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Abstract. We present a normalization-by-evaluation (NbE) algorithm for Sys-
tem Fω with βη-equality, the simplest impredicative type theory with computa-
tion on the type level. Values are kept abstract and requirements on values are kept
to a minimum, allowing many different implementations of the algorithm. The al-
gorithm is verified through a general model construction using typed applicative
structures, called type and object structures. Both soundness and completeness of
NbE are conceived as an instance of a single fundamental theorem.

1 Introduction and Related Work

In theorem provers, such as Coq [INR07], Agda [Nor07], Epigram [CAM07], which
are based on intensional type theory, checking the validity of proofs or typings relies on
deciding equality of types. Types are recognized as equal if they have the same normal
form. This is why normalization plays a key role in type theories, such as the Calculus
of Constructions (CC) which underlies Coq, and Martin-Löf Type Theory which is
the basis of Agda and Epigram. The hardwired type equality of Coq is restricted to
computational equality (β), as opposed to Agda and Epigram which have βη-equality.
Our goal is to integrate η-laws into Coq’s equality. As a prerequisite, we have to show
normalization for the βη-CC.

Normalization by evaluation (NbE) [BS91,Dan99] is a systematic method to per-
form βη-normalization. In a first step, the object t of type T is evaluated. The resulting
value d is then reified to an η-long β-normal form v. The reification process is directed
by the shape of type T . NbE has proven a valid tool to structure extensional normaliza-
tion, especially in the notoriously difficult case of sum types [ADHS01,BCF04,Bar08].
In previous work [ACD07], we have adapted NbE to a dependent type theory with one
predicative universe and judgmental βη-equality. What is the challenge when stepping
up to impredicativity? Predicative type theories allow to define the semantics of types
from below via induction-recursion [Dyb00], and the reification function can be de-
fined by induction on types. This fails in the presence of impredicativity, where one
first has to lay out a lattice of semantic type candidates and then define impredicative
quantification using an intersection over all candidates [GLT89]. Hence, the semantic
type structure is not inductive, and reification cannot be defined by induction on types.
There are at least two ways out of this dilemma: Altenkirch, Hofmann, and Streicher
[AHS96] construct a total normalization function type-wise while building a model for
System F. In previous work [Abe08], I have conceived reification as a deterministic



relation between value d and normal form v and their type T , and showed through a
model construction that it corresponds to a total function.

In this work, we are moving one step closer to NbE for the CC: we are consid-
ering the simplest type system which features impredicativity and computation on the
type level: the higher-order polymorphic lambda-calculus Fω . It adds to the problem of
impredicativity the difficulty that types are no longer fixed syntactic expressions as in
System F, but they need to be normalized as well. Of course, due to the simply-kinded
structure of types they could be kept in long normal form using simple structural nor-
malization. This does not scale to the CC, so we resist this temptation.

In our solution, reification of objects is directed by type values A. Syntactic types
T are interpreted by a pair (A,A) of a type value A and a semantic type A which
is a set of objects that are reifiable at type A. Furthermore, type value A reifies to a
normal form V which is βη-equal to T . These considerations lead us to the concept
of a type structure which captures the similarities between syntactic types, type values,
and semantic types. Consequently, syntactic objects and their values both form an object
structure over a type structure, the syntactical type structure in case of syntactic objects
and the structure of type values in case of (object) values.

Or notions of type and object structures are very general, in essence typed versions
of Barendregt’s syntactical applicative structures [Bar84, Def. 5.3.1]. The fundamental
theorems we prove are also very general since we do not fix an interpretation of types;
we only require that semantic types inhabit a candidate space. By choosing different
candidate spaces we can harvest different results from the same fundamental theorem,
e. g., soundness of NbE, completeness of NbE, or weak normalization of β- or βη-
reduction [Abe08].

In the following developments we omit most proofs due to lack of space. They can
be found in the full version of this article on the author’s homepage [Abe09].

Preliminaries. ContextsΞ,Θ, Γ,∆,Φ, Ψ are functions from variables to some codomain.
We write � for the totally undefined function and Φ, x : a for the function Φ′ with do-
main dom(Φ) ] {x} such that Φ′(x) = a and Φ′(y) = Φ(y) for y 6= x. We say Ψ ′

extends Ψ , written Ψ ′ ≤ Ψ , if Ψ ′(x) = Ψ(x) for all x ∈ dom(Ψ).
Families TΞ indexed by a context Ξ are always understood to be Kripke, i. e., Ξ ′ ≤

Ξ implies TΞ ⊆ TΞ′ . The notion Kripke family is also used for maps MΞ . There it
implies that M does not depend on the context parameter, i. e., MΞ(a) = MΞ′(a) for
a ∈ dom(MΞ) and Ξ ′ ≤ Ξ . (Note that dom(MΞ) ⊆ dom(MΞ′) since M is Kripke.)

We write (a ∈ A)→ B(a) for the dependent function space {f ∈ A →
⋃
a∈A B(a) |

f(a) ∈ B(a) for all a ∈ A}.

2 Syntax

In this section, we present the syntax and inference rules for System Fω . The system
consists of three levels: On the lowest level there live the objects, meaning polymorphic,
purely functional programs. On the middle level live the types of objects, and the type
constructors, which are classified by kinds that themselves inhabit the highest level.



Kinding Ξ ` T : κ. “In context Ξ , type T has kind κ.”

Ξ ` C : Σ(C) Ξ ` X : Ξ(X)

Ξ,X :κ ` T : κ′

Ξ ` λX :κ. T : κ→ κ′
Ξ ` T : κ→ κ′ Ξ ` U : κ

Ξ ` T U : κ′

Type equality Ξ ` T = T ′ : κ. “In context Ξ , types T and T ′ are βη-equal of kind κ.”
Congruence closure of the following β- and η-axioms.

Ξ,X :κ ` T : κ′ Ξ ` U : κ

Ξ ` (λX :κ. T )U = T [U/X] : κ′
Ξ ` T : κ→ κ′

Ξ ` λX :κ. T X = T : κ→ κ′
X 6∈ dom(Ξ)

Typing Ξ;Γ ` t : T . “In contexts Ξ,Γ , object t has type T .”

Ξ ` Γ
Ξ;Γ ` x : Γ (x)

Ξ;Γ, x :U ` t : T

Ξ;Γ ` λx :U. t : U → T

Ξ;Γ ` t : U → T Ξ;Γ ` u : U

Ξ;Γ ` t u : T

Ξ ` T : κ→ ? Ξ,X :κ;Γ ` t : T X

Ξ;Γ ` ΛX :κ. t : ∀κT X 6∈ dom(Ξ)
Ξ;Γ ` t : ∀κT Ξ ` U : κ

Ξ;Γ ` t U : T U

Ξ;Γ ` t : T Ξ ` T = T ′ : ?

Ξ;Γ ` t : T ′

Object equality Ξ;Γ ` t = t′ : T . “In contexts Ξ,Γ , objects t and t′ are βη-equal of type T .”
Congruence closure of the following β- and η-axioms.

Ξ;Γ, x :U ` t : T Ξ;Γ ` u : U

Ξ;Γ ` (λx :U. t)u = t[u/x] : T

Ξ;Γ ` t : U → T

Ξ;Γ ` λx :U. t x = t : U → T
x 6∈ dom(Γ )

Ξ,X :κ;Γ ` t : T Ξ ` U : κ

Ξ;Γ ` (ΛX :κ. t)U = t[U/X] : T [U/X]

Ξ;Γ ` t : ∀κT
Ξ;Γ ` ΛX :κ. tX = t : ∀κT X 6∈ dom(Ξ)

Fig. 1. Fω: kinding, type equality, typing, object equality.

Kinds κ ∈ Ki are given by the grammar κ ::= ? | κ → κ′. Kind ? classifies type
constructors which are actually types, and kind κ → κ′ classifies the type constructors
which map type constructors of kind κ to type constructors of kind κ′. In the following,
we will refer to all type constructors as types.

Assume a countably infinite set of type variables TyVar whose members are denoted
by X , Y , Z. Kinding contexts Ξ,Θ ∈ KiCxt are partial maps from the type variables
into Ki. The set TyCst = {→,∀κ | κ ∈ Ki} contains the type constants C. Their kinds
are given by the signature Σ ∈ TyCst → Ki defined by Σ(→) = ? → ? → ? and
Σ(∀κ) = (κ→ ?)→ ? for all κ ∈ Ki.

Types are given by the grammar T,U, V ::= C | X | λX :κ. T | T U , where X ∈
TyVar, and form a “simply-kinded” lambda calculus. As usual, we write T → U for
→T U . Objects are given by the grammar t, u, v ::= x | λx :T. t | t u | ΛX :κ. t | t U
and form a polymorphic lambda-calculus with type abstraction and type application.
Herein, object variables x are drawn from a countably infinite set ObjVar which is



disjoint from TyVar. We write b[a/x] for capture-avoiding substitution of a for variable
x in syntactic expression b, and FV for the function returning the set of all free type and
object variables of a syntactic expression.

The judgements and inference rules of Fω are displayed in Figure 1. Herein, the
auxiliary judgement Ξ ` Γ , read “Γ is a well-formed typing context in Ξ”, is defined
as Ξ ` Γ (x) : ? for all x ∈ dom(Γ ).

3 Abstract Normalization by Evaluation

In the following, we present normalization by evaluation (NbE) for System Fω for an
abstract domain D of values and type values. This leaves the freedom to implement val-
ues in different ways, e. g., β-normal forms, weak head normal forms (as in Pollack’s
constructive engine [Pol94]), closures (as in Coquand’s type checker [Coq96]), tagged
functions (Epigram 2 [CAM07]) or virtual machine instructions (compiled reduction in
Coq [GL02]). All implementations of values that satisfy the interface given in the fol-
lowing can be used with our NbE algorithm, and in this article we provide a framework
to prove all these implementations correct.

In this section, we will understand functions in terms of a programming language,
i. e., partial and possibly non-terminating. We unify the syntax of kinds, types, and
objects into a grammar of expressions Exp. Let Var = TyVar ∪ ObjVar.

Expressions Exp 3M,N ::= ? | C | X | x | λx :M.N | ΛX :M.N |M N
Values D 3 d, e, f, A,B, F,G (abstract)

Environments Env are finite maps from variables to values. Look-up of variable x in
environment ρ is written ρ(x), update of environment ρ with new value v for variable x
is written ρ[x 7→ v], and the empty environment is written �. The call fresh(ρ) returns a
variable x which is not in dom(ρ).

Application and evaluation (see Fig. 2) make values into a syntactical applicative
structure [Bar84, 5.3.1], provided the equations below are satisfied. Such structures
will appear later, in a sorted setting, as type and object structures (defs. 1 and 13). Note
that establishing the laws of evaluation can be arbitrarily hard, e. g., if L M involves an
optimizing compiler.

Values are converted back to expressions through reification. However, this pro-
cess can only be implemented for term-like value domains, in particular, we require
an embedding of variables into D, and an analysis neView of values that arise as iter-
ated application of a variable (a so-called neutral value) or as iterated application of
a constant (a constructed value). Some constructed values are types or kinds, they are
analyzed by tyView, which can actually be defined from neView.

Values d of type V in context ∆, which assigns type values to variables, are rei-
fied by a call to↘⇑(∆, d, V ). It is mutually defined with↘⇑(∆,n) which returns the
normal form M and type V of neutral value n. Later in this article, reification will be
presented as two relations ∆ ` d ↘ M ⇓⇑ V such that ∆ ` d ↘ M ⇑ V iff
↘⇑(∆, d, V ) = M and ∆ ` d↘M ⇓ V iff↘⇓(∆, d) = (M,V ).

NbE is now obtained as reification after evaluation. For closed expressions M of
type or kind N we define nbe(M,N) =↘⇑(�, LMM�, tyViewLNM�).



Applicative structure D of values.

Application · : D→ D→ D

Evaluation L M : Exp→ Env→ D
LxMρ = ρ(x)
Lλx :M.NMρ · d = LNMρ[x 7→d]
LXMρ = ρ(X)
LΛX :M.NMρ ·G = LNMρ[X 7→G]

LM NMρ = LMMρ · LNMρ

D is term-like.

Embedding var : Var → D

View as neutral NeView 3 n ::= C | X | x | e d
neView : D→ NeView
neViewLCMρ = C
neView(varX) = X
neView(var x) = x
neView(e · d) = e d if neView e is defined

View as type TyView 3 V ::= ? | A→ B | ∀κF
tyView : D→ TyView
tyView L?Mρ = ?
tyView LM → NMρ = tyView LMMρ → tyView LNMρ
tyView L∀κMMρ = ∀κ tyView LMMρ

Reification.

↘⇑ : Env→ D→ TyView→ Exp
↘⇑(∆, f,A→ B) = let x = fresh(∆)

(U, ) = ↘⇓(∆, neViewA)

inλx :U. ↘⇑(∆[x 7→ A], f · var x, tyViewB)

↘⇑(∆, d, ∀κF ) = letX = fresh(∆) inΛX :κ. ↘⇑(∆[X 7→ κ], d · varX, tyView(F · varX))

↘⇑(∆, e, ?) = let (M, ) =↘⇓(∆, neView e) inM

↘⇓ : Env→ NeView→ Exp× TyView
↘⇓(∆,C) = (C,Σ(C))

↘⇓(∆,X) = (X, tyView(∆(X)))

↘⇓(∆,x) = (x, tyView(∆(x)))

↘⇓(∆, e d) = let (M,V ) =↘⇓(∆, e) in caseV of
A→ B 7→ (M (↘⇑(∆, d, tyViewA)), tyViewB)

∀κF 7→ (M (↘⇑(∆, d, κ)), tyView(F · d))

Normalization by evaluation.

nbe(M,N) =↘⇑(�, LMM�, tyViewLNM�)

Fig. 2. Specification of an NbE algorithm.



A concrete instance of NbE is obtained by defining a recursive data type D with the
constructors:

Constr : TyCst→ D∗ → D
Ne : Var → D∗ → D
Abs : (D→ D)→ D

Application, evaluation, and variable embedding are given by the following equations.

(ConstrC Gs) · G = ConstrC (Gs, G)
(Nex ds) · d = Nex (ds, d)
(Abs f) · d = f d

Lλx :M.NMρ = Abs f where f d = LNMρ[x 7→d]
LΛX :M.NMρ = Abs f where f G = LNMρ[X 7→G]

LCMρ = ConstrC ()

Variables are embedded via var x = Nex (). This instance of NbE is now easily com-
pleted using the equations of the specification, and can be implemented directly in
Haskell.

In this article we show that any instance of the NbE-specification terminates with
the correct result for well-formed expressions of Fω , i. e., we show the following two
properties:

1. Soundness: if `M : N , then ` nbe(M,N) = M : N .
2. Completeness: if `M : N and `M ′ : N , then nbe(M,N) = nbe(M ′, N) (same

expression up to α).

In contrast to the untyped presentation in this section, which saves us from some rep-
etition, we will distinguish the three levels of Fω consequently in the remainder of the
article.

4 Type Structures

In this section, we define type structures as an abstraction over syntactic types, type
values, and semantic types. Type structures form a category which has finite products.
Let TyκΞ = {T | Ξ ` T : κ}.

Definition 1 (Type structure). An (Fω) type structure is a tuple (T ,Cst,App, [[ ]] )
where T is a Kripke family T κΞ of sets with the following Kripke families of maps:

CstΞ ∈ (C ∈ TyCst)→ T Σ(C)
Ξ

Appκ→κ
′

Ξ ∈ T κ→κ′Ξ → T κΞ → T κ
′

Ξ

Usually, we will just write F · G for Appκ→κ
′

Ξ (F,G). Let ρ ∈ T ΞΘ iff ρ(X) ∈ T Ξ(X)
Θ

for all X ∈ dom(Ξ). The interpretation function has the following properties:

[[ ]] ∈ TyκΞ → T ΞΘ → T κΘ
[[C]]ρ = CstΘ(C)
[[X]]ρ = ρ(X)

[[λX :κ. T ]]ρ ·G = [[T ]]ρ[X 7→G]

[[T U ]]ρ = [[T ]]ρ · [[U ]]ρ
[[T [U/X]]]ρ = [[T ]]ρ[X 7→[[U ]]ρ] (∗)



If the condition (∗) is fulfilled, we speak of a combinatory type structure, since (∗) is
a characterizing property of combinatory algebras. The condition (∗) is only necessary
since we chose to use eager substitution in the inference rules of Fω , it can be dropped
when switching to explicit substitutions [ACD08].

We use “interpretation” and “evaluation” synonymously. Note that while the equa-
tions determine the interpretation of constants, variables, and application, there is some
freedom in the interpretation of functions [[λX :κ. T ]]ρ. It could be lambda-terms (tak-
ing T = Ty), set-theoretical functions (see Def. 20), functional values in an interpreter,
machine code etc.

Since CstΞ is independent of Ξ , we have CstΞ = Cxt�, we usually suppress the
index Ξ in CstΞ . We may even drop Cst altogether, i. e., we just write→ ∈ T ?→?→?Ξ

instead of Cst(→) ∈ T ?→?→?Ξ .
To avoid ambiguities when different type structures are in scope, we may write→T ,

∀κT , ·T and T [[ ]] to emphasize that we mean the type structure operations of T .
Simple examples of type structures are Ty and Ty modulo β, βη, or judgmental

equality. In these instances, the interpretation function is parallel substitution.

Definition 2 (Type structure morphism). Given two type structures S and T , a type
structure morphism M : S → T is a Kripke family of maps Mκ

Ξ ∈ SκΞ → T κΞ that
commute with the operations of S, i. e.,

Mκ
Ξ(CS) = CT

Mκ′

Ξ (F ·S G) = Mκ→κ′
Ξ (F ) ·T Mκ

Ξ(G)
Mκ
Θ(S[[T ]]ρ) = T [[T ]]MΞ

Θ ◦ρ
where (MΞ

Θ ◦ ρ)(X) := M
Ξ(X)
Θ (ρ(X)).

The Cartesian product S × T of two type structures forms a type structure with
pointwise application and tupled interpretation. The two projections π1 : S × T → S
and π2 : S × T → T are trivially type structure morphisms, and × is a product in the
category of type structures and their morphisms.

4.1 Type Substructures and the Fundamental Theorem for Kinding

Definition 3 (Type substructure). The Kripke family SκΞ ⊆ T κΞ is a type substructure
of T if all of T ’s operations are well-defined on S, i. e., CT ∈ SκΞ , ·T ∈ Sκ→κ′Ξ →
SκΞ → Sκ

′

Ξ , and T [[ ]] ∈ TyκΞ → SΞΘ → SκΘ.

In the following we simply write S ⊆ T to mean SκΞ ⊆ T κΞ for all κ,Ξ .

Lemma 1 (Projection type substructure). If S ⊆ T1 × T2 is a type substructure, so
are π1(S) ⊆ T1 and π2(S) ⊆ T2.

Definition 4 (Function space). We write K ∈ T̂ κ if K is a Kripke family of subsets
KΞ ⊆ T κΞ . Given K ∈ T̂ κ and K ′ ∈ T̂ κ′ we define the Kripke function space

(K →bT K ′)Ξ = {F ∈ T κ→κ′Ξ | F ·G ∈ K ′Ξ′ for all Ξ ′ ≤ Ξ and G ∈ KΞ′}

If no ambiguities arise, we write→ for→bT .



Definition 5 (Induced type structure). Let T be a type structure and S ⊆ T be
Kripke. If CT ∈ SΣ(C)

Ξ for all constants C and Sκ→κ′Ξ = (Sκ →bT Sκ′)Ξ then S
is called induced or an induced type substructure of T (see Thm. 1).

Such an S is called induced since it is already determined by the choice of the denota-
tion of the base kind S?.

Theorem 1 (Fundamental theorem of kinding). Let T be a type structure. If S ⊆ T
is induced, then S is a type substructure of T .

Proof. We mainly need to show that evaluation is well-defined. This is shown by in-
duction on the kinding derivation, as usual. ut

4.2 NbE for Types and Its Soundness

We are ready to define the reification relation for type values and show that NbE, i. e.,
the composition of evaluation of a syntactic type T and reification to a normal form V ,
is sound, i. e., T and V are judgmentally equal. As a byproduct, we show totality of
NbE on well-kinded types. The structure T of type values is left abstract. However, not
every T permits reification of its inhabitants. It needs to include the variables which
need to be distinguishable from each other and other type values. Neutral types, i. e., of
the shape X ·G, need to be analyzable into head X and spine G. We call a suitable T
term-like; on such a T we can define contextual reification [ACD08,Abe08].

Definition 6 (Term-like type structure). A type structure T is term-like if there exists
exists a Kripke family of maps VarΞ ∈ (X ∈ dom(Ξ))→ T Ξ(X)

Ξ and a Kripke family
of partial maps

ViewκΞ ∈ T κΞ ⇀ {(C,G) ∈ TyCst× T κ
Ξ | Σ(C) = κ→ κ}

+ {(X,G) ∈ TyVar × T κ
Ξ | Ξ(X) = κ→ κ}

such that View(F ) = (C,G) iff F = Cst(C) ·G (“F is constructed”) and View(F ) =
(X,G) iff F = Var(X) ·G (“F is neutral”).

Usually, we drop the index Ξ to Var. We may write VarT to refer to the variable em-
bedding of type structure T .

Definition 7 (Type reification). On a term-like type structure T we define reification
relations

Ξ ` F ↘ V ⇑ κ in Ξ , F reifies to V at kind κ,
Ξ ` H ↘ U ⇓ κ in Ξ , H reifies to U , inferring kind κ,

(where F,H ∈ T κΞ with H neutral or constructed, and V,U ∈ TyκΞ ) inductively by the
following rules:

Ξ ` X ↘ X ⇓ Ξ(X)
Ξ ` H ↘ U ⇓ κ→ κ′ Ξ ` G↘ V ⇑ κ

Ξ ` H ·G↘ U V ⇓ κ′

Ξ ` C ↘ C ⇓ Σ(C)
Ξ ` H ↘ U ⇓ ?
Ξ ` H ↘ U ⇑ ?

Ξ,X :κ ` F ·X ↘ V ⇑ κ′

Ξ ` F ↘ λX :κ. V ⇑ κ→ κ′



Reification is deterministic in the following sense: For all Ξ, κ, F (inputs) and neutral
or constructed H (input) there is at most one V (output) such that Ξ ` F ↘ V ⇑ κ
and at most one U and κ′ (outputs) such that Ξ ` H ↘ U ⇓ κ′.

Seen as logic programs with inputs and outputs as indicated above, these relations
denote partial functions, where↘⇑ is defined by cases on the kind κ and and↘⇓ by
cases on the neutral value H .

We continue by constructing a model of the kinding rules which proves soundness of
NbE for types. Kinds κ are interpreted as sets GκΞ of pairs (F, T ) glued together [CD97]
by reification, i. e., the type value F reifies to syntactic type T up to βη-equality. Func-
tion kinds are interpreted via Tait’s function space (see Def. 4), thus, the fundamental
theorem of kinding yields that G is indeed a type structure.

Definition 8 (Glueing candidate). Fix a term-like type structure T . We define the fam-
ilies Gl,Gl ⊆ T × Ty by

Gl
κ

Ξ = {(F, T ) ∈ T κΞ × TyκΞ | Ξ ` F ↘ V ⇑ κ and Ξ ` T = V : κ},
GlκΞ = {(H,T ) ∈ T κΞ × TyκΞ | Ξ ` H ↘ U ⇓ κ and Ξ ` T = U : κ}.

A family S with Glκ ⊆ Sκ ⊆ Gl
κ

is called a glueing candidate.

Def. and Lem. 2 (Kind candidate space) Glκ, Gl
κ

form a kind candidate space, i. e.,
satisfy the following laws, where we write κ for Glκ and κ for Gl

κ
.

? v ?, κ→ κ′ v κ→ κ′, κ→ κ′ v κ→ κ′.

Def. and Lem. 3 (Glueing type structure) Given a type structure T , we define G ⊆
T × Ty by G?: = ? and Gκ→κ

′

: = Gκ →T̂ ×Ty
Gκ

′
. G is a glueing candidate, i. e.,

Glκ ⊆ Gκ ⊆ Gl
κ

for all κ.

Since G is induced, by the fundamental theorem of kinding it is a type substructure
of T × Ty. Thus, for all T ∈ TyκΞ , G[[T ]]VarG

= (T [[T ]]VarT
, T ) ∈ GκΞ ⊆ Gl

κ

Ξ , entailing
soundness.

Theorem 4 (Soundness of NbE for types). Let T be a term-like type structure. If
Ξ ` T : κ then there is a V ∈ TyκΞ such that Ξ ` T [[T ]]VarT

↘ V ⇑ κ and
Ξ ` T = V : κ.

5 Type Groupoids

Completeness of NbE means that it models judgmental type equality, i. e., if Ξ ` T =
T ′ : κ then Ξ ` [[T ]]↘ V ⇑ κ and Ξ ` [[T ′]]↘ V ⇑ κ. Completeness will be shown
by a fundamental theorem of type equality. Judgmental equality is usually modelled
by partial equivalence relations (PERs), which can be seen as groupoids. Hence, we
introduce the notion of a groupoidal type structure, or type groupoid. The advantage
over PERs is that we can directly reuse the fundamental theorem of kinding, instantiated
to a groupoidal type structure 2T of pairs of types, instead of having to prove this
theorem again for kinds modelled as PERs.



A groupoid is a set G with inversion −1 : G → G and partial but associative
composition ∗ : G×G → G such that a−1∗a and a∗a−1 are always defined, and if a∗b
is defined, then a∗b∗b−1 = a, and a−1 ∗a∗b = b. One easily shows that (a−1)−1 = a
and if a∗b is defined then (a∗b)−1 = b−1 ∗a−1. Examples of groupoids include partial
equivalence relations R, where (s, t)−1 = (t, s) and (r, s) ∗ (s, t) = (r, t), and any set
S with the trivial groupoidal structure: s−1 = s and r ∗ s is defined iff r = s, and then
s ∗ s = s.

A subgroupoid is a subsetH ⊆ G that is closed under inversion and composition.

5.1 Type Groupoids and the Fundamental Theorem of Type Equality

Definition 9 (Type groupoid). A type structure is groupoidal if each T κΞ is a groupoid,
constants are preserved under inversion, and inversion and composition distribute over
application, i. e., C−1 = C, (F · G)−1 = F−1 · G−1, and (F · G) ∗ (F ′ · G′) =
(F ∗ F ′) · (G ∗G′).

Given a type structure T we define the square type groupoid 2T as the product type
structure T × T equipped with (F,G)−1 = (G,F ) and (F,G) ∗ (G,H) = (F,H). If
K ∈ T̂ κ and K ′ ∈ T̂ κ′ are groupoids, so is K →bT K ′ ∈ T̂ κ→κ′
Definition 10 (Induced type groupoid). Let T be a type structure and E ⊆ 2T . We
say E is induced if E is an induced type structure and E?Ξ is groupoidal for all Ξ .

Since type equality refers to kinding, we will have to refer to the fundamental theo-
rem of kinding in the proof of the fundamental theorem of type equality.

Lemma 2 (Fundamental theorem of kinding for type groupoids). Let T be a type
structure and E ⊆ 2T be induced. Then,

1. E is a type subgroupoid of 2T , and
2. if Ξ ` T : κ and (ρ, ρ′) ∈ EΞΘ then (T [[T ]]ρ, T [[T ]]ρ′) ∈ EκΘ.

Definition 11 (Model/respect type equality). E ⊆ 2T models type equality if Ξ `
T = T ′ : κ and (ρ, ρ′) ∈ EΞΘ imply (T [[T ]]ρ, T [[T ′]]ρ′) ∈ EκΘ. A type structure T ′

respects type equality if Ξ ` T = T ′ : κ implies T ′[[T ]]ρ = T ′[[T ′]]ρ for all ρ ∈ T ′ΞΘ .

Theorem 5 (Fundamental theorem of type equality). Let T be a combinatory type
structure and E ⊆ 2T an induced type structure. Then E models type equality.

5.2 Completeness of NbE for Types

In the following we show that the relation “reify to the same η-long form” gives rise to
an equivalence relation on types which models type equality. This implies that NbE is
complete.

Def. and Lem. 6 (Kind candidate space for completeness) Let T be term-like.

Per
κ

Ξ = {(F, F ′) ∈ 2T κΞ | Ξ ` F ↘ V ⇑ κ and Ξ ` F ′ ↘ V ⇑ κ for some V ∈ TyκΞ}
PerκΞ = {(F, F ′) ∈ 2T κΞ | Ξ ` F ↘ V ⇓ κ and Ξ ` F ′ ↘ V ⇓ κ for some V ∈ TyκΞ}

Perκ and Per
κ

are Kripke families of subgroupoids, and form a kind candidate space.



Def. and Lem. 7 (Type groupoid for completeness) Let T be a type structure. We de-
fine Pκ ⊆ 2T κ by recursion on κ: P? := Per? and Pκ→κ

′
= Pκ →c2T Pκ

′
. P is an

induced type groupoid.

Theorem 8 (Completeness of NbE for types). Let T be a term-like type structure. If
Ξ ` T = T ′ : κ then Ξ ` [[T ]]Var ↘ V ⇑ κ and Ξ ` [[T ′]]Var ↘ V ⇑ κ for some V .

Proof. Since (Var,Var) ∈ PΞΞ , by the fundamental theorem of type equality we have
([[T ]]Var , [[T

′]]Var) ∈ PκΞ ⊆ Per
κ

Ξ which entails the goal. ut

6 Object Structures

In this section, we introduce object structures which model both the syntactic object
structure Obj indexed by syntactic types in Ty and structures of values D indexed by
type values from a structure T . The following development, leading up the fundamental
theorem of typing and the soundness of NbE for objects, parallels the preceding one
on the type level. However, while we could define the glueing type structure Gκ by
induction on kind κ, we cannot define a similar glueing objects structure gl by induction
on types, due to impredicativity. Hence, we will define gl as a structure of candidates
for semantic types.

Definition 12 (Typing context). Given a type structure T , a TΞ -context ∆ ∈ T cxt
Ξ

is a partial map from the term variables into T ?Ξ . If Γ ∈ Tycxt
Ξ and ρ ∈ T ΞΘ then

[[Γ ]]ρ ∈ T cxt
Θ is defined by [[Γ ]]ρ(x) = [[Γ (x)]]ρ.

Let ObjΞ `TΓ = {t | Ξ;Γ ` t : T}.

Definition 13 (Object structure). Let T be a type structure. An object structure over
T is a family DΞ `A (A ∈ T ?Ξ ) of Kripke sets indexed by TΞ -contexts ∆ such that
Ξ ′ ≤ Ξ implies DΞ `A

∆ = DΞ′ `A
∆ . It respects type equality, i. e., Ξ ` T = T ′ : ?

implies DΘ `[[T ]]ρ = DΘ `[[T ′]]ρ for any ρ ∈ T ΞΘ , and there are operations:

appΞ `A→B∆ ∈ DΞ `A→B
∆ → DΞ `A

∆ → DΞ `B
∆ ,

TyAppΞ `∀
κF

∆ ∈ DΞ `∀κF
∆ → (G ∈ T κΞ )→ DΞ `F ·G

∆ .

We write · for both of these operations. For ∆,Ψ ∈ T cxt
Θ , let η ∈ DΘ `Ψ

∆ iff η(x) ∈
D
Θ `Ψ(x)
∆ for all x ∈ dom(Ψ). We stipulate a family of evaluation functions

L Mρ ∈ ObjΞ `TΓ → D
Θ `[[Γ ]]ρ
∆ → D

Θ `[[T ]]ρ
∆

indexed by ρ ∈ T ΞΘ which satisfy the following equations:

LxMρη = η(x)
Lr sMρη = LrMρη · LsMρη
Lt UMρη = LtMρη · [[U ]]ρ

Lt[u/x]Mση = LtMση[x 7→LuMσ
η ] (∗)

Lλx :U. tMρη · d = LtMρη[x7→d] if d ∈ DΘ `[[U ]]ρ
∆

LΛX :κ. tMρη ·G = LtMρ[X 7→G]
η if G ∈ T κΘ

Lt[U/X]Mση = LtMσ[X 7→[[U ]]σ]
η (∗)



Again, (∗) have to hold only in combinatory object structures.
With parallel substitution, Obj (modulo β, βη, or judgmental equality) forms an

object structure over Ty (modulo the same equality).

Definition 14 (Object substructure). Let S, T be type structures with S ⊆ T and let
D be an object structure over T . Let EΞ `A ⊆ DΞ `A be a Kripke family of subsets
indexed by ∆ ∈ Scxt

Ξ for all A ∈ S?Ξ . Then E is an object substructure of D over S if
application and evaluation are well defined on E.

Definition 15 (Reindexed object structure). Let M : S → T be a type structure
morphism and D an object structure over T . The type structure EΞ `A := DΞ `M(A)

over S with f ·E d := f ·D d, d ·E G := d ·D (M(G)), and EL Mρ := DL MM◦ρ is
called D reindexed by M .

Given object structures D1 over T1 and D2 over T1 we define the product object
structure D1 ×D2 over T1 × T2 in the obvious way.

6.1 Realizability Type Structure and the Fundamental Theorem of Typing

Fix some term-like type structure T and an object structure D over T . Let A ∈ D̂A
Ξ if

A∆ ⊆ DΞ `A
∆ and A is Kripke. D̂A

Ξ forms a complete lattice for all Ξ,A.

Definition 16 (Function space and type abstraction on D̂).

→ bD ∈ D̂A
Ξ → D̂B

Ξ → D̂A→B
Ξ

(A → B)∆ := {f ∈ DΞ `A→B
∆ | for all d,∆′ ≤ ∆, d ∈ A∆′ implies f · d ∈ B∆′}

( . )∀
κF ∈ (G ∈ T κΞ )→ D̂F ·G

Ξ → D̂∀
κF
Ξ

(G.A)∀
κF
∆ := {d ∈ DΞ `∀κF

∆ | d ·G ∈ A∆}

Constructors of higher kind are interpreted as operators on Kripke sets.

Definition 17 (Kripke operators of higher kind). We define D̂F :κ
Ξ by D̂A:?

Ξ := D̂A
Ξ

and D̂F :κ→κ′
Ξ := (G ∈ T κΞ )→ D̂G:κ

Ξ → D̂F ·G:κ′

Ξ .

Definition 18 (Type candidate space). A type candidate space C forD over T consists
of two Kripke sets CΞ `A, CΞ `A ∈ D̂A

Ξ , (written A,A if no ambiguities arise) for each
type A ∈ T ?Ξ such that the following conditions hold.

H ⊆ H ∈ D̂H
Ξ (H neutral )

∀κF ⊆ G.F ·G ∈ D̂∀
κF
Ξ (G ∈ T κΞ )

X.F ·X ⊆ ∀κF ∈ D̂∀
κF
Ξ (X 6∈ dom(Ξ))

A→ B ⊆ A→ bD B ∈ D̂A→B
Ξ

A→ bD B ⊆ A→ B ∈ D̂A→B
Ξ

Definition 19 (Realizable semantic types). If F ∈ T κΞ and F ∈ D̂F :κ
Ξ then F κC F

(pronounced F realizes F) is defined by induction on κ as follows:

A ?C A :⇐⇒ A ⊆ A ⊆ A
F κ→κ

′

C F :⇐⇒ F ·G κ
′

C F(G,G) for all G κC G



We define the Kripke families T D̂
κ

Ξ = {(F,F) ∈ T κΞ × D̂F :κ
Ξ } and CκΞ = {(F,F) ∈

T κΞ × D̂F :κ
Ξ | F κC F}. For the remainder of this section, we fix a type candidate

space C.

Definition 20 (Interpretation into D̂). For T ∈ TyκΞ and (σ, ρ) ∈ T D̂
Ξ

Θ we define
D̂[[T ]]σ,ρ ∈ D̂

T [[T ]]σ :κ
Θ as follows:

D̂[[X]]σ,ρ := ρ(X)
D̂[[λX :κ. T ]]σ,ρ := ((G,G) ∈ T D̂

κ

Θ) 7→ D̂[[T ]](σ,ρ)[X 7→(G,G)]
D̂[[T U ]]σ,ρ := D̂[[T ]]σ,ρ(T [[U ]]σ, D̂[[U ]]σ,ρ)
D̂[[C]]σ,ρ := C bD

where ∀κbD ∈ D̂
∀κ:(κ→?)→?
Ξ

∀κbD(F,F) :=
⋂
GκG G.F(G,G)

Since the kind function space is the full set-theoretic one, D̂ is combinatory and respects
type equality.

Theorem 9 (Realizability). T D̂ is a type structure with application (F,F) · (G,G) =
(F · G,F(G,G)) and evaluation T D̂[[T ]]σ,ρ = (T [[T ]]σ, D̂[[T ]]σ,ρ). C is a type sub-

structure of T D̂.

Theorem 10 (Fundamental theorem of typing). Let D be an object structure over
T and C, C ∈ D̂ a type candidate space. Let S ⊆ C be a type substructure of the
associated realizability type structure C. Then the familyEΞ `(A,A)

(∆,Φ) := A∆ is an object
substructure of D reindexed by π1 : S → T .

6.2 Soundness of NbE for Objects

Term-like object structures and neutral objects are now defined analogously to term-like
type structures.

Definition 21 (Object reification). Given a term-like type structure T and a term-like
object structure D over T , we define the relations

Ξ;∆ ` d↘ v ⇑ A d reifies to v at type A,
Ξ;∆ ` e↘ u ⇓ A e reifies to u, inferring type A,

(where d, e ∈ DΞ `A
∆ and v, u are syntactical objects) inductively by the following

rules:

Ξ;∆ ` x↘ x ⇓ ∆(x)
Ξ;∆ ` e↘ u ⇓ A→ B Ξ;∆ ` d↘ v ⇑ A

Ξ;∆ ` e d↘ u v ⇓ B

Ξ;∆ ` e↘ u ⇓ ∀κF Ξ ` G↘ V ⇑ κ
Ξ;∆ ` eG↘ uV ⇓ F ·G

Ξ,X :κ;∆ ` f ·X ↘ v ⇑ F ·X
Ξ;∆ ` f ↘ ΛX :κ. v ⇑ ∀κF

Ξ;∆,x :A ` f · x↘ v ⇑ B Ξ ` A↘ U ⇑ ?
Ξ;∆ ` f ↘ λx :U. v ⇑ A→ B

Ξ;∆ ` e↘ u ⇓ H
Ξ;∆ ` e↘ u ⇑ H

H neutral



As for types, object reification is deterministic.
Note that we cannot say now in which ObjΞ `TΓ the objects u and v live. The con-

jecture is those Γ, T with Ξ ` ∆ ↘ Γ and Ξ ` A ↘ T ⇑ ?. However, this does not
follow directly from the definition, it is a consequence of Thm. 12.

Def. and Lem. 11 (Glueing type candidate space) Let S ⊆ T × Ty a glueing candi-
date, Gl S. For (A, T ) ∈ S?Ξ we define the Kripke families glΞ `(A,T ), gl

Ξ `(A,T ) ∈

D̂ × Obj
(A,T )

Ξ by

gl
Ξ `(A,T )

(∆,Γ ) := {(d, t) | Ξ;∆ ` d↘ v ⇑ A and Ξ;Γ ` t = v : T for some v},
glΞ `(A,T )

(∆,Γ )
:= {(e, t) | Ξ;∆ ` e↘ u ⇓ A and Ξ;Γ ` t = u : T for some u}.

gl is a type candidate space.

Theorem 12 (Soundness of NbE for objects). Let D be a term-like object structure
over a term-like type structure T . If Ξ;Γ ` t : T then there is a long normal form v
such that Ξ; T [[Γ ]]Var ` DLtMVar

var ↘ v ⇑ T [[T ]]Var and Ξ;Γ ` t = v : T .

6.3 Completeness of NbE for objects

Completeness on the object level is shown analogously to completeness on the type
level. Define object groupoids as groupoidal object structures and show that Kripke
function space and impredicative quantification on D̂ preserve the groupoid structure.
Then prove a fundamental theorem of object equality and instantiate it to the type can-
didate space defined analogously to Per. Due to lack of space, we cannot spell out the
details and refer to the full version of this article instead [Abe09].

7 Conclusion

We have developed type and object structures, which are sorted applicative structures
on type and object level, in order to facilitate generic model constructions for Sys-
tem Fω—which are an alternative to categorical semantics [See87] and Bruce-Meyer-
Mitchell models [BM84]. Using special instances of kind candidate spaces we have
shown soundness and completeness of an abstract normalization by evaluation algo-
rithm for types. We have gone on to show soundness and completeness of NbE for
objects.

We seek to extend NbE to the Calculus of Constructions, using ideas from this work.
Due to dependency, type and object levels cannot be defined in sequence, but must be
defined simultaneously; this seems to be the main remaining technical difficulty.
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