
foetus - Termination Checker for Simple
Functional Programs

Andreas Abel∗

July 16, 1998

Abstract

We introduce a simple functional language foetus (lambda calculus
with tuples, constructors and pattern matching) supplied with a ter-
mination checker. This checker tries to find a well-founded structural
order on the parameters on the given function to prove termination.
The components of the check algorithm are: function call extraction
out of the program text, call graph completion and finding a lexical
order for the function parameters. The HTML version of this paper
contains many ready-to-run Web-based examples.

1 Introduction

Since the very beginning of informatics the problem of termination has been
of special interest, for it is part of the problem of program verification for in-
stance. Because the halting problem is undecidable, there is no method that
can prove or disprove termination of all programs, but for several systems
termination checkers have been developed. We have focused on functional
programs and designed the simple language foetus1, for which we have imple-
mented a termination prover. foetus is a simplification of MuTTI (Munich
Type Theory Implementation) based on partial Type Theory (ala Martin

∗Theoretical Computer Science, Institute of Computer Science, Ludwigs-
Maximilians-University, Oettingenstr. 67, D-80538 Munich, Germany, email:
abel@informatik.uni-muenchen.de. I want to thank my supervisor Thorsten Al-
tenkirch and Rolf Backofen for his friendly support in technical questions.

1In German foetus is an abbreviation of “Funktionale – Obgleich Eingeschränkt – Ter-
mination Untersuchende Sprache” ;-). It also expresses that it is derived from MuTTI
(this is the German term for Mum).

1

2 FOETUS LANGUAGE 2

Löf) extended by tuples, constructors and pattern matching. For the syntax
see section 2.1.

To prove the termination of a functional program there has to be a well
founded order on the product of the function parameters such that the argu-
ments in each recursive call are smaller than the corresponding input regard-
ing this order. We have limited to structural orderings. foetus tries to find
such an order by collecting all recursive calls of the given function and the
belonging behaviour of the function arguments. To handle mutually recursive
functions a call graph is constructed and completed.

Section 2 introduces the foetus “body” (syntax and type system). Sec-
tion 3 provides some examples to intuitively learn the language and see the
interpreter and termination checker work. Then in section 4 we explain the
“heart” of foetus: the call extractor; we also informally introduce call graph
completion and finding of the lexical order: the “brain” of foetus. The latter
is formally described in section 5.

2 foetus Language

2.1 foetus Syntax

A foetus program consists of terms and definitions.

P :: empty program
| term; P term to be evaluated
| definition; P definition for further use

When processing input, foetus evaluates the terms and stores the definitions
in the environment. “Reserved words” in the foetus language are case, of,
let and in. Special characterss are () [] { } | . , ; = =>. An iden-
tifier may contain letters, digits, apostrophies and underscores. If it starts
with a small letter it stands for a variable, else it denotes a constant.

Term syntax. In the following x, x1, x2, . . . denote variables, C, C1, C2,
. . . constants and u, t, t1, t2, . . . foetus terms.

2 FOETUS LANGUAGE 3

t :: x variable
| [x]t lambda
| tu application
| C(t) constructor
| case t of { C1x1 ⇒ t1| . . . |Cnxn ⇒ tn } pattern matching
| (C1 = t1, . . . , Cn = tn) tuple
| t.C projection
| let x1 = t1, . . . , xn = tn in t let
| (t) (extra parentheses)

Definitions. A definition statement has the form x1 = t1, . . . , xn = tn
(it is a let-term without a “body”). All variables x1, . . . , xn are defined
simultanously, thus can refer to each other.

Example. The following foetus program defines addition on natural num-
bers (spanned by the two constructors O “zero” and S “successor”) and cal-
culates 1 + 1.

add = [x][y]case x of

{ O z => y

| S x’ => S(add x’ y) };

one = S(O());

add one one;

Note that although O is a zero-argument-constructor the syntax forces us
to supply a dummy variable z within the pattern definition and also empty
tuple () in the definition of one.

2.2 foetus Type System

In the following x, x1, x2, . . . denote variables, C, C1, C2, . . . constants, u, t,
t1, t2, . . . foetus terms, τ , σ, σ1, σ2, . . . foetus types and X, X1, X2, . . . type
variables. Γ = x1 : σ1, . . . , xn : σn denotes the context. The judgement

Γ ` t : σ

means “in context Γ term t is of type σ”.

2 FOETUS LANGUAGE 4

Type formation.

τ :: σ → τ →-type
| {C1 : σ1| . . . |Cn : σn} labeled sum type
| (C1 : σ1, . . . , Cn : σn) labeled product type
| {X}τ polymorphic type
| τσ instantiation of polymorphic type
| Let X1 = σ1, . . . , Xn = σn in τ recursive type

In the formation of a recursive type with Let Xi may only appear strict
positiv in σi. We define congruence on types ∼= as the smallest congruence
closed under

Let ~X = ~σ in τ ∼= τ [X1 := Let ~X = ~σ in X1; . . . ;Xn := Let ~X = ~σ in Xn]

(~X = ~σ abbreviates X1 = σ1, . . . , Xn = σn). Thus we can substitute congru-
ent types:

Γ ` t : σ σ ∼= τ

Γ ` t : τ

For ploymorphic types we have rules like in System F:

Γ ` t : σ X not free type variable in Γ
poly − i

Γ ` t : {X}σ

Γ ` t : {X}σ
poly − e

Γ ` t : σ[X := τ]

2.3 Typing rules for foetus terms

We here only briefly introduce the typing rules. For more detailed explana-
tion, read a book about type theorie, e.g. [NPS90].

Lambda abstraction.

Γ, x : σ ` t : τ
→ −i

Γ ` [x]t : σ → τ

Application.
Γ ` t : σ → τ Γ ` u : σ

→ −e
Γ ` tu : σ

2 FOETUS LANGUAGE 5

Constructor.

Γ ` t : σi
{} − i

Γ ` Ci(t) : {C1 : σ1| . . . |Cn : σn}

Pattern matching.

Γ ` t : {C1 : σ1| . . . |Cn : σn} Γ, xi : σi ` ui : σ for all 1 ≤ i ≤ n
{} − e

Γ ` case t of {C1(x1)⇒ u1| . . . |Cn(xn)⇒ un} : σ

Tupels.

Γ ` ti : σi for all 1 ≤ i ≤ n
()− i

Γ ` (C1 = t1, . . . , Cn = tn) : (C1 : σ1, . . . , Cn : σn)

Projection.

Γ ` t : (C1 : σ1, . . . , Cn : σn)
()− e

Γ ` t.Ci : σi

Let.

Γ, x1 : σ1, . . . , xn : σn ` ti : σi for all 1 ≤ i ≤ n Γ, x1 : σ1, . . . , xn : σn ` u : τ
let

Γ ` let x1 = t1; . . . ;xn = tn in u : τ

In foetus type checking is not yet implemented and it is assummed that
all terms entered are well typed. Of course, only for well typed terms the
termination check produces valid results.

Example. The following well-known example for non-termination passes
the foetus termination checker, but it is not well typed.

f = [x]x x;

a = f f;

foetus output:

f passes termination check

a passes termination check

3 EXAMPLES 6

3 Examples

3.1 Addition and multiplication

On the natural numbers

nat := Let nat = {O()|S(nat)} in nat

we define add, mult : nat→ nat→ nat:

add = [x][y]case x of

{ O z => y

| S x’ => S(add x’ y) };

mult = [x][y]case x of

{ O z => O z

| S x’ => (add y (mult x’ y)) };

add (S(S(O()))) (S(O()));

mult (S(S(O()))) (S(S(S(O()))));

foetus output:

< =: add -> add

add passes termination check by lexical order 0

< =: mult -> mult

mult passes termination check by lexical order 0

result: S(S(S(O())))

result: S(S(S(S(S(S(O()))))))

3.2 Subtraction

We define the predecessor function p : nat→ nat and substraction on natural

numbers sub : nat→ nat→ nat. Note sub x y calculates y
·
− x.

p = [x]case x of { O z => O z | S x’ => x’ };

sub = [x][y]case x of

{ O z => y

| S x’ => sub x’ (p y) };

sub (S(S(O()))) (S(S(S(S(O())))));

foetus output:

p passes termination check

< ?: sub -> sub

sub passes termination check by lexical order 0

result: S(S(O()))

3 EXAMPLES 7

3.3 Division

Division div : nat→ nat→ nat can be implemented as follows in functional
languages (note that div x y calculates b y

x
c):

div (x,y) = div’(x,y+1-x)

div’(x,y) = if (y=0) then 0 else div’(x,y-x)

div’ (just like division on natural numbers) terminates if the divisor x is
unequal 0 because then y-x < y in the recursive call and thus one function
argument is decreasing. But foetus recognizes only direct structural decrease
and cannot see that sub x y’ is less than y’. To prove termination of div’
you need a proof for x 6= 0→ subx y < y [BG96].

p = [x]case x of { O z => O z | S x’ => x’ };

sub = [x][y]case x of

{ O z => y

| S x’ => sub x’ (p y) };

div = [x][y]let

div’ = [y’]case y’ of

{ O z => O z

| S dummy => S(div’ (sub x y’)) }

in

(div’ (sub (p x) y));

div (S(S(O()))) (S(S(S(S(S(O()))))));

foetus output:

p passes termination check

< ?: sub -> sub

sub passes termination check by lexical order 0

div passes termination check

?: div’ -> div’

div’ FAILS termination check

result: S(S(O()))

Here foetus says div’ fails termination check, so div will not terminate either.
div would terminate, if div’ terminated, therefore you get the answer div

passes termination check.

3.4 Ackermann function

The not primitive recursive Ackermann function ack : nat→ nat→ nat.

3 EXAMPLES 8

ack = [x][y]case x of

{ O z => S(y)

| S x’ => ack x’ (case y of

{ O z => S(O())

| S y’ => ack x y’}) };

ack (S(S(O()))) (O());

foetus output:

foetus $Revision: 1.0 $

= <: ack -> ack

< ?: ack -> ack

ack passes termination check by lexical order 0 1

result: S(S(S(O())))

3.5 List processing

We define lists over type α as

list := {α}Let list = {Nil()|Cons(HD : α, TL : list)} in list

The well-known list processing functions map : (α→ β)→ listα→ listβ and
foldl : (α→ β → β)→ β → listα→ β are implemented and testet.

nil = Nil();

cons = [hd][tl]Cons(HD=hd,TL=tl);

l1 = cons (A()) (cons (B()) (cons (C()) nil));

map = [f][list]let

map’ = [l]case l of

{ Nil z => Nil()

| Cons pair => Cons (HD=(f pair.HD),

TL=(map’ pair.TL))}

in map’ list;

map ([el]F(el)) l1;

foldl = [f][e][list]let

foldl’ = [e][l]case l of

{ Nil z => e

| Cons p => foldl’ (f p.HD e) p.TL }

in foldl’ e list;

rev = [list]foldl cons nil list;

rev l1;

3 EXAMPLES 9

foetus output:

nil passes termination check

cons passes termination check

l1 passes termination check

map passes termination check

<: map’ -> map’

map’ passes termination check by lexical order 0

result: Cons(HD=F(A()), TL=Cons(HD=F(B()), TL=Cons(HD=F(C()),

TL=Nil())))

foldl passes termination check

? <: foldl’ -> foldl’

foldl’ passes termination check by lexical order 1

rev passes termination check

result: Cons(HD=C(), TL=Cons(HD=B(), TL=Cons(HD=A(), TL=Nil())))

3.6 List flattening

The task is to transform a list of lists into a list, so that the elements of
the first list come first, then the elements of the second list and so on.
Example: flatten [[A,B,C],[D,E,F]] = [A,B,C,D,E,F]. The first ver-
sion flatten : list(listα) → listα works but fails termination check be-
cause of the limited pattern matching abilities of foetus, but it is also bad
style and inefficient because it builds a temporary list for the recursive call.
However, the second version f with a mutual recursive auxiliary function
g : listα→ list(listα)→ listα passes termination check.

nil = Nil();

cons = [hd][tl]Cons(HD=hd,TL=tl);

l1 = cons (A()) (cons (B()) (cons (C()) nil));

ll = (cons l1 (cons l1 nil));

flatten = [listlist]case listlist of

{ Nil z => Nil()

| Cons p => case p.HD of

{ Nil z => flatten p.TL

| Cons p’ => Cons(HD=p’.HD, TL=flatten

(Cons(HD=p’.TL, TL=p.TL))) }};

flatten ll;

3 EXAMPLES 10

f = [l]case l of

{ Nil z => Nil()

| Cons p => g p.HD p.TL },

g = [l][ls]case l of

{ Nil z => f ls

| Cons p => Cons(HD=p.HD, TL=(g p.TL ls)) };

f ll;

foetus output:

nil passes termination check

cons passes termination check

l1 passes termination check

ll passes termination check

?: flatten -> flatten

<: flatten -> flatten

flatten FAILS termination check

result: Cons(HD=A(), TL=Cons(HD=B(), TL=Cons(HD=C(),

TL=Cons(HD=A(), TL=Cons(HD=B(), TL=Cons(HD=C(), TL=Nil()))))))

<: f -> g -> f

f passes termination check by lexical order 0

? <: g -> f -> g

< =: g -> g

g passes termination check by lexical order 1 0

result: Cons(HD=A(), TL=Cons(HD=B(), TL=Cons(HD=C(),

TL=Cons(HD=A(), TL=Cons(HD=B(), TL=Cons(HD=C(), TL=Nil()))))))

3.7 Merge sort

With type
bool := {True()|False()}

we can define le nat: nat → nat → bool and merge : (α → α → bool) →
listα→ listα→ listα as follows:

merge = [le][l1][l2]case l1 of

{ Nil z => l2

| Cons p1 => case l2 of

{ Nil z => l1

| Cons p2 => case (le p1.HD p2.HD) of

3 EXAMPLES 11

{ True z => Cons(HD=p1.HD,

TL=merge le p1.TL l2)

| False z => Cons(HD=p2.HD,

TL=merge le l1 p2.TL) }}};

le_nat = [x][y]case x of

{ O z => True()

| S x’ => case y of

{ O z => False()

| S y’ => le_nat x’ y’ }};

i = S(O());

ii = S(S(O()));

iii = S(S(S(O())));

iv = S(S(S(S(O()))));

v = S(S(S(S(S(O())))));

l1 = Cons(HD=O(), TL=Cons(HD=iii, TL=Cons(HD=iv, TL=Nil())));

l2 = Cons(HD=i, TL=Cons(HD=ii, TL=Cons(HD=v, TL=Nil())));

merge le_nat l1 l2;

foetus output:

= < <: merge -> merge -> merge

= = <: merge -> merge

= < =: merge -> merge

merge passes termination check by lexical order 1 2

< <: le_nat -> le_nat

le_nat passes termination check by lexical order 0

result: Cons(HD=O(), TL=Cons(HD=S(O()), TL=Cons(HD=S(S(O())),

TL=Cons(HD=S(S(S(O()))), TL=Cons(HD=S(S(S(S(O())))),

TL=Cons(HD=S(S(S(S(S(O()))))), TL=Nil()))))))

3.8 Parameter permutation: list zipping

The following function zip : listα → listα → listα combines two lists into
one by alternately taking the first elements form these lists and putting them
into the result list.

zip = [l1][l2]case l1 of

{ Nil z => l2

| Cons p1 => Cons(HD=p1.HD, TL=zip l2 p1.TL) };

3 EXAMPLES 12

zip (Cons(HD=A(), TL=Cons(HD=C(), TL=Nil())))

(Cons(HD=B(), TL=Cons(HD=D(), TL=Nil())));

foetus output:

? ?: zip -> zip -> zip -> zip

< <: zip -> zip -> zip

? ?: zip -> zip

zip FAILS termination check

result: Cons(HD=A(), TL=Cons(HD=B(), TL=Cons(HD=C(),

TL=Cons(HD=D(), TL=Nil()))))

Here in the recursion of zip one arguments is decreasing, but arguments are
switched. Thus only a even number of recursive calls produces a structural
decrease on l1 and l2. foetus does not recognize zip to be terminating
because not every (direct or indirect) recursive call makes the arguments
smaller on any structural lexical order.

Of course there are simple orders that fulfill the demanded criteria, like
< on |l1|+ |l2|. Another solution is to “copy” zip into zip’ and implement
mutual recursion as follows:

zip = [l1][l2]case l1 of

{ Nil z => l2

| Cons p1 => Cons(HD=p1.HD, TL=zip’ l2 p1.TL) },

zip’= [l1][l2]case l1 of

{ Nil z => l2

| Cons p1 => Cons(HD=p1.HD, TL=zip l2 p1.TL) };

zip (Cons(HD=A(), TL=Cons(HD=C(), TL=Nil())))

(Cons(HD=B(), TL=Cons(HD=D(), TL=Nil())));

foetus output:

< <: zip -> zip’ -> zip

zip passes termination check by lexical order 0

< <: zip’ -> zip -> zip’

zip’ passes termination check by lexical order 0

result: Cons(HD=A(), TL=Cons(HD=B(), TL=Cons(HD=C(), TL=Cons(HD=D(),

TL=Nil()))))

3.9 Tuple parameter

This example, an alternative version of add : (X : nat, Y : nat) → nat, shows
that foetus loses dependency information if you “pack” and “unpack” tuples.

3 EXAMPLES 13

add = [xy]case xy.X of

{ O z => xy.Y

| S x’ => S(add (X=x’, Y=xy.Y)) };

foetus output:

?: add -> add

add FAILS termination check

3.10 Transfinite addition of ordinal numbers

The type of ordinal numbers is

ord := Let ord = {O()|S(ord)|Lim(nat→ ord)} in ord

and addord : ord→ ord→ ord can be implemented as follows:

addord = [x][y]case x of

{ O o => y

| S x’ => S(addord x’ y)

| Lim f => Lim([z]addord (f z) y) };

foetus output:

< =: addord -> addord

addord passes termination check by lexical order 0

3.11 Fibonacci numbers

Iterative version fib : nat → nat of algorithm to calculate the fibonacci
numbers fib(0) = 1, fib(1) = 1, 2, 3, 5, 8, Only the first parameter is
important for termination, the second and the third parameter are “accumu-
lators”.

fib’ = [n][fn][fn’]case n of

{ O z => fn

| S n’ => fib’ n’ (add fn fn’) fn};

fib = [n]fib’ n (S(O())) (O());

foetus output:

< ? ?: fib’ -> fib’ -> fib’

< ? ?: fib’ -> fib’

fib’ passes termination check by lexical order 0

fib passes termination check

3 EXAMPLES 14

3.12 Non-terminating mutual recursion

The following three functions f, g, h : nat → nat → nat are an artificial
example for non-termination that has been designed to show to what extent
the call graph has to be completed to assure correct results of the termination
checker. Function h (here h(x, y) = 0 ∀x, y) could be any function that “looks
into” its arguments, e.g. add.

h = [x][y]case x of

{ O z => case y of

{ O z => O()

| S y’ => h x y’ }

| S x’ => h x’ y },

f = [x][y]case x of

{ O z => O()

| S x’ => case y of

{ O z => O()

| S y’ => h (g x’ y) (f (S(S(x))) y’) } },

g = [x][y]case x of

{ O z => O()

| S x’ => case y of

{ O z => O()

| S y’ => h (f x y) (g x’ (S(y))) } };

(* f (S(S(O()))) (S(S(O()))); *)

foetus output: Note that the combined call f → g → f still does not
prevent termination. But then call graph completion finds f → g → g → f
that destroys the lexical order 1 0 that was possible until then.

< <: h -> h -> h

< =: h -> h

= <: h -> h

h passes termination check by lexical order 0 1

< ?: f -> g -> g -> f

? ?: f -> f -> g -> g -> f

< =: f -> g -> f

? <: f -> f

f FAILS termination check

? <: g -> f -> f -> g

4 TERMINATION CHECKER OVERALL OUTLINE 15

? ?: g -> g -> f -> f -> g

< =: g -> f -> g

< ?: g -> g

g FAILS termination check

4 Termination Checker Overall Outline

4.1 Function call extraction

The task of foetus is to check whether functions terminate or not. Because
the foetus language is functional and no direct loop constructs exist, the
only means to form loops is recursion. Therefore out of the program text all
function calls have to be extracted to find direct or indirect recursive calls
that may cause termination problems.

The heart of foetus is a analyzer that runs through the syntax tree of the
given foetus program and looks for applications. Consecutive applications are
gathered and formed in to a function call, e.g. in example 3.1, function add.
There the two applications ((add x’) y) form the call add(x′, y). As you see
in this example “add” is always terminating because in each recursive call the
first argument x is decreased. foetus stores with each call information about
how the arguments of the call (x′, y in the example) relate to the parameters
of the calling function (here: x, y), the so-called depedencies (here: x′ < x,
y = y). We distinguish three kinds of relations: < (less), = (equal) and ?
(unknown, this includes ‘greater’).

The abilities of foetus to recognise dependencies are yet very limited. So
far only three cases are considered:

1. Constructor elimination.
Be x, y variables and C a constructor, and x = C(y). It follows y < x.
This is applied in case constructs (see example above).

2. Projection.
Be x, y variables, L a label, ρ a relation in {<,=} and y ρ x. Here
it follows y.L ρ x, i.d. a component is considered as big as the entire
tuple.

3. Application.
Be x, y variables, a a vector of terms (arguments of y), ρ a relation in
{<,=} and y ρ x. It follows (ya) ρ x.

The rule 3 may have a strange looking, but it can be applied in example 3.10
(addord). In the third case x = Lim(f) we have with rule 1 f < x and with
rule 3 (fz) < x, therefore addord is terminating.

5 FORMAL DESCRIPTION 16

4.2 Call graph

In the end the whole of extracted function calls form the call graph. It is a
multigraph; each vertex represents a function and each edge from vertex f to
vertex g a call of function g within the function of f . The edges are labeled
with the dependency information (see above) put in a call matrix. The call
matrix for the only one call add→ add in example 3.1 would be

x y
x′ < ?
y ? =

Note that each row represents one call argument and its relations to the
calling function parameters.

Now if a function f calls a function g and the latter calls another function
h, f indirectly calls h. The call matrix of this combined call f → h is the
product of the two matrices of g → h and f → g. We get the completed call
graph if we insert all combined calls (as new edges) into the original graph.

To find out whether a function f is terminating you have to collect all calls
from f to itself out of the completed call graph (this includes the direct and
the indirect calls). When a lexical order exists on the function parameters of
f so that every recursive call decreases the order of the parameters, we have
proven the termination of f. This order we call termination order.

We could call the algorithms of call graph completion and finding a lexical
order the “brain” of foetus; it is described more precisely and formally in the
next section.

5 Formal Description

5.1 Call Matrix

Be R = {<,=, ?} set of the relations “less than”, “equal to” and “relation
unknown”. In the context of “f(x, y) calls g(a, b)” a < y means “we know
that (call) argument a is less than (input) parameter y”, a = y means “a is
(at least) equal to y (if not less than)” and a ? y means “we do not know the
relation between a and y”.

With the two operations + and · defined as in table 1 R forms a com-
mutative rig2 with 0-element ? and 1-element =. The operation + can be
understood as “combining parallel information about a relation”, e.g. if we

2On the WWW I found the English term “rig” for what Germans call a “Halb-
ring”. This is probably a play of words: Compared to a “ring” a “rig” misses
an “n” as well as inverse elements regarding addition. I cite Ross Moore (see

5 FORMAL DESCRIPTION 17

have a ? y and a < y we have a (?+ <) y and that simplifies to a < y.
The operation · however is “serial combination”, e.g. a < y and y = z can
be combined into a (< · =) z, simplified: a < z. ? is neutral regarding +
because it gives you no new information, whereas < is dominant because it
is the strongest information. Regarding · the relation = is neutral and ? is
dominant because it “destroys” all information. Check the table to see which
relation overrides which.

+ < = ?
< < < <
= < = =
? < = ?

· < = ?
< < < ?
= < = ?
? ? ? ?

Table 1: Operations on R

Now we can define multiplication on matrices over R as usual:

· : Rn×m ×Rm×l → Rn×l

((aij), (bij)) 7→ (cij) =

(
m∑
k=1

aikbkj

)
Why is this a reasonable definition? Assume you have three sets of variables
{x1, . . . , xn}, {y1, . . . , ym} and {z1, . . . , zl}, a matrix A = (aij) εR

n×m reflect-
ing the relations between the xis and the yis (i.d. aij = ρ ⇐⇒ xi ρ yj) and
a matrix B εRm×l reflecting the relations between the yis and the zis. Then
the matrix product C = AB reflects the relations between the xis and the
zis. Because

cij = ai1 · b1j + ai2 · b2j + . . .+ aim · bmj,
we have e.g. xi < zj if we know it by intermediate variable y1 (ai1 ·b1j = ‘< ′)
or by intermediate variable y2 or . . . (to be continued).

http://www.mpce.mq.edu.au/∼ross/maths/Quantum/Sect1.html#206):

A rig is a set R enriched with two monoid structures, a commutative one
written additively and the other written multiplicatively, such that the fol-
lowing equations hold:

a0 = 0 = 0a

a(b+ c) = ab+ ac, (a+ b)c = ac+ ab

The natural numbers N provide an example of a rig.
A ring is a rig for which the additive monoid is a group. The integers Z
provide an example.
A rig is commutative when the multiplicative monoid is commutative.

5 FORMAL DESCRIPTION 18

Definition. A call matrix is a matrix over R with no more than one element
different from ? per row.

CM(n,m) := {(aij) εRn×m : ∀i∀j∀k 6= j(aij = ? ∨ aik = ?)}

Remark. The reason we define call matrices this way is these are the only
ones foetus produces by function call extraction (see section 4.1). Because
foetus recognizes only the three described cases of dependecies, a call argu-
ment can only depend of one function parameter. But multiple dependecies
are imaginable, like in

f(x,y) = if (x=0) then 0 else let a=min(x,y)-1 in f(a,x)

Here the second call argument a is less than both x and y. The next proposi-
tion assures that all matrices foetus will have do deal with are call matrices.

Proposition. Matrix multiplication on matrices induces a multiplication
on call matrices

· : CM(n,m)× CM(m, l)→ CM(n, l)

This operation is well defined.

Proof. BeA = (aij) εCM(n,m), B = (bij) εCM(m, l), AB = C = (cij) εR
n×l

and k(i) the index of the element of the ith row of A that is different to ?
(or 1, if no such element exists). The we have with the rules in rig R

cij =
m∑
k=1

aikbkj = ai,k(i)bk(i),j

Now consider the ith row of C:

ci = (cij)1≤j≤l = (ai,k(i)bk(i),j)1≤j≤l

Because at most one bk(i),j is unequal to ?, at most one element of ci is
unequal to ?. Therefore C εCM(n, l).

5.2 Call Graph

For each i εN we assume a set F (i) = {f (i), g(i), h(i), ...} of identifiers for
functions of arity i, F =

⊎
i εN F

(i).

5 FORMAL DESCRIPTION 19

Definition. We form the set of calls as follows

C = {(f (n), g(m), A) : f (n) ε F (n), g(m) ε F (m), A εCM(m,n)}

On calls we define the partial operation combination of calls

◦ : C × C → C(
(g(m), h(l), B), (f (n), g(m), A)

)
7→ (f (n), h(l), BA)

Meaning: If g calls h with call matrix B and f calls g with call matrix A,
then f indirectly calls h with call matrix BA. ◦ cannot be applied to calls
that have no “common function” like g, therefore it is partial. ◦ can be
expanded to sets of calls

◦ : P(C)× P(C)→ P(C)

(C,C ′) 7→ {c ◦C c′ : c ε C, c′ ε C ′, (c, c′) εDom(◦C)}

Here we combine each call in C with each call in Ĉ to which ◦C is applicable
and form a set of the combined calls. ◦P(C) is a total function.

Definition. A call graph is a graph (V,E) with vertices V = F and edges
E ⊂finit C. A call graph is complete if

E ◦ E ⊆ E

Definition. The completion of a call graph (V,E) is a call graph (V,E ′)
such that

(1) (V,E ′) is complete,

(2) E ⊆ E ′ and

(3) for all E ′′ satisfying (1) and (2) we have E ′ ⊆ E ′′.

Proposition. The completion of a call graph (V,E) is the call graph (V,E ′)
such that

c εE ′ ⇐⇒ ∃n > 0, c1, . . . , cn εE : c1 ◦ . . . ◦ cn = c

5 FORMAL DESCRIPTION 20

Proof.

(1) Be c εE ′ ◦ E ′. Then there are d, e εE ′ with c = d ◦ e. Because (V,E ′)
is complete, we have

d = d1 ◦ . . . ◦ dn d1, . . . , dn εE

e = e1 ◦ . . . ◦ em e1, . . . , em εE

Thus c = d1 ◦ . . . ◦ dn ◦ e1 ◦ . . . ◦ em εE ′.

(2) E ⊆ E ′ is trivial with n = 1.

(3) Be (V,E ′′) complete and E ⊆ E ′′. This gives us E◦E ⊆ E ′′ from which
we gain by induction

E ◦ . . . ◦ E︸ ︷︷ ︸
n−times

=: En ⊆ E ′′ for all n.

Now be c εE ′. That implies c = c1 ◦ . . . ◦ cn (ci εE) for a suitable n.
Hence c εEn ⊆ E ′′. q · e · d

Proposition. (Completion algorithm) Be (V,E) a call graph, (V,E ′)
its completion and (En)n εN a sequence of sets of calls defined as follows:

E0 = E

En+1 = En ∪ (En ◦ E)

Then there is a n εN so that

E ′ = En = En+1 = En+2 = . . .

(Obviously the En grow monotonously.)

Proof. First we show by induction that En ⊆ E ′ for all n εN: It is obvious
that E0 ⊆ E ′. Now be En ⊆ E ′ and c εEn+1 \En. Then c εEn ◦E, therefore
c = d1 ◦ . . . ◦ dn ◦ e, d1, . . . , dn, e ε E. It follows c εE ′, En+1 ⊆ E ′.

Second: Because we have a finit set of starting edges E and therefore a
finit set of reachable vertices and also a finit set of possible edges between two
vertices (limited by the number of different call matrices of fixed dimensions)
the Eis cannot grow endlessly. Thus an n εN exists with En = En+1.

Third: We show that E ′ ⊆ En for that particular n. Be c εE ′. Then
there exists an m such that c = d1 ◦ . . . ◦ dm, therefore c εEm. Now if m ≤ n
then Em ⊆ En, otherwise m > n and hence Em = En, in both cases c εEn.
q · e · d

5 FORMAL DESCRIPTION 21

5.3 Lexical Order

Definition. Be (V,E) a complete call graph and f (i) a function of arity i.
We call

Ef (i) := {∆(C) : (f (i), f (i), C) εE} ⊂ Ri

the recursion behaviour of function f (i). (∆ takes the diagonal of square
matrices).

Each row of this set represents one possible recursive call of f (i) and how
the orders of all parameters are altered in this call. The diagonals of the call
matrices are taken because we want to know only how a parameter relates
to its old value in the last call to f (i). Ef (i) of course is a finite subset of Ri.

In the following we identify lexical orders on parameters with permuta-
tions π ε Sn of the arguments. Often not all of the parameters are relevant
for termination; these are not listed in the lexical order and can appear in
the permutation in any sequence.

In example 3.11 (fib’) only the argument 0 has to be considered to prove
termination, the order of argument 1 and 2 are irrelevant and therefore both
permutations

π1 =

(
0 1 2
0 1 2

)
and

π2 =

(
0 1 2
0 2 1

)
are valid continuations of the lexical order “0”.

Note: In the following we abbreviate the notation of permutations to π1 =
[012] and π2 = [021].

Definition. (1) Be B the recursion behaviour of function f (n). We call
the permutation π ε Sn a termination order for f (n) if

∀r εB∃1 ≤ k ≤ n : rπ(k) = ‘< ′ ∧ (∀1 ≤ i ≤ k : rπ(i) = ‘= ′)

This definition is a very wide one. In most cases you will look for more
special termination orders:

Definition. (2, inductive) Be B the recursion behaviour of a given func-
tion. We call the permutation π ε Sn a termination order on B if |B| = 0

6 IMPLEMENTATION 22

or

∃r εB : rπ(0) =<

∧ 6 ∃r εB : rπ(0) = ?

∧π′0 ε Sn−1 termination order on B′ := {r′π(0) : rπ(0) 6=<} ⊂ Rn−1

whereas π′i = [k0 . . . ki−1ki+1 . . . kn−1] ε Sn−1 given π = [k0 . . . kn−1] ε Sn and
r′i = (k0, . . . , ki−1, ki+1, . . . , kn−1) εRn−1 given r = (k0, . . . , kn−1) εRn.

The algorithm implemented in foetus searches termination orders like in
definition (2); it is a one-to-one transfer of this definition. Every termination
order matching definition (2) also matches definition (1) and it can easily be
shown that if there is a termination order of type (1) there also exists on of
type (2).

Example 5.1 Be E = {(=,<, ?), (=,=,<), (=,<,=)} the given recur-
sion behaviour. Then π1 = [012] is a type (1) termination order on E and
π2 = [120] is of both types.

6 Implementation

foetus has been implemented in SML 97. We have used the new Standard
ML Basis Library to ensure a safe and possibly optimized handling of stan-
dard data structures like lists etc. The parser for the foetus terms has been
created with ML-Lex and ML-Yacc. The ML implementation currently used
is Standard ML of New Jersey, Version 109.32.

foetus.lex foetus language token specification for ml-lex
foetus.grm foetus language grammar for ml-yacc
aux.sml auxiliary functions
closure.sml terms and environment
foetus.sml values, evaluation function hnf, printing
matrix.sml polymorphic matrices with necessary operations
simpledeps.sml simple implementation of dependecies
analyse.sml static analysis of foetus code
check.sml termination check via call graph
top.sml top level environment
load.sml loader and foetus parser

Table 2: foetus source files

7 CONCLUSION 23

7 Conclusion

We have seen that foetus and its “brain”, the call graph completion and
finding a lexical order on the function arguments, contributes to automated
termination proofs. Of course, in its current state it is no more than a toy
to gather experience on his subject. Some improvements have to be done:
foetus should be able to recognize more kinds of dependencies (see section
4.1).

• Let assignments. The use of let-constructs to save values within func-
tions is discouraged because foetus stores no relations concerning them;
it performs no symbolic evaluation during analyzation. For example:

case list of

{Cons pair => let

hd = pair.HD,

tl = pair.TL in ...

foetus does not know that hd < list and that tl < list. At least
such simple assignments (for code shortening) should be handled.

• Tuple handling. foetus should trace the dependencies not only of the
whole tuples but also of their components. At the moment you can-
not define functions with one tuple as parameter instead of separate
parameters and still expect a termination proof (see example 3.9).

• Function results. The reason that foetus cannot prove termination of
div (see example 3.3) is that it does not know x 6= 0 → (y − x =
0 ∨ y − x < y). But this could be shown for the sub function by
induction and result in a dependency foetus could use [BG96].

Furthermore the call graph completion algorithm could be adopted to prove
termination of parameter permuting functions like zip (see example 3.8).

If foetus has “grown older” in the described manner it could be “born
into” one of the “adult” program verfication systems or theorem provers like
ALF, Isabelle, LEGO or MuTTI ;-).

References

[BG96] Jürgen Brauburger and Jürgen Giesl. Termination analysis for
partial functions. In Proceedings of the Third International Static
Analysis Symposium (SAS’96), Aachen, Germany, Lecture Notes
in Computer Science 1145, Springer-Verlag, 1996.

REFERENCES 24

[Gie97] Jürgen Giesl. Termination of nested and mutually recursive algo-
rithms. Journal of Automated Reasoning 19: 1–29, 1997.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Program-
ming in Martin Löf ’s Type Theory: An Introduction. Clarendon
Press, Oxford, 1990.

[Pau91] Lawrence C. Paulson. ML for the Working Programmer. Cam-
bridge University Press, 1991.

[Sli96] Konrad Slind. Function definition in higher order logic. In Pro-
ceedings of TPHOLs 96 (LNCS 1125), 1996.

[Sli97a] Konrad Slind. Derivation and use of induction schemes in higher-
order logic. In Proceedings of TPHOLs97 (LNCS 1275), 1997.

[TTu97b] Alastair Telford and David Turner. Ensuring Streams Flow.
In Michael Johnson, editor, Algebraic Methodology and Software
Technology, 6th International Conference, AMAST ’97, Sydney
Australia, December 1997, volume 1349 of Lecture Notes in Com-
puter Science, pages 509–523. AMAST, Springer-Verlag, Decem-
ber 1997.

