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Abstract. We consider the Calculus of Constructions with typed beta-eta equal-
ity and an algorithm which computes long normal forms. The normalization algo-
rithm evaluates terms into a semantic domain, and reifies the values back to terms
in normal form. To show termination, we interpret types as partial equivalence
relations between values and type constructors as operators on PERs. This mod-
els also yields consistency of the beta-eta-Calculus of Constructions. The model
construction can be carried out directly in impredicative type theory, enabling a
formalization in Coq.

1 Introduction

The proof assistant Coq [INR08] based on intensional type theory is used for large ver-
ification projects in mathematics [Gon04] and computer science [Ler06]. However, to
this day no complete meta theory of its logical core, the Calculus of Inductive Construc-
tions (CIC) exists. The CIC is a dependent type theory with at least one impredicative
base universe (Set or Prop or both) and an infinite cumulative hierarchy of predicative
universes (Typei) above this base. Inductive types with large (aka strong) eliminations
exist at every level. The CIC is formulated with untyped equality, leading to complica-
tions in model constructions [MW03] and in the treatment of η-equality. As η-reduction,
the subject reduction property requires contravariant subtyping, which is especially hard
to model (I am only aware of Miquel’s coherence space model [Miq00]). And it cannot
be formulated as η-expansion in an untyped setting. The lack of η-equality in Coq is an
annoyance both for its implementers and its users.

Recently, formulations of CIC with typed equality, aka judgemental equality, have
been considered since they admit simple set-theoretical models [Bar09]. Judgemental
equality also integrates η-equality nicely. On the downside, injectivity of the function
space constructor Π , crucial for the implementation of type checking, is notoriously
difficult to establish. Goguen [Gog94] has obtained injectivity of Π in the Extended
Calculus of Constructions via his Typed Operational Semantics, a typed Kripke term
model with standardizing reduction. In predicative Martin-Löf Type Theory, it is the
byproduct of a PER model construction which also yields Normalization by Evaluation
(NbE) [ACD07].

In this article, we investigate NbE for the Calculus of Constructions (CoC), a frag-
ment of the CIC with just one impredicative and one predicative universe, with typed
βη-equality. By constructing a PER model, we obtain termination and completeness for



NbE, the latter meaning that all judgmentally equal terms normalize to the same expres-
sion. As a consequence of the model, we obtain logical consistency of the βη-CoC.

The missing property of soundness of NbE, meaning that each term is judgmentally
equal to its computed normal form, is implied by injectivity of Π and vice versa. De-
cidability of typing also hinges on injectivity. This leaves two options to complete this
work and obtain a sound and complete type checker for the CoC with η: Prove sound-
ness of NbE by Kripke logical relations between syntax and semantics as in [ACP09],
or obtain injectivity by syntactical means. Adams [Ada06] obtained injectivity for func-
tional pure type systems with judgemental β-equality; his proof might extend to βη.

Overview. This article is organized as follows: In Section 2 we introduce CoC with
typed equality and explicit substitutions. In Section 3 we define normalization by eval-
uation for CoC using partial applicative structures, and we specify a type inference
algorithm. In Section 4 we recapitulate a simple method how to classify CoC expres-
sions into terms, types, and kinds, a device which helps us to bootstrap the PER model
construction in Section 5. Section 6 proves the rules of CoC sound wrt. our model, and
as a corollary we obtain termination and completeness of NbE and consistency of CoC.
Loose ends are listed in the conclusions (Section 7).

2 Syntax

We present the Calculus of Constructions (CoC) as a pure type system (PTS) with
annotated λ-abstraction, typed equality and explicit substitutions.

1. Annotated λ-abstraction (as in λM N ) enables us to compute the type of a term
from the type of its free variables and its semantics from the semantics of its free
variables (see Section 6). Thus, a term makes already sense in a context alone, it
does not need an ascribed type.

2. Typed equality is the natural choice in the presence of η since untyped η-reduction is
badly behaved in set-theoretical models and type-theoretical models without sub-
typing —this includes the semantics we are constructing. (Untyped η-expansion
cannot be defined.)

3. Lambda calculi with explicit substitutions have more models than lambda calculi
with substitution implemented as an operation. In particular, the model of closures
in weak head normal form we will use in Section 3. Recent meta theoretic studies
involving explicit substitutions include [Dan07,Cha09,Gra09,ACP09]. In the pres-
ence of explicit substitutions, variables are most naturally represented as de Bruijn
indices [ACCL91].

2.1 Expressions and Typing

The CoC is a dependently typed lambda calculus with expressions on three levels: terms
t, u, the data structures and programs of the language; the types T, U of terms, general-
ized to a lambda-calculus of type constructors1; and the kinds κ, ι, the types of types.

1 E.g., List is a type constructor which produces a type of homogeneous lists List T for each
element type T .



In the PTS-style presentation, there is just one language of expressions M, N for
all three levels, and the classification of expressions into terms, type constructors, and
kinds is a byproduct of typing, using the two sorts s ::= ∗,¤. The inhabitants of sort ¤
are kinds, one of which is ∗, and the inhabitants of sort ∗ are types, whose inhabitants
in turn are terms.

From our perspective, the CoC is a dependent version of System Fω . In terms of
the Calculus of Inductive Constructions, the core language of Coq [INR08], the sort ∗
is the impredicative Set, and the sort ¤ the predicative Type0. Alternatively [Wer92],
one could identify ∗ with the impredicative Prop and refer to the levels as proof terms,
predicates, and kinds instead.

Syntax of expressions, substitutions, and contexts. We represent bound variables by de
Bruijn indices; the 0th variable is represented by the expression v0, the ith variable by
the i-fold application of the lifting substitution � to the expression v0. Consequently,
we use the expression vi as a shorthand for the expression v0 �i. Also, we abbreviate
(id, N) by [N ].

Sort 3 s ::= ∗ | ¤
Exp 3 M, N, t, u, T, U, κ, ι ::= s | v0 | λM N | M N | Π M N | M σ
Subst 3 σ, τ ::= � | id | σ τ | (σ,M)
Cxt 3 Γ, ∆ ::= () | Γ,M

We denote the length of context Γ by ‖Γ‖. We use ≡ for literal identity of expressions,
and the dot notations Π U. T and λU.M to save parentheses.

Normal forms are those expressions that do not contain substitutions (except lifting of
an index) or β-redexes. Normal forms starting with a variable are called neutral.

Norm 3 v, w, V,W ::= s | λV w | Π V W | n β-normal form
Neut 3 n, N ::= vi | n v neutral normal form

Typing. The judgements Γ ` “Γ is a well-formed context” and Γ ` M : N “M has
type N in context Γ ” are given inductively by the following rules.

() `
Γ ` Γ ` T : s

Γ, T `

Γ `
Γ ` ∗ : ¤

Γ ` U : s Γ, U ` T : s′

Γ ` Π U T : s′

Γ ` T : s

Γ, T ` v0 : T �
Γ ` U : s Γ, U ` T : s′ Γ, U ` M : T

Γ ` λU M : Π U T

Γ ` M : Π U T Γ ` N : U

Γ ` M N : T [N ]
Γ ` M : T Γ ` T = T ′ : s

Γ ` M : T ′



We come to the judgement for type equality, Γ ` T = T ′ : s, later. The typing rules
for substitutions are:

Γ ` σ : ∆ ∆ ` M : T

Γ ` M σ : T σ

Γ ` σ : ∆ ∆ ` T : s Γ ` M : T σ

Γ ` (σ,M) : ∆,T

Γ `
Γ ` id : Γ

Γ1 ` τ : Γ2 Γ2 ` σ : Γ3

Γ1 ` σ τ : Γ3

Γ ` T : s

Γ, T ` � : Γ

For i < ‖Γ‖, we define context look-up Γ (i) by (Γ, T )(0) = T � and (Γ, T )(i + 1) =
Γ (i) �. It is easy to see that the general variable rule is derivable by induction on i:

Γ `
Γ ` vi : Γ (i)

Using this rule, we can understand typing of expressions from the first set of rules alone,
under an abstract view on substitution and equality.

2.2 Typed Equality

We formalize βησ-equality by the judgements Γ ` M = M ′ : T and Γ ` σ = σ′ : ∆.
Equality holds only between well-formed objects of syntax, thus the rules have to be
formulated such that they entail Γ ` M : T (and likewise for M ′, σ, and σ′). For
instance, the η-rule reads:

Γ ` M : Π U T

Γ ` M = λU. (M �) v0 : Π U T

We will not spell out the rules will types and typing assumptions. Instead, we will just
write down axioms in the form M = M ′ and σ = σ′, the typing can be reconstructed.
Also we will skip all congruence rules expressing that equality is an equivalence relation
and that it is closed under all syntactic constructions. We have taken a similar approach
before [ACP09] which is justified by Cartmell’s work on generalized algebraic theories
[Car86].

Computation: β, resolution of substitutions, pushing substitution under constructions.

(λUM) N = M [N ]
v0 (σ,M) = M
� (σ,M) = σ

M id = M
sσ = s

(M N)σ = (M σ) (N σ)
(λU M)σ = λU σ.M (σ �, v0)
(Π U T )σ = Π U σ. T (σ �, v0)
(M σ) τ = M (σ τ)
(σ,M) τ = (σ τ, M τ)

Non-computational rules: Extensionality and rules of the category of substitutions.

M = λU. (M �) v0

id = (�, v0)

id σ = σ
σ id = σ
(σ1 σ2) σ3 = σ1 (σ2 σ3)



3 Normalization by Evaluation

We conceive normalization by evaluation as the composition of a standard interpreter
L M : Exp → D mapping expressions into a semantics D and a reifier which computes a
long normal form from a value in D. Coquand [ACP09] observed that the η-expansion
part of reification can be carried out entirely within the semantics which splits reification
into an η-expansion phase ↓ : D → Dnf and a read-back phase Rnf : Dnf → Norm ⊆
Exp.

D

↓
²²

Exp

L M //

Norm
⊇oo Dnf

Rnf

oo Dne

↑
aaDDDDDDDDD

η-expansion ↓ is mutually defined with reflection ↑ : Dne → D which injects variables
(de Bruijn levels), and more generally neutral values e ∈ Dne, into the semantics in
η-expanded form.

3.1 Weak head evaluation

While having used a Scott domain to represent values in previous work [ACP09], we
now change to partial applicative structures which subsume Scott domains (and, in-
deed, all λ-models and -algebras). The following representation of values by closures
is such a structure and it can be directly formalized in type theory which is not the case
for any effective total applicative structure.

Values are defined in terms of closures (λt)η and de Bruijn levels. Level xj represents
the jth free variable. In effect, we are using a locally nameless presentation of values
[Pol94] where bound variables are represented as relative references (de Bruijn indices
vi) and free variables as absolute references, i. e., names (de Bruijn levels xj). The de-
layed η-expansions ↑Π A F e and ↓Π A F f are the defunctionalization of reflection and
reification in the Scott domain (as closures are the defunctionalization of evaluation).

D 3 a, b, f, A, B, F, G, K,L ::= s | Π AF | (λt)η | ↑Π A F e | e value
DNe 3 e, E ::= xj (j ∈ N) | e d neutral value
DNf 3 d, D ::= ↓Π A F f | a normal value
Env 3 η ::= id | (η, a) environment

We let ↑B e = e and ↓B a = a if B is not a Π-type.

Evaluation and application. We introduce the judgements LMMη ↘ a “in environment
η, expression M evaluates to a”, LσMη ↘ η′ “in environment η, substitution σ evaluates
to environment η′”, and f ·a ↘ b “value f applied to value a evaluates to b” inductively



by the following rules.

LsMη ↘ s Lv0M(η,a) ↘ a Lλ U tMη ↘ (λt)η
LUMη ↘ A

LΠ U T Mη ↘ Π A (λT )η

LtMη ↘ f LuMη ↘ a f · a ↘ b

Lt uMη ↘ b

LσMη ↘ η′ LtMη′ ↘ a

Lt σMη ↘ a

L�M(η,a) ↘ η LidMη ↘ η

LσMη ↘ η′ LtMη ↘ a

L(σ, t)Mη ↘ (η′, a)
LτMη ↘ η′ LσMη′ ↘ η′′

Lσ τMη ↘ η′′

LtM(η,a) ↘ b

(λt)η · a ↘ b

F · a ↘ B

(↑Π A F e) · a ↘ ↑B(e ↓A a)

These three relations are deterministic, thus, they can be turned into partial functions
L M : Exp× Env ⇀ D, L M : Subst× Env ⇀ Env, and · : D× D ⇀ D.

3.2 Read-back (aka Reification)

We introduce two judgements m ` d ↘ v “at level m, normal value d reifies to normal
form v”, and m `ne e ↘ n “at level m, neutral value reifies to neutral normal form n”
inductively by the following rules. The natural number m corresponds to the de Bruijn
level of the next fresh variable.

m ` ∗ ↘ ∗
m ` A ↘ V F · ↑A xm ↘ B m + 1 ` B ↘ W

m ` Π AF ↘ Π V W

m ` A ↘ V F · ↑A xm ↘ B f · ↑A xm ↘ b m + 1 ` ↓B b ↘ w

m ` ↓Π A F f ↘ λ V w

m `ne e ↘ n

m ` e ↘ n m `ne xj ↘ vm−(j+1)

m `ne e ↘ n m ` d ↘ v

m `ne e d ↘ n v

In the but last rule, we use the “monus” function on N where m−m′ = 0 if m′ ≥ m.
Read-back is deterministic, so we introduce two partial functions by Rnf

m d = v iff
m ` d ↘ v and Rne

m e = n iff m `ne e ↘ n. These correspond to the read-back
function by Gregoire and Leroy [GL02] and own previous work [ACP09].

3.3 Type Inference

In the following we adopt bidirectional value-based type checking [Coq96,ACD08] to
de Bruijn style. Since we have typed abstraction, the type of every well-typed term is
inferable. We specify the type inference algorithm by a deterministic inductive judge-
ment

∆ ` t ⇒ A



meaning that in context ∆, the principal type of t is A. We keep context ∆ and type A
in evaluated form. The algorithm is very similar to Huet’s constructive engine [Hue89]
as refined by Pollack [Pol06].

By induction on a context of values ∆, we define the η-expanded environment id∆

which maps de Bruijn indices to their corresponding de Bruijn levels. We write x∆ for
x‖∆‖.

id() = id id∆,A = (id∆, ↑A x∆)

Type inference is given inductively by the following rules. Note that only type
checked terms are evaluated, and only values enter the contexts or are returned.

∆ ` ∗ ⇒ ¤
∆ ` U ⇒ s ∆, LUMid∆

` T ⇒ s′

∆ ` Π U T ⇒ s′ ∆ ` vi ⇒ ∆(i)

∆ ` U ⇒ s LUMid∆
↘ A ∆, A ` t ⇒ B ∆, A ` B

λ−→ F

∆ ` λU t ⇒ Π AF

∆ ` t ⇒ Π AF ∆ ` u ⇒ B ∆ ` A ∼= B

∆ ` t u ⇒ F · LuMid∆

In the last two rules we have used two auxiliary judgements. In the application rule, we
check the ascribed type A and the inferred type B for βη-equality using ∆ ` A ∼= B.
In the application rule, we need to turn the type value B of the function body t into a

function over the last variable x∆, which is of type A. We write ∆,A ` B
λ−→ F for

this abstraction operation.

∆ ` A ∼= B ⇐⇒ ‖∆‖ ` A ↘ V and ‖∆‖ ` B ↘ V

∆,A ` B
λ−→ F ⇐⇒ ‖∆,A‖ ` B ↘ V and F ≡ (λV )id

Type values A and B are equal if they reify to the same normal form V . Due to our

locally nameless style values, abstraction ∆, A ` B
λ−→ F is a bit cumbersome. We

implement it by first reifying value B in context ∆,A to term V and then building the
closure F ≡ (λV )id.

3.4 Normalization

During type inference, values are reified to normal forms to test equality. We can also
compose evaluation and read-back to obtain a normalization function for terms. Let LΓ M
be evaluation of contexts partially defined by

L()M = () LΓ,UM = LΓ M, LUMidLΓM
Using the partially defined identity environment ηΓ := idLΓ M , the partial normalization
function is now obtained as

nbeT
Γ (t) = Rnf

‖Γ‖ (↓LT MηΓ LtMηΓ
)

NbeΓ (T ) = nbe¤
Γ (T ).



The goal of this work is to show its correctness on well-formed expressions, i. e.:

1. Soundness: if Γ ` t : T then Γ ` t = nbeT
Γ (t) : T .

2. Completeness: if Γ ` t = t′ : T then nbeT
Γ (t) ≡ nbeT

Γ (t′).
3. Termination: if Γ ` t : T then nbeT

Γ (t) is defined.

The termination property is a consequence of soundness and also of completeness,
since judgemental equality and expression equality presuppose definedness. Remarks
on soundness can be found in the long version of this paper [Abe10]. In the remainder
of the paper, we will focus on completeness, which will be established by a PER model
construction.

4 Classification of Expressions

If Γ ` κ : ¤, then κ is a called a kind. If Γ ` T : κ for a kind κ, then T is called a
type constructor. In particular, if Γ ` T : ∗, then T is called a type. If Γ ` t : T for
a type T , then t is called a term. We obtain three syntactic subclasses Kind,Ty, Tm of
Exp. There are no kind variables, only term variables and type (constructor) variables.

Kind 3 κ, ι ::= ∗ | Π κκ′ | Π U κ
Ty 3 T, U ::= Π U T | Π κT

| X | λκT | T U | λU T | T u
Tm 3 t, u ::= x | λU t | t u | λκ t | t U

It is well-known that all dependencies in pure CoC can be erased such that one ends
up with the terms, type constructors, and kinds of System Fω . This way, one can inherit
normalization of CoC from Fω [GN91]. However, since we want to add inductive types
in ∗ with large eliminations into ∗ (just as Werner [Wer92]), we cannot pursue this path;
CoC with natural numbers has types defined by recursion on a number, so it can express
types of functions with varying arity, like

(X :∗) → (n :Nat) → X → · · · → X︸ ︷︷ ︸
n times

→ X

which have no counterpart in Fω. However, without large eliminations into ¤, so no
kinds defined by recursion, the structure of kinds is still simple and dependencies can be
erased on the kind level. This observation by Coquand and Gallier [CG90] and Werner
[Wer92] has been exploited by Barras and Werner [BW97] to completely formalize
strong normalization of pure CoC in Coq. Following their lead, we will use erased
kinds to bootstrap our model construction in Section 5.

Simple kinds. We enrich the kinds of Fω by a base kind ¦ of terms.

SKi 3 k ::= ¦ | l simple kind
SKiP 3 l ::= ∗ | k → l proper simple kind
SCxt 3 γ, δ ::= () | γ, k simple kinding context



The simple kind ¦ → k is the erasure of the indexed kind Π T κ. The grammar forbids
k → ¦, the kind of functions from constructors of simple kind k to terms, which is a
subset of the terms, so we set k → ¦ := ¦.

We define the judgements γ ` M ÷ k “in context γ, expression M has simple kind
k”, γ ` σ ÷ δ “in context γ, substitution σ has simple kinding δ, and γ ` M

.= k “in
context γ, expression M has skeleton k” inductively by the rules to follow. These rules
are basically an erasure of the typing rules. Kinds κ are related to their skeleton k by
γ ` κ

.= k, where Types T : ∗ are assigned skeleton ¦. Type constructors T : κ are be
related to the skeleton k of κ by judgement γ ` T ÷ k, and terms to skeleton ¦.

γ ` ∗ .= ∗
γ ` U

.= k γ, k ` T
.= k′

γ ` Π U T
.= k → k′

γ ` T ÷ ∗
γ ` T

.= ¦

γ, k ` v0 ÷ k

γ ` U
.= k γ, k ` M ÷ k′

γ ` λU M ÷ k → k′

γ ` M ÷ k → k′ γ ` N ÷ k

γ ` M N ÷ k′
γ ` σ ÷ δ δ ` M ? k

γ ` M σ ? k
? ∈ {÷,

.=}

γ, k ` �÷ γ γ ` id÷ γ

γ ` σ ÷ δ γ ` M ÷ k

γ ` (σ,M)÷ δ, k

γ1 ` τ ÷ γ2 γ2 ` σ ÷ γ3

γ1 ` σ τ ÷ γ3

Shape computation. We now define two (total) functions, |M |÷γ “the kind of M in
simple context γ”, and |M | .=γ “the skeleton of M in simple context γ”, by means of a
general shape function |M |γ which returns a pair (?, k) with ? ∈ { .=,÷}:

|M | .=γ =
{

k if |M |γ = ( .=, k)
¦ otherwise |M |÷γ =

{
k if |M |γ = (÷, k)
∗ otherwise

The shape function is defined mutually with the function |σ|÷γ , written |σ|γ , which
computes the kinds of the expressions in σ. We also define the skeleton |Γ | of a context.

|∗|γ = ( .=, ∗)
|Π U T |γ = ( .=, |U | .=γ → |T | .=

γ,|U | .=γ
)

|v0|γ,k = (÷, k)
|v0|() = (÷, ¦)

|λU M |γ = (÷, |U | .=γ → |M |÷
γ,|U | .=γ

)

|M N |γ =
{

(÷, k′) if |M |÷γ = k → k′

(÷, ¦) otherwise
|M σ|γ = |M ||σ|γ

|�|γ,k = γ

|�|() = ()
|id|γ = γ
|(σ,M)|γ = |σ|γ , |M |÷γ
|σ τ |γ = |σ||τ |γ

|()| = ()
|Γ, T | = |Γ |, |T | .=|Γ |

Lemma 1 (Soundness of shape computation). For L ::= M | σ and R ::= k | γ and
γ ` L ? R we have R = |L|?γ .



Lemma 2 (Kind skeleton independence). |M | .=γ = |M | .=γ′ for all γ, γ′.

Therefore, we may suppress γ and just write |M | .=.

Theorem 1 (Shapes of wellformed expressions). Let γ = |Γ |.

1. If Γ ` κ : ¤ then γ ` κ
.= |κ| .=γ .

2. If Γ ` κ = κ′ : ¤ then |κ| .=γ = |κ′| .=γ .

3. If Γ ` T : ∗ then γ ` T
.= |T | .=γ = ¦.

4. If Γ ` M : T 6≡ ¤ then γ ` M ÷ |M |÷γ = |T | .=γ .
5. If Γ ` σ : ∆ then γ ` σ ÷ |σ|γ = |∆|.

Proof. Simultaneously by induction on the typing/equality derivation. Note that Γ `
M = M ′ : T 6≡ ¤ implies |M |÷γ = |M ′|÷γ since the kinds of M and M ′ equal the
skeleton of T .

5 A Model for the βη-CoC with Large Eliminations

In this section, we present a PER model of CoC. Each expression M is modeled by a
pair (F,F) where F : D is simply the value of M and F is the semantic role of M .
Terms t ÷ ¦ have no semantic role, they are modeled by a pair (a, ()). Types T ÷ ∗
are modeled by a pair (A,A) where A is a partial equivalence relation (PER) between
semantic terms. The objects (a, ()) and (a′, ()) are related by A iff, intuitively, a and
a′ are βη-equal values of type A. Formally that means that ↓A a and ↓A a′ must read
back as the same expression; this connection between A and A is written A ° A and
pronounced “A realizes A”. Type constructors T ÷ k → k′ are modeled as (F,F)
where F is a higher-order operator on PERs, it maps constructors (G,G) of kind k to
constructors F(G,G) of kind k′. Note that unlike in System Fω or erased versions of
the CoC [BW97,Geu94], F also depends on a value G (see [Wer92,SG96]). Finally
kinds κ

.= k are modeled as (K,K) where the PER K relates constructors (F,F) and
(F ′,F ′) of kind k if F and F ′ are extensionally equal operators and ↓K F and ↓K F ′

have the same normal form (thus, K realizesK). To avoid duplication we have modeled
types and kinds uniformly in the formal presentation of the semantics, probably at the
cost of readability; may this informal exposition serve as an Ariadne thread in the maze
to follow.

Meta language. We use an impredicative type-theoretic meta language, i. e., we will not
speak in terms of sets, but in terms of types and predicates. However, we will use some
set-theoretic notation with care. For a type α, the type P(α) contains the predicates
over α, and for P : P(α) and a : α we write a ∈ P if P (a) holds. The subset type
{a : α | P (a)} is the type of pairs (a, p) such that p is a proof of P (a). Usually, we
suppress the proof and write just a ∈ {a : α | P (a)}. The value f(a, p) of a function
f : {a : α | P (a)} → β may not depend on the form of the proof p.



A setoid is a pair of a type α and an equivalence relation =α : P(α × α). We write α
for the setoid. A function f : α → β is a (setoid) morphism, f ∈ α → β, if it respects
setoid equality, i. e., a =α a′ implies f(a) =β f(a′). Two morphisms f, f ′ are equal,
f =α→β f ′ iff a =α a′ implies f(a) =β f ′(a). This makes (α → β, =α→β) a setoid
in turn.

A partial equivalence relation A : Per(α) is a binary relation over type α which is
symmetric and transitive. We write a = a′ ∈ A for a, a′ : α with (a, a′) ∈ A, and
a ∈ A for a = a ∈ A. Equality A = A′ of PERs holds extensionally if for all
a, a′ : α, a = a′ ∈ A iff a = a′ ∈ A′. Each PER A can be coerced into an associated
setoid {a : α | a ∈ A} with setoid equality A. This defines the notion of morphism
F ∈ A → β from PER A to setoid β. We define Ne : Per(DNe) and Nf : Per(DNf) by

e = e′ ∈ Ne ⇐⇒ ∀m : N. ∃n : Neut. m `ne e ↘ n and m `ne e′ ↘ n
d = d′ ∈ Nf ⇐⇒ ∀m : N. ∃v : Norm. m ` d ↘ v and m ` d′ ↘ v.

Note that transitivity follows from determinism of read-back.

A partial function H : α ⇀ β is a pair (dom(H) : P(α), apply(H) : {a : α | a ∈
domH} → β) where dom(H) and apply(H) respect the setoid equalities associated
to α and β. We will write H(a) º “H(a) is defined” if there is a proof p that a ∈
dom(H), and then H(a) stands for apply(H)(a, p). Two partial functions H,H′ are
equal H =α⇀β H′ if they have equal domains and coincide pointwise (wrt. to setoid
equalities); this makes α ⇀ β a setoid.

Raw interpretation of kinds. Let () denote the unit type with single inhabitant (). We
define the candidate space 〈k〉 for simple kind k and an inhabitant⊥k : 〈k〉 by recursion
on k:

〈¦〉 = ()
〈∗〉 = Per(D× ())
〈k → k′〉 = (D× 〈k〉) ⇀ 〈k′〉

⊥¦ = ()
⊥∗ = Ne()

⊥k→k′(G : D,G : 〈k〉) = ⊥k′

where Ne() = Ne× () = {((e, ()), (e′, ())) | e = e′ ∈ Ne}. Extensional setoid equality
F =〈k〉 F ′ is defined along the way. We set 〈〈k〉〉 = Per(D×〈k〉). Note that 〈〈¦〉〉 = 〈∗〉.

Sort interpretation. For K : D,K : 〈〈k〉〉 we define K, K : 〈〈k〉〉 and K ° K, “K
realizes K”, by

(F,F) = (F ′,F ′) ∈ K ⇐⇒ ↓K F = ↓K F ′ ∈ Nf

(↑K E,⊥k) = (↑K E′,⊥k) ∈ K ⇐⇒ E = E′ ∈ Ne
K ° K ⇐⇒ K ⊆ K ⊆ K

In words, code K realizes PER K iff equal inhabitants F of K reify to the same normal
form, where K directs the amount of η-expansion during reification; and neutrals E can
be reflected at code K into K. Equivalently, we could say K ° K iff ↓K ◦ π1 ∈ K →
Nf, “↓K after the first projection is a PER morphism from K to Nf”, and (E : DNe 7→
(↑K E,⊥k)) ∈ Ne → K, “↑K paired with ⊥k is a PER morphism from Ne to K”.

Lemma 3 (Least PER is a candidate). For all E ∈ Ne, E ° ⊥∗ : 〈〈¦〉〉.



Equality of candidates (K,K) = (K ′,K′) ∈ k shall hold iff

1. K ° K and K ′ ° K′.
2. K =〈〈k〉〉 K′ and ↓K = ↓K ′ ∈ Nf.

3. ↑K = ↑K′ ∈ Ne× {⊥k} → K and ↓K = ↓K′ ∈ π1(K) → Nf.

This states that K and K′ are extensionally equal PERs, plus the associated codes K
and K ′ are reifiable, plus they are indistinguishable with respect to their own normal
form and their directive behaviour during reification of inhabitants of K and reflection
of neutrals into K. Now sort ∗ is interpreted by ¦ and ¤ (informally) by

⋃
k 6=¦ k.

Lemma 4. For all k, k is a PER over D× 〈k〉. If K ° K then (K,K) ∈ k.

Lemma 5 (Interpretation of ∗). We have ∗ ° ¦ : 〈〈∗〉〉 and (∗, ¦) = (∗, ¦) ∈ ∗.

Function space construction. For simple kinds k, l : SKi we define

∏k,l : (K ∈ 〈〈k〉〉) → (K → 〈〈l〉〉) → 〈〈k → l〉〉∏k,lKL = {((F,F), (F ′,F)) : (D× 〈k → l〉)2 | for all (G,G) = (G′,G′) ∈ K,
F ·G º, F ′ ·G′ º,F(G,G) º,F ′(G′,G′) º, and
(F ·G,F(G,G)) = (F ′ ·G′,F ′(G′,G′)) ∈ L(G,G)}.

In case l = ¦ both F ,F ′ : 〈k → l〉 = () are trivial and we let the application F(G,G)
be defined as (). Otherwise, F ,F ′ : D× 〈k〉 ⇀ 〈l〉.∏k,lKL is indeed a PER, the proof is standard. The definition above is a bit ab-
stract, the following table conveys some intuition about

∏k,l .

k l description PTS rule
¦ ¦ dependent function space (∗, ∗, ∗)

not ¦ ¦ universal quantification (¤, ∗, ∗)
¦ not ¦ indexed kind formation (∗, ¤, ¤)

not ¦ not ¦ function kind formation (¤,¤, ¤)

Where is the impredicativity? For k = ∗ and l = ¦ we should recover the impredicative
quantification of System F. Let us look at the definition of this instance

∏∗,¦ : (K ∈
Per(D× 〈∗〉)) → (K → 〈∗〉) → 〈∗〉. Remember that 〈∗〉 = Per(D× ()), thus, modulo
the isomorphism D× () ∼= D we get

∏∗,¦KL = {(F, F ′) : D2 | ∀G,G′ : D,G,G′ : 〈∗〉.
(G,G) = (G′,G′) ∈ K =⇒ F ·G = F ′ ·G′ ∈ L(G,G)}.

Hence, to obtain a new element
∏KL : 〈∗〉 we quantify over all G,G′ : 〈∗〉 — there is

System F impredicativity.

Lemma 6 (Function type formation, introduction, and elimination). Let K,K′ :
〈〈k〉〉, L,L′ ∈ K → 〈〈l〉〉, and F ,F ′ ∈ K → 〈l〉. The following inferences are valid in



the model.

(K,K) = (K ′,K′) ∈ k

(L ·G,L(G,G)) = (L′ ·G′,L′(G′,G′)) ∈ l for all (G,G) = (G′,G′) ∈ K
(Π K L,

∏KL) = (Π K ′ L′,
∏K′ L′) ∈ k → l

(F ·G,F(G,G)) = (F ′ ·G′,F ′(G′,G′)) ∈ L(G,G) for all (G,G) = (G′,G′) ∈ K
(F,F) = (F ′,F ′) ∈ ∏KL

(F,F) = (F ′,F ′) ∈ ∏KL (G,G) = (G′,G′) ∈ K
(F ·G,F(G,G)) = (F ′ ·G′,F ′(G′,G′)) ∈ L(G,G)

Proof. Introduction and elimination follow directly from the definition of
∏KL. The

formation rule follows from properties of reflection and reification at function types
[ACD07].

6 Soundness of the Model

We extend the raw semantic interpretation to shapes by setting 〈÷, k〉 = 〈k〉 and
〈 .=, k〉 = 〈〈k〉〉, and to simple kinding contexts via 〈()〉 = () and 〈γ, k〉 = 〈γ〉 × 〈k〉.

Interpretation. By induction on M/σ we simultaneously define the partial functions
[[M ]]η;γ; : (ρ : 〈γ〉) ⇀ 〈|M |γ〉 and [[σ]]η;γ; : (ρ : 〈γ〉) ⇀ 〈|σ|γ〉.

[[∗]]η;γ;ρ = ¦ : 〈〈∗〉〉
[[Π U T ]]η;γ;ρ =

∏|U |
.=,|T |

.=
[[U ]]η;γ;ρ ((G,G) ∈ [[U ]]η;γ;ρ 7→ [[T ]]η,G;γ,|U | .=;ρ,G)

[[v0]]η;γ,k;ρ,G = G : 〈k〉
[[λU M ]]η;γ;ρ = ((G,G) ∈ [[U ]]η;γ;ρ 7→ [[M ]]η,G;γ,|U | .=;ρ,G)
[[M N ]]η;γ;ρ = [[M ]]η;γ;ρ(LNMη, [[N ]]η;γ;ρ)
[[M σ]]η;γ;ρ = [[M ]]LσMη;|σ|γ ;[[σ]]η;γ;ρ

[[�]]η;γ,k;ρ,o = ρ : 〈γ〉
[[id]]η;γ;ρ = ρ : 〈γ〉

[[(σ,M)]]η;γ;ρ = [[σ]]η;γ;ρ, [[M ]]η;γ;ρ : 〈|σ|γ , |M |÷γ 〉
[[σ τ ]]η;γ;ρ = [[σ]]LτMη;|τ |γ ;[[τ ]]η;γ;ρ

: 〈|σ||τ |γ 〉

The prime source of partiality is the potential undefinedness of LNMη in the interpreta-
tion of the application M N . Contrast this to Barras and Werner [BW97] where LNMη
is gone and with it the large eliminations.

The precise conditions for definedness can be extracted mechanically from this def-
inition, for instance, [[Π U T ]]η;γ;ρ is defined iff [[U ]]η;γ;ρ is defined and for all (G,G) ∈
[[U ]]η;γ;ρ, [[T ]]η,G;γ,|U | .=;η;G is defined.



Validity. We define the relation (η; ρ) = (η′; ρ′) ∈ [[Γ ]] for η, η′ : Env and ρ, ρ′ : 〈|Γ |〉
inductively by the rules

((); ()) = ((); ()) ∈ [[()]]

(η; ρ) = (η′; ρ′) ∈ [[Γ ]] (G,G) = (G′,G′) ∈ [[T ]]η;|Γ |;ρ
(η,G; ρ,G) = (η, G′; ρ,G′) ∈ [[Γ, T ]]

There is an implicit premise [[T ]]η;|Γ |;ρ º in the second rule. By induction on Γ we
simultaneously define the following propositions:

() |= :⇐⇒ true
Γ, T |= :⇐⇒ Γ |= T : ¤

Γ |= κ = κ′ : ¤ :⇐⇒ Γ |= and for all (η, ρ) = (η′, ρ′) ∈ [[Γ ]],

(LκMη, [[κ]]η;|Γ |;ρ) = (Lκ′Mη′ , [[κ′]]η′;|Γ |;ρ′) ∈ |κ|
.
=

Γ |= M = M ′ : T 6≡ ¤ :⇐⇒ Γ |= T : ¤ and for all (η, ρ) = (η′, ρ′) ∈ [[Γ ]],
(LMMη, [[M ]]η;|Γ |;ρ) = (LM ′Mη′ , [[M ′]]η′;|Γ |;ρ′) ∈ [[T ]]η;|Γ |;ρ

Γ |= M : T :⇐⇒ Γ |= M = M : T

Γ |= σ = σ′ : ∆ :⇐⇒ Γ |= and ∆ |= and for all (η, ρ) = (η′, ρ′) ∈ [[Γ ]],
(LσMη, [[σ]]η;|Γ |;ρ) = (Lσ′Mη′ , [[σ′]]η′;|Γ |;ρ′) ∈ [[∆]]

Γ |= σ : ∆ :⇐⇒ Γ |= σ = σ : ∆

Lemma 7. If Γ |= then = ∈ [[Γ ]] is a PER.

Theorem 2 (Fundamental theorem). If Γ ` J then Γ |= J .

Proof. Simultaneously by for all judgements J by induction on Γ ` J .

Theorem 3 (Completeness of NbE). If Γ ` M = M ′ : T then nbeT
Γ M ≡ nbeT

Γ M ′.

Proof. Define ρΓ by the clauses ρ() = () and ρΓ,U = ρΓ ,⊥|U |
.=

and prove that
(ηΓ , ρΓ ) ∈ [[Γ ]] by induction on Γ . Let (F,F) = (LMMηΓ

, [[M ]]ηΓ ;|Γ |;ρΓ
) and (F ′,F ′)

analogously. If T 6≡ ¤ then with (K,K) = (LT MηΓ , [[T ]]ηΓ ;|Γ |;ρΓ
) we obtain (F,F) =

(F ′,F ′) ∈ K and K ° K by the fundamental theorem. Hence, ↓K F = ↓K F ′ ∈ Nf,
so in particular Rnf

‖Γ‖ (↓K F ) ≡ Rnf
‖Γ‖ (↓K F ′). If T ≡ ¤ then the fundamental theorem

yields (F,F) = (F ′,F ′) ∈ k for k = |M | .= which also implies ↓F = ↓F ′ ∈ Nf.

6.1 On Consistency

From our PER model we can prove the consistency of CoC as follows. Add a new type
constant ∅, the empty type, with rules Γ ` ∅ : ∗ and Γ ` ∅ = ∅ : ∗ and semantics
[[∅]]η;γ;ρ = Ne().

Theorem 4 (Consistency). 6 ` t : ∅.

Proof. Let a = LtMid and observe that a cannot mention a de Bruijn level xj . Since
a ∈ Ne by the fundamental theorem (Thm .2), we have 0 `ne a ↘ n for some n. But
this means that a is of the shape xj d for some j, contradiction!



7 Conclusion

We have built a model for the Calculus of Constructions with typed βη-equality which
proves termination and completeness of normalization by evaluation. The model sup-
ports extensions of the CoC by small inductive types (“small” meaning “in ∗”) and
large (aka strong) eliminations into ∗, i. e., types defined by recursion [Wer92]. The
model is formalizable directly in impredicative dependent type theories with inductive
definitions, e. g., in the Calculus of Inductive Constructions (CIC) [INR08].

This work is a first step towards a metatheory of CIC with typed βη-equality using
normalization by evaluation. The long term goal is a correctness proof for the Coq type
checker in the presence of η. However, a number of things need to be done:

– Construct a Kripke logical relation between expressions and values that proves the
soundness of NbE without external reference to injectivity. As a consequence, we
obtain soundness and completeness of the type checker of Section 3.

– Extend the calculus to more universes and to large inductive types. This will break
simple kinding, requiring a new way to bootstrap the model. The usual technique
are inaccessible cardinals [Luo89,Gog94,Miq00], however, we seek a more direct
representation in type theory.
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