
Using DiffArrays to optimize Decompression

Christoph-Simon Senjak

Lehr- und Forschungseinheit für Theoretische Informatik
Institut für Informatik

Ludwig-Maximilians-Universität München
Oettingenstr.67, 80538 München

ABM 2017

Foreword

▶ We formalized the Deflate compression standard in the Coq
proof assistant.

▶ We tried to utilize program extraction to create a fully verified
implementation of a compression and decompression
algorithm.

▶ However, making it efficient in the absence of destructive
operations is hard.

▶ DiffArrays to the rescue!

Deflate - A very brief overview

An informal illustration of the format:
Deflate ::= ('0' Block)* '1' Block (0|1)*
Block ::= '00' UncompressedBlock |

'01' DynamicallyCompBl |
'10' StaticallyCompBl

UncompressedBlock ::= length ˜length bytes
StaticallyCompBl ::= CompBl(standard coding)
DynamicallyCompBl ::= header coding CompBl(coding)
CompBl(c) ::= [ˆ256]* 256

Specified in RFC 1951. Allows for Lempel-Ziv-compression
(backreferences) and Huffman coding. Widely used (GZip, Zip,
HTTP, SSH, etc).

Program Extraction

Informal Proof

Formal Proof

Classical Proof Term

Constructive Proof Term

Realizing Term

Program in
stock programming language

formalization
(usually manual; some projects like
Naproche try to narrow this step)

reconstruction

translation

pruning

compilation

`Qed', `Defined' in Coq
`cdp in Minlog

usually
manually
for Agda,
Idris

proof-to-
extracted-term
in Minlog

`Extract' in Coq

Program Extraction

Pros and cons of program extraction:
▶ Sophisticated formats should come with (at least informal)

correctness proofs anyway. However, reality looks different.
▶ Proofs must be (mostly) constructive.

Alternatives in Coq:
▶ Writing the functions dependently typed.
▶ Verifying functions a posteriori.

We sometimes mix these styles when apropriate.

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

ananas_banana_batata

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

2
ananas_banana_batata
| |
+-+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

22
ananas_banana_batata
| |
+-+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222
ananas_banana_batata
| |
+-+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 8
ananas_banana_batata
| |
+-------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 88
ananas_banana_batata
| |
+-------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 888
ananas_banana_batata
| |
+-------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 8888
ananas_banana_batata

| |
+-------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 88888
ananas_banana_batata

| |
+-------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 888887
ananas_banana_batata

| |
+------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 8888877
ananas_banana_batata

| |
+------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 88888777
ananas_banana_batata

| |
+------+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 88888777 2
ananas_banana_batata

| |
+-+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 88888777 22
ananas_banana_batata

| |
+-+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:

222 88888777 222
ananas_banana_batata

| |
+-+

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:
3 5 3 3

222 88888777 222
ananas_banana_batata

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:
3 5 3 3

222 88888777 222
ananas_banana_batata
⇒ an ⟨3, 2⟩ s_b ⟨5, 8⟩ ⟨3, 7⟩ t ⟨3, 2⟩

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Backreferences

▶ A backreference is a pair ⟨l, d⟩ of a length l (number of bytes
to be copied) and a distance d (number of recently extracted
bytes that have to be skipped).

▶ Example:
3 5 3 3

222 88888777 222
ananas_banana_batata
⇒ an ⟨3, 2⟩ s_b ⟨5, 8⟩ ⟨3, 7⟩ t ⟨3, 2⟩

▶ This is the slowest part of the decompression algorithm.
▶ We have

▶ a purely functional and fast resolver, which is not verified
▶ an implementation that utilizes a list structure with recursive

slowdown, which is slow
▶ an implementation using diffarrays, which is fast

Resolution in General

▶ Use some map structure as buffer to save the last n
decompressed bytes.

▶ If a backreference points to it, copy it to the front.
▶ For example, a naïve way of doing it, using a list as buffer

(the second argument), is:
resolve :: [Either a (Int, Int)] -> [a] -> [a]
resolve [] _ = []
resolve ((Left b) : r) x = b : resolve r (b : x)
resolve (Right (0, _) : r) x = resolve r x
resolve (Right (l, d) : r) x =

let b = x !! (d - 1) -- get (d-1)th element from x
in b : resolve (Right (l-1, d) : r) (b : x)

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): start [] []

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 1 [1] []

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 2 [2;1] []

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 3 [3;2;1] []

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 4 [4] [3;2;1] [] →A

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 5 [5;4] [3;2;1]

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 6 [6;5;4] [3;2;1]

Queue of Doom

▶ In an imperative setting, we would use a ring buffer. However,
in the functional setting, even with DiffArrays, this makes
things more compliated.

▶ We only need to save a 32KiB history, as backreferences are
limited. We therefore can put two objects of 32KiB size in a
Queue of Doom

▶ Example of a queue of doom with 3 elements (instead of 32
KiB): push 7 [7] [6;5;4] [3;2;1]→A

Using Recursive Slowdown
▶ “ExpList”:

I n d u c t i v e ExpL i s t (A : Set) : Set :=
| E n i l : E xpL i s t A
| Econs1 : A −> ExpL i s t (A * A) −> ExpL i s t A
| Econs2 : A −> A −> ExpL i s t (A * A) −> ExpL i s t A .

▶ The advantage of ExpLists is that nth and cons consume
logarithmic time.

DiffArrays

▶ The advantage of imperative arrays with destructive updates
is their O(1) modification and read.

▶ It is possible to embed destructive operations into linear type
systems. However, Coq is not linear, and neither are Haskell
(which uses Monads instead) and OCaml (which is impure).

▶ However, we may still write the code in a linear fashion, so it
is theoretically possible for the compiler to optimize the code.

▶ DiffArrays are fast exactly when they are used in a linear
fashion, and slow otherwise.

DiffArrays

Array: 1 2 3

Ref 1

DiffArrays

Array: 4 2 3

Ref 1 Ref 2(0, 1)

DiffArrays

Array: 4 2 5

Ref 1 Ref 2 Ref 3(0, 1) (2, 3)

DiffArrays

Array: 7 2 5

Ref 1 Ref 2 Ref 3

Ref 4

(0, 1) (2, 3)
(0, 4)

DiffArrays

Array: 7 8 5

Ref 1 Ref 2 Ref 3

Ref 4Ref 5

(0, 1) (2, 3)
(0, 4)

(1, 2)

DiffArrays

Array: 7 8 5

Ref 1 Ref 2 Ref 3

Ref 4Ref 5

(0, 1) (2, 5)
(0, 4)

(1, 2)

⇒ The old versions can be reconstructed in O(t), where t is the
number of versions.

⇒ Read- and Write-Access to the newest reference takes O(1),
as for imperative arrays.

DiffStacks
On top of the diffarrays, we put a stack structure in the usual way.
Our formalization in Coq then has axioms like

Axiom DSPush : f o r a l l (A : Set) (a : A)
(ds : D i f f S t a c k A) ,

D i f f S t a c k A .

Axiom DSNth : f o r a l l (A : Set) (n : nat)
(ds : D i f f S t a c k A)
(d e f a u l t : A) ,

A * D i f f S t a c k A .

Axiom DSNthFakeLinear :
f o r a l l {A : Set } n ds d ,

snd (@DSNth A n ds d) = ds .
The last axiom says that the DiffStack after reading one element
from it is the same as before.

Benchmarks
The Canterbury Corpus is a standardized set of files for
benchmarking compression and decompression algorithms.
Decompressing the files compressed with gzip results in the
following table:

Time (s) ExpList Time (s) DiffArray File
0.27 0.11 grammar.lsp
4.22 0.25 fields.c
86.73 0.56 cp.html
0.42 0.14 xargs.1
177.54 0.85 sum
628.5 3.43 asyoulik.txt
727.25 4.05 alice29.txt
1958.08 10.72 lcet10.txt
2177.95 12.78 plrabn12.txt
2241.7 7.5 ptt5
3540.27 17.42 kennedy.xls

Conclusion, Related Work

▶ DiffArrays helped to boost efficiency without really losing any
formal guarantees, by only slightly increasing the trusted
codebase.

▶ This seems like a good way to embed some linear type
constructs into purely functional code without linear type
system.

▶ To lift this to a formal level, there has been done some work
in “Adjustable References” by Vafeiadis, V.

