding operations. This may not be
desirable for reasons of efficiency. With subexponentials, encoding can often be avoided.
The idea is to use a fresh type variable for each appearance of G and solve the resulting
C-constraints. Often one can choose the solution so that most constraints become trivial
and that encoding and decoding operations are needed only in a few places.

In fact, the constraints that one obtains in this way are easy to solve. They are all
of the form A C α, i.e. with a type variable as an upper bound. A set of such constrains
can be solved simply by collecting all constraints with a common upper bound, say A1 C
α, . . . , An C α, solving these by letting α := µα.A1 + · · · + An and then repeating this
until finished. This simple procedure is implemented in (Schöpp, 2012, 2014d) and is
working well with practical examples (Dal Lago and Schöpp, 2010b; Schöpp, 2014c) in an
experimental implementation.
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4 Low-Level Programming
with Higher Types

We have motivated int as an approach to structuring low-level computation. In the fol-
lowing chapters we assess how useful the structure of int is for low-level programming
tasks. In this chapter we begin by considering the practical question of writing low-level
programs in int. This describes results that have appeared in (Schöpp, 2014c).

Although int is a very simple calculus, with some syntactic sugar it can be used as
a C-like low-level language. A few example programs can be found in an experimental
implementation of a compiler (Schöpp, 2014d) from (a fragment of) int to llvm (Lattner
and Adve, 2004), which in turn produces assembly code for a number of architectures.
Here we outline how low-level programs can be written in int and how the type system
allows us to control low-level issues, such as being able to explicitly distinguish between
calls and tail calls.

4.1 Recursion and Tail Recursion

The combination of higher-order functions and direct definition is essential for the expres-
siveness of int. Let us outline how combinators for recursion and iteration can be defined
using direct definition. A combinator for defining a function of type α→ Tβ by recursion
can be given the following type.

fix : (γ list) · (γ · (α→ Tβ)( (α→ Tβ))( (α→ Tβ)

Its argument is a step function of type γ · (α→ Tβ)( (α→ Tβ), which it computes
the fixed point of. The subexponential γ in the type of the step function signifies that
whenever the step function invokes its argument, then it passes along a value of type γ
that it expects to get back when the argument returns. To be able to return the right
value, the fix-combinator keeps a list of γ-values (the call stack) in its subexponential,
which explains the type of fix. The type (γ list) is short-hand for the type µα. unit +γ×α
of lists.

We give the implementation of the fixed-point combinator below, but first discuss how
it may be used. With some syntactic sugar, the Fibonacci function can, for example, be
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written in int simply as follows using the fix-combinator.

fix (λf. copy f as f1, f2 in fn x:nat. if x < 2 then return 1 else f1(x− 1) + f2(x− 2))
(4.1)

The step function in this definition can be given type

((nat× bool× nat) + (nat× bool× nat)) · (nat→ Tnat)( (nat→ Tnat) ,

where bool stands for unit + unit. The subexponential in this type arises because the
argument function f is used twice (hence the sum) and because at the points of both calls
to the function, the local environment contains two additional numbers and one boolean
(namely x : nat, (x < 2) : bool and (x − 1) : nat in the first call and x : nat, (x < 2) : bool
and (x− 2) : nat in the second call).

Subexponentials in int can be seen as an idealisation of the call-stack in machine
language. In machine language, functions calls are usually implemented so that before the
call all local data is put on the stack. The call instruction then pushes the return address
on the machine stack and jumps to the function code. To return from the call, the callee
pops the return address and jumps to it. At this point, the caller can recover its local data
from the stack. Subexponentials implement calls similarly. When f is invoked in the above
example, the calling program constructs a value of type ((nat× bool× nat) + (nat× bool×
nat)), which contains local data and return address. If the value has the form inl(. . . ),
then computation should return to f1, otherwise to f2. This value is kept unchanged like
on a stack until the call returns, when it is used to find the right point to return to and
to restore the local environment. This can be seen as an abstract way of explaining the
implementation of function calls using jumps and a stack (Schöpp, 2014c, §8).

It is easy to modify the fixed-point combinator into a combinator for tail recursion. In
tail recursion one does not need a call stack. If the recursive calls of the step function are
all in tail position, then we may return any value returned from the step function as the
final result of the whole recursion. As a result, recursive calls can never return and there
is no need to store the call stack. This can be captured by a combinator for tail recursion,
whose type differs from the one for recursion in that the call stack γ list is replaced by unit.

tailrec : unit · (γ · (α→ Tβ)( (α→ Tβ))( (α→ Tβ)

This combinator is implemented so that every time the step function invokes its argument,
the value of type γ is thrown away. If the step function returns at any point, then the
returned value is not returned to the caller, but as the return value of the whole tail
recursion.

For example, the factorial function can then be written as follows.

tailrec (λf. fnx:nat. if x = 0 then return 1 else x ∗ f(x− 1))

One could replace fix with tailrec also in the above definition of the Fibonacci function
as well, but since the recursive calls are not all in tail positions, this implementation would
not produce correct results.
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Let us now outline how direct definition can be used to define the combinators fix

and tailrec. The term tailrec may be defined as shown below. Here we make the
simplifying assumption that (A→ TB)− is A rather than A× unit, as defined in general.
This simplification can be justified by insertion of suitable coherent isomorphisms. Larger
terms are shown in an informal programming language notation with some syntactic sugar
for better readability.

tailrec = direct(tailrecimp)

// tailrecrimp: unit× (γ × α + β) + α→ T (unit× (γ × β + α) + β)
tailrecimp = fn x.

case x of

// Case: Start of computation with value a:α.
// Invoke the step function with argument a.

| inr(a) -> return inl(<*, inr(a)>)

// Case: The step function returns value b: β.
// Return b as the result of the whole tail recursion.

| inl(<*, inr(b)>) -> return inr(b)

// Case: The step function invokes its argument with value a:α
// and stack content g:γ.
// Throw away g and restart the step function with argument a.

| inl(<*, inl(g, a)>) -> return inl(<*, inr(a)>)

To give an idea of how this definition works in terms of the low-level language, notice that
tailrec is defined as shown on the left below (up to distributiviy). A step function t of
type (γ · (α→ Tβ)( (α→ Tβ)) translates to a low-level program as shown on the right
below.

unit× β unit× α

unit× (γ × α) unit× (γ × β)

βα α β

γ × β γ × α

tailrec

JtK

If one applies tailrec to the step function, then the low-level programs are connected
thus:

βα

tailrec

unit

JtK

A simple simplification procedure on low-level programs, e.g. as described in (Schöpp,
2014c, §5.1) and implemented in (Schöpp, 2014d), optimises this program to something
like the following:
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α β
JtK

π2

But this is how one would realise tail recursion in the low-level language by hand.
The combinator fix is implemented similarly, but instead of discarding the call stack

of the step function, it is stored in a list. In this definition, we again simplify (A→ TB)−

from A× unit to A, and we use syntactic sugar for working with lists.

// fiximp: (γ list)× (γ × α + β) + α→ T (unit× (γ × β + α) + β)
fix = direct(fiximp)

fiximp = fn x.

case x of

// Case: Start of recursion with argument a:α
// Invoke the step function with argument a and empty call-stack.

| inr(a) -> return inl(<Nil, inr(a)>)

// Case: The step function returns b:β and the call-stack is empty.

// Return b as the final value.

| inl(<Nil, inr(b)>) -> return inr(b)

// Case: The step function returns b:β and the call stack is not empty.

// Pop the top element from the call stack and return it together with b

// to the argument of the step function.

| inl(<Cons(g, tl), inr(b)>) -> return inl(<tl, inl(g, b))>)

// Case: The step function invokes its argument with value a:α and

// stack g:γ.
// Push g on the call stack and invoke the step function with argument a.

| inl(<l, inl(g, a)>) -> return inl(<Cons(g, l), inr(a)>)

That tailrec and fix are defined as higher-order combinators allows for their flexible
use. For example, current C compilers optimise the naive recursive implementation of the
Fibonacci function in (4.1) into a recursion with a single recursive call and a nested loop.
This optimisation with a tail recursion nested inside a recursion can easily be expressed in
int with the combinators tailrec and fix:

fix (λfib.

fn i:nat.

tailrec (λtr.

fn 〈i, acc〉:(nat× nat).

let acc′=fib(i− 1) + acc in

if i < 2 then acc else tr 〈i− 2, acc′〉
) 〈i, 1〉

)
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4.2 Other Combinators

By examining the definition of the tail recursion combinator, it is not hard to see that
any low-level program can also be written in int with little overhead. Suppose we have
a low-level program with n blocks with labels f1, . . . , fn and argument types A1,. . . , An.
For each block we can define almost directly an int term, such that the term for the k-th
block has type

Xk := (A1 → ⊥)( . . .( (An → ⊥)( (Ak → ⊥) .

If, for example, if the k-th block is

fk (x : Ak) = let z=eq(x, 0) in case z of inl(u)⇒f1(1); inr(v)⇒f2(2) ,

then the corresponding int term would be

λf1. . . . . λfn. fnx:Ak. let z=eq(x, 0) in case z of inl(u)⇒f1(1); inr(v)⇒f2(2) .

To connect k blocks written as int-terms in this way, one can write a tail recursion
combinator that takes arguments of types X1,. . . , Xn and that has return type Ai → TAj,
where i is the index of the entry block and j is the index of the exit block. This means
that when moving to a language like int one does not lose intensional expressiveness.

These are just a few examples of combinators that can be written using direct definition.
Other examples are callcc (Dal Lago and Schöpp, 2010a, 2013) or a combinator newvar
for block scoped state (Dal Lago and Schöpp, 2013; Schöpp, 2014c). The fixed point
combinator defined above can in fact be given the following more general type, for any X:

fix : (α list) · (α ·X ( X)( X .

A first evaluation using an experimental implementation of int (Schöpp, 2014d) sug-
gests that the implementation of programs using directly defined combinators can be used
to obtain efficient programs, see (Schöpp, 2014c).

Larger example programs, such as a simple raytracer and a program to compute the
digits of Euler’s number, can be found as part of an experimental implementation of a
compiler for int (Schöpp, 2014d).

4.3 Coroutines

To illustrate how int allows control over low-level programming details, we show how
to implement coroutines in it. Coroutines are a form of cooperative multi-tasking. We
consider here the case where two processes are executed as coroutines. The idea is to run
the first process until it yields control to the other process, then to stop the first process
and run the other one until it yields again to the first process, and so on, until one of the
processes terminates.
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In int, the two process may be given the following types X1 := δ1 · (α → Tβ) ( Tγ
and X2 := δ2 · (β → Tα) ( α → Tγ. The first process of type X1 gets a function
yield : α→ Tβ as its first argument. The intention is that when yield(v) is evaluated, the
process sends the value v to the other process and suspends its computation until the other
process yields with some value w, which will be the return value of the call yield(v). The
second process gets an analogous yield function as argument. It moreover gets a value α,
because computation starts with the first process, so that the second process can only be
started when the first process yields.

For example, the following term proc1 is a program that counts up a variable x from 0
in a loop and that stores in a variable y the sum 1 + 2 + · · ·+ x. In each loop iteration it
yields y to the other process, which prints y and yields back to the other process.

proc1 = λyield. tailrec (λl. fn 〈x, y〉:nat.

let x′=x+ 1 in

let y′=y + x in

let z=yield(y) in

l(〈x′, y′〉)
)(〈0, 0〉)

proc2 = λyield. fn y:nat. tailrec (λl. fn y:nat.

print(y);

let y′=yield(∗) in

l(y′)

)(y)

The aim is now to implement a combinator that allows us to execute such programs as
coroutines.

The main difficulty in implementing coroutines is to make efficient use of space. It is
possible to implement coroutines naively using recursion, for example, but the call-stack
would grow with each yield, leading to a space leak. Hence, one needs some way of accessing
the state of the processes in order to be able to suspend them and to restart them at the
place where they left off. In int the administrative details can be taken care of using
subexponentials.

A combinator for coroutines may be defined by direct definition in int.

corout : (unit + δ2) ·X1 ( δ1 ·X2 ( Tγ

The term (corout proc1 proc2) is then a program that runs the two above processes as
coroutines. It is not hard to see that there is no space leak coming from the implementation
of coroutines, see also the next chapter. The implementation of corout can be given as
follows.
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corout = direct(coroutimp)

coroutimp = fn x.

case x of

// Start of computation: Start first process and use inl(): unit+ δ2 in the

// subexponential to indicate that the second process has not been started.

| inr(*) -> return inl(<inl(*), inr(*)>)

// The first process returns a value c: γ:
// Return c as the result of the whole term.

| inl(<_, inr(c)>) -> return inr(inr(c))

// The first process invokes its yield function and the subexponential

// contains inl(): unit+ δ2, meaning that the second process has not

// been started: Start the second process with value a: α and

// save the own stack content d1: δ1 in the subexponential.

| inl(<inl(*), inl(<d1, a>)>) -> return inr(inl(<d1, inr(a)>))

// The first process invokes its yield function and the subexponential

// contains inr(d2): unit+ δ2, meaning that the second process has been run

// before and its stack content when it yielded was d2:

// Restart the second process with value a: α,
// putting the own stack content d1: δ1 in the subexponential.

| inl(<inr(d2), inl(<d1, a>)>) -> return inr(inl(<d1, inl(<d2, a>)>))

// The second process invokes its yield function:

// Resume computation of the first process with the subexponential d1: δ1;

// put own stack content as inr(d2): unit+ δ2 in the subexponential.

| inr(inl(<d1, inl(<d2, b>)>)) -> return inl(<inr(d2), inl(<d1, b>)>)

// The second process returns a value c: γ:
// Return c as the result of the whole term.

| inr(inl(<_, inr(c)>)) -> return inr(inr(c))

These examples illustrate that programs that need complicated access to the stack /
local environment can be written using the simple higher-order structure identified by int.
In low-level languages, such as llvm, tail calls and access to the stack are supported using
additional built-in language primitives. In int these can be constructed using the core
language constructs.

Further information on practical issues, such as the performance of compiled code
and the optimisation of low-level code can be found in (Schöpp, 2014c). Further example
programs appear in the experimental implementations (Schöpp, 2014d, 2012), see also (Dal
Lago and Schöpp, 2010b) for intml examples.
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5 Sublinear Space Bounds

The concept of computation-by-interaction appears naturally in the study of programming
language aspects of sublinear space complexity classes. In this field of study the question is
how one may design higher programming languages that guarantee that all their programs
can be evaluated within the bounds of certain sublinear space complexity classes, such as
logspace. One asks how typical programming constructs must be restricted in order to
remain within classes such as logspace.

An interactive view of computation appears naturally when computing with sublinear
space bounds. With such strong space bounds it is typical that certain values need to be re-
computed many times, as there is not enough space to store them in memory. Intermediate
values that are too large to fit in memory cannot be stored as a whole at all. Instead, only
small parts of them are computed as they are needed. Such on-demand re-computation is
naturally captured using concepts from interactive computation models.

Giving a systematic account of on-demand re-computation strategies that appear in
sublinear space algorithms, in particular the one by Møller-Neergaard (Møller Neergaard,
2004), was my main initial motivation for studying the structure of computation by inter-
action (Schöpp, 2006, 2007). In further work with Ugo Dal Lago (Dal Lago and Schöpp,
2010a,b, 2013) it became clear that the structure of computation by interaction is relevant
to sublinear space computation on a very fundamental level, even before one considers
on-demand re-computation for saving space.

Sublinear space complexity classes are defined using Offline Turing Machines rather
than standard Turing Machines. Offline Turing Machines have a read-only input tape, work
tapes and a write-only output tape. The head on the output tape is further restricted in
that it may only move in one direction. The move from Turing Machines to Offline Turing
Machines is necessary for capturing sublinear space; if one could write on the input tape,
for example, then one would already have linear space at disposal.

Turing Machines correspond to functions from strings to strings. If we consider Σ∗ as a
low-level type, then their implementation in int would simply appear as functions of type

Σ∗ → TΣ∗ .

While Offline Turing Machines are also often presented as machines that transform
strings to strings, the computational intention is different. This becomes most clear when
looking at the composition of two machines. To compose two Turing Machines, one makes
the output tape of the first machine the input tape of the second machine. On any input,
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one then just runs the machines one after the other. The first machine writes its output on
the input tape of the second machine and then the second machine computes the result.

The composition of Offline Turing Machines is defined differently. This is essential for
sublinear space computation, as there is not enough space to record the output of the first
machine. To compute the composition of two Offline Turing Machines, one first starts the
second machine and lets it run until it wants to read a character from its input tape. Only
then does one start the first machine to compute only this character (all other output is
discarded). When the character is computed, one resumes the computation of the second
machine and continues thus until all output is produced. This implementation of the
composition of Offline Turing Machines is quite different from that for Turing Machines
and has an interactive flavour.

The interactive nature of Offline Turing Machines can be captured naturally by the int
type

(nat→ TΣ)( (nat→ TΣ) .

Input and output word are represented as functions from numbers (positions in the string)
to characters (the character at the given position). int terms of the above type translate
to low-level programs of type nat +Σ→ Σ+ nat. Importantly, the composition of two such
functions in int implements just the interactive composition of Offline Turing Machines
outlined above.

The different ways of modelling Turing Machines and Offline Turing Machines illustrate
the value of being able to explicitly distinguish between code and data in int. In Turing
Machines the input is given by writing a value on the input tape, while for Offline Turing
Machines it is given by connecting a program that computes characters on demand.

The main contribution of (Dal Lago and Schöpp, 2010a,b), building on earlier work in
Schöpp (2006, 2007), is to show that by using the above representation of Offline Turing
Machines in int, one obtains a simple way of capturing the complexity class logspace
by a higher-order programming language. In essence, the approach is simply to represent
sublinear space algorithms as terms of the above type (nat → TΣ) ( (nat → TΣ).
To construct such terms, one can of course use the higher-order structure of int, which
immediately suggests an approach to designing a higher-order programming language for
sublinear space programming.

For higher-order programming with logarithmic space, it then suffices to identify a
fragment of int where the space usage of all such terms remains within logarithmic bounds.
For the whole of int it is not easy to prove precise space bounds. We shall see in Chapter 6
that the whole of pcf can be embedded into int, which means that establishing precise
space bounds in general is likely to be difficult.

However, in this chapter we show that it is not hard to identify a fragment of int that
allows space analysis in a way that is suitable for establishing logarithmic space bounds.
We outline this fragment of int here and state the obtained complexity results. While the
fragment is very simple, practical experiments (see Dal Lago and Schöpp, 2010b) suggest
that it nevertheless allows convenient higher-order programming within logarithmic space.
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5.1 Finitary Int

For programming with bounded space, we use a finitary fragment of int, which is built over
a restriction of the low-level language to finite value types. We remove recursive types and
restrict the type nat to represent numbers of a certain fixed bit-width. With the restriction
to a low-level language with finite types, general polymorphism cannot be implemented as
outlined in Chapter 3.

The finitary fragment of int, which we call intfin, therefore has the following types
and all the terms that can be formed with these types. We assume that only the primitive
operations for nat are present, i.e. we consider the fragment without effects for simplicity.

Value Types A,B ::= α
∣∣ nat

∣∣ unit
∣∣ A×B ∣∣ 0

∣∣ A+B

Computation Types X, Y ::= TA
∣∣ A→ X

∣∣ A ·X ( Y

The translation from intfin to the low-level language is exactly as before. However,
the reduction of low-level programs is now modified so that values of type nat have fixed
bit-width. We say that a low-level program is evaluated using k-bit numbers if the values
of type nat are k-bit numbers and any operation that would produce a value greater that
the maximum value 2k − 1 is being mapped to 2k − 1. For example, when evaluated using
2-bit numbers, the addition add(2, 2) would produce the result 3 (= 22 − 1).

For the finitary fragment intfin, the following result is immediate.

Theorem 1. Any term Σ | Γ ` t : X in intfin translates to a low-level program whose
evaluation using k-bit numbers can be implemented to use space O(k).

A corresponding result was proved in (Dal Lago and Schöpp, 2010a, 2013). The theo-
rem holds because the types appearing in the low-level program JtK can be seen as fixed
‘polynomials’ in nat, so that computation in JtK becomes computation with a constant
number of nat-values. Any reasonable implementation of the low-level language will have
the claimed space usage behaviour.

While this is a very simple result, it nevertheless shows that intfin can be used for
higher-order programming with very limited space. While intfin is a fragment of int,
it still supports higher-order functions and, with the exception of full recursion, all the
combinators mentioned in the last chapter, e.g. tailrec, callcc, newvar and corout,
are still available. The int-type system is expressive enough to allow us to distinguish
full recursion, which cannot be allowed in a finitary system, from tail recursion, which is
standard in programming with logarithmic space.

If k is fixed, then we obtain a functional language for programming in constant space.
This may be interesting for applications in hardware synthesis, as are being studied in
the Geometry of Synthesis (Ghica, 2007). It is interesting to note that intfin is more
expressive than the fragment of Idealized Algol used in the Geometry of Synthesis (Ghica,
2007), see (Dal Lago and Schöpp, 2013, §4.3) for details. This makes it interesting to
consider intfin also in connection to hardware synthesis. To this end, Franz (2012) has
shown in his B.Sc. thesis that intml can be used for hardware synthesis. However, the
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results in (Franz, 2012) are based on an unoptimised implementation and the experiments
in (Franz, 2012) show that further optimisations are needed.

5.2 Logarithmic Space

Here we explain how the complexity class logspace of the functions computable in loga-
rithmic space can be captured using intfin.

We consider the implementation of the functions from words to words with logarithmic
space usage. Let us write Σ for the finite alphabet over which the words are formed (one
may assume w.l.o.g. that Σ is {0, 1}). The space available to the program may of course
depend on the length of the input word. In intfin we model this dependency by varying
the bit-width of the numbers. For an input word of length n, we allow the program
to use dlog(n)e-bit numbers. This corresponds to approaches in descriptive complexity
theory (Immerman, 1999) and finite model theory (Ebbinghaus and Flum, 1995), where in
logics with counting, all number variables have range {1, . . . , n}.

With this choice of bit-width, words of length n can be represented in intfin by functions
of type nat → TΣ�, where Σ� is a type that can encode the set Σ ∪ {�} of the alphabet
and a blank symbol. The blank symbol � is needed to allow words that are shorter than
the range of nat. In order to allow words of polynomial length in the length of the input
word, we define the representation of words as follows:

Word i := nat× · · · × nat︸ ︷︷ ︸
i times

→ TΣ�

The type Word i can represent words of length up to ni. The tuple nat × · · · × nat in its
domain can encode numbers up to ni, encoded as tuples and ordered lexicographically.

We say that a closed intfin-term t of type Word i represents a word w ∈ Σ∗ if and only
if it translates to a low-level program JtK : (nat× · · · × nat)→ Σ� that on input k outputs
the k-th character of w if k < |w| and � if k ≥ |w|. This definition makes reference to
low-level programs. An equivalent definition could also be given purely in terms of int
and the operational semantics from Section 2.2, see (Dal Lago and Schöpp, 2010a, 2013).

For any word w ∈ Σ∗, it is possible to write down a closed intfin-term r(w) of type
Word1 that represents w, provided that numbers have at least dlog |w|e bits. The term r(w)
simply consists of a huge case distinction. Its size is as least linear in the word w.

Next we define how partial functions f : Σ∗ → Σ∗ from words to words are represented.
In essence, we use the type for Offline Turing Machines outlined above. With the restriction
of the bit-width of numbers, we must be careful to also allow for polynomial size increase.
Therefore, we consider terms of type A ·Word1 (Word j for arbitrary A and j.

We say that a closed term t of type A ·Word1 (Word j represents a partial function
f : Σ∗ → Σ∗ if, for any w ∈ Σ∗, the term t r(w) represents f(w) when integers are dlog |w|e
bits wide.

With these definitions, we get the following characterisation of the functions computable
in logarithmic space.
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Theorem 2. If a term of type A ·Word1 (Word j, for any A and j, represents a partial
function f : Σ∗ → Σ∗, then f is computable in logarithmic space. Moreover, any partial
function computable in logarithmic space is represented by some such term.

The soundness part of the theorem, that any term of type A·Word1 (Word j represents
a partial function computable in logarithmic space, follows immediately from the definition
and the above Theorem 1, see (Dal Lago and Schöpp, 2010a, 2013).

Notice that an efficient compilation method is essential in this Theorem. If one imple-
ments intfin naively using term reduction, then the output of a function t : A ·Word1 (
Word j may be obtained by reducing (t r(w))(0), (t r(w))(1), etc., but this would give us
a linear space algorithm at best.

For the completeness part of the theorem, it is straightforward to show that any
logspace Offline Turing Machine can be implemented in intfin, see (Dal Lago and Schöpp,
2010a, 2013).

More interesting than extensional logspace-completeness is to consider the question
whether natural logspace algorithms can be implemented in intfin. This question was
considered for intml in (Dal Lago and Schöpp, 2010b). First, one would like to compute
not just on strings, but on structured data, such as graphs. Graphs can be represented
much like words using a higher-order representation. The edge relation can be represented
by a function of type nat × nat → Tbool, for example. With such an encoding, we have
shown as a case study in (Dal Lago and Schöpp, 2010b) that a typical logspace graph
algorithm – an acyclicity test in an undirected graph – can be represented naturally in
intml. intfin can be considered a variant of intml.

Even the complicated algorithm by Møller-Neergaard (Møller-Neergaard, 2004, §3.2)
of implementing course-of value recursion by computational amnesia can be programmed.
This algorithm provided the first motivation for studying an interactive computation model
in the context of logarithmic space computation. The implementation of a program for
this algorithm was developed with Ugo Dal Lago in intml and can be found among the
examples of the experimental implementation of intml (Schöpp, 2012). The final program
is quite similar to Møller-Neergaard’s implementation in Standard ML (Møller-Neergaard,
2004, Figure 3.4). Where Møller-Neergaard’s program uses tail recursion and exceptions,
the intml program uses combinators for tail recursion and call/cc. It demonstrates the
expressiveness of intml and intfin. While Møller-Neergaard had to prove logspace-
soundness of his program by hand, here the type system guarantees soundness.

The characterisation of logspace by intml and intfin has its origin in the Stratified
Bounded Affine Logic (sbal) of (Schöpp, 2007). Stratified Bounded Affine Logic is a
logic based on Bounded Linear Logic (Girard et al., 1992). It captures logspace much
like intml and intfin, i.e. logarithmic space bounds are obtained by interpretation in
an interactive model. The most important difference is that sbal contains a universal
quantifier, which is restricted to bounded quantification in order to ensure logarithmic space
bounds. This quantifier is different from the quantifier in int, where it would correspond
to a quantifier over interface types rather than value types. In sbal the universal quantifier
is used for impredicative representation of data in the tradition of System F (Girard et al.,
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1989). Thus, one may think of intml and intfin as simplifications of sbal without interface
type polymorphism, where data types are instead assumed as primitives.

5.3 Type Inference

While the finitary fragment intfin of int still allows many programs to be expressed, the
type inference procedure for int that was outlined in Section 3.5 does not directly restrict
to intfin. For int we have seen that the C-constraints that arise in type inference can
always be solved using G or recursive types, neither of which is available in intfin.

Without recursive types, the typing constraints cannot always be solved, i.e. there
exist simply-typed λ-terms that cannot be typed in intfin. A concrete example appears
in (Schöpp, 2014b, Example 8.6) and illustrates that while intfin can still type complicated
higher-order terms, it cannot type all of them. The Kierstead term

t = λg. copy g as g1, g2 in g1 (λx. g2 (λy. x))

is often used as an example to show the need for justification pointers in Hyland-Ong
games (Hyland and Ong, 2000). This term can be typed in intfin and be given type
(unit + α) · (α · (α · X ( X) ( X) ( X for any X. A typing derivation in intml can
be found in (Dal Lago and Schöpp, 2010a, §2.3). There it is also shown that the other
Kierstead term of the same order can also be typed and that it is possible to define a term
that distinguishes them.

However, the application of t to the following term s cannot be typed in intfin anymore.

s = λf. copy f as f1, f2 in f1 (f2 (λy. y))

The term s has a type of the form (unit + β) · (β · Y ( Y ) ( Y , which to form the
application t s would would need to be unified with α · (α · X ( X) ( X. To this
end we would need to unify unit + β with α and β with α, i.e. we would need to solve
(unit + β) = β, which requires recursive types. The application s t cannot be typed in
intfin. In int, however, recursive types can be used to type it.

For the use of intfin as a programming language for logarithmic space, one would
therefore like to know whether or not a given program can be typed in it. One would
like types to be found quickly by a type inference algorithm. The possibilities for type
inference were studied with Ugo Dal Lago for intml; the results are reported in (Dal Lago
and Schöpp, 2010b).

The general definition of C by section-retraction-pairs is suitable for the definition of
int as a flexible type system. This definition makes type inference hard, however1. One
can think of a strategy of solving the C-constraints for int as a strategy for organising the
stack space of the compiled programs. It is perhaps not surprising that this is difficult in
a finitary system. Therefore, it is reasonable to consider the type inference problem for
approximations of the relation C that, while incomplete, are still useful for programming

1I conjecture that general type inference is undecidable.
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in intfin. In (Dal Lago and Schöpp, 2010b) we have considered the question of automatic
type inference for a number of possible choices of approximations of C. We show in (Dal
Lago and Schöpp, 2010b) that for many natural syntactic approximations of C, the type
inference problem is nevertheless still at least NP-hard.

For use in practice, we have identified a simple heuristic in (Dal Lago and Schöpp,
2010b) that captures a useful form of fast type inference. Examining the type inference
procedure outlined in Section 3.5, one can see that for type inference it is sufficient to solve
constraints of the form (A1Cα)∧· · ·∧(AnCα). A simple heuristic to solve such constraints
is to simply try to unify α with A1 + · · · + An and reject if this does not succeed. This
simple approach is implemented in (Schöpp, 2014d) and for all the examples mentioned in
this section and in (Dal Lago and Schöpp, 2010a,b), types can be inferred with it.
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6 Call-by-Name,
Continuations and Defunctionalization

We have seen that the interactive structure of low-level programs identified by int is useful
for capturing programs with sublinear space usage. In this application, int has been
considered as a programming language in which one writes programs by hand. Programs
in low-level languages are very often written automatically by compilers, however. In the
following two chapters, we study how useful the structure identified by int is for translating
higher-order source languages to the low-level language.

In this chapter we begin by showing how to translate a pcf-like language with call-
by-name evaluation strategy to int. The translation is very simple and the equational
theory of int makes a correctness almost proof immediate. Nevertheless, it implements a
translation from pcf to the low-level language.

Defining a sound and efficient translation from a higher-order language like pcf to the
first-order low-level language directly is not trivial. One possibility is to use cps-translation
(Hofmann and Streicher, 1997) to enforce the call-by-name evaluation strategy and then to
use defunctionalization (Reynolds, 1972) to implement the resulting higher-order program
in the first-order low-level language. The result of (Schöpp, 2014b) is that the simple
translation obtained using int can in fact be understood as cps-translation followed by a
flow-based defunctionalization method. This shows that the interactive structure identified
by int allows us to give a simple account of a compilation method that uses sophisticated
standard compilation techniques, namely cps-translation (Hofmann and Streicher, 1997)
and flow-based defunctionalization (Banerjee et al., 2001).

6.1 Source Language

Consider the following variant of pcf as a source language, which we want to compile into
the low-level language.

var
x : X ` x : X

unit ` ∗ : 1

Γ ` t : Yweak
Γ, x : X ` t : Y

Γ, y : Y, x : X,∆ ` t : Z
exch

Γ, x : X, y : Y,∆ ` t : Z
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Γ, x1 : X, x2 : X ` t : Y
contr

Γ, x : X ` t[x/x1, x/x2] : Y

Γ, x : X ` t : Y→i
Γ ` λx:X. t : X → Y

Γ ` s : X → Y ∆ ` t : X→e
Γ,∆ ` s t : Y

const ` n : N
Γ ` s : N ∆ ` t : Nadd

Γ,∆ ` s+ t : N

Γ ` s : N ∆1 ` t : N ∆2 ` u : N
if

Γ,∆1,∆2 ` if0(s, t, u) : N

fix ` fixX : (X → X)→ X

Call-by-name evaluation may be formalised by the following reduction rules on closed well-
typed terms.

(λx:X. s) t −→cbn s[t/x]

m+ n −→cbn r if r is the sum of m and n

if0(0, s, t) −→cbn s

if0(n, s, t) −→cbn t if n > 0

fixX t −→cbn t (fixX t)

u[s/x] −→cbn u[t/x] if s −→cbn t

6.2 Translation to Int

This call-by-name source language has a straightforward translation into int. It is almost
the identity. Essentially, we can consider each source term directly as an int term; we just
need to add suitable subexponential annotations.

This can be made precise using a relation  that relates source types to int types
and source terms to int terms. It is a relation rather than a translation function, as the
choice of subexponential annotations is not unique. The relation  is defined to be the
least relation satisfying the following conditions.

• Types:

1 Tunit

N Tnat

(X → Y ) (A ·X ′( Y ′) if X  X ′ and Y  Y ′
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• Terms:

x x

s t s′ t′ if s s′ and t t′

λx:X. t λx:A·X ′. t′ if X  X ′ and t t′

∗ return ∗
n return n

s+ t add s′ t′ if s s′ and t t′

if0(s, t, u) if s′ t′ u′ if s s′, t t′ and u u′

fixX  fix

t[x/x1, x/x2] copy x as x1, x2 in t′ if t t′

where

add = λx:unit·(Tnat). λy:nat·(Tnat).

let v=x in let w=y in let z=add(〈v, w〉) in return z

if = λx:unit·(Tnat). λy:((unit + unit)× nat)·(Tnat). λz:((unit + unit)× nat)·(Tnat).

let v=x in let eq(〈x, 0〉)=b in case b of inl( )⇒ t′; inr( )⇒u′

and where fix is the fixed-point combinator from Chapter 4.

The translation is extended to contexts in the evident way.
This translation has the property that whenever Γ ` t : X is derivable in the pcf-like

source language, then there exist Γ′, t′ and X ′ with Γ Γ′, t t′ and X  X ′, such that
− | Γ′ ` t′ : X ′ is derivable in int. Context Γ′, term t′ and X ′ may be computed from the
derivation of Γ ` t : X by first translating these to int using a fresh type variable for each
subexponential annotation and by inserting a copy-term for each use of the contraction rule.
The missing subexponentials can then be constructed using type inference as outlined in
Section 3.5.

It is interesting to look at the translation with int’s distinction between code and
data in mind. Functions in the source language are translated directly to (-functions in
int. This means that in the translation of a function application s t, the function s and
its argument t are translated to separate code that is linked together to implement the
application. Abstraction is realised by parameterisation of the low-level code for the body
over a code module for the argument.

Correctness of the translation with respect to call-by-name reduction follows almost
directly from the equational theory for int. Only for fixed points do we have to show
fix f = f (fix f). But this can be shown directly on the low-level programs using a
bisimulation-style argument.

We have defined the translation from source to int using a relation to allow for differ-
ent choices of subexponentials, e.g. for proving space bounds as outlined in the previous
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chapter. If one is interested in a translation function, then one can choose G for all subex-
ponentials. With this choice, one may consider the translation as a variant of an interpre-
tation of the source language in Abramsky-Jagadeesan-Malacaria games (Abramsky et al.,
2000). The low-level programs may be seen as implementations of the plays in a game
semantic interpretation of the source language. Game semantic message passing becomes
a jump to the recipient in the low-level language, much like in Levy’s Jump-with-Argument
calculus (Levy, 2004). As an implementation of a game semantics, the implementation of
the source language using int is related to other approaches to compilation using game
semantics, e.g. (Ghica, 2007; Fredriksson and Ghica, 2013), and Geometry of Interaction,
e.g. (Mackie, 1995; Fredriksson and Ghica, 2012).

It is natural to ask how a compilation of the source language based on an implementa-
tion of interaction dialogues relates to more traditional compilation techniques, e.g. (Ap-
pel, 1992). When I first used game semantic dialogues for the implementation for the
space-efficient evaluation of functional programs (Schöpp, 2006, 2007), I thought that this
implementation method was useful for controlling space usage, but I did not expect it to
produce otherwise efficient low-level programs. The result of (Schöpp, 2014b) is that the
compilation of the source language using int is in fact very close to an efficient compilation
method using cps-translation and defunctionalization. We outline this result in the rest
of this section.

6.3 Relation to Continuations and Defunctionalization

The main result of (Schöpp, 2014b) is that the implementation of call-by-name using
int can be understood as call-by-name cps-translation followed by a defunctionalization
procedure. Both cps-translation and defunctionalization are well-known techniques for
compiler construction.

We sketch the relation between the two translations by explaining how they translate
the simple source term λx:N. 1 + x. The text in this section expands the Introduction
of (Schöpp, 2014b) and summarises the results of this article, where technical details can
be found.

A compiler for pcf might first transform λx:N. 1 + x into continuation passing style,
perhaps apply some optimisations, and then use defunctionalization to obtain a first-order
intermediate program, ready for compilation to machine language.

CPS-translation The call-by-name cps-translation of Hofmann and Streicher (1997)
translates the source term λx:N. 1 + x to the term λ〈x, k〉. (λk.k 1) (λu. x (λn. k (u+ n)))
of type ¬(¬¬N × ¬N), where we write ¬A for A → ⊥. This term defines a function
that takes as argument a pair 〈x, k〉 of a continuation k : ¬N that accepts the result and
a variable x : ¬¬N that supplies the function argument. To obtain the actual function
argument it applies x to the continuation λn. k (u + n) to ask for the actual argument to
be thrown into this continuation.
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Defunctionalization Defunctionalization (Reynolds, 1972) translates this higher-order
term into a first-order program. The basic idea of defunctionalization is to give each
function a name and to pass around not the function itself, but only its name and the
values of its free variables. To this end, each λ-abstraction is named with a unique label:
λl1〈x, k〉. (λl2k.k 1) (λl3u. x (λl4n. k (u+ n))). The whole term defines the function named
with label l1. As it does not have free variables, it can be represented simply by the
label l1. The function with label l3 has free variables x and k and is represented by the
label together with the values of x and k, which we write as l3(x, k).

In defunctionalization, each application s t is replaced by a procedure call apply(s, t),
as s is now only the name of a function and not an actual function. The procedure apply is
defined by case distinction on the function name and behaves like the body of the respective
λ-abstraction in the original term. In the example, we have the following definition of apply :

apply(f, a) = case f of l1 ⇒ let 〈x, k〉=a in apply(l2, l3(x, k))

| l2 ⇒ apply(a, 1)

| l3(x, k)⇒ apply(x, l4(k, a))

| l4(k, u)⇒ apply(k, u+ a)

This definition should be understood as the recursive definition of a function apply with
two arguments. The definition is untyped, as in Reynold’s original definition of defunc-
tionalization (Reynolds, 1972).

To understand concretely how this definition represents the original term, it is perhaps
useful to see what happens when a concrete argument and a continuation are supplied:
(λl1〈x, k〉. (λl2k.k 1) (λl3u. x (λl4n. k (u+ n)))) 〈λl5k. k 42, λl6n. print(n)〉. The definition
of apply then has two cases for l5 and l6 in addition to the cases above:

apply(l, a) = case l of . . .

| l5 ⇒ apply(a, 42)

| l6 ⇒ print(n)

The fully applied term defunctionalizes to apply(l1, 〈l5, l6〉). Executing it results in 43 being
printed. When we evaluate apply(l1, 〈l5, l6〉), the first case in the definition of apply applies
and results in the call apply(l2, l3(l5, l6)). For this call, the second case applies, so that
the call apply(l3(l5, l6), 1) is made. The computation continues in this way with calls to
apply(l5, l4(l6, 1)), apply(l4(l6, 1), 42), apply(l6, 43), and finally print(43).

This outlines a naive defunctionalization method for translating a higher-order language
into a first-order language with (tail) recursion. This method can be improved in various
ways. The above apply-function performs a case distinction on the function name each
time it is invoked. However, using control flow analysis it is often possible to determine
the label, i.e. the function name, in the first argument of each appearance of apply statically.
With this information, it is possible to avoid the case distinction on the function name and
jump directly to the code for the respective case. This means that one may define one
function apply l for each label l and replace the jump to apply(l(x), a), which involves a
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case distinction, by a direct jump to apply l(l(x), a). In fact, one may go further and remove
the label l from the first argument, passing just x instead of l(x).

Defunctionalization using Control-Flow Information A defunctionalization pro-
cedure that takes into account control flow information in this way was introduced by
Banerjee et al. (2001).

Control flow information can be added to the term by annotating applications. Instead
of the standard application s t, we write s@lt for the application in which we know that
the function s evaluates to a function with label l, i.e. to a term of the form λlx.u. In
general, one would need to annotate applications with more than one label to account
for the possibility that s may evaluate to functions with different labels, depending on
data. For linear λ-terms, such as our example, a single label suffices. In the example term,
applications can be annotated as follows:

λl1〈x, k〉. (λl2k.k@l31)@l2(λ
l3u. x@l5(λ

l4n. k@l6(u+ n)))

For example, the application k@l31 in this term expresses that only the abstraction with
label l3 can flow to the variable k there.

Control flow annotations in the terms can be controlled using the type system. To

this end, the function type X → Y is annotated with a label X
l−→ Y and the rules for

abstraction and application are modified so that the type system correctly tracks control
flow information:

Γ, x : X ` t : Y
Γ ` λlx:X. t : X

l−→ Y

Γ ` s : X
l−→ Y Γ ` t : X

Γ ` s@l t : Y

Such type-based approaches to control-flow analysis are standard, see e.g. (Nielson et al.,

2005). Writing ¬lX for X
l−→ ⊥, we get the following type for the above term:

λl1〈x, k〉. (λl2k.k@l31)@l2(λ
l3u. x@l5(λ

l4n. k@l6(u+ n))) : ¬l1(¬l5¬l4N× ¬l6N)

Now, if we take into account the control flow information in the defunctionalization of
our example, then we can avoid case distinction completely. We get:

apply l1(〈l1(x), k〉) = apply l2(〈l2, l3(x, k)〉) apply l2(〈l2, k〉) = apply l3(〈k, 1〉)
apply l3(〈l3(x, k), u〉) = apply l5(〈x, l4(k, u)〉) apply l4(〈l4(k, u), n〉) = apply l6(〈l6, u+ n〉)

(6.1)
These definitions can be understood as block definitions in the low-level language. They
only represent a fragment of a low-level program, however. The blocks apply l5 and apply l6
must still be defined, one must identify an entry block with which to start the computation,
and one must designate an exit label. If we apply the above example term to the argument
〈λl5k. k@l442, λl6n. print(n)〉, then we get the missing definitions

apply l5(〈l5, k〉) = apply l4(〈k, 42〉) apply l6(〈l6, n〉) = print(n)
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and as the entry and exit labels we can choose apply l1 and apply l6 respectively.
A crucial point is that the control flow annotations on the type allow us to identify an

interface of entry labels and exit labels for the definitions obtained by defunctionalization.
This means that from defunctionalization we obtain not just a set of block definitions, but
a complete low-level program, a definition of which also requires a choice of entry and exit
labels. For example, the type

¬l1(¬l5¬l4N× ¬l6N)

of the above program expresses that the program defines blocks apply l1 and apply l4 and
may jump to external blocks apply l5 and apply l6 . Since the type comes from the cps-
translation of the function type N→ N, we can assign meaning to the labels. The label l1
represents the initial request to compute the function. The function may return its result
by applying the function with label l6. Labels l5 and l4 are for requesting the function
argument and for providing it respectively.

Interactive Interpretation Let us now compare the low-level program obtained by
cps-translation and flow-based defunctionalization to the low-level program that we obtain
by interpretation in int. The source term λx:N. 1 + x may be translated to the int term
(λx:nat·(Tnat). add (return 1) x) of type nat·(Tnat)( Tnat. Notice first that by definition
we have:

(nat · Tnat( Tnat)− = (nat× nat) + unit

(nat · Tnat( Tnat)+ = (nat× unit) + nat

This means that the low-level program obtained from the int term may be considered as
having two input labels (one for each summand) and two exit labels. The entry label with
type unit plays the same role as l1 above. The other entry label corresponds to l3. The
exit labels of type nat and nat× unit correspond to l6 and l5 respectively.

The low-level program arising from the term (λx:nat·(Tnat). add (return 1) x) may be
depicted as follows:

add

unit nat

nat× nat nat× unit

nat unit
∗ 7→ 1

l1

l4

l2l3

l5

l6

The sub-program add maps ∗ on the topmost input to ∗ on the bottom-most output, 〈m,n〉
on the middle input to m + n on the topmost output and n on the lowermost input to
〈n, ∗〉 on the middle output. The definition of add as an int term in the definition of  
on page 49 implements these mappings.

With some simplification of the internal structure of add, the above interactive program
can be written as follows.

apply l1(∗) = apply l2(∗) apply l2(∗) = apply l3(1)

apply l3(n) = apply l5(〈n, ∗〉) apply l4(〈m,n〉) = apply l6(m+ n)
(6.2)
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The block labels correspond to the indicated positions in the diagram.

Comparing this implementation of the interactive interpretation with the result of cps-
translation and defunctionalization (6.1) shows that both translation produce very similar
results. In particular, function abstraction and application are implemented very similarly.

6.3.1 Relating the Translations

We now have two translations of the call-by-name source language to the low-level language.
The translation by interpretation in int was derived from the semantic structure of the Int-
construction, which underlies the Geometry of Interaction and Game Semantics. The other
translation is based on cps-translation and defunctionalization, which are both standard
techniques in the compilation of programming languages.

The contribution of (Schöpp, 2014b) is to make precise a relation between the two
translation methods. The main results in this paper are summarised in the rest of this
section. The relation of the two translation is considered for various fragments of the source
language, as this allows one to study various aspects in isolation.

Core Fragment First we may concentrate just on how functions, i.e. λ-abstraction and
application, are implemented by both translations. To this end, consider the following
basic linear fragment of the source language having just abstraction and application.

var
x : X ` x : X

unit ` ∗ : 1

Γ ` t : Yweak
Γ, x : X ` t : Y

Γ, y : Y, x : X,∆ ` t : Z
exch

Γ, x : X, y : Y,∆ ` t : Z

Γ, x : X ` t : Y→i
Γ ` λx:X. t : X → Y

Γ ` s : X → Y ∆ ` t : X→e
Γ,∆ ` s t : Y

For this fragment, the two translations produce essentially the same low-level programs.
Of course, in the translation of int to the low-level language there are implementation de-
tails that may be treated in many ways. For example, the program add for addition above
may be implemented in many ways. The article (Schöpp, 2014b) considers a reasonable
choice of such details. The result (Schöpp, 2014b, Proposition 6.3) is that the two trans-
lations, cps-translation followed by flow-based defunctionalization and interpretation in
int, can be set up so that they produce results that are identical only up to applications
of the isomorphism unit× A ∼= A. This correspondence includes open terms and terms of
higher type.
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Linear Fragment Next we extend the fragment of the source language to include a type
of natural numbers.

const ` n : N
Γ ` s : N ∆ ` t : Nadd

Γ,∆ ` s+ t : N

Γ ` s : N ∆1 ` t : N ∆2 ` u : N
if

Γ,∆1,∆2 ` if0(s, t, u) : N

With this extension, the two translations do not produce identical results anymore.
However, the two translations still produce programs of the same shape. One may see
that the control-flow graphs of the low-level programs produced by both translations are
isomorphic (Schöpp, 2014b, Proposition 7.2). This is illustrated by the example from the
previous section. The control flow graphs of the programs in (6.1) and (6.2) are the same,
even though the programs are not identical.

The isomorphism of control-flow graphs is only a weak correspondence result, of course.
For closed terms of type N, the result of (Schöpp, 2014b, Theorem 7.4) implies that the
computation in both programs takes the same path in the control flow graph (and returns
the same result, of course). Formally this means that if

apply l1(v1)apply l2(v2)apply l3(v3) . . . apply ln(vn)

is a trace in the program obtained by cps-translation and defunctionalization, then the
program obtained using interpretation in int has a trace of the form

apply l1(v
′
1)apply l2(v

′
2)apply l3(v

′
3) . . . apply ln(v′n)

and vice versa. This means that the execution of both programs jumps to the same blocks
in the same order. The values vi and v′i are not identical. One can however say that v′i
simplifies vi in the sense that for each occurrence of a natural number in v′i we can find a
corresponding occurrence of the same number in vi. A precise statement of the relation of
the values may be found in (Schöpp, 2014b, Theorem 7.4).

For instance, in the example from the previous section, the program (6.1) obtained
using defunctionalization has a trace

apply l1(〈∗, ∗〉) apply l2(〈∗, 〈∗, ∗〉〉) apply l3(〈〈∗, ∗〉, 1〉) apply l5(〈∗, 〈∗, 1〉〉) . . .

The corresponding trace in the interactive program (6.2) is

apply l1(∗) apply l2(∗) apply l3(1) apply l5(〈1, ∗〉) . . .

The values are different but contain the same nat-values.



56 6. Call-by-Name, Continuations and Defunctionalization

Simple Types If we further extend the source language with the contraction rule,

Γ, x1 : X, x2 : X ` t : Y
contr

Γ, x : X ` t[x/x1, x/x2] : Y

then it becomes harder to establish a relation between the two translations. This is because
defunctionalization now needs more than the very simple control-flow analysis outlined in
the previous section. To account for this source language, applications need to be annotated
with more than one label, i.e. instead of just s@lt we need annotations such as s@{l1,...,ln}t.
This annotation states that a function with any of the labels from {l1, . . . , ln} could flow
to s. In defunctionalization, one now needs to perform a case distinction at runtime over
which label actually reaches the application:

apply{l1,...,ln}(〈f, a〉) = case f of l1(~x)⇒ apply l1(〈f, a〉)
| . . .
| ln(~x)⇒ apply ln(〈f, a〉)

Perhaps surprisingly, another consequence of adding contraction is that defunctionalization
now needs recursive types in the low-level language, see (Schöpp, 2014b, Example 8.1) for
an example.

In (Schöpp, 2014b) we are still able to show that the two translations produce pro-
grams with isomorphic control-flow graphs also with contraction. While this is a weak
correspondence result, it nevertheless shows that the appearance of case distinction in de-
functionalization, as shown above, is related to the case distinction that is performed in
the implementation of the contraction rule of int, as defined on page 20. Details can be
found in (Schöpp, 2014b, §8).

6.4 Further Directions

To summarise, we have outlined that, for call-by-name, compilation by implementation of
interaction dialogues turns out to be close to methods of compiler construction, such as
defunctionalization. This is an interesting connection, as the two approaches have been in-
vestigated from quite different angles. Computation-by-interaction is rooted in the formal
semantics of programming languages. In Game Semantics and the Geometry of Interac-
tion the focus has been on answering theoretical questions, such as how to characterise
observational equivalence of expressive programming language like pcf by construction of
fully abstract interactive models, see e.g. (Hyland and Ong, 1995; Abramsky et al., 2000;
Nickau, 1994; Murawski and Tzevelekos, 2013). Research on defunctionalization, on the
other hand, has focused more on practical aspects of programming language implemen-
tation (Banerjee et al., 2001; Cejtin et al., 2000). In fact, although Reynolds introduced
defunctionalization in 1972 (Reynolds, 1972), a proof of its correctness only appeared more
than 25 years later (Nielsen, 2000). Nevertheless, it has been observed that there are inter-
esting connections of defunctionalization to other concepts, see e.g. (Danvy, 2006, 2008).
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One may hope that the identification of a connection between interactive models of
computation and defunctionalization will help to transfer existing methods between the
two areas. In one direction, this may help to develop a better theoretical understand-
ing of the properties of defunctionalization. This may be useful in formal verification
efforts, for example. In the other direction, a transfer of methods may lead to an im-
proved understanding of the operational properties of game semantics and how results on
game semantics apply to compiled programs. This may be useful for other applications of
computation-by-interaction.
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7 Call-by-Value

The observation that a straightforward interpretation of call-by-name pcf in int corre-
sponds closely to well-known compilation techniques such as defunctionalization makes it
natural to ask if a similar correspondence holds for call-by-value source languages as well.
To assess this question, we first need to study how call-by-value can be implemented using
int.

In this chapter, we develop an embedding of a call-by-value source into int. This
embedding allows us to showcase the use of the higher-order structure and the equational
theory of int. We show how to translate a call-by-value language into int and how the
structure of int can be used to prove the correctness of the resulting compilation. The
correctness proof makes essential use of the equational theory of int, including relational
parametricity. These results are the content of (Schöpp, 2014a).

By composing the translation from a call-by-value source language to int with the
translation from int to the first-order low-level language, one obtains a direct translation
from the call-by-value source language to the first-order low-level language. While we are
not yet in the position to prove a formal result, we note that this translation bears a
striking resemblance to existing defunctionalizing compilation techniques, such as (Cejtin
et al., 2000). To the best of our knowledge, a correctness proof for the translation in (Cejtin
et al., 2000) does not appear in the literature, and does not appear to be an easy exercise.
The results in this chapter suggest that factoring such translations through languages like
int may offer an approach to obtaining such proofs.

In the following we explain the translation of call-by-value by using the following simply-
typed λ-calculus as source language. Compared to pcf, case distinction and recursion are
missing in this source language. How to handle case distinction is explained in (Schöpp,
2014a). We have not considered recursion formally yet, but expect it to be possible to
include it.

var
x : X ` x : X

Γ ` t : Yweak
Γ, x : X ` t : Y

Γ, y : Y, x : X,∆ ` t : Z
exch

Γ, x : X, y : Y,∆ ` t : Z

Γ, x1 : X, x2 : X ` t : Y
contr

Γ, x : X ` t[x/x1, x/x2] : Y
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Γ, x : X ` t : Y→i
Γ ` λx:X. t : X → Y

Γ ` s : X → Y ∆ ` t : X→e
Γ,∆ ` s t : Y

const ` n : N
Γ ` s : N ∆ ` t : Nadd

Γ,∆ ` s+ t : N

The values of this language are defined by the following grammar, in which n ranges over
natural number constants.

v, w ::= x
∣∣ n ∣∣ λx:X. t

The reduction relation is defined on closed well-typed terms by:

(λx:X. s) v −→cbv s[v/x]

s t −→cbv s
′ t if s −→cbv s

′

(λx:X. s) t −→cbv (λx:X. s) t′ if t −→cbv t
′

m+ n −→cbv r if r is the sum of m and n

s+ t −→cbv s
′ + t if s −→cbv s

′

n+ t −→cbv n+ t′ if t −→cbv t
′

There are many ways to implement this call-by-value source calculus in int. One could
implement an abstract machine, for example. Since a main interest here is in compilation,
we consider an implementation with a high amount of code separation, much like in the
translation of call-by-name in Chapter 6. The translation of an application s t will be
such that s and t are compiled to separate low-level programs that only need to be linked
together in order to obtain a program for the application. Such a separation is desirable
for separate compilation, for example.

7.1 CPS-translation

Since we have already explained how to translate the call-by-name source language to int,
an immediate idea of accounting for call-by-value would be to translate call-by-value to call-
by-name. A call-by-value cps-translation (Plotkin, 1975) may be used for this purpose.
However, without further refinements, the translation from source language to low-level
language obtained in this way would be inefficient with regard to space usage.

Let us outline the cps-translation, why it is inefficient, and how the efficiency problems
can be solved. A simple way of presenting a call-by-value cps-translation is by using a
continuation monad. We first recall the translation with the simply-typed λ-calculus as
target language and then consider it with int as target.

With the simply-typed λ-calculus as target language, the continuation monad may be
defined by

Cont(X) = (X → ⊥)→ ⊥ ,
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where ⊥ is an arbitrary fixed type. It is well-known that Cont(−) is a strong monad and
we may define combinators

η : X → Cont(X)

bind2 : Cont(X)→ Cont(Y )→ (X → Y → Cont(Z))→ Cont(Z)

by η(t) = λk. k t and bind2 (s, t, u) = λk. s (λx. t (λy. u x y k)). The combinator bind2
integrates both monad multiplication and strength. We use it instead of the latter two, as
we have not introduced pair types in the simply-typed λ-calculus or int (for the sake of
simplicity).

With these combinators, the cps-translation of the call-by-value λ-calculus can be
formulated as follows. Types are translated by

JNK = N
JX → Y K = JXK→ Cont(JY K)

and this definition is extended to contexts: Jx1 : X1, . . . , xn : XnK = x1 : JX1K, . . . , xn : JXnK.
A typing judgement Γ ` t : X is translated to a judgement JΓK ` cps(t) : Cont(JXK) by

induction on the derivation as follows:

• Rule Var:

x : X ` x : X

⇓

x : JXK ` η(x) : Cont(JXK)

• Rule →e:

Γ ` s : X → Y ∆ ` t : X
Γ,∆ ` s t : Y

⇓
JΓK ` cps(s) : Cont(JX → Y K) J∆K ` cps(t) : Cont(JXK)

JΓK, J∆K ` bind2 (cps(s), cps(t), λf. λx. f x) : Cont(JY K)

• Rule →i:
Γ, x : X ` t : Y

Γ ` λx:X. t : X → Y

⇓
JΓK, x : JXK ` cps(t) : Cont(JY K)

JΓK ` η(λx. cps(t)) : Cont(JX → Y K)
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• Rule const:

` n : N
⇓

` η(n) : Cont(JNK)

• Rule add:
Γ ` s : N ∆ ` t : N

Γ,∆ ` s+ t : N
⇓

JΓK ` cps(s) : Cont(JNK) J∆K ` cps(t) : Cont(JNK)
JΓK, J∆K ` bind2 (cps(s), cps(t), λm. λn. η(m+ n)) : Cont(JNK)

• Each structural rule is translated to a corresponding instance of the same structural
rule. We show the case for weakening and omit the analogous cases for exchange and
contraction.

Γ ` t : Y
Γ, x : X ` t : Y

⇓
JΓK ` cps(t) : Cont(JY K)

JΓK, x : JXK ` cps(t) : Cont(JY K)

This outlines a standard monadic formulation of a call-by-value cps-translation.
Let us now consider what happens when one uses not the λ-calculus but int as a target

for this translation. We have shown in Section 3.5 that int can type all simply-typed terms.
If we choose Tnat for the base type N, then we may simply interpret cps(t) as a term of
int. We obtain the following translation of source terms to terms that can be typed in
int.

cps(x) = η(x)

cps(s t) = bind2 (cps(s), cps(t), λf. λx. f x)

cps(λx:X. t) = η(λx. cps(t))

cps(n) = η(return n)

cps(s+ t) = bind2 (cps(s), cps(t), λm. λn. η(let x=m in let y=n in return x+ y))

It is reasonable to ask if this translation induces an efficient compilation of the call-by-value
source language to the low-level language.

Let us outline how the resulting translation would implement the source language by
low-level programs. To this end, we first consider the types of the resulting int term.
Up to subexponential annotations and the replacement of N by Tnat, the int types are
the same as the simple types spelled out above. In essence, these types only need to be
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annotated with suitable subexponentials. Thus, in the translation to int each appearance
of continuation monad (X → ⊥)→ ⊥ is replaced by a type of the form

A · (B ·X ( ⊥)( ⊥ .

In int we choose ⊥ := T0, which is the interface of programs that accept a single request ∗
and that cannot answer.

A closed value of type N is translated to a closed int term of type

A · (B · Tnat( ⊥)( ⊥ .

It represents a low-level program with the following interface (up to distributivity):

unit

A× (B × nat)

A× 0

A× (B × unit)

0

A× unit

The topmost input means ‘Please compute the value.’ The output of type A× unit means
‘Ok, the value is computed and ready.’ We do not know anything of the value of type A,
other than that we need it to ask for the computed number. The input of type A×(B×unit)
allows us to request the computed value. If we pass 〈a, 〈b, ∗〉〉 to this input, where a is the
value returned before, then we get 〈a, 〈b, n〉〉, where n is the number that is the value of
the whole term.

Thus, in the type A · (B · Tnat( ⊥)( ⊥ the rightmost ⊥ is where we pass a request
to compute the value, the other ⊥ is where we receive the acknowledgement (formally as
a request), and the Tnat allows us to request the actual value.

It is interesting that the value of the source term is encoded abstractly in the subexpo-
nential. In order to map 〈a, 〈b, ∗〉〉 to 〈a, 〈b, n〉〉, it must be possible to compute n from a.
The value a is thus an abstract representation of the value of the term. With the ports
corresponding to Tnat, the program provides a way of accessing this abstract value. This is
like in object oriented programming, where object state is private and can only be accessed
using public methods.

With a second example, we illustrate how functions are implemented by low-level pro-
grams. A closed term of type N→ N may be translated to a closed int term of type

A · ((B · (Tnat( ⊥)( Tnat( ⊥)( ⊥)( ⊥ .

For illustration, we consider here the special case where all subexponentials except A and B
are unit. In general, the other function spaces could have non-trivial subexponentials as
well. The type of the low-level program and a typical sequence of messages is depicted in
the following diagram (again up to distributivity).
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unit

A× 0

A× 0

A× unit

0

A× unit

A× unitA× nat

A× (B × unit)A× (B × 0)

A× (B × nat)A× (B × unit)

1. ∗
2. 〈a, ∗〉

3. 〈a, ∗〉
4. 〈a, ∗〉5. 〈a, n〉
6. 〈a, 〈b, ∗〉〉
8. 〈a, 〈b,m〉〉7. 〈a, 〈b, ∗〉〉

The messages are placed next to the input port over which they are passed to the pro-
gram, respectively the output port over which they are returned. The number in front of
the message value is a sequence number. The computation can be read as follows: Mes-
sage number 1 represents a request to compute the function value. The reply is message
number 2, which signals that the function value is ready. Then we can ask to apply the
thus computed function by passing message 3 to the program (the value a therein must be
as in message 2). The program will typically reply with message 4 to ask for the function
argument. The argument value n is supplied using message 5. Then, the program applies
the function to the argument n and when the result is computed it signals that the result
is ready by replying with message 6. While the result of the function application can be
computed from the value b in message 6, we do not know how the program has encoded the
result in this value. Using message 7 we can request the result of the function application,
which will finally be returned in message 8.

The examples illustrate that, in principle, the cps-translation into int gives rise to a
reasonable implementation of call-by-value. It can still be simplified, e.g. so that values of
base type are returned right away rather than having to be requested. Such simplifications
are not difficult to make. However, the sequence in which the function value is computed
and how the application is realised, is reasonable for the implementation of call-by-value.
It is interesting that subexponentials automatically give rise to a representation similar to
closures. In essence, the subexponential for a function will be the tuple of its free value
variables.

However, upon further analysis, it becomes apparent that the translation does not treat
memory in an efficient way. All computed values are represented using subexponentials
and these are never deallocated. Informally, values in subexponentials are deallocated
only when a function call returns. But continuations never return, so no value is ever
deallocated. Consider for example the source term

let x=5 in let y=x+ 1 in let z=y + 4 in z + 3 ,

where (let x=s in t) abbreviates (λx.t) s, i.e. the term is sugared notation for the term
(λx. (λy. (λz. z + 3) (y + 4)) (x+ 1)) 5). If we translate this term as described above, then
we obtain an int program of type

(nat× nat× nat) · (B · Tnat( ⊥)( ⊥ .

If we ask the resulting low-level program to compute the value by sending the request ∗
to the rightmost occurrence of ⊥, the program will reply with 〈〈6, 10, 13〉, ∗〉 in the other
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occurrence of ⊥ to signal that the result is ready. The subexponential contains all inter-
mediate results, including the ones for x and y, which are not needed anymore. Indeed, in
a long series of let-terms, all intermediate values will be kept. Such space usage behaviour
is undesirable in the compilation of call-by-value. Implementations of call-by-value should
be safe for space (Appel, 1992; Shao and Appel, 2000), which is a requirement that values
should be discarded as soon as they go out of scope.

In order to address this issue of space inefficiency, we need to consider the deallocation
of values. The stack-like memory management afforded to us by subexponentials is too
simple. In order to be able to deallocate values when they are not needed anymore, more
direct control over the stored values is desirable.

7.2 Explicit Manipulation of State

To implement call-by-value efficiently, we would like to be able to control not only which
values are computed when, but also how long they are stored in the resulting low-level
program. One way of achieving this is to make the state of all stored values explicit in the
program, so that it is possible to deallocate values explicitly. In the above cps-translation
to int, values are not mentioned explicitly. For example, the encoding of functions as values
of subexponentials remains implicit. In the following section we modify the cps-translation
so that values are fully explicit.

7.2.1 The Linear Case

Let us describe in detail first the linear case, where the source language does not have
contraction. In this case we do not need the subexponentials of int, which simplifies types
and makes it easier to spell out low-level programs explicitly. We will show in the following
section how to account for contraction.

We use the following refinement of the continuation monad, in which we write ⊥A for
A→ ⊥ to make the definition more readable.

ContA,B(X) = ∀α. (X ( ⊥B×α)( ⊥A×α

This definition can be seen as adding information to the continuation monad Cont(X) =
(X ( ⊥)( ⊥. We have Cont(X)− ∼= X−+ unit and Cont(X)+ ∼= X+ + unit. As outlined
above, an input of type unit can be understood as the request to compute the value,
while an output of type unit signals completion of the computation. Above we have seen
that subexponentials can be used to add information to the reply implicitly. Here we add
information explicitly. We have ContA,B(X)− ∼= X−+A×α and ContA,B(X)+ ∼= X++B×α
(recall the notation (−) for replacing all free type variables by G). The initial request takes
a value of type A (which will represent the values of the free variables of the term to be
computed) and returns a value of type B (which will be the actual computed value rather
than just the signal that it is ready).
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We return to the low-level interpretation of ContA,B(X) at the end of this section.
For now one may think of the terms of type ContA,B(X) as programs that take a value
of type A, that in response return a value of type B and that then give us access to a
program of interface type X. One may understand Cont as a parameterised monad (Atkey,
2009). It was identified from the definitions of (Schöpp, 2014a) in discussions with Shin-ya
Katsumata.

We use the following combinators for working with ContA,B(X).

η : X ( ContA,A(X)

bind2 : ContA,B(X)( ContC,D(Y )( (X ( Y ( ContB×D,E(Z))( ContA×C,E(Z)

(−) l (=): (A′ → TA)( ContA,B(X)( ContA′,B(X)

(−) m (=): ContA,B(X)( (B → TB′)( ContA,B′(X)

Informally, η and bind2 have the same meaning as before. The effect of bind2 (s, t, u) is to
first execute s and t to obtain x and y, and then to execute (u x y). Only now the state is
made explicit. We start with a value of type A×C. Using the A-part, we can execute s to
obtain a value of type B. With the C-part, we can execute t and obtain a value of type D.
We thus get a value of type B ×D, using which we can start (u x y) to get some value of
type E, which is our result value.

For f : A′ → TA and t : ContA,B(X), we have f l t : ContA′,B(X), which amounts to
a pre-composition of t with f . Similarly, we write t m g for post-composition of t with g.
Definitions of these combinators are given below. Here we first show how they can be used
to refine the cps-translation.

The translation makes an explicit distinction between data and code. For any source
type X, we define a value type CJXK that is used to represent the values of type X. Second,
we define an interaction type JXK. These types are defined as follows.

CJNK = nat JNK = ⊥0

CJX → Y K = G JX → Y K = JXK( ContG×CJXK,CJY K(JY K)
Values of function type are represented as values of G. They are intended to be opaque,
i.e. they are not meant to be inspected. To be able to use opaque function values, they
will each come with a program with interface JX → Y K that makes it possible to apply a
function given by an opaque value to any possible argument. To execute such a program
with interface JX → Y K, we must connect to it a program of type JXK and we must provide
a value of type G× CJXK. The value is the pair of the function value and the value of an
argument. The program JXK must be supplied so that the program can make use of the
argument value. This value may be opaque to the program itself.

For natural numbers we have JNK = ⊥0. A program with this type is vacuous, having
no inputs and no output. This is because numbers are already fully specified by their
values in CJNK, so there is no need to provide a program for accessing them.

These definitions are extended to contexts as follows: CJΓK is the value type defined by

CJemptyK = unit , CJΓ, x : XK = CJΓK× CJXK ,
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and JΓK is the context defined by

JemptyK = empty , JΓ, x : XK = JΓK, x : unit · JXK .

With these definitions, we can define a refined cps-translation that maps a source
typing judgement Γ ` t : X to the int typing judgement JΓK ` cps(t) : ContCJΓK,CJXK(JXK).
To execute cps(t), we therefore need to supply a value of type CJΓK, which is the tuple of
the free variables of t, as well as a program of type JΓK to allow the term to make use of
these values. We get a value of type CJXK and access to a program with interface JXK,
using which we can use the value.

The translation is defined by induction on the source typing derivation.

• Rule var:

x : X ` x : X

⇓

x : unit · JXK ` η(x) : ContCJXK,CJXK(JXK)
• Rule →i: In an abstraction, the tuple of the values of the variables in the context Γ

is used as the function value. Since functions are represented using type G, this tuple
is encoded using encode. Of course, when the function is applied, this encoded value
needs to be decoded again. This idea is implemented as follows:

Γ, x : X ` t : Y
Γ ` λx:X. t : X → Y

⇓
JΓK, x : unit · JXK ` JtK : ContCJΓK×CJXK,CJY K(JY K)

JΓK, x : unit · JXK ` (decode× id) l JtK : ContG×CJXK,CJY K(JY K)
JΓK ` λx. (decode× id) l JtK : JXK( ContG×CJXK,CJY K(JY K)

JΓK ` η(λx. (decode× id) l JtK) : ContCJΓK,CJΓK((JXK( ContG×CJXK,CJY K(JY K)))
JΓK ` η(λx. (decode× id) l JtK) m encode : ContCJΓK,G((JXK( ContG×CJXK,CJY K(JY K))︸ ︷︷ ︸

JX→Y K

)

• Rule →e: In the case for application, the term splitΓ,∆ is an implementation of the
canonical isomorphism JΓ,∆K→ JΓK× J∆K.

Γ ` s : X → Y ∆ ` t : X
Γ,∆ ` s t : Y

⇓

JΓK ` cps(s) : ContCJΓK,G(

JX→Y K︷ ︸︸ ︷
(JXK( ContG×CJXK,CJY K(Y ))) J∆K ` cps(t) : ContCJ∆K,CJXK(JXK)

JΓK, J∆K ` bind2 cps(s) cps(t) (λf. λx. f x)) : ContCJΓK×CJ∆K,CJY K(JY K)
JΓK, J∆K ` splitΓ,∆ l (bind2 cps(s) cps(t) (λf. λx. f x)) : ContCJΓ,∆K,CJY K(JY K)
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• Rule weak: The translation of weakening now involves explicit discarding of the
value of the weakened variable in the translated program.

Γ ` t : Y
Γ, x : X ` t : Y

⇓
JΓK ` cps(t) : JY K

JΓK, x : unit · JXK ` π1 l cps(t) : JY K
The term π1 l cps(t) explicitly discards the value of the variable x, which does not
appear in term t. This addresses the issue with the simple cps-translation that values
were never deallocated.

• Rule const: In the translation of constants and addition, we write ? for the canonical
term of type ⊥0.

` n : N
⇓

` η ? : Contunit,unit(⊥0)

` (η ?) m constn : Contunit,nat(⊥0)︸ ︷︷ ︸
ContCJemptyK,CJNK(JNK)

• Rule add:
Γ ` s : N ∆ ` t : N

Γ,∆ ` s+ t : N

⇓
JΓK ` cps(s) : ContCJΓK,nat(⊥0) J∆K ` cps(t) : ContCJ∆K,nat(⊥0)

JΓK, J∆K ` bind2 cps(s) cps(t) (λi. λj. (η ?) m add) : ContCJΓK×CJ∆K,nat(⊥0)

JΓK, J∆K ` splitΓ,∆ l (bind2 cps(s) cps(t) (λi. λj. (η ?) m add)) : ContCJΓ,∆K,CJNK(JNK)

7.2.2 Low-Level Interpretation

Let us look at what the refined translation amounts to in terms of low-level programs. We
first give concrete definitions of η, bind2 , l and m, spell out the low-level programs that
they define and give a concrete example for the complete translation from source language
to low-level language.

The definition of η : X ( ContA,A(X) is given by

η = λx:X.Λα. λk:⊥A×α. k x

It is defined such that η t translates (with simplification) to the following low-level program:
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JtKX− X+

A× α

To define the other combinators, we first define a term f ∗ : ⊥B ( ⊥A for any closed
f : A → TB. In fact it is possible to define it by a combinator of type (A → TB) (
(⊥B ( ⊥A) using direct definition. It is interesting to note that direct is needed to
define f ∗. One may try to define it by λk. fnx:A. let y=f x in k y, but then f ∗ would have
type (A×B) · ⊥B ( ⊥A, rather than ⊥B ( ⊥A.

With this proviso, the binding combinator can be defined as follows.

bind2 = λs. λt. λu.Λα. λk. f ∗1 (s (C × α) (λx. f ∗2 (t (B × α) (λy. f ∗3 (u x y α k)))))

where f1 = fn 〈〈a, c〉, z〉. return 〈a, 〈c, z〉〉, f2 = fn 〈b, 〈c, z〉〉. return 〈c, 〈b, z〉〉 and finally f3 =
fn 〈d, 〈b, z〉〉. return 〈〈b, d〉, z〉.

This combinator connects low-level programs s, t and u in the following way; compare
this to the informal explanation of bind2 above.

JsK

X−

A× α B × α

JtK
Y +

C × α D × α

b1 b2 b3

JuK
X+ Y −

(B ×D)× α E × α(A× C)× α

As in Chapter 3, we do not show any ports corresponding to free variables in s, t and u,
which are just passed to the outside. The blocks b1, b2 and b3 are given by:

b1 (〈〈a, c〉, z〉) = 〈a, encode(〈c, z〉)〉
b2 (〈b, u〉) = let 〈c, z〉=decode(u) in 〈c, encode(〈b, z〉)〉
b3 (〈d, u〉) = let 〈b, z〉=decode(u) in 〈〈b, d〉, z〉

Finally, the combinators for pre- and post-composition are defined as follows:

f l t = Λα. λk. f ∗(t α k)

JtK
f

tm g = Λα. λk. t α λy. g∗(k y)

JtK
g

With these definitions of the combinators, we can now explain what the cps-translation
amounts to in terms of low-level programs. A source typing sequent Γ ` t : Y is translated
to the int sequent JΓK ` cps(t) : ContCJΓK,CJY K(JY K), which translates to a low-level program
with the following interface.
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Jcps(t)K
JY K−

JXnK+ JXnK−
JY K+

...
...

JX1K+ JX1K−

CJY K× αCJΓK× α

If one spells out the above translation and applies a few immediate simplifications, then
one obtains the following translation.

• Case variable:

JXK−
JXK+ JXK−

JXK+
CJXK× αCJx:XK× α 〈〈unit, x〉, z〉 7→ 〈x, z〉

• Case abstraction:

〈g, z〉 7→ 〈encode(g), z〉

〈〈c, vx〉, z〉 7→ 〈〈decode(c), vx〉, z〉

Jcps(t)K
JY K−
JXK+ JXK−

JY K+

...
...

• Case application:

b1 b2 b3

...
...

...
...

Jcps(t)KJcps(s)K

The blocks b1, b2 and b3 are defined as for bind2 above.

• Case number constant n:

unit× α nat× α〈∗, z〉 7→ 〈n, z〉

• Case addition:
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b1 b2 〈〈m,n〉, z〉 7→ 〈m+ n, z〉

...
...

...
...

Jcps(t)KJcps(s)K

The blocks b1 and b2 are again defined as for bind2 above.

• Case weakening:

〈〈g, n〉, z〉 7→ 〈g, z〉

...
...

Jcps(t)K

To give an idea of how this translation from source to low-level language implements
call-by-value, we spell out as an example the translation of the term

(λf. f 1) (λx. y + x) .

We spell out the translation fully using the syntax of the low-level language (as opposed
to just showing the graphical notation) in order to illustrate that the translation is quite
similar to defunctionalization. In the concrete syntax, we must give names to the entry
and exit labels of blocks (these names are hidden in the graphical notation). We shall use
suggestive names and choose the labels so as to indicate from which subterm of the original
term they originate. These subterms are numbered as follows:

((λf. (f 5 16)7)8 (λx. (y2 + x1)3)4)9

Next, we give the translation of each subterm of this term and build the translation of the
whole program step by step.

• x : N ` x : N translates to the program with one block:

eval1 (〈〈∗, vx〉, z〉 : CJx : NK× α) = ret1 (vx, z)

Its entry label is eval1 and the exit label is ret1 .

• y : N ` y : N translates to the program with one block:

eval2 (〈〈∗, vy〉, z〉 : CJy : NK× α) = ret2 (vy, z)

Its entry label is eval2 and the exit label is ret2 .

• y : N, x : N ` y+x : N translates to the program with the blocks from the translation
of x : N ` x : N and y : N ` y : N, in addition to

eval3 (〈〈〈∗, vy〉, vx〉, z〉 : CJy : N, x : NK× α) = eval2 (〈〈∗, vy〉, encode(〈〈∗, vx〉, z〉))
ret2 (〈n, u〉 : nat× α) = let 〈〈∗, vx〉, z〉=decode(u) in eval1 (〈〈∗, vx〉, encode(n, z)〉)
ret1 (〈m,u〉 : nat× α) = let 〈n, z〉=decode(u) in ret3 (〈m+ n, z〉)

The single entry label is eval3 and the single exit label is ret3.
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• y : N ` λx. y+x : N→ N translates to the program with the blocks from y : N, x : N `
y + x : N and the following additional blocks.

eval4 (〈〈∗, vy〉, z〉 : CJy : NK× α) = ret4 (〈encode(〈∗, vy〉), z〉)
apply4 (〈〈c, vx〉, z〉 : (G× nat)× α) = let 〈∗, vy〉=decode(c) in eval3 (〈〈〈∗, vy〉, vx〉, z〉)
ret3 (〈n, z〉 : nat× α) = applyret4 (〈n, z〉)

The list of entry labels is apply4 , eval4 , and the list of exit labels is applyret4 , ret4 .

• f : N→ N ` f : N→ N translates to the program with the following blocks:

eval5 (〈〈∗, vf〉, z〉 : CJf : N→ NK× α) = ret5 (〈〈∗, vf〉, z〉)
apply5 (〈〈vf , n〉, z〉 : nat× α) = applyf (〈〈vf , n〉, z〉)
applyretf (〈n, z〉 : nat× α) = applyret5 (〈n, z〉)

The list of entry labels is applyretf , eval5 , and the list of exit labels is applyf , ret5 .

• ` 1: N translates to the program with a single block

eval6 (〈∗, z〉 : CJemptyK× α) = ret6 (〈1, z〉)

and a single entry label eval6 and a single exit label ret6 .

• f : N→ N ` f 1: N translates to the program with the blocks from both the source
terms f : N→ N ` f : N→ N and ` 1: N and

eval7 (〈〈∗, vf〉, z〉 : CJf : N→ NK× α) = eval5 (〈〈∗, vf〉, encode(〈∗, z〉)〉)
ret5 (〈v1, u〉 : G× α) = let 〈∗, z〉=decode(u) in eval6 (〈∗, encode(〈v1, z〉)〉)
ret6 (〈v2, u〉 : G× α) = let 〈v1, z〉=decode(u) in apply5 (〈〈v1, v2〉, z〉)
applyret5 (〈n, z〉 : nat× α) = ret7 (〈n, z〉)

The list of entry labels is applyretf , eval7 , and the list of exit labels is applyf , ret7 .

• ` λf. f 1: (N→ N)→ N translates to the program with the blocks from the source
term f : N→ N ` f 1: N together with the following blocks.

eval8 (〈∗, z〉 : CJemptyK× α) = ret8 (〈encode(∗), z〉)
apply8 (〈〈c, vf〉, z〉 : (G× G)× α) = let v=decode(c) in eval7 (〈〈v, vf〉, z〉)
ret7 (〈n, z〉 : nat× α) = applyret8 (〈n, z〉)

The list of entry labels is applyretf , apply8 , eval8 .
The list of exit labels is applyf , applyret8 , ret8 .
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• Finally, y : N ` (λf. f 1) (λx. y + x) : N translates to the program with the blocks
from both ` λf. f 1: (N → N) → N and y : N ` λx. y + x : N → N as well as the
following blocks.

eval9 (〈〈∗, vy〉, z〉 : CJy : NK× α) = eval8 (〈∗, encode(〈〈∗, vy〉, z〉)〉)
ret8 (〈v1, u〉 : G× α) = let 〈〈∗, vy〉, z〉=decode(u) in eval4 (〈〈∗, vy〉, encode(〈v1, z〉)〉)
ret4 (〈v2, u〉 : G× α) = let 〈v1, z〉=decode(u) in apply8 (〈〈v1, v2〉, z〉)
applyret8 (〈n, z〉 : nat× α) = ret9 (〈n, z〉)
applyf (〈〈vf , vx〉, z〉 : (G× nat)× α) = apply4 (〈〈vf , vx〉, z〉)
applyret4 (〈n, z〉 : nat× α) = applyretf (〈n, z〉)

It has a single entry label eval9 and a single exit label ret9 .

To see that the low-level program correctly implements the source term, let us evaluate its
value with the value 3 for y. We get the following trace of jumps to block labels.

1 : eval9 (〈〈∗, 3〉, z〉)
2 : eval8 (〈∗, encode(〈〈∗, 3〉, z〉)〉)
3 : ret8 (〈encode(∗), encode(〈〈∗, 3〉, z〉)〉) 15 : eval3 (〈〈〈∗, 3〉, 1〉, z〉)
4 : eval4 (〈〈∗, 3〉, encode(〈encode(∗), z〉)〉) 16 : eval2 (〈〈∗, 3〉, encode(〈∗, 1〉, z)〉)
5 : ret4 (〈encode(〈∗, 3〉), encode(〈encode(∗), z〉)〉) 17 : ret2 (〈3, encode(〈∗, 1〉, z)〉)
6 : apply8 (〈〈encode(∗), encode(〈∗, 3〉)〉, z〉) 18 : eval1 (〈〈∗, 1〉, encode(3, z)〉)
7 : eval7 (〈〈∗, encode(〈∗, 3〉)〉, z〉) 19 : ret1 (〈1, encode(3, z)〉)
8 : eval5 (〈〈∗, encode(〈∗, 3〉)〉, encode(〈∗, z〉)〉) 20 : ret3 (〈4, z〉)
9 : ret5 (〈〈∗, encode(〈∗, 3〉)〉, encode(〈∗, z〉)〉) 21 : applyret4 (〈4, z〉)
10 : eval6 (〈∗, encode(〈encode(〈∗, 3〉), z〉)〉) 22 : applyretf (〈4, z〉)
11 : ret6 (〈1, encode(〈encode(〈∗, 3〉), z〉)〉) 23 : applyret5 (〈4, z〉)
12 : apply5 (〈〈encode(〈∗, 3〉), 1〉, z〉) 24 : ret7 (〈4, z〉)
13 : applyf (〈〈encode(〈∗, 3〉), 1〉, z〉) 25 : applyret8 (〈4, z〉)
14 : apply4 (〈〈encode(〈∗, 3〉), 1〉, z〉) 26 : ret9 (〈4, z〉)

The example illustrates that the low-level program can be simplified quite a lot. The
low-level language is suitable for such simplifications. If one extends the very simple
optimisation pass described in (Schöpp, 2014c) and implemented in (Schöpp, 2014d) with
knowledge about encode and decode, then one can expect to simplify the above program
to:

eval9 (〈〈∗, vy〉, z〉 : CJy : NK× α) = ret9 (〈vy + 1, z〉)
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7.2.3 Contraction

So far we have only described the translation for the linear fragment of the source language.
To account for contraction, it is possible to use subexponentials.

The contraction rule

Γ, x1 : X, x2 : X ` t : Y
contr

Γ, x : X ` t[x/x1, x/x2] : Y

can then be translated to a derivation of the form:

JΓK, x1 : A1 · JXK, x2 : A2 · JXK ` cps(t) : Cont(CJΓK×CJXK)×CJXK,CJY K(JY K)
JΓK, x1 : A1 · JXK, x2 : A2 · JXK ` dupl cps(t) : ContCJΓK×CJXK,CJY K(JY K)

JΓK, x : (A1 + A2) · JXK ` copy x as x1, x2 in (dupl cps(t)) : ContCJΓK×CJXK,CJY K(JY K)
In this derivation, dup is the canonical term that duplicates the value of type CJXK. The
appearances of Cont in this derivation should be understood to be annotated appropriately
with subexponentials (e.g. by type inference).

Consider for example the source term (λf. (f 1) + (f 2)) (λx. y + x). The low-level
program for it will have only a single copy of the code for the application of the function
(λx. y + x), which the program jumps to twice. The blocks in the program for (λx. y + x)
however have an additional argument of type unit+unit (or similar, depending on the choice
of typing derivation) arising from the subexponentials. This value remembers whether the
term is evaluated for the first time or the second time. It determines where to return the
result value of the application to.

Concretely, if we label subterms as follows ((λf. (f 1)1 + (f 2)2)3 (λx. y + x)4)5, then
the relevant parts of the blocks for evaluating terms 1 and 2 and for applying function 4
are:

eval1 (〈〈∗, vf〉, · · ·〉 : unit× α) = apply4 (〈inl(∗), 〈〈vf , 1〉, · · ·〉〉)
eval2 (〈〈∗, vf〉, · · ·〉 : unit× α) = apply4 (〈inr(∗), 〈〈vf , 2〉, · · ·〉〉)
apply4 (〈c, 〈〈e, vx〉, · · ·〉〉 : (unit + unit)× ((G× nat)× α)) =

let 〈∗, vy〉=decode(e) in applyret4 (〈c, 〈vy + vx, · · ·〉〉)
applyret4 (〈c, 〈n, · · ·〉〉 : (unit + unit)× (nat× α)) = case c of inl( )⇒ ret1(〈n, · · ·〉)

; inr( )⇒ ret2(〈n, · · ·〉)
. . .

The block eval1 implements the evaluation of the term (f 1). To evaluate this term, the
program jumps to label apply4 with function value vf and argument 1 and further the
value inl(∗), which indicates that the call came from the first use of f . In the block eval2 ,
which evaluates (f 2), the value inr(∗) is used instead. The return block applyret4 now has
a case distinction that returns the result of the application of the function the right caller.

Note, however, that while the function is used twice, its value is computed only once.
To evaluate the whole term, first the subterm 3 is evaluated, then subterm 4. Only then
does the program jump to eval1 with the computed function value vf . This function value
remains unchanged in the rest of the computation. It is passed to apply4 twice.
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7.2.4 What do we gain?

We have outlined how a translation of a call-by-value source language to the low-level
language may be defined by a cps-translation into int. Of course, it is possible to define
such a translation directly without going through int. For example, in (Cejtin et al.,
2000) a defunctionalizing translation from source to low-level language is presented directly.
However, it is not obvious how to prove the correctness of such a direct translation.

By factoring the translation through int, we identify logical structure in the translation
that can be used to show its correctness. In Chapter 3 we have defined an equational theory
for int using relational parametricity, which captures non-trivial reasoning on the level of
low-level programs. We have noted in Section 3.3 that even the β-equations for( capture
non-trivial reasoning. These equations were enough to account for the encoding of a call-
by-name source language. The translation of call-by-value is an example that illustrates
the utility of relational parametricity.

For the translation that has been outlined in this section, it is not obvious how to prove
correctness. Consider the translation of a λ-abstraction. A source term Γ ` λx:X. t : X →
Y is translated to a term of type

ContCJΓK,G(JXK( ContG×CJXK,CJY K(JY K)) .

Notice that there are two occurrences of G. In the outermost occurrence of Cont, we
first compute the function value as a value vf of type G. Then, any time we want to
apply the function encoded by this value to an argument value vx : CJXK, we pass the pair
〈vf , vx〉 : G×CJXK to the inner occurrence of Cont. As an input to the inner occurrence of
Cont, we should pass only the value vf that has been returned by the outermost occurrence.
We consider the value vf as an opaque abstract value that may not be inspected or modified
and that must be passed to the inner occurrences of Cont unchanged. The above type does
not enforce such a correspondence.

In a proof of correctness of the translation, we must prove that such a correspondence
between the two occurrences of G is respected. In (Schöpp, 2014a), we show how to do
this using relational parametricity. Roughly, the idea is to change the type to

∃α.ContCJΓK,α(JXK( Contα×CJXK,CJY K(JY K))

and use parametricity to show that this enforces the required invariants. Another option
might be to enforce suitable invariants globally, but here we use relational parametricity.

7.3 Correctness using Parametricity

The aim is now to integrate the information hiding needed for the correctness argument
in the cps-translation by means of parametric polymorphism. To control the scope of the
quantifiers, it is convenient to move to an equivalent formulation of the cps-translation.
There is a one-to-one correspondence between functions of type A→ ((B → ⊥)→ ⊥) and
functions of type (B → ⊥)→ (A→ ⊥). Hence, in the cps-translation of the simply-typed
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λ-calculus we may replace JX → Y K = JXK → Cont(JY K) by JX → Y K = KY → KX,
where KX = JXK → ⊥ is the type of continuations for type X. The cps-translation of
terms changes only in the order of arguments. In this variant, the continuation is always
the first argument.

A similar modification can be made to the cps-translation with explicit state. In this
form it is then suitable for adding information hiding using polymorphic quantification. We
outline the resulting transformation without subexponentials for the linear source language.
To cover the full source language, one only needs to allow subexponentials, as above.

The type of continuations is an interface type in int and has the following form.

Kα(X) = ∀ϕ. JXKϕ( ⊥(CJXKϕ×α)

To fully apply a continuation, one needs to supply a type ϕ, a program of type JXKϕ and a
value of type CJXKϕ. The type ϕ is the type that is used to represent the private/opaque
part of the value that is put into the continuation. The value of type CJXKϕ represents
the actual value that is thrown into the continuation. Finally, the program JXKϕ allows
the continuation to make use of the value. After all, the value that is thrown into the
continuation is encoded using the type ϕ that the continuation knows nothing about. To
make use of this value, the continuation can use the program of type JXKϕ.

The cps-translation of types is then defined as follows.

CJNKϕ = nat JNKϕ = ⊥0

CJX → Y Kϕ = ϕ JX → Y Kϕ = ∀α.Kα(Y )( Kϕ×α(X)

The parameter ϕ is the value type whose values can be considered private in the encoding
of the values. The continuation monad becomes:

Contγ(X) = ∀α.Kα(X)( ⊥(γ×α) .

With these definitions, the above cps-translation can be adapted so that the source
typing judgement x1 : X1, . . . , xn : Xn ` t : Y is translated to

x1 : JX1Kϕ1 , . . . , xn : JXnKϕn ` cps(t) : ContCJX1Kϕ1×···×CJXnKϕn
(Y )

in int. For each free variable xi, we choose a fresh type variable ϕi here.
Such a translation is presented in (Schöpp, 2014a). In this paper, the translation is

presented using a basic logic for interaction, which can be seen as a fragment of int that
allows one to focus on the issues of the translation. This fragment is close to Tensorial Logic,
as outlined in Section 3.2.2. The resulting translation into this fragment does not mention
encode and decode terms anymore. These encodings and decodings are now captured by
the use of universal quantification. The description from the previous section can be seen
as an explicit description of the obtained implementation.

The correctness theorem of (Schöpp, 2014a, Corollary 1) states that, for any closed
source term of base type ` t : N and any natural number n, if t −→∗cbv n then Jcps(t) unitK
is, to isomorphism, a program of type unit→ nat that maps ∗ to n. The proof makes use
of parametricity, see (Schöpp, 2014a, Lemma 9).
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7.4 Further Directions

One interesting direction for further work is to compare the translation of call-by-value to
practical applications of defunctionalization in compilation, e.g. in MLton (Cejtin et al.,
2000). Above we have observed that the result of the translation using int resembles that
of a call-by-value defunctionalization. One goal might be to make this observation precise.

Even before establishing a formal correspondence, one may consider the similarity to
defunctionalization as first evidence that a translation using int may also produce efficient
low-level programs. From the work on MLton, call-by-value defunctionalization is known
to produce efficient programs. It would be an interesting direction for practical work to
ascertain if this is the case for a translation using int too. In this context, the approach of
using computation-by-interaction may also bring new a toolkit to work on problems with
defunctionalizing compilation, e.g. to achieve useful (partial) separate compilation.

For practical purposes, the translation using int may need to be optimised. For ex-
ample, the use of G, encode and decode in the translation of universal quantifiers is quite
simple-minded. It may perhaps be improved by using union types in place of G, so that
encode and decode become merely injection into and projection out of a union type. By
avoiding encoding and decoding, one may hope to obtain more efficient low-level programs.
One possibility of tracking the details of union types may be to introduce bounded quan-
tifiers to the int type system, i.e. have types of the form ∀αC (β1∪ · · · ∪βn). X or similar.

The certification of space bounds and the space analysis of call-by-value functional
programs would be another a natural direction for further work. We have seen that int
makes all space usage fully visible.

In a more theoretical direction, we should like to clarify the relation of the interac-
tive implementation to game semantic models of call-by-value (Honda and Yoshida, 1999;
Abramsky and McCusker, 1997). Discussions with Nikos Tzevelekos exposed a striking
similarity of the implementation of call-by-value in int with the dialogues of call-by-value
games. However, the details remain to be worked out.

Finally, we note that computational effects from the low-level language can be lifted to
call-by-value source language. Indeed, note that ⊥A is defined by A→ T0 and thus wraps
the effects of the low-level language, much like in the work of Melliès (2012). For instance,
a term x : N ` print(x) : N may be translated to λk. (fnx:nat. let u=print(x) in return x)∗k
of type ((⊥0 ( ⊥nat)( ⊥nat. This interprets print(x) so that x is printed when the term
is evaluated. Operations for other effects that may be present in the low-level language
may similarly be lifted. While the definition of the translation of call-by-value into int
was motivated mainly by the issue of space usage outlined above, it should be interesting
to compare this approach to the work of Hoshino et al. (2014) on effects in the Geometry
of Interaction.
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8 Conclusion

We have studied computation-by-interaction as an approach to structuring low-level com-
putation. We have defined a calculus int that uses higher types to organise low-level
computation, and we have assessed the structure of low-level programs that is identified
in this way. We have outlined the practical application of int for low-level programming,
we have used it to characterise the complexity class of the functions computable in loga-
rithmic space, and we have shown how it can decompose call-by-name and call-by-value.
While int was derived from mathematical constructions in the context of game seman-
tics, we have shown that it is related to defunctionalization, a standard technique in the
compilation of higher-order languages to low-level languages. Moreover, in the translation
of call-by-value, we have seen that the structure of int guides the identification of logical
principles that are useful for reasoning about low-level programs.

This work may serve as the basis for further work in a number of directions.

First, there is the connection between game semantics, low-level languages and compiler
construction. The results described in Chapter 6 show that the plays of game semantics
are closely related to machine code traces, at least for a call-by-name translation. The
results from Chapter 7 indicate that a similar correspondence may also hold for the call-
by-value case. This raises the question to what extent game semantics may be used as
a theory of compiler construction. For example, in game semantics it is well-known how
to specify open terms and their possible behaviour. Recent work on the verification of
separate compilation (Beringer et al., 2014) shows a striking resemblance to such methods.
It should be worth to investigate to what extent a transfer of techniques can solve existing
problems in these areas.

Since work on game semantics has concentrated on theoretical aspects, while the de-
velopment of compilation techniques has been motivated by practical concerns, a transfer
of techniques may well be interesting. The focus on structure, proof techniques and com-
positionality in work on game semantics may make the methods developed there useful for
compiler verification. On the other hand, the applications of computation-by-interaction
mentioned in the Introduction were based on implementations of game semantics. The
knowledge from compiler construction could be useful when it comes to the efficient im-
plementation of such approaches.

These directions all lead to the long-term goal of identifying the mathematical structure
that allows the construction of correct-by-construction compilers from mathematical com-
ponents. Identifying the low-level structure, e.g. for the details of memory management or
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for efficient cache usage, appears to be a challenging problem.
Another difficult problem for further work is to extend the focus from correctness to

encompass analysis and certification of resource usage. As a very small first step, one
may consider the application of the fine structure of int towards this goal. For example,
the characterisation of space complexity classes from Chapter 5 and the translation of
call-by-value from Chapter 7 suggest an approach to establishing space bounds on call-by-
value programs, e.g. for hardware synthesis or sublinear space computation as before. The
monadic description of the translation from call-by-value to int suggests a formulation as
an effect type system that makes value types explicit.
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Paul-André Melliès. Game semantics in string diagrams. In Logic in Computer Science,
LICS 2012, pages 481–490. IEEE, 2012.
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