
Interaction Semantics andProgramming Language Compilation
Ulrich Schöpp
LMU Munich

Introduction
Interaction Semantics builds mathematical models for

programming languages from interacting processes.

Such models can help understand low-level decompositions of

high-level languages.

...
%x6 = phi i32 [38, %case1], [%unpack35, %case145],

[%add, %case167]
%add = add i32 %x6, -1
%eq47 = icmp ne i32 %add, 0
switch i1 %eq47, label %case049 [i1 true, label %case148]
...

let rec fib x =
if x < 1 then 1 else (fib (x - 1)) + (fib (x - 2))

Introduction
Need better understanding for:

• formal verification
• compositional reasoning
• resource usage analysis and certification
• modularity

Game Semantics for Logic
Explain logic in terms of dialogues between disputing parties.

Verschiedene Beweise führen zu verschiedenen Strategien.

Proponent and Opponent argue about a proposition:

• Proponent tries to defend it.
• Opponent tries to refute it.
• The logic defines the mode of interaction.
– How can a formula be attacked?

– How can a formula be defended?

A proof is a strategy for Proponent to defend the proposition

against any possible attack.

Game Semantics for Constructive Logic

(⊥ ∧ ϕ) ∨ >

ProponentOpponent
Which of the disjuncts is true?

[Lorenzen & Lorenz, 1950s]

Game Semantics for Constructive Logic

(⊥ ∧ ϕ) ∨ >

The left one ⊥ ∧ ϕ is true.

ProponentOpponent
Which of the disjuncts is true?

[Lorenzen & Lorenz, 1950s]

Game Semantics for Constructive Logic

(⊥ ∧ ϕ) ∨ >

The left one ⊥ ∧ ϕ is true.

Then explain why ⊥ is true.

ProponentOpponent
Which of the disjuncts is true?

[Lorenzen & Lorenz, 1950s]

Game Semantics for Programs

Attacks become requests for information.

Programs are modelled by strategies that explain how Proponent

can answer any request for information.

Proponent now defends the claim:

I have a program of type X.

Game Semantics for Programs

int→ int

ProponentOpponent
What does your function return?

Game Semantics for Programs

int→ int

ProponentOpponent
What does your function return?

What is the function argument?

Game Semantics for Programs

int→ int

ProponentOpponent

The argument is 5.

What does your function return?

What is the function argument?

Game Semantics for Programs

int→ int

ProponentOpponent

The argument is 5.

What does your function return?

What is the function argument?

Then the function returns 6.

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

What does the function return?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

What is the sum?

What does the function return?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

What is the sum?

What does the function return?

What is value of x?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

What is the sum?

What does the function return?

What is value of x?

What is value of x?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

What is the sum?

What does the function return?

What is value of x?

What is the function argument?

What is value of x?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

The value is 5.

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

The value is 5.

The value is 5.

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

The value is 5.

The value is 5.

What is value of 1?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

The value is 5.

The value is 5.

The value is 1.

What is value of 1?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

The value is 5.

The value is 5.

The value is 1.

The sum is 6.

What is value of 1?

Game Semantics for Programs

x : int

The strategy of a program derives from strategies of its parts.

λx. x+ 1: int→ int

x+ 1: int

1: int

The argument is 5.

The value is 5.

The value is 5.

The value is 1.

The sum is 6.

The function returns 6.

What is value of 1?

Structure in Game Semantics

Fully abstract model for PCF
• [Hyland & Ong, 1994]
• [Abramsky, Jagadeesan & Malacaria, 1994]
• [Nickau 1994]

Geometry of Interaction
• closely related, with proof-theoretic motivation [Girard 1987]

Game semantics has developed a number of mathematical

constructions that turn a very simple model of interaction

dialogues into precise models of many programming languages.

Computation by Interaction
Implement programs by implementing their interaction strategies.

unit

int→ int

int

unitint

Computation by Interaction
Implement programs by implementing their interaction strategies.

unit

int→ int

int

unitint Argument?

Return value? Return value is . . .

Argument is . . .

Computation by Interaction
Strategies are compositional building blocks.

unit

int

int

unit

TODO: modules hier schon?

Computation by Interaction
Construct a game semantic model from low-level programs.

Interpretation becomes compilation.

Developed for compilation to . . .

• abstract machines [Mackie, 1995]
• hardware circuits [Ghica, Smith & Singh, 2007]
• LOGSPACE Turing Machines [S., 2006], [Dal Lago & S., 2010]
• π-calculus [Honda, Yoshida & Berger, 2001]
• distributed processes [Fredriksson & Ghica, 2013]
• quantum circuits
[Hoshino, Hasuo, Yoshimizu, Faggian, Dal Lago, 2014]

• . . .

Introduction
Consider interaction as a general approach to connect

mathematical semantics to compiler construction.

Semantics

• mathematical structure
• compositionality
• proofs

Compiler Construction

• efficiency
• optimisations
• implementation

Overview

Machine Code

ILn

IL2

IL1

We look at the compilation of higher-order functional

programming languages.

Source

Compilers work by translating the source

into a number of intermediate languages.

• decreasing level of abstraction
• optimisations at different levels

. . .

We use constructions from interaction

semantics to construct a series of

intermediate languages.

Overview
• Low-Level Programs
• Organising Low-Level Programs
– Constructions from Interaction Semantics

– Calculus INT

– Simple Module System

• Compilation
– Call-by-Name

– Call-by-Value

• Relation to Defunctionalisation

Machine Code

Low-Level Language

Calculus INT

Modules

Source

Low-Level Programs

Low-Level Programs
Most compilers abstract from machine details by translating to an

architecture-independent low-level language that is then

translated to machine code.

Example: LLVM compiler infrastructure
• used by many compilers (Clang, Rust, . . .)
• portable assembler in static single assignment form (simple
instructions, jumps, machine calls)

• compiler for many architectures

todo

Low-Level Programs
entry:

; initial value = 1.0 (inlined into phi)
br label %loop

loop: ; preds = %loop, %entry
%i = phi double [1.000000e+00, %entry], [%nextvar, %loop]
; body
%calltmp = call double @putchard(double 4.200000e+01)
; increment
%nextvar = fadd double %i, 1.000000e+00

; termination test
%cmptmp = fcmp ult double %i, %n
%booltmp = uitofp i1 %cmptmp to double
%loopcond = fcmp one double %booltmp, 0.000000e+00
br i1 %loopcond, label %loop, label %afterloop

afterloop: ; preds = %loop
; loop always returns 0.0
ret double 0.000000e+00

LLVM IR

(Source: http://llvm.org/docs/tutorial/LangImpl05.html)

Low-Level Programs
We define a simple low-level language:

• similar abstraction level as LLVM assembly
• idealised heap (recursive types)
• functional presentation of static single assignment form

Similar languages are used in production compilers, e.g. Swift

Intermediate Language.

Machine Code

Low-Level Language

Values and Types
Types

A,B ::= α | int | unit | A×B | 0 | A+B | µα.A

Values
v, w ::= () | n | (v, w) | inl(v) | inr(v) | fold(v)

Use algebraic data types as syntactic sugar for µα.A.

Example: Write

type list〈α〉 = Nil of unit

| Cons of α× list〈α〉

for µβ. unit+ α× β, where Nil = fold(inl()) and
Cons(h, t) = fold(inr(h, t)).

Blocks
Programs are constructed from blocks.

A block has the form
label(x : A) = body

where

body ::= let x = primop(v) in body

| let (x, y) = v in body

| let fold(x) = v in body

| label(v)
| case v of inl(x)→ label1(v1) ; inr(y)→ label2(v2)

primop ranges over primitive operations, such as add, mul, or
syscall,

Blocks
fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ =mul(acc, n) in

loop(n′, acc′)

((TODO: in Blöcke zerlegen))

Control-Flow Graphs
fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ =mul(acc, n) in

loop(n′, acc′)

((TODO: in Blöcke zerlegen))

int× int

int× int
int× int

int

int

Control-Flow Graphs

int× int

int× int
int× int

int

int

Operational Semantics
The execution of programs is a series of jumps:

• To begin execution, one jumps with some argument v : A to
some block:

label(x : A) = body

• This will cause the body to be evaluated.
• Evaluating body ends with a jump to some other block.

TODO: ACB

Note
• There is no need for a call stack (or other side-effects).
• Effectful primitive operations may be added, if desired.

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

3

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

(3, 1)

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

(3, 1)

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

(2, 3)

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

(2, 3)

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int

(1, 6)

Operational Semantics

TODO: ACB

fac(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = mul(acc, n) in

loop(n′, acc′)

int× int

int× int
int× int

int

int
6

Program Fragment

int× int

int× int
int× int

int

int

Program Fragment

int× int

int× int
int× int

int

int

Program Fragment

int× int

int

int× int

int× int

Program Fragment
A program fragment is a set of blocks (with pairwise distinct
labels) together with

• a list of entry labels (each must be defined in a block),
• a list of exit labels (must not be defined in a block).

A B

C D E

TODO: modules

Graphical Notation

(i.e. control-flow graph with fixed entry- and exit-edges)

Program Fragment
A program fragment is a set of blocks (with pairwise distinct
labels) together with

• a list of entry labels (each must be defined in a block),
• a list of exit labels (must not be defined in a block).

A B

C D E

TODO: modules

Graphical Notation

(i.e. control-flow graph with fixed entry- and exit-edges)

Graphical Notation
In the graphical notation, we omit trivial blocks (e.g. for

associativity) and use types to disambiguate.

A+B

C + (D + E)

A B

C D E

⇐⇒

Example: implicit conversion

Fragments with Free Variables
We will work with fragments that contain free value variables.

Example program with a free variable z:int.

sum(x : int) = loop(x, 1)

loop(x : int× int) =

let (n, acc) = x in

let b = eq(n, 1) in

case b of inl(_)⇒ ret(acc)
; inr(_)⇒ body(n, acc)

body(p : int× int) =

let (n, acc) = p in

let n′ = sub(n, 1) in

let acc′ = add(acc, z) in

loop(n′, acc′)

Graphical Notation — Box
Any program fragment p with a free variable z:A can be
transformed into a fragment, where z is not free, but is passed
around as an argument.

Add a new first parameter of type A to all the blocks in p.

E F

B C D

p

Graphical Notation — Box
Any program fragment p with a free variable z:A can be
transformed into a fragment, where z is not free, but is passed
around as an argument.

Add a new first parameter of type A to all the blocks in p.

E F

B C D

p

x : A

A× E A× F

A×B A× C A×D

TODO: hier klarer sein!

Graphical Notation — Box
Any program fragment p with a free variable z:A can be
transformed into a fragment, where z is not free, but is passed
around as an argument.

Add a new first parameter of type A to all the blocks in p.

label1(y : B) =

let b = . . . in

case b of inl(_)⇒ label2(v)
; inr(_)⇒ label3(w)

label1(z : A×B) =

let (x, y) = z in

let b = . . . in

case b of inl(_)⇒ label2(x, v)
; inr(_)⇒ label3(x,w)

=⇒

Example:

Organising Low-Level Programs

Constructions from Interaction Semantics
Int Construction
Free compact closed completion of a traced symmetric monoidal

category [Joyal, Street, Verity 1994].

Captures the core of many constructions, in particular:

• Game Semantics [Abramsky, Jagadeesan, Malacaria 2001]
• Geometry of Interaction [Haghverdi, Scott 2004]

((TODO))

Int Construction

Represent integers by pairs (i−, i+) ∈ N× N.

Construction of the integers from the natural numbers.

(x−, x+) ≤ (y−, y+)

x+ + y− ≤ x− + y+

⇐⇒ x+ − x− ≤ y+ − y−

⇐⇒

Int Construction

Represent integers by pairs (i−, i+) ∈ N× N.

Construction of the integers from the natural numbers.

(x−, x+) ≤ (y−, y+)

x+ + y− ≤ x− + y+

⇐⇒ x+ − x− ≤ y+ − y−

⇐⇒

Generalise from the natural numbers (N,+, 0) to atraced symmetric monoidal category (C,⊕, 0).
Objects: pairs (X−, X+) of C-objects

Morphisms:
(X−, X+)→ (Y −, Y +) X+ ⊕ Y − → X− ⊕ Y + in C⇐⇒

Int Construction for Low-Level Programs
An object (X−, X+)models the interface of interactive entity.

Implementation of interface X:
X+X−

A morphism X −→ Y is an
implementation of interface Y
with possible queries to X

type of possible questions to entity
type of possible answers from entity

f

Y +Y −

X−X+

g

Int Construction for Low-Level Programs
Identity

Composition of f : X −→ Y and g : Y −→ Z.

Z+Z−

Y −Y +

g
Y +

X−X+

f

X+X−

X−X+

Z+Z−

X−X+

g ◦ f =

Types of Interaction: [A]
Base [A]

• questions: [A]− = unit

• answers: [A]+ = A

Aunit

Example:
even : [int] −→ [bool]

boolunit

unitint

Types of Interaction: [A]
Base [A]

• questions: [A]− = unit

• answers: [A]+ = A

Aunit

Example:
even : [int] −→ [bool]

bool

unit

unit

int

Types of Interaction: X ⊗ Y

X− + Y −

X+ + Y +

s

Pairs X ⊗ Y
• questions: (X ⊗ Y)− = X− + Y −

• answers: (X ⊗ Y)+ = X+ + Y +

Y −

Y +

X−

X+

s⇐⇒

Types of Interaction: X (Y

Y −

Y +

X+

X−

Interactive Functions X (Y

• questions: (X (Y)− = X+ + Y −

• answers: (X (Y)+ = X− + Y +

s

X+ + Y −

X− + Y +

s ⇐⇒

Types of Interaction: X (Y

Y −

Y +

X+

X−

Interactive Functions X (Y

• questions: (X (Y)− = X+ + Y −

• answers: (X (Y)+ = X− + Y +

s

X+ + Y −

X− + Y +

s ⇐⇒

Types of Interaction: X (Y

Problem: There is no addition function
add : [int] ([int] ([int].

We cannot remember values between requests.

Types of Interaction: A ·X

Callee-Save-Invariant
• The value of type A is returned unchanged.
• The answer may not depend on the value of type A.

Subexponential A ·X
• questions: (A ·X)− = A×X−

• answers: (A ·X)+ = A×X+

Exponential
Game Semantics and Geometry of Interaction use the special case

!X := nat ·X

Types of Interaction: A ·X
Example

[A]

()
()

a

(a, b)

(a, b)

(a, ())

f(a : A) = m(a, ())

g(x : A×B) = n(x)

h(x : unit) = k(x)

f g h

k m n

A · [B] [A×B]((

Types of Interaction: A ·X
Example

()

(a1, a2)

(inl(), false)

(unit+A)︸ ︷︷ ︸
S

·([bool] ([A]) [A×A](

(inr(a1), true)

A×A

unit

S × unit

S ×AS × unit

S × bool

(inl(), a1)

(inr(a1), a2)

(inl(), ())

(inr(a1), ())

(inl(), ())

Types of Interaction: A ·X
Examples

A · (B ·X) ((A×B) ·X

unit ·X (X

(A+B) ·X ((A ·X)⊗ (B ·X)

A×X−

A×X+

(A+B) ·X+

(A+B) ·X−

B ×X−

B ×X+

Types of Interaction: !X
Exponential !X

!X := nat ·X

where

type nat = Zero of unit

| Succ of nat

Game Semantics and Geometry of Interaction use this special

case.

comonad!!

Retraction ACB

Write ACB if there exist two program fragments

such that

BA enc AB dec

A enc AB dec

behaves like

A

Types of Interaction: !X
If ACB, then we can define a map:

B ·X (A ·X

A×X−

A×X+

B ×X+

B ×X−

Why not always use !X?
• !X requires encoding into nat; the compiler for the low-level
language would have to undo this for optimisation.

• Encoding details can become visible in some applications,
e.g. Bounded Linear Logic [Girard, Scedrov, Scott 1992]

simpler, more information (type checking!), resource analysis

!p+qX (!pX ⊗ !qX

(A+B) ·X ((A ·X)⊗ (B ·X)

!2·max(p,q)X (!pX ⊗ !qX

enc(inl(v)) = enc(v)

enc(inr(w)) = p+ enc(w)

enc(inl(v)) = 〈0, enc(v)〉
enc(inr(w)) = 〈1, enc(w)〉

Types of Interaction: A→ X

Value Passing A→ X

• questions: (A→ X)− = A×X−

• answers: (A→ X)+ = X+

A×X−

X+

X−

X+

A

unit

Compare: [A] (X

Types of Interaction: ∀αC A.X and ∃αC A.X

Value-Type Polymorphism ∀αCA.X

• questions: (∀αCA.X)− = (∃αCA.X)− = X−[A/α]

• answers: (∀αCA.X)+ = (∃αCA.X)+ = X+[A/α]

Special cases:
∀α.X := ∀αC nat. X

∃α.X := ∀αC nat. X

Summary
[A]− = unit

[A]+ = A
unit

A

A×X−

X+

(A→ X)− = A×X−

(A→ X)+ = X+

(X (Y)− = X+ + Y −

(X (Y)+ = X− + Y +

X+

X−

Y −

Y +

t

(∀α.X)− = X−[nat/α]

(∀α.X)+ = X+[nat/α]

A×X−

A×X+

(A ·X)− = A×X−

(A ·X)+ = A×X+

