A Theory of Parsers

Christoph-Simon Senjak

Lehr- und Forschungseinheit für Theoretische Informatik
Institut für Informatik
Ludwig-Maximilians-Universität München
Oettingenstr.67, 80538 München

Leeds Logic Colloquium 05.08.2016
Objective

- Creating simple, verified, non-interactive parsers for streams of data (In our case: Data compressed with Deflate/GZip) ⇒ preferably no sophisticated library.

- Having multiple ways of parsing the data, which have different drawbacks; possible need to replace parts of the parser with other algorithms later ⇒ approach should be modular.

- Simple axiomatic specification, complexity moved into the proofs ⇒ use relational specifications of the data format rather than just combined functions.
We use relations to specify the format we want to parse. The relations have the type output \rightarrow input \rightarrow Prop. Often in practice: input is list bool or list ascii (simplicity, performance). A very simple example that parses exactly one bit:

\[
\text{Inductive OneBit : bool \rightarrow list bool \rightarrow Prop} := \\
\mid \text{oneBit : forall b, OneBit b [b].}
\]

We can first define such simple relations and create more complicated relations using combinators.
Parsing relations can be combined in a monadic fashion

A combinator can be defined that first applies the first relation, and then the second relation:

\[
Q \gg c \ R := \\
\mu_\xi (\forall b_q b_r a_q a_r. Q b_q a_q \rightarrow R b_q b_r a_r \rightarrow \xi (c b_q b_r) (a_q ++ a_r))
\]

From this, more complicated combinators can be built, like \texttt{nTimes}, which applies a relation a given number of times.
A parser to parse a given number of bits into a natural number can be realized with:

\[
\text{Definition} \ \text{readBitsLSB} (\text{length} : \text{nat}) : \text{nat} \to \text{LB} \to \text{Prop} := \text{AppCombine} (\text{nTimesCons length OneBit}) \text{ListToNat}.
\]

where \(\text{nTimesCons} \) applies the parser for \(\text{OneBit} \) for \(\text{length} \) times and returns a bit list, and \(\text{AppCombine} \) maps that bit list using \(\text{ListToNat} \) to a natural number.
Strong Uniqueness

- Relations must satisfy **Strong Uniqueness**: for a given string, there is at most one initial segment that can be parsed:

\[
\text{StrongUnique } R : \iff \forall a, b, l_a, l'_a, l_b, l'_b. \quad l_a ++ l'_a = l_b ++ l'_b \rightarrow \\
R a l_a \rightarrow R b l_b \\
a = b \land l_a = l_b
\]

- This is equivalent to the two conditions
 - \(\forall a, b, l. R a l \rightarrow R b l \rightarrow a = b \) (left-uniqueness)
 - \(\forall a, b, l, l'. R a l \rightarrow R b (l ++ l') \rightarrow l' = [] \) (a parsed segment of the input list cannot be extended).

- Strong Uniqueness is inherited through the former combinators.
The most important property is **Strong Decidability**, meaning that whether an initial segment exists is decidable.

\[
\text{StrongDec } R \iff \forall l. \ (\exists a, x, y. l = x ++ y \land R a x) \lor
\]
\[
(\neg (\exists a, x, y. l = x ++ y \land R a x) \land E)
\]

where \(E\) is some error type (for us, it is a string giving an error message).

- This resembles an exception monad.
- A constructive proof of strong decidability yields a parser.
- Strong decidability is inherited through the former combinators.
A Theory of Parsers

Advantages of our theory:
- It is simple, it needs no sophisticated library.
- It yields algorithms that can be extracted directly from proofs.

Disadvantages:
- The input must be total – otherwise, some relations would not be decidable
- It does not fully allow for lazy-i/o, and combining exception monads consumes stack space.
We presented a way of specifying parsers. We use this theory in our verified implementation of Deflate (GZip).

It should be easy to port it from Coq to other proof checkers.

Some of the disadvantages of our theory should be solvable by using Iteratees, but this is future work (see http://okmij.org/ftp/Haskell/Iteratee/describe.pdf)