
INSTITUT FÜR INFORMATIK
DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Diplomarbeit

Eine semantische Analyse

struktureller Rekursion

Bearbeiter: Andreas Abel

Aufgabensteller: Prof. Dr. Peter Clote, Ph.D.

Betreuer: Dr. Thorsten Altenkirch, Ph.D.

INSTITUT FÜR INFORMATIK
DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Diplomarbeit

Eine semantische Analyse

struktureller Rekursion

Bearbeiter: Andreas Abel

Aufgabensteller: Prof. Dr. Peter Clote, Ph.D.

Betreuer: Dr. Thorsten Altenkirch, Ph.D.

Abgabetermin: 26. Februar 1999

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit
selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 26. Februar 1999

. .
(Unterschrift des Kandidaten)

Danksagung

An erster Stelle danke ich Jesus Christus, der das Universum
und den menschlichen Geist geformt hat und damit auch die
Mathematik und Technik, die wir schaffen und zu unserem
Wohl gebrauchen können. Auch hat er an einer kritischen Stelle
im Laufe dieser Arbeit mein Gebet gehört und mir geholfen.

Sodann danke ich Thorsten Altenkirch, der in unkomplizierter
Weise meine Arbeit betreut und sich viel Zeit für meine Fra-
gen genommen hat. Ebenso Ralph Matthes, der die Arbeit
gründlich gelesen hat und mich an seinem typentheoretischen
Erfahrungsschatz teilhaben ließ, sofern es sein mit Doktorarbeit
und Rigorosum gefüllter Terminkalender erlaubte. Und Rolf
Backofen, der mir in einigen technischen Fragen geholfen hat.

Meinen Eltern danke ich für die wohlwollende Finanzierung
meines Studiums und dafür, dass sie immer für mich da sind.

Und schließlich danke ich Julia, dass sie in meinem Leben aufge-
taucht ist (obwohl sie mich eigentlich von meiner Arbeit nur
abgelenkt hat).

A Semantic Analysis of Structural Recursion

Abstract

We consider a type theoretic language with lambda abstraction,
disjoint unions, pairs and recursive terms and show that all struc-
turally recursive functions terminate, i.e. functions, that contain re-
cursive calls only with a structurally smaller argument. To this end,
we define a semantics [[σ]] over all types and show that it is well-
founded w.r.t. the structural ordering on the values (normal forms of
our terms). Then by wellfounded induction we can easily infer termi-
nation of a recursive function at all inputs in [[σ]] from termination at
all smaller inputs. Later we extend our solution from strictly positive
types to positive types and mutual recursive functions.

Contents

1 Introduction 7

2 The language 9
2.1 Types . 9
2.2 Terms . 11
2.3 Examples . 13

2.3.1 Natural numbers . 13
2.3.2 Ordinal numbers . 14

3 Operational semantics 15
3.1 Values and closures . 15
3.2 Operational semantics . 16
3.3 Correspondence of values and closures 18
3.4 Examples . 19

3.4.1 Numerals . 20
3.4.2 Soundness of addition 21

4 Semantic values 23
4.1 Example . 27

5 Wellfoundedness of the structural ordering 29
5.1 Example . 34

CONTENTS 6

6 Soundness of the termination criterium 35

7 Extensions 39
7.1 Positive types . 39
7.2 Functions with multiple parameters 44
7.3 Mutual recursion . 46

8 Conclusion 48

7

1 Introduction By the seventh day God had finished the work he had been doing;
so on the seventh day he rested from all his work. And God
blessed the seventh day and made it holy, because on it he rested
from all the work of creating that he had done.

The Bible, NIV, Genesis 2:2,3

In the research field of program verification termination is an important
aspect. In general the negative solution of Hilbert’s halting problem showed
that termination is undecidable. Nevertheless much work has been done on
the question of termination, especially in the field of term rewriting systems
[Der87, Ste95] – where several termination criteria have been developed – and
more recently in the field of functional programming languages, e.g. [BG96,
Gie97], to which our work contributes. We prove the following termination
criterium:

All structurally recursive functions terminate.

We define a structurally recursive function as

a function f that terminates for all arguments v, if it does so
under the condition that it terminates for all structurally smaller
arguments v′.

Our termination criterium only (and then trivially) holds if the domain of f
is wellfounded w.r.t. the structural ordering <, i.e. if there are no infinite
descending chains v > v′ >

Functional programming languages like SML [Pau91] and Haskell
[HPF97] and implementations of type theory like ALF [AGNvS94] and LEGO
[LP92] allow definition of recursive functions/terms by pattern matching
[Coq92]. A function is structurally recursive if

1. the pattern is total (i.e. no possible case is omitted) and

2. recursive calls use only structurally smaller arguments.

MuTTI (Munich Type Theory Implementation) is a functional language
with dependent types. Pattern matching is done via case analysis of only one
expression (no combined patterns), which rids us of a complicated totality
check for condition 1.

For the simply typed sublanguage of MuTTI named foetus, we have de-
veloped a program which checks condition 2., where we obtain structurally
smaller arguments only by case analysis, projection and function applica-
tion. This restriction makes being structurally smaller a syntactic property
that can easily be checked by foetus. For mutually recursive functions with
multiple arguments, foetus constructs a call graph and tries to determine an

1 INTRODUCTION 8

permutation of the arguments with respect to which termination is verified
using the lexicographic ordering (for detailed explanation see [Abe98]).

Our task now is to prove the soundness of our method, i.e. of our termi-
nation criterium. Therefore we consider a system with unit, sum, product,
function and strictly positive recursive types that has the same expressiv-
ity as foetus, and we restrict to functions of one parameter without mutual
recursion. After defining the types and terms of this system (section 2) we
specify an operational semantics (section 3) and semantical values (section
4) on which we define a structural ordering. After having proven wellfound-
edness of this ordering (section 5) we easily obtain the soundness of our
termination criterium (section 6). We then extend our proof to systems with
positive types (section 7.1), functions with multiple parameters (section 7.2)
and mutual recursion (section 7.3) and we conclude by discussing further
work (section 8).

A comment on our method for the reader familiar with normal-
ization proofs. Our method of proving normalization for our system is a
very intuitive one. Since we do not define a reduction relation as it is com-
mon for the lambda calculus in the literature, but treat it as a functional
programming language with a fixed evaluation strategy, we neither have to
consider terms of open types (i.e. types with free variables), nor show strong
normalization, nor make use of sophisticated concepts like Girard’s candi-
dates of reducibility or saturated sets [Gir72, Alt93]. Our proof is straight
and simple.

9

2 The language

We need a language that is strong enough to form typical functional programs
like functions on natural numbers, lists and user defined data types. On the
other hand it has to be simple enough to enable reasoning about it.

2.1 Types

The type system we have chosen is constructed from the base type 1 (rep-
resenting the set with one element), type variables X,Y, Z, . . . and the type
constructors + (sum), × (product), → (function space) and Rec (recur-
sive type). Within this system the set of natural numbers may be ex-
pressed as N := RecX.1 + X and the set of lists over natural numbers
as ListN := RecX.1 + N × X. In the literature recursive types are often
called µ-types.

To simplify the central proof of wellfoundedness (section 5) we restrict
ourselves to strictly positive recursive types now. Later we will extend our
system to positive recursive types (section 7.1).

Type variables. Assume a countably infinite set of type variables
TyVars = {X, Y, Z, . . .}. A type variable X appears strictly positive within a
type τ iff it appears never on the left side of some → (see rule (Arr) below).

Notation. For convenience we mix list, tuple and set notation: By ~X
we mean a (possibly empty) list of type variables (~X ⊂ TyVars) without

duplicates (an ordered set) and by ~X,X the appending of X to ~X assuming

X /∈ ~X.

Types. We inductively define the family of sets of types Ty(~X) indexed

over a finite set of type variables ~X ⊂ TyVars appearing only strictly positive
as follows:

2 THE LANGUAGE 10

(Unit) 1 ∈ Ty(∅)

(Var)
~X,X ⊂ TyVars

X ∈ Ty(~X,X)
(Weak)1

σ ∈ Ty(~X) X /∈ ~X

σ ∈ Ty(~X,X)

(Sum)
σ, τ ∈ Ty(~X)

σ + τ ∈ Ty(~X)
(Prod)

σ, τ ∈ Ty(~X)

σ × τ ∈ Ty(~X)

(Arr)
σ ∈ Ty(∅) τ ∈ Ty(~X)

σ → τ ∈ Ty(~X)
(Rec)

σ ∈ Ty(~X,X)

RecX.σ ∈ Ty(~X)

We can restrict the free type variables to strictly positive ones because unlike
Girards System F [Gir72], we have no polymorphic types and therefore need
type variables only to construct recursive types.

Notation. In the following we write σ(~X) to express σ ∈ Ty(~X). Then σ

and σ(~X) are synonyms. We also abbreviate the set of closed types Ty(∅) to
Ty.

Renaming convention for types. Rec binds a type variable X in a type
σ(~X,X), and we may replace all appearances of X in RecX.σ(~X,X) by any

new variable Y /∈ ~X without altering the actually denoted type. Thus we do
not distinguish between RecX.σ(~X,X) and RecY.σ(~X, Y).

Our style of variable introduction and binding (see rules (Var), (Weak)
and (Rec) below) is very near to an implementation of variables by deBruijn-
indices (see [dB72]).2 This saves us a lot of work in defining substitution, but
one must become familiar with the notation, e.g. that (Weak) is an explicit
type (and later term) constructor. As compromise we have kept the variable
names for better readability and thus formally need a renaming convention.

Substitution. Now we can define simultaneous substitution on types in
the usual way. Provided a type σ(~X) with a list of free variables ~X and

1Unlike all other type forming rules (Weak) does not alter the term describing the type
in our representation. We have left out a constructor like WkX.σ for better readability.
Our implementation in LEGO, however, uses this explicit constructor.

2That means that one enumerates the variables and obtains rules like (Var) n ∈ Ty(n+
1), (Weak) Ty(n) ⊂ Ty(n+ 1) and (Rec) σ ∈ Ty(n+ 1)⇒ Recn+1. σ ∈ Ty(n).

2 THE LANGUAGE 11

an equally long list of types ~ρ ∈ Ty(~Y) we define σ[~X := ~ρ] ∈ Ty(~Y) by
recursion over σ as follows:

(Unit) 1[] := 1

(Var) X[~X := ~ρ,X := ρ] := ρ

(Weak)3 σ(~X,X)[~X,X := ~ρ, ρ] := σ(~X)[~X := ~ρ]

(Sum)
(
σ(~X) + τ(~X)

)
[~X := ~ρ] := σ[~X := ~ρ] + τ [~X := ~ρ]

(Prod)
(
σ(~X)× τ(~X)

)
[~X := ~ρ] := σ[~X := ~ρ]× τ [~X := ~ρ]

(Arr)
(
σ(∅)→ τ(~X)

)
[~X := ~ρ] := σ → (τ [~X := ~ρ])

(Rec) We can assume Z /∈ ~Y by the renaming convention, hence

we can weaken all types ρi(~Y) by Z:
(

RecZ.σ(~X,Z)
)

[~X :=

~ρ] := RecZ.
(
σ[~X := ~ρ(~Y , Z), Z := Z]

)

Notation. We write σ(~ρ) for σ(~X)[~X := ~ρ] and define substitution of a

single variable Y as σ(~X, Y, ~Z)[Y := ρ] := σ[~X := ~X, Y := ρ, ~Z := ~Z], which

we further abbreviate to σ(~X, ρ, ~Z).

2.2 Terms

Now we define the terms inhabiting the above defined types. The definitions
are very similar to a typed lambda calculus enriched by sums and products,
except for the recursive terms we allow. We have decided to type terms over
contexts to easily define closures afterwards.

Term variables and contexts. Assume a countably infinite set of term
variables TmVars = {g, x, y, z, . . .}. Provided the closed types σ1, . . . σn we
can form a context Γ = xσ1

1 , . . . , x
σn
n ∈ Cxt as a list of pairwise distinct term

variables together with their types. We write xσ to express the variable is of
type σ in a given context.

3Note that in the weakened type σ the newly introduced variable X does not appear.
Therefore the right side is well defined.

2 THE LANGUAGE 12

Terms. We define the set of terms Tmσ[Γ] of a closed type σ over context
Γ inductively as follows:

(unit) () ∈ Tm1[]

(var)
Γ ∈ Cxt x /∈ Γ

x ∈ Tmσ[Γ, xσ]
(weak)

t ∈ Tmσ[Γ] x /∈ Γ

t ∈ Tmσ[Γ, xτ]

(inl)
t ∈ Tmσ[Γ] τ ∈ Ty

inl(t) ∈ Tmσ+τ [Γ]
(inr)

t ∈ Tmτ [Γ] σ ∈ Ty

inr(t) ∈ Tmσ+τ [Γ]

(case)
t ∈ Tmσ+τ [Γ] l ∈ Tmρ[Γ, xσ] r ∈ Tmρ[Γ, yτ]

case(t, xσ.l, yτ .r) ∈ Tmρ[Γ]

(pair)
s ∈ Tmσ[Γ] t ∈ Tmτ [Γ]

(s, t) ∈ Tmσ×τ [Γ]

(fst)
p ∈ Tmσ×τ [Γ]

fst(p) ∈ Tmσ[Γ]
(snd)

p ∈ Tmσ×τ [Γ]

snd(p) ∈ Tmτ [Γ]

(lam)
t ∈ Tmτ [Γ, xσ]

λxσ.t ∈ Tmσ→τ [Γ]
(rec)

t ∈ Tmσ→τ [Γ, gσ→τ]

rec gσ→τ .t ∈ Tmσ→τ [Γ]

(app)
t ∈ Tmσ→τ [Γ] s ∈ Tmσ[Γ]

t s ∈ Tmτ [Γ]

(fold)
t ∈ Tmσ(RecX.σ(X))[Γ]

fold(t) ∈ TmRecX.σ(X)[Γ]
(unfold)

t ∈ TmRecX.σ(X)[Γ]

unfold(t) ∈ Tmσ(RecX.σ(X))[Γ]

There are two main kinds of term forming rules: Rules for introducing types
(the constructors (unit), (inl), (inr), (pair), (lam), (rec) and (fold)) and
rules for eliminating types (the destructors (case), (fst), (snd), (app) and
(unfold)). The remaining rules (var) and (weak) only work on the context
and therefore do not fit in these categories.

Renaming convention for terms. In these rules case binds the variable
x in the term l and y in r, λ binds x in t and rec binds g in t. Like we have

2 THE LANGUAGE 13

done with types we do not distinguish between terms that are equal except
that the names of their bound variables differ.

Notation. Similar to the type notation σ(~X) we write tσ to express that
t is of type σ, t[Γ] that t is a term over context Γ and tσ[Γ] to express both,
i.e. t ∈ Tmσ[Γ]. We define the set of closed terms Tmσ of type σ as the set
of terms over an empty context Tmσ[].

2.3 Examples

To strengthen the reader’s understanding of our language we will present a
few examples. By the way we see that we can embed Gödel’s T and Kleene’s
O into our system. Identifiers for defined expressions of our language are
printed in bold font.

2.3.1 Natural numbers

We define the natural numbers as the recursive type

Nat ≡ RecX.1 +X

and zero and successor as

O ≡ fold(inl())

S(v) ≡ fold(inr(v))

Addition on Nat could be defined as the following function add ∈
TmNat→Nat→Nat:

add ≡ rec addNat→Nat→Nat. λxNat. λyNat. case(unfold(x),
1. y,
x′Nat. S(addx′ y))

We use as variable name for a variable of type 1, since its content will
always be () and thus we never have to refer to it.

We even can define the recursor Rσ over natural numbers for result type
σ, that is a constant in Gödel’s T:

Rσ ≡ rec Rσ→(Nat→σ→σ)→Nat→σ. λfσO. λf
Nat→σ→σ
S . λnNat.

case(unfold(n),
1. fO,
n′Nat. fS n

′ (R fO fS n
′)

2 THE LANGUAGE 14

2.3.2 Ordinal numbers

In our system we can define ordinal numbers as follows, where we represent
limes numbers as functions from Nat to Ord:

Ord ≡ RecX.(1 +X) + (Nat→ X)

As above we can define zero, successor, limes and addition:

O ≡ fold(inl(inl()))

S(v) ≡ fold(inl(inr(v)))

Lim(f) ≡ fold(inr(f))

addOrd ≡ rec addOrdOrd→Ord→Ord. λxOrd. λyOrd. case(unfold(x),
n1+Ord. case(n,

1. y,
x′Ord. S(addOrdx′ y))

fNat→Ord. Lim(λzNat. addOrd (f z) y))

We will extend these examples in the next sections.

15

3 Operational semantics

We only assign a meaning to closed terms t ∈ Tmσ: they evaluate to (syntac-
tic) values of type σ. (We want to define semantic values as well, see section
4.) But during the process of evaluation defined by our operational semantics
we will have to handle open terms, where their free variables are assigned
values we store in an environment. Term and its corresponding environment
form a closure which can be seen as completion of an open term.

3.1 Values and closures

In formulations of the lambda calculus in the literature (see for instance
[Mat98] for an accurate formalization) often normal forms are defined as
terms that cannot be reduced further.4 Since we do not want open terms as
results of an evaluation, we follow a different approach: we define values from
scratch and later show that they correspond to closed terms resp. closures
(see section 3.3).

Values. We define Valσ inductively as follows. Again we write vσ to express
v ∈ Valσ. The set of environments Val(Γ) is defined simultaneously (see the
definition below).

(vlam)
t ∈ Tmτ [Γ, xσ] e ∈ Val(Γ)

〈λxσ.t; e〉 ∈ Valσ→τ
(vunit) () ∈ Val1

(vrec)
t ∈ Tmσ→τ [Γ, gσ→τ] e ∈ Val(Γ)

〈rec gσ→τ .t; e〉 ∈ Valσ→τ

(vinl)
v ∈ Valσ τ ∈ Ty

inl(v) ∈ Valσ+τ
(vinr)

v ∈ Valτ σ ∈ Ty

inr(v) ∈ Valσ+τ

(vpair)
v ∈ Valσ w ∈ Valτ

(v, w) ∈ Valσ×τ
(vfold)

v ∈ Valσ(RecX.σ(X))

fold(v) ∈ ValRecX.σ(X)

These rules correspond to the introduction rules for terms. Since values
represent evaluated terms, we need only constructors, no destructors.

4Ralph Matthes first defines normal forms inductively and later proves that they are
the irreducible terms.

3 OPERATIONAL SEMANTICS 16

Environments and Closures. We define the set of environments of the
context Γ = xσ1

1 , . . . , x
σn
n as

Val(Γ) := {x1 =v1, . . . , xn=vn : vi ∈ Valσi}

We write eΓ for an environment e ∈ Val(Γ) and “·” for the empty environ-
ment. The set of closures of type τ we define as

Clτ := {〈t; e〉 : Γ ∈ Cxt, t ∈ Tmτ [Γ], e ∈ Val(Γ)}
∪ {f@u : f ∈ Valσ→τ , u ∈ Valσ}

Here @ is a syntactic function symbol Valσ→τ ×Valσ → Clτ . Closures of the
form f@u (value applied to values) are convenient to define the operational
semantics without typecasting values back to terms, which in an implemen-
tation would be inefficient as well.

Renaming convention for closures. Since in a closure all variables of a
term are bound, we consider two closures as equal that differ only in variable
names.

3.2 Operational semantics

In the following we present a big step operational semantics “⇓” that defines
how closures are evaluated to values. Our strategy is call-by-value (see rule
(opapp)) and we do not evaluate under λ and rec (see rules (oplam) and
(oprec). Furthermore it is deterministic, i.e. for every closure there is at
most one computation tree.5

Operational semantics. We inductively define a family of relations ⇓σ⊆
Clσ × Valσ indexed over Ty. As the type σ can be inferred from the type of
the closure or the value, we generally leave it out. For reasons of readability
we leave out type and context annotations wherever possible.

5For all closures except 〈case(t, x.l, y.r); . . .〉 there is only one computation rule. But
also for closures with case analysis there will be only one computation tree, since 〈t; . . .〉
evaluates to either a left (inl) or a right (inr) injection of some value and thus only one of
the rules (opcasel) or (opcaser) is applicable.

3 OPERATIONAL SEMANTICS 17

(opunit) 〈(); ·〉 ⇓ ()

(opvar) 〈x; e, x = v〉 ⇓ v (opweak)
〈t[Γ]; e〉 ⇓ v

〈t[Γ, x]; e, x = w〉 ⇓ v

(opinl)
〈t; e〉 ⇓ v

〈inl(t); e〉 ⇓ inl(v)
(opinr)

〈t; e〉 ⇓ v

〈inr(t); e〉 ⇓ inr(v)

(opcasel)
〈tσ+τ [Γ]; e〉 ⇓ inl(wσ) 〈lρ[Γ, xσ]; e, x = w〉 ⇓ vρ

〈case(t, x.l, y.r); e〉 ⇓ v

(opcaser)
〈tσ+τ [Γ]; e〉 ⇓ inr(wτ) 〈rρ[Γ, yτ]; e, x = w〉 ⇓ vρ

〈case(t, x.l, y.r); e〉 ⇓ v

(oppair)
〈s; e〉 ⇓ v 〈t; e〉 ⇓ w

〈(s, t); e〉 ⇓ (v, w)

(opfst)
〈p; e〉 ⇓ (v, w)

〈fst(p); e〉 ⇓ v
(opsnd)

〈p; e〉 ⇓ (v, w)

〈snd(p); e〉 ⇓ w

(oplam) 〈λx.t; e〉 ⇓ 〈λx.t; e〉 (oprec) 〈rec g.t; e〉 ⇓ 〈rec g.t; e〉

(opapp)
〈t; e〉 ⇓ f 〈s; e〉 ⇓ u f@u ⇓ v

〈t s; e〉 ⇓ v

(opappvl)
〈t; e, x = u〉 ⇓ v

〈λx.t; e〉@u ⇓ v

(opappvr)
〈t; e, g = rec g.t〉 ⇓ f f@u ⇓ v

〈rec g.t; e〉@u ⇓ v

(opfold)
〈t; e〉 ⇓ v

〈fold(t); e〉 ⇓ fold(v)
(opunfold)

〈t; e〉 ⇓ fold(v)

〈unfold(t); e〉 ⇓ v

3 OPERATIONAL SEMANTICS 18

3.3 Correspondence of values and closures

For our operational semantics we want to show a consistency property: Val-
ues, converted back to closures, should evaluate to themselves. To prove this
proposition we need some

Additional weakening rules. We specify two rules for terms that per-
form weakening by introduction of several variables at a time: By iterated
application of (weak) we can weaken a term by a list of variables ∆:

(weakEnd)
t ∈ Tmσ[Γ] Γ ∩∆ = ∅

t ∈ Tmσ[Γ,∆]

We also need to be able to weaken a term by adding variables at the beginning
of its context.

(weakBeg)
t ∈ Tmσ[Γ] Γ ∩∆ = ∅

t ∈ Tmσ[∆,Γ]

That rule we get by decomposing the term into its derivation tree, weakening
the context at the leaves6 of this tree and then re-composing the term. In
the same way we get evaluation rules for weakened closures:

(opweakEnd)
〈t[Γ]; eΓ〉 ⇓ v

〈t[Γ,∆]; eΓ, d∆〉 ⇓ v

(opweakBeg)
〈t[Γ]; eΓ〉 ⇓ v

〈t[∆,Γ]; d∆, eΓ〉 ⇓ v

Consistency. To prove that each value evaluates to itself, we must convert
it back to its closure first. To this end, we define the canonical embedding

clσ : Valσ ↪→ Clσ

by recursion on values as follows:

6There are two kinds of leaves:

(var) Here we can weaken the context in the beginning, since we can introduce
a new variable with any context.

(unit) Since here the context is empty, we can insert the necessary weakening
step.

3 OPERATIONAL SEMANTICS 19

(vunit) cl() := 〈(); ·〉

(vlam) cl〈λx.t; e〉 := 〈λx.t; e〉

(vrec) cl〈rec g.t; e〉 := 〈rec g.t; e〉

(vinl) Let 〈t; e〉 := cl(v). Then cl(inl(v)) := 〈inl(t); e〉

(vinr) Let 〈t; e〉 := cl(v). Then cl(inr(v)) := 〈inr(t); e〉

(vpair) Let 〈s[∆]; d〉 := cl(v), 〈t[Γ]; e〉 := cl(w). By the renaming
convention for closures we can assume that Γ ∩ ∆ = ∅. We
weaken s[∆] to s[∆,Γ] by weakEnd and t[Γ] to t[∆,Γ] by
weakBeg. Then cl(v, w) := 〈(s, t)[∆,Γ]; d, e〉

(vfold) Let 〈t; e〉 := cl(v). Then cl(fold(v)) := 〈fold(t); e〉

Proposition 1 (Values evaluate to themselves)

∀σ ∈ Ty, v ∈ Valσ. cl(v) ⇓ v

Proof by induction over v. The base cases (vunit), (vlam) and (vrec) are
trivial by (opunit), (oplam) and (oprec).

(vinl) By induction hypothesis (IH) we have cl(v) =: 〈t; e〉 ⇓ v.
Using (opinl) we get cl(inl(v)) = 〈inl(t); e〉 ⇓ inl(v).

(vinr) analogously

(vfold) analogously by (opfold)

(vpair) By IH we have cl(v) =: 〈s; d〉 ⇓ v. Using (opweakEnd) we
get 〈s; d, e〉 ⇓ v. Also by IH we have cl(w) =: 〈t; e〉 ⇓ w,
hence by (opweakBeg) 〈t; d, e〉 ⇓ w. (oppair) finishes the proof
producing cl(v, w) = 〈(s, t); d, e〉 ⇓ (v, w) 2

3.4 Examples

In the following we will show two properties of the type Nat defined in section
2.3.1.

3 OPERATIONAL SEMANTICS 20

3.4.1 Numerals

Recall the definition of Nat ≡ RecX.1 + X, O and S in section 2.3.1. We
can show that the numerals ValNat are isomorphic to the natural numbers
N.

Proposition 2
ValNat = {Sn(O) : n ∈ N}

Proof. For “⊇” we show ∀n ∈ N. Sn(O) ∈ ValNat by induction over n.

n = 0

vunit
() ∈ Val1

vinl
inl() ∈ Val1+Nat

vfold
O ≡ fold(inl()) ∈ ValNat

n→ n+1

IH
Sn(O) ∈ ValNat

vinr
inr(Sn(O)) ∈ Val1+Nat

vfold
Sn+1(O) ≡ fold(inr(Sn(O))) ∈ ValNat

The other direction “⊆”: We show simultaneously

(i) v ∈ ValNat → v ∈ {Sn(O) : n ∈ N}
(ii) v ∈ Val1+Nat → v ∈ {inl(), inr(Sn(O)) : n ∈ N}

by induction on generation of v. The only matching cases are:

(vinl) (ii) v ≡ inl() ∈ Val1+Nat: Obviously v ∈ {inl(), inr(Sn(O)) :
n ∈ N}.

(vinr) (ii) v ≡ inr(v′), v′ ∈ ValNat: By induction hypothesis (i) we
have v′ ∈ {Sn(O) : n ∈ N}, therefore we see immediately that
v ∈ {inl(), inr(Sn(O)) : n ∈ N}.

(vfold) (i) v ≡ fold(v′), v′ ∈ Val1+Nat: By induction hypothesis (ii)
either v′ = inl() or there is an n ∈ N with v′ = inr(Sn(O)).
In the first case v = O and in the second case v = Sn+1(O),
thus in both cases v ∈ {Sn(O) : n ∈ N}. 2

For the following we introduce the abbreviation n := Sn(O) for numerals.

3 OPERATIONAL SEMANTICS 21

3.4.2 Soundness of addition

In order to show that our function add really implements addition on num-
bers, we have to prove

∀n,m ∈ N. 〈add Sn(O) Sm(O); ·〉 ⇓ Sn+m(O)

Here we want to show it for the values 〈add; ·〉 ∈ ValNat→Nat→Nat, n,m ∈
ValNat. (In the following we will write add also for its value 〈add; ·〉.) How-
ever, (add@n)@m is not syntactically correct, because the application @
is a function symbol Valσ→τ × Valσ → Clτ . Therefore we need a function
addn ∈ ValNat→Nat for each numeral n ∈ ValNat, which we define as the
result of evaluating add@n, i.e.

addn = εv. add@n ⇓ v

(Hilbert’s epsilon operator εx. P (x) picks an arbitrary element with the pos-
tulated property P ; that implies P (εx. P (x)) is true.) We can compute addn
by our operational semantics:

oplam
〈λx . . .〉 ⇓ 〈λx . . .〉

oplam
〈λy . . .〉 ⇓ 〈λy . . .〉

opappvl
〈λx. λy . . . ; add = add〉@n ⇓ 〈λy . . . , x = n〉

opappvr
〈rec add.λx. λy. case(. . .); ·〉@n ⇓ 〈λy. case(. . .); add = add, x = n〉
=== def

add@n ⇓ addn

Now we can prove the correctness of add, i.e. we show

Proposition 3
∀n,m ∈ N. addn@m ⇓ n+m

Proof by induction over n. Case n = 0: We show addO@m ⇓ m.

opvar
〈x; . . . x = O〉 ⇓ O ≡ fold(inl())

opunfold
〈unfold(x); . . . x = O〉 ⇓ inl()

opweak
〈unfold(x); . . . x = O, y = m〉 ⇓ inl()

opvar
〈y; . . . y = m〉 ⇓ m

opweak
〈y; . . . y = m, = ()〉 ⇓ m

opcasel
〈case(unfold(x), 1.y, x′Nat.S(addx′ y); add = add, x = O, y = m〉 ⇓ m

opappvl
〈λyNat. case(. . .); add = add, x = O〉@m ⇓ m

Case n→ n+1: Given the induction hypothesis addn@m ⇓ n+m. we show
addS(n)@m ⇓ S(n+m). For technical reasons we will split the proof tree

3 OPERATIONAL SEMANTICS 22

into three parts:

(I) Derivation of 〈addx′; . . . x′ = n〉 ⇓ addn:

···
〈add; . . .〉 ⇓ add

···
〈x′; . . . x′ = n〉 ⇓ n

··· Def. of addn
add@n ⇓ addn

opapp
〈addx′; . . . x′ = n〉 ⇓ addn

(II) Derivation of 〈S(addx′ y); . . . y = m,x′ = n〉 ⇓ S(n+m):

··· (I)
〈addx′; . . . x′ = n〉 ⇓ addn

···
〈y; . . .〉 ⇓ m

IH
addn@m ⇓ n+m

opapp
〈(addx′) y; . . . y = m,x′ = n〉 ⇓ n+m

opinr
〈inr(addx′ y); . . . y = m,x′ = n〉 ⇓ inr(n+m)

opfold
〈S(addx′ y); . . . y = m,x′ = n〉 ⇓ S(n+m)

(III) Derivation of addS(n)@m ⇓ S(n+m):

···
〈unfold(x); ...x=S(n)...〉 ⇓ inr(n)

··· (II)
〈S(addx′ y); ...y=m,x′=n〉 ⇓ S(n+m)

opcaser
〈case(unfold(x), 1.y, x′Nat.S(addx′ y)); . . . x = S(n), y = m〉 ⇓ S(n+m)

opappvl
〈λyNat. case(. . .); add = add, x = S(n)〉@m ⇓ S(n+m)
=== def

addS(n)@m ⇓ S(n+m)

2

23

4 Semantic values

Now that we have built a partial language by defining types, terms and
an operational semantics, we are interested in a sublanguage that is total.
Therefore we define a semantics [[·]] over the types, so that [[σ]] contains all
“good” values of type σ, i.e. all values that guarantee termination.

Since recursive types RecX.σ(X) are interpreted as the least fixed point
of the operator represented by σ(X), we have to ensure monotonicity of our
types. In a lemma we will show that all types are monotone since we have
restricted ourselves to strictly positive types. But first some facts about the

Least fixed point. Let (U ,⊆) be a complete lattice7 of sets. By Tarski’s
fixed-point theorem [Tar55] every monotone8 operator F : U → U has a least
fixed point F := lfpF with the following two properties

(ispfp) F(F) ⊆ F

(ismpfp) ∀A ∈ U .F(A) ⊆ A→ F ⊆ A

which characterize F as the least pre-fixed point of F . We can show that

F = inf {A ∈ U : F(A) ⊆ A}

We get “⊇” by (ispfp) since F ∈ A := {A ∈ U : F(A) ⊆ A} and “⊆” by
(ismpfp) immediately.

For F to be the fixed point we need F ⊆ F(F). We obtain this as
follows: Since F is monotone F(F(F)) ⊆ F(F) by (ispfp), hence F(F) ∈ A
and therefore by (ismpfp) F ⊆ F(F).

Folding of value sets. For convenience we define a polymorphic bijective
function fold that performs folding on all elements of a value set:

fold : P
(

Valσ(RecX.σ(X))
)
→ P

(
ValRecX.σ(X))

)
W 7→ {fold(v) : v ∈ W}

From the rule (vfold) and its inversion we can derive that fold is monotone.

7i.e. to every collection A ⊆ U of sets there is an infimum inf A w.r.t. set inclusion
“⊆”.

8F monotone :↔ ∀A ⊆ B.F(A) ⊆ F(B).

4 SEMANTIC VALUES 24

Semantic Values. The idea is that good values of→-type are the functions
f that for every good input u produce a good output v. (This of course
implies termination of f on all good inputs.) Good values of other types
have no other restriction, except that they be derived from good values of
the component types.

Let σ(~X) be a type over the free type variables ~X = X1, . . . , Xn; ~τ =

τ1, . . . , τn a list of closed types and ~V = V1, . . . , Vn ⊆ Val~τ sets of (syntactic)
values of type ~τ (i.e. V1 ⊆ Valτ1 , . . . , Vn ⊆ Valτn). The set of semantic values

[[σ(~X)]]~V ⊆ Valσ(~τ) of type σ over the value sets ~V is a subset of the values
of the type σ the variables of which are substituted by ~τ . It is defined by
recursion over σ as follows:

(Unit) [[1]] := {()}

(Var) [[Xn]]~V := Vn

(Weak) [[σ(~X, Y)]]~V ,W := [[σ(~X)]]~V

(Sum) [[(σ + τ)(~X)]]~V := {inl(v) : v ∈ [[σ(~X)]]~V } ∪ {inr(v) : v ∈
[[τ(~X)]]~V }

(Prod) [[(σ × τ)(~X)]]~V := {(v, w) : v ∈ [[σ(~X)]]~V , w ∈ [[τ(~X)]]~V }

(Arr) [[σ → τ(~X)]]~V := {f ∈ Valσ→τ(~τ) : ∀u ∈ [[σ]]. ∃v ∈ [[τ(~X)]]~V .
f@u ⇓ v}

(Rec) [[RecY.σ(~X, Y)]]~V := lfpF , where we define F as

F : P
(

ValRecY.σ(~τ,Y)
)
→ P

(
ValRecY.σ(~τ,Y)

)
W 7→ fold

(
[[σ(~X, Y)]]~V ,W

)
For this definition to be valid the least fixed point in (Rec) must exist. This is
only guaranteed if the operator F is monotone, which we show simultaneously
to the definition. For reasons of clarity we have written it down separately
in the following

Lemma 4 (Monotonicity of semantic values)

∀σ(~X, Y, ~Z). A ⊆ B → [[σ(~X, Y, ~Z)]]~V ,A, ~W ⊆ [[σ(~X, Y, ~Z)]]~V ,B, ~W

4 SEMANTIC VALUES 25

Proof by induction on σ. Here the strict positivity of σ comes in decisively
(see case (Arr)).

(Unit) Nothing to show.

(Var) [[Xn]]~V = Vn ⊆ Vn = [[Xn]]~V
[[Y]]~V ,A = A ⊆ B = [[Y]]~V ,A
[[Zn]]~V ,A, ~W = Wn ⊆ Wn = [[Zi]]~V ,A, ~W

(Weak) by Y : [[σ(~X, Y)]]~V ,A = [[σ(~X)]]~V = [[σ(~X, Y)]]~V ,B
by Z: [[σ(~X, Y, ~Z, Z)]]~V ,A, ~W,W = [[σ(~X, Y, ~Z)]]~V ,A, ~W ⊆
[[σ(~X,

Y, ~Z)]]~V ,B, ~W = [[σ(~X, Y, ~Z, Z)]]~V ,B, ~W,W by IH.

Now for reasons of readability we leave out ~X, ~Z, ~V and ~W .

(Sum) By IH we have [[σ(Y)]]A ⊆ [[σ(Y)]]B and [[τ(Y)]]A ⊆
[[τ(Y)]]B. Thus [[(σ + τ)(Y)]]A = {inl(v) : v ∈ [[σ(Y)]]A}︸ ︷︷ ︸

⊆{inl(v):v∈[[σ(Y)]]B}

∪

{inr(v) : v ∈ [[τ(Y)]]A}︸ ︷︷ ︸
⊆{inr(v):v∈[[τ(Y)]]B}

⊆ [[(σ + τ)(Y)]]B by monotonicity of

set union “∪”.

(Prod) [[σ(Y)]]A ⊆ [[σ(Y)]]B and [[τ(Y)]]A ⊆ [[τ(Y)]]B by IH. [[(σ ×
τ)(Y)]]A = {(v, w) : v ∈ [[σ(Y)]]A, w ∈ [[τ(Y)]]A} ⊆ {(v, w) :
v ∈ [[σ(Y)]]B, w ∈ [[τ(Y)]]B} = [[(σ× τ)(Y)]]B by monotonicity
of “×”.

(Arr) Assume f ∈ [[σ → τ(Y)]]A and u ∈ [[σ]]. By definition there is
a v ∈ [[τ(Y)]]A with f@u ⇓ v. By IH v ∈ [[τ(Y)]]B and hence
f ∈ [[σ → τ(Y)]]B.

(Rec) [[RecZ.σ(~X, Y, ~Z, Z)]]~V ,A, ~W ⊆ [[RecZ.σ(~X, Y, ~Z, Z)]]~V ,B, ~W is
what we have to show. We introduce the abbreviation
F (W) := fold

(
[[σ(~X, Y, ~Z, Z)]]~V , , ~W,W

)
and thus or goal be-

comes lfpFA ⊆ lfpFB. By induction hypothesis we have
[[σ(~X, Y, ~Z, Z)]]~V ,A, ~W,W ⊆ [[σ(~X, Y, ~Z, Z)]]~V ,B, ~W,W for all W
and hence by monotonicity of fold FA(lfpFB) ⊆ FB(lfpFB)
for W ≡ lfpFB. By (ispfp) for FB we obtain FA(lfpFB) ⊆
lfpFB. Now we apply (ismpfp) for FA and get lfpFA ⊆
lfpFB. 2

Corollary 5
~V ⊆ ~W → [[σ(~X)]]~V ⊆ [[σ(~X)]] ~W

4 SEMANTIC VALUES 26

Proof by iterated application of lemma 4.
For the desired monotonicity property [[σ(~X)]]~V ⊆ [[σ(~τ)]] (~V ⊆ [[~τ]]) we

need the corollary of the following

Lemma 6 (Substitution in semantic values)

[[σ(~X, Y, ~Z)]]~V ,[[τ]], ~W = [[σ(~X, τ, ~Z)]]~V , ~W

Proof by induction on σ. The case (Unit) is trivial, (Weak), (Sum), (Prod)
and (Arr) are immediately shown by the induction hypothesis, so let us have
a look at the remaining two:

(Var) [[Y]]~V ,[[τ]], ~W = [[τ]] = [[Y [Y := τ]]]~V , ~W

(Rec) We introduce the abbreviations F(W) := [[σ(~X, Y, ~Z,

Z)]]~V ,[[τ]], ~W,W and G(W) := [[σ(~X, τ, ~Z, Z)]]~V , ~W,W and hence

have to show lfp (fold ◦ F) = lfp (fold ◦ G). By IH we have
∀W.F(W) = G(W), thus F = G and also fold ◦ F = fold ◦ G.
Since the operators are equal, the fixed points are equal as
well, hence lfp (fold ◦ F) = lfp (fold ◦ G). 2

Corollary 7
[[σ(~X)]][[~τ]] = [[σ(~τ)]]

Proof by iterated application of lemma 6.

Corollary 8 (Subset property of semantic values) For all ~V ⊆ [[~τ]] we
have

[[σ(~X)]]~V ⊆ [[σ(~τ)]]

Proof by corollary 5 and 7.
With the help of the above results we can show that the folding rule

v ∈ Valσ(RecX.σ(X)) → fold(v) ∈ ValRecX.σ(X) for syntactic values is also valid
for semantic values. Furthermore the opposite direction of this rule is valid
as well.

Corollary 9 (Folding rule for semantic values)

fold ([[σ(RecX.σ(X))]]) = [[RecX.σ(X)]]

Proof. By corollary 7 [[σ(RecX.σ(X))]] = [[σ(X)]][[RecX.σ(X)]] and
[[RecX.σ(X)]] is the least fixed point of fold ◦ [[σ(X)]] .

4 SEMANTIC VALUES 27

Codomain and termination. We define the codomain of a function f ∈
[[σ → τ(~X)]]~V as

CoDom(f) :=
{
v ∈ [[τ(~X)]]~V : ∃u ∈ [[σ]]. f@u ⇓ v

}
We say a closure c ∈ Clσ terminates iff it evaluates to some value v ∈ [[σ]]:

c ⇓:↔ ∃v ∈ [[σ]]. c ⇓ v

4.1 Example

To clarify the semantics of a recursive type, we will consider [[Nat]] and show
that it contains all numerals n ∈ ValNat:

[[Nat]] = ValNat

Since Nat ≡ RecX.1 +X we have to show that ValNat is least fixed point of

F : P
(
ValNat

)
→ P

(
ValNat

)
F(W) := {fold(v) : v ∈ [[1 +X]]W}

= {fold(inl()), fold(inr(v)) : v ∈ W}
= {O,S(v) : v ∈ W}

Since trivially F(ValNat) ⊆ ValNat, ValNat is pre-fixed point of F . We only
have to show that there is no smaller pre-fixed point W . To this end, we
show for all pre-fixed points W ⊆ ValNat

(i)
⋃
n∈N

Fn(∅) ⊆ W

(ii) ValNat ⊆
⋃
n∈N

Fn(∅)

Proof. (i) We show ∀n ∈ N. Fn(∅) ⊆ W by induction on n:

n = 0: F0(∅) = ∅ ⊆ W

n→ n+1: By induction hypothesis Fn(∅) ⊆ W , hence by monotonicity
of F and (ispfp) for W we obtain Fn+1(∅) = F(Fn(∅)) ⊆
F(W) ⊆ W .

Hence it follows that
⋃
n∈N Fn(∅) ⊆ W . (ii) We show ∀n ∈ N. Fn(∅) = {m :

m < n} by induction on n:

4 SEMANTIC VALUES 28

n = 0: F0(∅) = ∅

n→ n+1: By induction hypothesis Fn(∅) = {m : m < n}, thus
Fn+1(∅) = F({m : m < n}) = {O,S(m) : m < n} = {m :
m < n+ 1}.

Hence it follows that ValNat =
⋃
n∈N {m : m < n} ⊆

⋃
n∈N Fn(∅). 2

29

5 Wellfoundedness of the structural ordering

We now define a transitive structural ordering < on the semantic values.
The basic idea is that a value v is structurally smaller than a value w if the
representing tree of v is a subtree of w.

In our approach the order of a value is only decreased (<) by case analysis,
whereas projection and application keep it on the same level (≤). This has to
be explained: Since we want to show that a function f ∈ Valσ→τ terminates
on an input v ∈ [[σ]] if it terminates on all w ∈ [[σ]] that are structurally
smaller than v, i.e. w < v, we only want to be able to compare values of
the same type σ. Since injection (inl, inr), pairing and building functions by
λ enlarge the type and only folding shrinks the type, we need at least one
folding step to obtain a greater value v of the same type σ out of a given
value w. Therefore σ is a recursive type and has at least one “Rec” in its
component. But since only recursive types over sums are both non-trivial
and non-empty, these are the only types of interest for our work. Thus we
can conclude that on the way of generating v out of w there is at least one
injection, which then actually increases (<) the order. (See the example at
the end of this section.)

Structural ordering. We define a pair of mutually dependent families of
relations <σ,τ ,≤σ,τ⊆ [[σ]]× [[τ]] inductively as follows:

(lerefl) v ≤σ,σ v (lelt)
w <σ,τ v

w ≤σ,τ v

(ltinl)
w ≤ρ,σ v

w <ρ,σ+τ inl(v)
(ltinr)

w ≤ρ,τ v

w <ρ,σ+τ inr(v)

(ltfst)
w <ρ,σ v

w <ρ,σ×τ (v, v′)
(ltsnd)

w <ρ,τ v
′

w <ρ,σ×τ (v, v′)

(lefst)
w ≤ρ,σ v

w ≤ρ,σ×τ (v, v′)
(lesnd)

w ≤ρ,τ v′

w ≤ρ,σ×τ (v, v′)

(ltarr)
∃v ∈ CoDom(f).w <ρ,τ v

w <ρ,σ→τ f
(learr)

∃v ∈ CoDom(f).w ≤ρ,τ v

w ≤ρ,σ→τ f

5 WELLFOUNDEDNESS OF THE STRUCTURAL ORDERING 30

(ltfold)
w <σ,τ(RecX.τ(X)) v

w <σ,RecX.τ(X) fold(v)
(lefold)

w ≤σ,τ(RecX.τ(X)) v

w ≤σ,RecX.τ(X) fold(v)

By definition < and ≤ are transitive, < is irreflexive and ≤ reflexive.

Notation. Since the indexes σ and τ of <σ,τ and ≤σ,τ are determined in
most expressions, we omit them for better readability.

We want to show that every set of semantic values is wellfounded which
is given if every value is accessible. Therefore we first define the sets of
accessible values w.r.t. < and then we show that each value is in the accessible
set of its type.

Accessible sets. We define the family of accessible sets Accσ ⊆ [[σ]] w.r.t.
< inductively as follows. (This is the usual definition.)

(acc)
∀τ, [[τ]] 3 w < v.w ∈ Accτ

v ∈ Accτ

Notation. For lists ~ρ of types we use the abbreviation Acc~ρ := Accρ1 , . . . ,
Accρn .

Proposition 10 (Destructors for Acc) If a value is accessible, then
smaller values are accessible as well:

(acc−1) ∀v ∈ Accσ, [[τ]] 3 w < v.w ∈ Accτ

(accfst) ∀(v, v′) ∈ Accσ×τ .v ∈ Accσ

(accsnd) ∀(v, v′) ∈ Accσ×τ .v′ ∈ Accτ

(accres) ∀f ∈ Accσ→τ .CoDom(f) ⊆ Accτ

(accunf) ∀ fold(v) ∈ AccRecX.σ(X).v ∈ Accσ(RecX.σ(X))

Proof.

(acc−1) We assume v ∈ Accσ. Since there is only one constructor
(acc) for accessible sets, we can use it in the reverse direction
and get [[τ]] 3 w < v.w ∈ Accτ , what we had to show.

(accfst) To prove accessibility of v we have to show ∀[[ρ]] 3 w < v.w ∈
Accρ. Be now [[ρ]] 3 w < v. By (ltfst) we get w < (v, v′), and
since (v, v′) is accessible by assumption, w ∈ Accρ by (acc−1).

(accsnd) analogously

5 WELLFOUNDEDNESS OF THE STRUCTURAL ORDERING 31

(accres) We have to show v ∈ CoDom(f) → v ∈ Accτ . Assume [[ρ]] 3
w < v ∈ CoDom(f). By (ltarr) we get w < f and again
(acc−1) proves w ∈ Accρ, hence v ∈ Accτ .

(accunf) Again we have to show ∀[[ρ]] 3 w < v.w ∈ Accρ. Be now
w < v. By (ltfold) we get w < fold(v), and since fold(v) is
accessible by assumption, w ∈ Accρ by (acc−1). 2

Proposition 11 (Accessibility of less-equal values) The values less
than or equal to an accessible value are accessible themselves.

(accle) ∀v ∈ Accτ , [[σ]] 3 w ≤ v.w ∈ Accσ

Proof by induction on generation of w ≤ v:

(lerefl) Pattern matches with σ ≡ τ , w ≡ v: v ≤ v ∈ Accτ .

(lelt) w < v: We get w ∈ Accσ by (acc−1).

(lefst) Pattern matches with τ ≡ σ′ × τ ′, v ≡ (v′, w′): We get v′ ∈
Accσ

′
by (accfst) and w ∈ Accσ by the induction hypothesis

w ≤ v′ → w ∈ Accσ.

(lesnd) analogously

(learr) Pattern matches with τ ≡ σ′ → τ ′: There is a v′ ∈ CoDom(v)
with w ≤ v′. Since by (accres) v′ ∈ Accτ

′
, w ∈ Accσ by

induction hypothesis.

(lefold) Pattern matches with τ ≡ RecX.σ′(X), v ≡ fold(v′). Now
v′ ∈ Accσ(RecX.σ′(X)) by (accunf) and thus w ∈ Accσ by in-
duction hypothesis. 2

Proposition 12 (Accessibility of successors) The successors of accessi-
ble values are accessible as well.

(accinl) ∀v ∈ Accσ. inl(v) ∈ Accσ+τ

(accinr) ∀v ∈ Accτ . inr(v) ∈ Accσ+τ

(accpair) ∀v ∈ Accσ, v′ ∈ Accτ . (v, v′) ∈ Accσ×τ

(accarr) ∀f ∈ [[σ → τ]]. (CoDom(f) ⊆ Accτ)→ f ∈ Accσ→τ

(accfold) fold
(

Accσ(RecX.σ(X))
)
⊆ AccRecX.σ(X)

5 WELLFOUNDEDNESS OF THE STRUCTURAL ORDERING 32

Proof. We show all propositions by induction over the structural ordering.

(accinl) To prove inl(v) ∈ Accσ+τ we have to show ∀[[ρ]] 3 w <
inl(v).w ∈ Accρ by induction over the generation of w <
inl(v). Only case (ltinl) matches: w ≤ v. By (accle) we
get w ∈ Accρ.

(accinr) analogously

(accpair) We show ∀[[ρ]] 3 w < (v, v′).w ∈ Accρ by induction over the
generation of w < (v, v′). The first matching case (ltfst) gives
us w < v, and since v ∈ Accσ also w ∈ Accρ. Case (ltsnd)
analogous.

(accarr) Induction over [[ρ]] 3 w < f gives us by (ltarr) a v ∈
CoDom(f) with w < v. Since by assumption v ∈ Accτ , we
have w ∈ Accρ. Hence f ∈ Accσ→τ .

(accfold) We must show ∀v ∈ Accσ(RecX.σ(X)). fold(v) ∈ AccRecX.σ(X).
Given an arbitrary value w, w < fold(v) is generated out of
w < v by (ltfold). Again by assumption v ∈ Accσ(RecX.σ(X)),
thus w is accessible and hence fold(v) ∈ AccRecX.σ(X). 2

Now we can show that all semantic values are accessible. It would be sufficient
to know that all semantic values of closes types [[σ]] are accessible. But to
prove it for recursive types we have to show the stronger proposition that
also the semantic values of open types are accessible, where we insert sets of
accessible values for the free type variables.

Lemma 13 (All semantic values are accessible)

∀σ(~X), ~ρ. [[σ(~X)]]Acc~ρ ⊆ Accσ(~ρ)

Proof by induction over σ(~X).

(Unit) [[1]] = {()} ⊆ Acc1. We have to show ∀[[ρ]] 3 w < ().w ∈ Acc.
This is trivially true because there is no matching rule for
w < ().

(Var) [[Xn]]Acc~ρ = Accρn = AccXn[~X:=~ρ]

(Weak) [[σ(~X,X)]]Acc~ρ,ρ = [[σ(~X)]]Acc~ρ ⊆ Accσ[~X:=~ρ] = Accσ[~X:=~ρ,X:=ρ]

by IH.

5 WELLFOUNDEDNESS OF THE STRUCTURAL ORDERING 33

(Sum) Be v ∈ [[(σ + τ)(~X)]]Acc~ρ . Case v = inl(v′), v′ ∈ [[σ(~X)]]Acc~ρ :

By IH we have v′ ∈ Accσ(~ρ), hence by (accinl) v′ ∈ Acc(σ+τ)(~ρ).
Case v = inr(v) analogous.

(Prod) Be (v, v′) ∈ [[(σ × τ)(~X)]]Acc~ρ . Since v ∈ [[σ(~X)]]Acc~ρ) and

v′ ∈ [[τ(~X)]]Acc~ρ) , by IH v ∈ Accσ(~ρ) and v′ ∈ Accτ(~ρ), hence by

(accpair) (v, v′) ∈ Acc(σ×τ)(~ρ).

(Arr) Be f ∈ [[σ → τ(~X)]]Acc~ρ . By IH we have CoDom(f) ⊆
[[τ(~X)]]Acc~ρ ⊆ Accτ(~ρ). By Corollary 8 we get f ∈ [[σ → τ(~ρ)]]

and hence by (accarr) f ∈ Accσ→τ(~ρ).

(Rec) We define F(W) := fold
(

[[σ(~X, Y)]]Acc~ρ,W

)
, hence our

goal is [[Rec σ(~X, Y)]]Acc~ρ = lfpF ⊆ AccRecY.σ(~ρ,Y). We

instantiate the induction hypothesis [[σ(~X, Y)]]Acc~ρ,Accρ ⊆
Accσ(~ρ,ρ) for ρ ≡ RecY.σ(~ρ, Y) and get by monotonicity of

fold F(AccRecY.σ(~ρ,Y)) ⊆ fold
(

Accσ(~ρ,RecY.σ(~ρ,Y))
)

. Apply-

ing (accfold) yields F(AccRecY.σ(~ρ,Y)) ⊆ AccRecY.σ(~ρ,Y), hence
AccRecY.σ(~ρ,Y) is pre-fixed point of F . By (ismpfp) we know
that lfpF ⊆ AccRecY.σ(~ρ,Y). 2

Corollary 14
∀σ(~X), ~ρ. [[σ(~X)]]Acc~ρ = Accσ(~ρ)

Proof. “⊆” by lemma, “⊇”: Since for closed types ρ from the lemma we
immediately get [[ρ]] = Accρ, we have by corollary 7 Accσ(~ρ) = [[σ(~ρ)]] =

[[σ(~X)]][[~ρ]] = [[σ(~X)]]Acc~ρ .

5 WELLFOUNDEDNESS OF THE STRUCTURAL ORDERING 34

5.1 Example

As an application of the results of this section we want to prove that the
addition on ordinal numbers addOrd ∈ TmOrd→Ord→Ord defined in section
2.3.2 is structurally recursive. Therefore we must show that for each (se-
mantic) input value recursive calls take place only with structurally smaller
(semantic) values. In the following we will identify addOrd with its value
〈addOrd; ·〉 ∈ ValOrd→Ord→Ord.
There are three possible cases for the input v ∈ [[Ord]]:

v ≡ O: No recursive call.

v ≡ S(v′): v′ ∈ [[Ord]]. We have one recursive call with argument v′,
which is structurally smaller than v:

lerefl
v′ ≤ v′

ltinr
v′ < inr(v′)

lelt
v′ ≤ inr(v′)

ltinl
v′ < inl(inr(v′))

ltfold
v′ < S(v′) ≡ fold(inl(inr(v′)))

v ≡ Lim(f): f ∈ [[Nat → Ord]]. Here again we have one recursive call.
The argument is (f z) which for z ∈ [[Nat]] evaluates to a
w ∈ CoDom(f). Thus we can derive w < Lim(f) as follows:

lerefl
w ≤ w

∃I
∃v′ ∈ CoDom(f). w ≤ v′

learr
w ≤ f

ltinr
w < inr(f)

ltfold
w < Lim(f) ≡ fold(inr(f))

2

35

6 Soundness of the termination criterium

We want to define a subset TM of good terms and prove normalization for
all t ∈ TM. Since the recursive terms are candidates of nontermination,
we have to restrict ourselves to structurally recursive terms for that we will
prove termination easily by the wellfoundedness of the structural ordering.
The normalization proof then can be done mechanically.

Structurally recursive terms. The subset of environments of semantic
values over context Γ = xσ1

1 , . . . , x
σn
n is of course

[[Γ]] = {x1 = v1, . . . , xn = vn : vi ∈ [[σi]]} ⊆ Val(Γ)

We will refer to an e ∈ [[Γ]] as a good environment. We define the set of
structurally recursive terms SRσ→τ [Γ] of type σ → τ over context Γ as the
recursive terms that applied to any value v terminate in any good environ-
ment under the condition that they terminate for all structurally smaller
values w < v:

SRσ→τ [Γ] := {rec g.t ∈ Tmσ→τ [Γ] : ∀e ∈ [[Γ]], v ∈ [[σ]].

(∀[[σ]] 3 w < v.〈rec g.t; e〉@w ⇓)→ 〈rec g.t; e〉@v ⇓}

We now want to prove that all structurally recursive terms supplied with
any good environment are semantic values, i.e. terminate for every semantic
value we apply. Since we have proved wellfoundedness of <, this can easily
be done by

Wellfounded induction for families of predicates. We present a for-
mulation of the wellfounded-part-induction principle for our definition of
Accσ as family of accessible sets indexed by type σ. Let P σ be a family
of predicates over values of type σ.

(accind′)
∀v ∈ [[σ]]. (∀ρ, [[ρ]] 3 w < v. P ρ(w))→ P σ(v)

∀v ∈ Accσ. P σ(v)

For our purpose a specialization of this induction principle for a single pred-
icate over a fixed type is sufficient. Given a type σ and a predicate P ⊆ [[σ]]
we obtain

(accind)
∀v ∈ [[σ]]. (∀[[σ]] 3 w < v. P (w))→ P (v)

∀v ∈ Accσ. P (v)

6 SOUNDNESS OF THE TERMINATION CRITERIUM 36

by defining a family of predicates P ρ ⊆ [[ρ]] as

P ρ :=

{
P if ρ = σ
[[ρ]] else

and applying (accind′). We see that the conditions ∀ρ, [[ρ]] 3 w < v. P ρ(w)
and ∀[[σ]] 3 w < v. P (w) are equivalent by definition of P ρ.

Lemma 15 (Structurally recursive functions terminate)

∀rec g.t ∈ SRσ→τ , e ∈ [[Γ]]. 〈rec g.t; e〉 ∈ [[σ → τ]]

Proof. Our goal is by definition equivalent to

∀rec g.t ∈ SRσ→τ , e ∈ [[Γ]], v ∈ [[σ]]. 〈rec g.t; e〉@v ⇓

For a fixed environment e the assumption rec g.t ∈ SRσ→τ expands to

∀v ∈ [[σ]]. (∀[[σ]] 3 w < v. 〈rec g.t; e〉@w ⇓)→ 〈rec g.t; e〉@v ⇓

By (accind) with P (v) ≡ 〈rec g.t; e〉@v ⇓ we get

∀v ∈ Accσ. 〈rec g.t; e〉@v ⇓

which is equivalent to our claim because of Accσ = [[σ]].

Good terms. We inductively define the set of good terms TMσ[Γ] ⊂
Tmσ[Γ] of type σ over context Γ, i.e. the terms that ensure termination.
These rules are almost identical to the original term formation rules (see
page 12), we only change Tm to TM and label the rule in CAPITAL letters,
e.g.

(PAIR)
s ∈ TMσ[Γ] t ∈ TMτ [Γ]

(s, t) ∈ TMσ×τ [Γ]

Only the rule (rec) is replaced by

(REC)
t ∈ TMσ→τ [Γ, gσ→τ] rec g.t ∈ SRσ→τ [Γ]

rec g.t ∈ TMσ→τ [Γ]

Note that in the second condition rec g.t ∈ SRσ→τ [Γ] we use the natural
embedding TMσ[Γ] ↪→ Tmσ[Γ] that can be defined by recursion over TM
simultanously to the inductive definition in the obvious way.

6 SOUNDNESS OF THE TERMINATION CRITERIUM 37

Good closures. Consequently the set of good closures CLτ of type τ is
defined as

Clτ := {〈t; e〉 : Γ ∈ Cxt, t ∈ TMτ [Γ], e ∈ [[Γ]]}
∪ {f@u : f ∈ [[σ → τ]], u ∈ [[σ]]}

Again CLτ ⊆ Clτ , hence we can use our operational semantics ⇓ on good
closures as well. Now no obstacle is in our way to show

Theorem 16 (Normalization)

∀σ,Γ, t ∈ TMσ[Γ], e ∈ [[Γ]]. 〈t; e〉 ⇓

Proof by induction on t ∈ TMσ[Γ]. We overload the definition of eΓ and
now mean e ∈ [[Γ]].

(UNIT) By (opunit) 〈(); ·〉 ⇓ () ∈ [[1]].

(VAR) Since eΓ, xσ = v ∈ [[Γ, xσ]] by (opvar) we prove 〈x[Γ, xσ]; e, x =
v〉 ⇓ v ∈ [[σ]].

(WEAK) By IH there is a v ∈ [[σ]] such that 〈tσ[Γ]; e〉 ⇓ v, hence by
(opweak) 〈t[Γ, x]; e, x = w〉 ⇓ v ∈ [[σ]].

(INL) By IH 〈tσ; e〉 ⇓ v ∈ [[σ]], thus by (opinl) 〈inl(t)σ+τ ; e〉 ⇓
inl(v) ∈ [[σ + τ]].

(INR) analogously

(CASE) We must show 〈case(tσ+τ [Γ], xσ.(lρ[Γ, xσ]), yτ .(rρ[Γ, yτ])); e〉 ⇓
v ∈ [[ρ]]. By IH we have 〈tσ+τ [Γ]; e〉 ⇓ w′ ∈ [[σ + τ]]. Case
w′ = inl(wσ): By IH we get 〈lρ[Γ, xσ]; e, x = w〉 ⇓ v ∈ [[ρ]],
hence by (opcasel) we prove our claim. Case w′ = inr(wτ)
analogously by (opcaser).

(PAIR) Here we show 〈(sσ, tτ); e〉 ⇓. By IH we have 〈s; e〉 ⇓ v ∈ [[σ]]
and 〈t; e〉 ⇓ w ∈ [[τ]] hence by (oppair) 〈(s, t); e〉 ⇓ (v, w)
which is in [[σ × τ]] by definition.

(FST) By IH 〈pσ×τ ; e〉 ⇓ (v, w) ∈ [[σ × τ]], hence by (opfst)
〈fst(p); e〉 ⇓ v ∈ [[σ]].

(SND) analogously

6 SOUNDNESS OF THE TERMINATION CRITERIUM 38

(LAM) By (oplam) 〈λxσ.tτ ; eΓ〉 ⇓ 〈λx.t; e〉. We have to show
〈λx.t; e〉 ∈ [[σ → τ]], i.e. 〈λx.t; e〉@u ⇓ for all u ∈ [[σ]]. Refine-
ment by (opappvl) reduces our goal to 〈t; e, x = u〉 ⇓ which
we get by the induction hypothesis.

(REC) Here by (oprec) we have to show 〈rec g.t; e〉 ∈ [[σ → τ]], which
is true by lemma 15 since rec g.t ∈ SRσ→τ by definition.

(APP) By IH we have 〈tσ→τ ; e〉 ⇓ f ∈ [[σ → τ]] and 〈s; e〉 ⇓ u ∈ [[σ]]
therefore f@u ⇓ and by (opapp) 〈t s; e〉 ⇓ as well.

(FOLD) By IH 〈t; e〉 ⇓ v ∈ [[σ(RecX.σ(X))]], hence by (opfold)
〈fold(t); e〉 ⇓ fold(v), which is in [[RecX.σ(X)]] by the fold-
ing rule for semantic values (corollary 9).

(UNFOLD) By IH 〈t; e〉 ⇓ fold(v) ∈ [[RecX.σ(X)]], hence by (opunfold)
〈unfold(t); e〉 ⇓ v, which is in [[σ(RecX.σ(X))]] by corollary 9.

39

7 Extensions

In the following we want to extend our soundness proof to positive types,
functions with multiple parameters and mutual recursion in order to cover
the full functionality of the foetus termination checker.

7.1 Positive types

In the main part of our work we have restricted ourselves to a system with
only strictly positive types. But we can without much effort expand the proof
of wellfoundedness and therefore the termination criterium to systems with
positive inductive types. In the following we will give the modifications to
definitions and lemmata such that positive types can be handled as well.

Types. We now distinct between these type variables that appear positive
and those that appear negative in types. Because again we do not support
polymorphic types and thus need free type variables only for definition of
positive recursive types, a type variable may appear either positive or nega-
tive (unlike the common definition in System F, where variables may be seen
as both positive and negative or neither positive nor negative in some cases).

So we define the family of sets of types Ty(~X; ~Y) over the finite sets

of positively appearing variables ~X and negatively appearing variables ~Y
inductively as follows:

(Unit) 1 ∈ Ty(∅; ∅) (Var)9
~X,X ⊂ TyVars

X ∈ Ty(~X,X; ∅)

(Weak+)
σ ∈ Ty(~X; ~Y) X /∈ ~X, ~Y

σ ∈ Ty(~X,X; ~Y)

(Weak−)
σ ∈ Ty(~X; ~Y) Y /∈ ~X, ~Y

σ ∈ Ty(~X; ~Y , Y)

(Sum)
σ, τ ∈ Ty(~X; ~Y)

σ + τ ∈ Ty(~X; ~Y)
(Prod)

σ, τ ∈ Ty(~X; ~Y)

σ × τ ∈ Ty(~X; ~Y)

9Note that there is no rule like (Var−) since in the type σ ≡ X created by the rule
(Var) the variable X appears positively.

7 EXTENSIONS 40

(Arr)10
σ ∈ Ty(~Y ; ~X) τ ∈ Ty(~X; ~Y)

σ → τ ∈ Ty(~X; ~Y)

(Rec)
σ ∈ Ty(~X,X; ~Y)

RecX.σ ∈ Ty(~X; ~Y)

Substitution. We now have to define substitution of the positive ~X and
negative ~Y type variables in a type σ(~X, ~Y) by lists of types ~ξ and ~η over

the positive ~X ′ and negative ~Y ′ variables. For σ[~X := ~ξ; ~Y := ~η] to be in

Ty(~X ′; ~Y ′), it is necessary that ~ξ ⊂ Ty(~X ′; ~Y ′) and ~ξ ⊂ Ty(~Y ′; ~X ′). The
complete modified definition:

(Unit) 1[] := 1

(Var) X[~X := ~ξ,X := ξ;] := ξ

(Weak+) σ(~X,X; ~Y)[~X,X := ~ρ, ρ; ~Y := ~η] := σ(~X)[~X := ~ξ; ~Y := ~η]

(Weak−) σ(~X; ~Y , Y)[~X := ~ρ; ~Y , Y := ~η, η] := σ(~X)[~X := ~ξ; ~Y := ~η]

(Sum)
(
σ(~X; ~Y) + τ(~X; ~Y)

)
[~X := ~ξ; ~Y := ~η] :=

σ[~X := ~ξ; ~Y := ~η] + τ [~X := ~ξ; ~Y := ~η]

(Prod)
(
σ(~X; ~Y)× τ(~X; ~Y)

)
[~X := ~ξ; ~Y := ~η] :=

σ[~X := ~ξ; ~Y := ~η]× τ [~X := ~ξ; ~Y := ~η]

(Arr)
(
σ(~Y ; ~X)→ τ(~X; ~Y)

)
[~X := ~ξ; ~Y := ~η] :=

σ[~Y := ~η; ~X := ~ξ]→ τ [~X := ~ξ; ~Y := ~η]

(Rec) We can assume Z /∈ ~X ′, ~Y ′ by the renaming convention.(
RecZ.σ(~X,Z; ~Y)

)
[~X := ~ξ; ~Y := ~η] :=

RecZ.
(
σ[~X := ~ξ(~X ′, Z), Z := Z; ~Y := ~η]

)
10The rule (Arr) implicitely defines positive and negative appearance: A variable is

positive in a type σ → τ iff it is positive in τ and negative in σ and vice versa. All other
rules preserve positivity and negativity.

7 EXTENSIONS 41

Nothing changes for terms, syntactic values and the operational seman-
tics, but we have to extend our definition of semantic values and our lemmata
showing monotonicity, because we need the property

[[(σ → τ)(~X; ~Y)]]~V ;[[~η]] ⊆ [[(σ → τ)(~ξ; ~η)]]

for ~V ⊆ Val
~ξ in order to show wellfoundedness.

Semantic Values. Be ~V ⊆ Val
~ξ, ~W ⊆ Val~η. We define the set of semantic

values [[σ(~X; ~Y)]]~V ; ~W ⊆ Valσ(~ξ;~η) by recursion over σ:

(Unit) [[1]] := {()}

(Var) [[Xn]]~V := Vn

(Weak+) [[σ(~X,X; ~Y)]]~V ,V ; ~W := [[σ(~X; ~Y)]]~V ; ~W

(Weak−) [[σ(~X; ~Y , Y)]]~V ; ~W,W := [[σ(~X; ~Y)]]~V ; ~W

(Sum) [[(σ+ τ)(~X; ~Y)]]~V ; ~W := {inl(v) : v ∈ [[σ(~X; ~Y)]]~V ; ~W}∪{inr(v) :

v ∈ [[τ(~X; ~Y)]]~V ; ~W}

(Prod) [[(σ × τ)(~X; ~Y)]]~V ; ~W := {(v, w) : v ∈ [[σ(~X; ~Y)]]~V ; ~W , w ∈
[[τ(~X; ~Y)]]~V ; ~W}

(Arr) [[(σ → τ)(~X; ~Y)]]~V ; ~W := {f ∈ Val(σ→τ)(~ξ;~η) : ∀u ∈ [[σ(~Y ;
~X)]] ~W ;~V . ∃v ∈ [[τ(~X; ~Y)]]~V ; ~W . f@u ⇓ v}

(Rec) With the help of the abbreviation

F : P
(

ValRecX.σ(~ξ,X;~η)
)
→ P

(
ValRecX.σ(~ξ,X;~η)

)
V 7→ fold

(
[[σ(~X,X; ~Y)]]~V ,V ; ~W

)
we define [[RecX.σ(~X,X; ~Y)]]~V ; ~W := lfpF

We extend the lemma 4 by antitonicity for negative variables:

Lemma 17 (Monotonicity of semantic values)

(i) ∀σ ∈ Ty(~X,Z, ~X ′; ~Y). A ⊆ B → [[σ]]~V ,A, ~V ′; ~W ⊆ [[σ]]~V ,B, ~V ′; ~W

(ii) ∀σ ∈ Ty(~X; ~Y , Z, ~Y ′). A ⊆ B → [[σ]]~V ; ~W,A, ~W ′ ⊇ [[σ]]~V ; ~W,B, ~W ′

7 EXTENSIONS 42

Proof simultaneously by induction over σ. Since most parts of this proof
can be taken from proof of lemma 4 with small adjustments on the syntax,
we only show the interesting cases (Arr) and (Rec)-(ii).

(Arr) (i) Assume an arbitrary f ∈ [[σ → τ]]~V ,A, ~V ′; ~W (*) and a value

u ∈ [[σ(~Y ; ~X,Z, ~X ′)]] ~W ;~V ,B, ~V ′ . By induction hypothesis (ii)
we see u ∈ [[σ]] ~W ;~V ,A, ~V ′ and therefore since (*) exists v ∈
[[τ]]~V ,A, ~V ′; ~W such that f@u ⇓ v. By induction hypothesis (i)
we have v ∈ [[τ]]~V ,B, ~V ′; ~W and hence f ∈ [[σ → τ]]~V ,B, ~V ′; ~W .
(ii) Here we assume f ∈ [[σ → τ]]~V ; ~W,B, ~W ′ and show f ∈ [[σ →
τ]]~V ; ~W,A, ~W ′ . Proof analogous to (i).

(Rec) (i) Proof as in lemma 4.
(ii) Analogous to (i).

We define F ′(W) := [[σ(~X; ~Y , Z, ~Y ′, Z ′)]]~V ; ~W, , ~W ′,W and
F (W) := fold(F ′(W)). Thus we have to show lfpFB ⊆
lfpFA. We instantiate the induction hypothesis (ii)
∀W.F ′B(W) ⊆ F ′A(W) for lfpFA and get by monotonicity of
fold and by (ispfp) FB(lfpFA) ⊆ FA(lfpFA) ⊆ lfpFA. Fur-
ther by (ismpfp) lfpFB ⊆ lfpFA. 2

Lemma 6 can be expanded to negative variables as well:

Lemma 18 (Substitution in semantic values)

(i) [[σ(~X,Z, ~X ′; ~Y)]]~V ,[[ρ]], ~V ′; ~W = [[σ(~X, ρ, ~X ′; ~Y)]]~V , ~V ′; ~W

(ii) [[σ(~X; ~Y , Z, ~Y ′)]]~V ; ~W,[[ρ]], ~W ′ = [[σ(~X; ~Y , ρ, ~Y ′)]]~V ; ~W, ~W ′

Proof simultaneously by induction over σ. Again most cases are trivial or
shown as in lemma 6. We show case (Arr) exemplarily:

(Arr) (i) f ∈ [[(σ → τ)(~X,Z, ~X ′; ~Y)]]~V ,[[ρ]], ~V ′; ~W iff for all u ∈ [[σ(~Y ;

~X,Z, ~X ′)]] ~W ;~V ,[[ρ]], ~V ′ there is a v ∈ [[τ(~X,Z, ~X ′; ~Y)]]~V ,[[ρ]], ~V ′; ~W

such that f@u ⇓ v. Applying both induction hypotheses
shows that this condition is equivalent to ∀u ∈ [[σ(~Y ; ~X, ρ,
~X ′)]] ~W ;~V , ~V ′∃v ∈ [[τ(~X, ρ, ~X ′; ~Y)]]~V , ~V ′; ~W . f@u ⇓ v, which is the

case iff f ∈ [[(σ → τ)(~X, ρ, ~X ′; ~Y)]]~V , ~V ′; ~W .
(ii) analogously 2

By iterated application of these two lemmata we get

7 EXTENSIONS 43

Corollary 19 (Subset property of semantic values) For all σ, ~V ⊆
Val

~ξ we have
[[σ(~X; ~Y)]]~V ;[[η]] ⊆ [[σ(~ξ; ~η)]]

In principle this corollary does hardly differ from the version for strictly
positive type, since by lemma 18 it is equivalent to

∀σ, ~ξ, ~η, ~V ⊆ Val
~ξ. [[σ(~X; ~η)]]~V ⊆ [[σ(~ξ; ~η)]],

which again can be formulated as

∀σ, ~ξ, ~V ⊆ Val
~ξ. [[σ(~X; ∅)]]~V ;∅ ⊆ [[σ(~ξ; ∅)]].

A slight modification has to be done on the definition of the

Codomain. For all functions f ∈ [[(σ → τ)(~X; ~Y)]]~V ; ~W we define

CoDom(f) :=
{
v ∈ [[τ(~X; ~Y)]]~V ; ~W : ∃u ∈ [[σ(~Y ; ~X)]] ~W ;~V . f@u ⇓ v

}
Now since no change has to be done on the definition of the structural or-
dering and the accessibility propositions 10, 11 and 12, we can prove a refor-
mulation of our central lemma 13. In fact as for corollary 19 the formulation
will hardly differ from the original, since we can and need to show it only
for types with no free negative variables. (We have to show it for types with
free positive variables because of the recursive types.)

Lemma 20 (All semantic values are accessible)

∀σ(~X; ∅), ~ξ. [[σ(~X; ∅)]]
Acc

~ξ;∅ ⊆ Accσ(~ξ;∅)

An equivalent formulation would be

∀σ(~X; ~Y), ~ξ, ~η. [[σ(~X; ~Y)]]
Acc

~ξ,[[~η]]
⊆ Accσ(~ξ;~η)

Proof by induction over σ(~X; ∅). Case (Weak−) is not applicable, and all
other cases can be treated exactly the same as in the proof of the original
lemma, even case (Arr):

(Arr) Be f ∈ [[(σ → τ)(~X; ∅)]]
Acc

~ξ . By IH we have CoDom(f) ⊆
[[τ(~X; ∅)]]

Acc
~ξ;∅ ⊆ Accτ(~ξ;∅). By Corollary 19 we get f ∈ [[(σ →

τ)(~ξ; ∅)]] and hence by (accarr) f ∈ Acc(σ→τ)(~ξ;∅).

In proving (Arr) we have no induction hypothesis for σ(∅; ~X), but we ac-
tually do not need one, because the accessibility of f depends only on the
accessibility of the codomain and not of the domain. 2

7 EXTENSIONS 44

7.2 Functions with multiple parameters

So far we have only considered functions that are structurally recursive by
their first parameter. Now we want to extend our termination criterium
to functions of multiple parameters. The termination checker foetus sup-
ports them already and calculates a permutation of the arguments such that
the lexical ordering on them guarantees termination. In foetus the param-
eters have to be curried, but here we want to consider functions on tupels
~v of parameters because it fits easier in our formalization and formulation
of strucural recursion. The proposition that structurally recursive function
terminate is changed only slighty to

∀~v ∈ [[σ]]. (∀[[σ]] 3 ~w ≺ ~v. 〈rec g.t; e〉@~w ⇓)→ 〈rec g.t; e〉@~v ⇓

∀~v ∈ [[σ]]. 〈rec g.t; e〉@~v ⇓

Therefore all we have to do is do define the lexical ordering on products and
prove that it is wellfounded.

Finite products. We define the nonempty finite product
∏n

i=1 σi, n ≥ 1
of types σi as abbreviation by

1∏
i=1

σi := σ1

n+1∏
i=1

σi := σn+1 ×
n∏
i=1

σi (n ≥ 1)

Lexical ordering. Given the closed types σ1, . . . , σn we inductively define
≺(σn;...;σ1)⊆ [[

∏n
i=1 σi]]× [[

∏n
i=1 σi]] as follows:

(lexin)
w <σ1,σ1 v

w ≺(σ1) v

(lexlt)
w <σn+1,σn+1 v ~w,~v ∈ [[

∏n
i=1 σi]]

(w, ~w) ≺(σn+1;...;σ1) (v,~v)

(lexle)
w ≤σn+1,σn+1 v ~w ≺(σn;...;σ1) ~v

(w, ~w) ≺(σn+1;...;σ1) (v,~v)

For simplicity, unlike foetus we do not allow permutation of the components.

7 EXTENSIONS 45

The accessible set Acc
(σn;...;σ1)
≺ ⊆ [[

∏n
i=1 σi]] of the lexical ordering

≺(σn;...;σ1) is defined inductively as usual (we omit the index of ≺ where it is
not necessary):

(acclex)
∀[[
∏n

i=1 σi]] 3 ~w ≺ ~v. ~w ∈ Acc
(σn;...;σ1)
≺

~v ∈ Acc
(σn;...;σ1)
≺

Now based on the wellfoundedness of the structural ordering < we can prove
the

Lemma 21 (Wellfoundedness of the lexical ordering)

∀σ1, . . . , σn. [[
∏n

i=1 σi]] ⊆ Acc
(σn;...;σ1)
≺

Proof by induction on n. It demonstrates the proper use of wellfounded
induction.

n = 1 : We have to show [[σ1]] ⊆ Acc
(σ1)
≺ . Since by lemma 13 [[σ1]] ⊆

Accσ1 our goal follows from the formally stronger claim ∀v ∈
Accσ1 .v ∈ Acc

(σ1)
≺ . Using the wellfounded induction principle

(accind) we get the hypothesis (H) ∀w < v.w ∈ Acc
(σ1)
≺ and

have to show v ∈ Acc
(σ1)
≺ which by (acc) is equivalent to ∀w ≺

v. w ∈ Acc
(σ1)
≺ . Now the only matching case for w ≺ v is

(lexin), therefore w < v and we can finish this part of the
proof by (H).

n→ n+1 : Our goal is ∀v ∈ [[σn+1]], ~v ∈ [[
∏n

i=1 σi]]. (v,~v) ∈ Acc
(σn+1;...;σ1)
≺

(in the following abbreviated to Acc≺). Again, since [[σn+1]] ⊆
Accσn+1 , we get the hypothesis (H1) ∀w < v,~v ∈ [[

∏n
i=1 σi]].

(w,~v) ∈ Acc≺ by (accind). Now in the same way, since by

induction hypothesis [[
∏n

i=1 σi]] ⊆ Acc
(σn;...;σ1)
≺ , we can apply

the wellfounded induction principle for the lexical order and
get a second hypothesis (H2) ∀~w ≺ ~v. (v, ~w) ∈ Acc≺ to show
the remaining goal (v,~v) ∈ Acc≺. This follows from ∀(w, ~w) ≺
(v,~v). (w, ~w) ∈ Acc≺. Now (w, ~w) ≺ (v,~v) can be generated
in two ways: Case (lexlt) w < v: We finish our proof by (H1).
Case (lexle) w ≤ v, ~w ≺ ~v: By (H2) we get (v, ~w) ∈ Acc≺ and
by the following small lemma also (w, ~w) ∈ Acc≺. 2

Lemma 22
∀(v,~v) ∈ Acc≺, v

′ ≤ v. (v′, ~v) ∈ Acc≺

7 EXTENSIONS 46

Proof. We have to prove ∀(w, ~w) ≺ (v′, ~v). (w, ~w) ∈ Acc≺. If we can show
(w, ~w) ≺ (v′, ~v) → (w, ~w) ≺ (v,~v), then the rest follows by (acclex−1). Case
analysis on (w, ~w) ≺ (v′, ~v):

(lexlt) w < v′: By transitivity of the structural ordering we get w < v
and hence by (lexlt) (w, ~w) ≺ (v,~v).

(lexlt) w ≤ v′, ~w ≺ ~v: Again by transitivity of the structural ordering
we get w ≤ v and hence by (lexle) (w, ~w) ≺ (v,~v). 2

Now having proven wellfoundedness of the lexical ordering we can redefine
the set of structurally recursive terms to include the functions the termination
of which is ensured by the lexical ordering (σ :=

∏n
i=1 σi):

SRσ→τ [Γ] := {rec g.t ∈ Tmσ→τ [Γ] : ∀e ∈ [[Γ]], ~v ∈ [[σ]].

(∀~w ≺(σn;...;σ1) ~v.〈rec g.t; e〉@~w ⇓)→ 〈rec g.t; e〉@~v ⇓}

By wellfounded induction for the lexical ordering we show that these struc-
turally functions terminate on all inputs (as in lemma 15), and then by defin-
ing the good terms with the new definition of SR we can prove normalisation
without further changes.

7.3 Mutual recursion

The termination checker foetus also supports mutual recursive functions. Our
term syntax so far only allows to define one recursive function at a time, thus
mutual recursion is not possible:

(rec)
t ∈ Tmσ→τ [Γ, gσ→τ]

rec g.t ∈ Tmσ→τ [Γ]

(oprec) 〈rec g.t; e〉 ⇓ 〈rec g.t; e〉

(opappvr)
〈t; e, g = rec g.t〉 ⇓ f f@u ⇓ v

〈rec g.t; e〉@u ⇓ v

But these rules can easily be adopted for mutual recursion. We introduce the
new term formers recni (1 ≤ i ≤ n) where recni denotes the ith of n simulta-
neous defined recursive functions. For each n we get the n introduction rules
(written as one with n conclusions):

(recn)
∀1 ≤ i ≤ n. ti ∈ Tmσi→τi [Γ, gσ1→τ1 , . . . , gσn→τn]

∀1 ≤ i ≤ n. recni (g1 = t1, . . . , gn= tn) ∈ Tmσi→τi [Γ]

7 EXTENSIONS 47

The operational sematics of course is extended by the following rules (we
abbreviate g1 = t1, . . . , gn= tn to ~g=~t):

(oprecni) for all n, 1 ≤ i ≤ n.
〈recni (~g=~t); e〉 ⇓ 〈recni (~g=~t); e〉

(opappvrni)
〈ti; e, g1 = recn1 (~g=~t), . . . , gn = recnn(~g=~t)〉 ⇓ f f@u ⇓ v

〈recni (~g=~t); e〉@u ⇓ v
for all n, 1 ≤ i ≤ n.

Now a recursive function recni (~g = ~t) is structurally recursive only if all of
the simultaneous defined functions that are called directly or indirectly are
structurally recursive as well. In [Abe98]we explain an algorithm to decide
structural recursiveness for mutual recursive functions with perhaps multiple
parameters in detail.

For our soundness proof nothing changes since we assume structural re-
cursiveness.

48

8 Conclusion

In this work we have shown the soundness of our method to ensure a recursive
function terminates on all inputs. We have confirmed our assumption that
from structural recursiveness we can infer totality. Of course it would be
desirable to extend our system further to polymorphic and dependent types.

But what is still missing is the syntactical aspect: It remains to show
that indeed structurally recursive functions are the semantics of structurally
recursive terms, i.e. terms that contain recursive calls only with smaller
arguments w.r.t. a structural ordering on terms. (In section 6 we have defined
the set SRτ of terms, but their property of structural recursiveness has been
ensured by means of semantics.) This syntactical check now is implemented
in foetus, and it would be worthwhile formulating it as a proof, from which
we could again extract a termination checker. (From the proof in this work
we can extract nothing, since wellfoundedness proofs have no computational
content.)

During the production of this work I encountered an application of it. I
formulated parts of my system in LEGO and did some of the accessibility
proofs by pattern matching. But these proofs are only sound if the pat-
terns are total and structurally recursive. Unfortunately, LEGO contains no
checker like foetus so far, and thus I could not be sure if my proofs were
correct.

I think that in the area of machine checked proofs the pattern-matching-
style proofs will replace elimination-style proofs, since once one has adjusted
oneself to this new way of thinking, one can prove more intuitively. (It is
like programming: no practically minded person would prefer a programming
language with only primitive recursion to a full-featured functional program-
ming language like SML or Haskell.) And thus termination checkers for
the theorem provers will be implemented as Thorsten Altenkirch and I have
done, and for example Catarina Coquand is doing for ALF at the University
of Göteborg.

REFERENCES 49

References

[Abe98] Andreas Abel. foetus – termination checker for sim-
ple functional programs. http://www.informatik.uni-
muenchen.de/˜abel/foetus/, 1998.

[AGNvS94] Thorsten Altenkirch, Veronica Gaspes, Bengt Nordström,
and Björn von Sydow. A user’s guide to ALF. Department
of Computing Science, University of Göteborg/Chalmers,
http://www.cs.chalmers.se/Cs/Research/Logic/alf/guide.html,
May 1994.

[Alt93] Thorsten Altenkirch. A formalization of the strong normaliza-
tion proof for system F in LEGO. volume 664 of Lecture Notes
in Computer Science, pages 13–28. Springer Verlag, 1993.

[BG96] Jürgen Brauburger and Jürgen Giesl. Termination analysis for
partial functions. In Proceedings of the Third International
Static Analysis Symposium (SAS’96), Aachen, Germany, Lec-
ture Notes in Computer Science 1145, Springer-Verlag, 1996.

[Coq92] Thierry Coquand. Pattern matching with dependent types. (to
be updated), 1992.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with applica-
tion to the Church-Rosser theorem. Indagationes Mathematicae,
34:381–392, 1972.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3:69–115, 1987.

[Gie97] Jürgen Giesl. Termination of nested and mutually recursive al-
gorithms. Journal of Automated Reasoning 19: 1–29, 1997.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination
des coupures dans l’arithmétique d’ordre supérieur. Thèse de
Doctorat d’État, Université de Paris VII, 1972.

[HPF97] Paul Hudak, John Peterson, and Joseph Fasel. A Gentle
Introduction to Haskell, Version 1.4. Yale Haskell Project,
http://www.haskell.org/tutorial/, March 1997.

REFERENCES 50

[LP92] Zhaohui Luo and Robert Pollack. Lego proof development
system: User’s manual. Lfcs, Computer Science Depart-
ment, University of Edinburgh, The King’s Buildings, Edin-
burgh EH9 3JZ, Scotland, May 1992. Updated version. See
http://www.dcs.ed.ac.uk/home/lego.

[Mat98] Ralph Matthes. Extensions of System F by Iteration and Prim-
itive Recursion on Monotone Inductive Types. PhD thesis,
Ludwig-Maximilian-University, 1998.

[Pau91] Lawrence C. Paulson. ML for the Working Programmer. Cam-
bridge University Press, 1991.

[Ste95] J. Steinbach. Simplification orderings: History of results. Fun-
damenta Informaticae, 24:47–87, 1995.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific Journal of Mathematics, 5:285–309, 1955.

