Interaction Semantics and
Programming Language Compilation

Ulrich Schopp
LMU Munich

Introduction

Interaction Semantics builds mathematical models for
programming languages from interacting processes.

Such models can help understand low-level decompositions of
high-level languages.

let rec fib x =

if x <1 then 1 else (fib (x - 1)) + (fib (x - 2))

%x6 = phi 132 [38, %casel], [%unpack35, %casel45],
[%add, %casel67]
%add = add 132 %x6, -1
%eqd47 = 1icmp ne 132 %add, ©
switch 11 %eq47, label %case@49 [11 true, label %case148]

Introduction

Need better understanding for:
formal verification

compositional reasoning

resource usage analysis and certification
modularity

Game Semantics for Logic

Explain logic in terms of dialogues between disputing parties.

Proponent and Opponent argue about a proposition:
Proponent tries to defend it.
Opponent tries to refute it.
The logic defines the mode of interaction.

How can a formula be attacked?
How can a formula be defended?

A proof is a strategy for Proponent to defend the proposition
against any possible attack.

Game Semantics for Constructive Logic

[Lorenzen & Lorenz, 1950s]

(LA@)V T

Opponent Proponent

Which of the disjuncts is true?

Game Semantics for Constructive Logic

[Lorenzen & Lorenz, 1950s]

(LA@)V T

Opponent Proponent

Which of the disjuncts is true?

The left one 1 A ¢ is true.

Game Semantics for Constructive Logic

[Lorenzen & Lorenz, 1950s]

(LA@)V T

Opponent Proponent

Which of the disjuncts is true?

The left one 1 A ¢ is true.

Then explain why 1 is true.

Game Semantics for Programs

Proponent now defends the claim:

| have a program of type X.
Attacks become requests for information.

Programs are modelled by strategies that explain how Proponent
can answer any request for information.

Game Semantics for Programs

int — 1nt

Opponent Proponent

What does your function return?

Game Semantics for Programs

int — 1nt

Opponent Proponent

What does your function return?

What is the function argument?

Game Semantics for Programs

int — 1int
Opponent Proponent
What does your function return?

What is the function argument?

The argument is 5.

Game Semantics for Programs

int — 1nt

Opponent Proponent

What does your function return?

What is the function argument?
The argument is 5.

Then the function returns 6.

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

Ac.x+1:1int — int

r-+1:1int

T int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.
Qidoes the function return?
Ax.r+ 1:1int — int
x+1:1nt

T int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

Qidoes the function return?
Ac.x+1:1int — int

What is the sum?

v

r-+1:1int

r: int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

Qidoes the function return?
Ac.x+1:1int — int

What is the sum?

v

r-+1:1int

/ What is value of x?

r: int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

Qidoes the function return?
Ac.x+1:1int — int

What is the sum?

What is value of z? Y

r-+1:1int

/ What is value of x?

r: int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

i+ Whatis the function argument?
Qidoes the funcfion return?
Ar.x 4+ 1:int — int

What is the sum?

What is value of z? Y

r-+1:1int

/ What is value of x?

r: int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.

v
Ac.x+1:1int — int

r-+1:1int

T int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.

v
Ac.x+1:1int — int

The value is 5.

r-+1:1int

T+ int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.

v
Ac.x+1:1int — int

The value is 5.

r+1:1int
The value is 5.

'

T int 1: int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.

v
Ac.x+1:1int — int

The value is 5.

r-+1:1int

The value is 5./‘
|

L What is value of 1? 1:int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.

v
Ac.x+1:1int — int

The value is 5.

r-+1:1int

The value is 5. /‘ \ The value is 1.
|

L What is value of 1? l:int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.

\/

Ac.x+1:1int — int
A

The sum is 6.

The value is 5.

r+1:1nt

The value is 5. /‘ \ The value is 1.
|

L What is value of 1? l:int

Game Semantics for Programs

The strategy of a program derives from strategies of its parts.

The argument is 5.
The function returns 6.

\/

Ac.x+1:1int — int
A

The sum is 6.

The value is 5.

r+1:1nt

The value is 5. /‘ \ The value is 1.
|

L What is value of 1? l:int

Structure in Game Semantics

Game semantics has developed a number of mathematical
constructions that turn a very simple model of interaction
dialogues into precise models of many programming languages.

Fully abstract model for PCF

Hyland & Ong, 1994]
'Abramsky, Jagadeesan & Malacaria, 1994]
‘Nickau 1994]

Geometry of Interaction

closely related, with proof-theoretic motivation [Girard 1987]

Computation by Interaction

Implement programs by implementing their interaction strategies.

int — 1nt
unit A int
— I

Computation by Interaction

Implement programs by implementing their interaction strategies.

int — 1nt

Return value? unit [T - int Return value is . ..

Argumentis ... int el ounit Argument?

Computation by Interaction

Strategies are compositional building blocks.

int

int

Computation by Interaction

Construct a game semantic model from low-level programs.
Interpretation becomes compilation.

Developed for compilation to ...
abstract machines [Mackie, 1995]
hardware circuits [Ghica, Smith & Singh, 2007]
LOGSPACE Turing Machines [S., 2006], [Dal Lago & S., 2010]
Tt-calculus [Honda, Yoshida & Berger, 2001]
distributed processes [Fredriksson & Ghica, 2013]

gquantum circuits
[Hoshino, Hasuo, Yoshimizu, Faggian, Dal Lago, 2014]

Introduction

Consider interaction as a general approach to connect
mathematical semantics to compiler construction.

Semantics
mathematical structure

compositionality
proofs

Compiler Construction
efficiency
optimisations
implementation

Overview

We look at the compilation of higher-order functional

programming languages.

Compilers work by translating the source

into a number of intermediate languages.

decreasing level of abstraction
optimisations at different levels

We use constructions from interaction
semantics to construct a series of
intermediate languages.

Source

l

1Ly

l

1L
|

IL,,

l

Machine Code

Overview

Low-Level Programs
Organising Low-Level Programs

Constructions from Interaction Semantics

Calculus INT
Simple Module System

Compilation
Call-by-Name
Call-by-Value

Relation to Defunctionalisation

Source

l

Modules

l

Calculus INT

l

Low-Level Language

l

Machine Code

Low-Level Programs

Low-Level Programs

Most compilers abstract from machine details by translating to an
architecture-independent low-level language that is then
translated to machine code.

Example: LLVM compiler infrastructure

used by many compilers (Clang, Rust, ...)

portable assembler in static single assignment form (simple
instructions, jumps, machine calls)

compiler for many architectures

Low-Level Programs

LLVM IR

entry:
; 1nitial value = 1.0 (inlined into phi)
br label %loop

loop: ; preds = %loop, %entry
%1 = phi double [1.000000e+00, %entry 1, [%nextvar, %loop]
; body
%calltmp = call double @putchard(double 4.200000e+01)
; 1ncrement

%nextvar = fadd double %i, 1.000000e+00

; termination test

%cmptmp = fcmp ult double %i, %n

%booltmp = uitofp i1 %cmptmp to double

%loopcond = fcmp one double %booltmp, 0.000000e+00
br i1 %loopcond, label %loop, label %afterloop

afterloop: ; preds = %loop

; loop always returns 0.0
ret double 0.000000e+00

(Source: http://11lvm.org/docs/tutorial/LangImpl@5.html)

Low-Level Programs

We define a simple low-level language:

similar abstraction level as LLVM assembly

idealised heap (recursive types)

functional presentation of static single assignment form

Similar languages are used in production compilers, e.g. Swift

Intermediate Language.

Low-Level Language

!

Machine Code

Values and Types

Types
AB == « | int | unit | AxB | 0| A+ B | pa.A
Values

v,w = () | n | (vyw) | inl(v) | inr(v) | fold(v)

Use algebraic data types as syntactic sugar for ua.A.

Example: Write

type list(a) =Nil of unit

| Cons of a x list{a)

for uB.unit + a x B, whereNil = fold(inl()) and
Cons(h,t) = fold(inr(h,t)).

Blocks

Programs are constructed from blocks.

A block has the form
label(x : A) = body
where

body ::= let x = primop(v) in body

let (x,y) = v in body

let fold(x) = v in body

label(v)

case v of inl(x) — labely(vy); inr(y) — labely(wvs)

primop ranges over primitive operations, such as add, mul, or
syscall,

Blocks

fac(x : int) = loop(x,1)

loop(x : int X int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

body(p : int X int) =
let (n,acc) =p in
let n' = sub(n,1) in
let acc’ = mul(ace,n) in
loop(n’, acc)

Control-Flow Graphs

int

int X int

fac(x : int) = loop(x,1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

l int X int

body(p: int X int) =
let (n,acc) =p in
let n' = sub(n,1) in
let acc’ = mul(ace,n) in

loop(n', acc)

Control-Flow Graphs

int

l int X int

int

l int X int
int X int

Operational Semantics

The execution of programs is a series of jumps:

To begin execution, one jumps with some argument v: A to
some block:
label(xz : A) = body
This will cause the body to be evaluated.
Evaluating body ends with a jump to some other block.

Note
There is no need for a call stack (or other side-effects).
Effectful primitive operations may be added, if desired.

Operational Semantics

int

int X int

fac(x : int) = loop(x, 1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

l int X int

body(p : int x int) =
let (n,acc) =p in
let n' = sub(n, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int

3 >

int X int

fac(x : int) = loop(x, 1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

l int X int

body(p : int x int) =
let (n,acc) =p in
let n' = sub(n, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int

int X int

fac(x : int) = loop(x, 1)

(35 1) t X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

l int X int

body(p : int x int) =
let (n,acc) =p in
let n' = sub(n, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int

int X int

fac(x : int) = loop(x, 1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

(35 1) t X int

body(p : int x int) =
let (n,acc) =p in
let n' = sub(n, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int » fac(z :int) = loop(z,1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in 1nt

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

l int X int

int X int ' _
body(p : int x int) =

let (n,acc) =p in
(27 3) let TL, = SUb(TL, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int

int X int

fac(x : int) = loop(x, 1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

(2+7 3) t X int

body(p : int x int) =
let (n,acc) =p in
let n' = sub(n, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int » fac(z :int) = loop(z,1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in 1nt

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

l int X int

int X int ' _
body(p : int x int) =

let (n,acc) =p in
(17 6) let TL, = SUb(TL, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Operational Semantics

int

int X int

fac(x : int) = loop(x, 1)

l int X int

loop(x : int x int) =
let (n,acc) =x in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

int

l int X int

body(p : int x int) =
let (n,acc) =p in
let n' = sub(n, 1) in
let acc’ =mul(ace,n) in

loop(n', acc)

Program Fragment

int

J int X int

int

l int X int
int X int

Program Fragment

int

J int X int

int

l int X int
int X int

Program Fragment

int

int X int

l int X int

Program Fragment

A program fragment is a set of blocks (with pairwise distinct
labels) together with

a list of entry labels
a list of exit labels

Graphical Notation

(i.e. control-flow graph with fixed entry- and exit-edges)

Program Fragment

A program fragment is a set of blocks (with pairwise distinct
labels) together with

a list of entry labels
a list of exit labels

Graphical Notation

L L

(i.e. control-flow graph with fixed entry- and exit-edges)

Graphical Notation

In the graphical notation, we omit trivial blocks (e.g. for
associativity) and use types to disambiguate.

Example: implicit conversion

Fragments with Free Variables

We will work with fragments that contain free value variables.

Example program with a free variable z:int.

sum(zx : int) = loop(z, 1)

loop(x : int x int) =
let (n,acc) =z in
let b=eq(n,1) in

case b of inl(_) = ret(acc)
; inr(_) = body(n, acc)

body(p : int X int) =
let (n,acc) =p in
let n' = sub(n,1) in
let acc’ = add(acc, z) in
loop(n’, acc’)

Graphical Notation — Box

Any program fragment p with a free variable z: A can be
transformed into a fragment, where z is not free, but is passed

around as an argument.

Add a new first parameter of type A to all the blocks in p.

Graphical Notation — Box

Any program fragment p with a free variable z: A can be
transformed into a fragment, where z is not free, but is passed

around as an argument.

Add a new first parameter of type A to all the blocks in p.
AxB AxC AxD

Lo
f_l ________ c _L____l_%?__i

Graphical Notation — Box

Any program fragment p with a free variable z: A can be
transformed into a fragment, where z is not free, but is passed
around as an argument.

Add a new first parameter of type A to all the blocks in p.

Example:

labell(y: B) = labell(z: Ax B) =
letb= ... in N let (z,y) =z in
case b of inl(_) = label2(v) letb= ... in

; inr(_) = label3(w) case b of inl(_) = label2(z,v)
; inr(_) = label3(z,w)

Organising Low-Level Programs

Constructions from Interaction Semantics

Int Construction

Free compact closed completion of a traced symmetric monoidal
category [Joyal, Street, Verity 1994].

Captures the core of many constructions, in particular:
Game Semantics [Abramsky, Jagadeesan, Malacaria 2001]
Geometry of Interaction [Haghverdi, Scott 2004]

Int Construction

Construction of the integers from the natural numbers.
Represent integers by pairs (:7,i7) € N x N,
(z7,27) < (y,y") = ot —a” <yt -y~

— ot 4y <z 4yt

Int Construction

Construction of the integers from the natural numbers.
Represent integers by pairs (:7,i7) € N x N,
(7,2%) < (y~,y") = ot -z <yt -y
— zt+y <z +y*
Generalise from the natural numbers (N, +,0) to a
traced symmetric monoidal category (C, 3, 0).
Objects: pairs (X, XT) of C-objects
Morphisms:

(X7, XT) = (Y, YT — XtTeY — X aYTinC

Int Construction for Low-Level Programs

An object (X—, XT) models the interface of interactive entity.

t |_type of possible answers from entity
type of possible questions to entity

Implementation of interface X:

A morphism X — Y is an

implementation of interface Y Y- T Y
with possible queries to X g

Int Construction for Low-Level Programs

ldentity

Types of Interaction: |A]

Base [A]
questions: [A]” = unit
answers: [A]T = A

Example:

Types of Interaction: |A]

Base [A]
questions: [A]” = unit
answers: [A]T = A

Example:

even: [int] — [bool]

int unit

unit bool

Types of Interaction: X Q Y

Pairs X @ Y
questions: (X ®Y) =X"+Y~
answers: (XY)T=X1T+Y™"

Types of Interaction: X — Y

Interactive Functions X — Y
questions: (X —oY) " =XT+4+Y"
answers: (X —oY)T=X"+YT

Types of Interaction: X — Y

Interactive Functions X — Y
questions: (X —oY) " =XT+4+Y"
answers: (X —oY)T=X"+YT

-

- - o

~~~~~~



Types of Interaction: X — Y

Problem: There is no addition function
add: [int] —o [int] —o [int].

We cannot remember values between requests.



Types of Interaction: A- X

Subexponential A - X
questions: (A-X)" =Ax X~
answers: (A-X)T = Ax XT

Callee-Save-Invariant
The value of type A is returned unchanged.
The answer may not depend on the value of type A.



Types of Interaction: A- X

Example
4] —  A-[B] — [AXB]
9

9

a




Types of Interaction: A- X

Example
(unit + A) -([bool] —o [A]) o [Ax A
s 0
(in1(), ()
(in1(), ()
(inl(), false)
(inl(), a1)
(inr(a1), ()

(inr(ay), true)



Types of Interaction: A- X

Examples

unit- X —o X

A-(B'X)—O(AxB).X

(A+B)- X — (A-X)® (B X)



Types of Interaction: ! X

Exponential !X
X :=nat - X

where
type nat = Zero of unit

| Succ of nat

Game Semantics and Geometry of Interaction use this special
case.



Retraction A <« B

Write A < B if there exist two program fragments

such that

behaves like




Types of Interaction: ! X

If A< B, then we can define a map:

B-X—oA-X

B><XJr A><X—

BXX hAxX‘F



Why not always use ! X?

| X requires encoding into nat; the compiler for the low-level
language would have to undo this for optimisation.

Encoding details can become visible in some applications,
e.g. Bounded Linear Logic [Girard, Scedrov, Scott 1992]

(A+B)-X - (A-X)® (B X)

g X — L X ®!1,X enc(inl(v)) = enc(v)
enc(inr(w)) = p + enc(w)

9 max(p,g) X —° [pX @1, X enc(inl(v)) = (0, enc(v))
enc(inr(w)) = (1, enc(w))



Types of Interaction: A — X

Value Passing A — X
questions: (A — X)” = Ax X~
answers: (A — X))t =X+

Compare: [A] — X




Types of Interaction: Vo < A. X and dJa < A. X

Value-Type Polymorphism Va < A. X
questions: (Va<A. X)” = (da<A. X)) = X" [A/q]
answers: (Va<tA. X)T = (da<A. X)) = XT[A/a]

Special cases:

Va. X :=Va <nat. X
Ja. X :(=Va<nat. X



Summary

[A]” = unit unltl
Al = A o
ne

Ax X~ l
(A= X)"=Ax X~ | i
(A— X))t =x+ il

Ax X~ l

______
- ~

~
———————




