
Generalized Iteration and Coiteration for
Higher-Order Nested Datatypes

Andreas Abel1?, Ralph Matthes2 and Tarmo Uustalu3??

1 Department of Computer Science, University of Munich
abel@informatik.uni-muenchen.de
2 Preuves, Programmes et Systèmes,

CNRS, Université Paris VII (on leave from University of Munich)
matthes@informatik.uni-muenchen.de

3 Inst. of Cybernetics, Tallinn Technical University
tarmo@cs.ioc.ee

Abstract. We solve the problem of extending Bird and Paterson’s gen-
eralized folds for nested datatypes and its dual to inductive and coinduc-
tive constructors of arbitrarily high ranks by appropriately generalizing
Mendler-style (co)iteration. Characteristically to Mendler-style schemes
of disciplined (co)recursion, the schemes we propose do not rest on no-
tions like positivity or monotonicity of a constructor and facilitate pro-
gramming in a natural and elegant style close to programming with the
customary letrec construct, where the typings of the schemes, how-
ever, guarantee termination. For rank 2, a smoothened version of Bird
and Paterson’s generalized folds and its dual are achieved; for rank 1, the
schemes instantiate to Mendler’s original (re)formulation of iteration and
coiteration. Several examples demonstrate the power of the approach.
Strong normalization of our proposed extension of system Fω of higher-
order parametric polymorphism is proven by a reduction-preserving em-
bedding into pure Fω.

1 Introduction

Within the paradigm of generic programming, Bird and Paterson [8] with col-
leagues [11, 15] have studied the problem of identifying workable schemes for
defining functions for nested, non-uniform or heterogeneous datatypes, i.e., in-
ductive and coinductive constructors of rank 2 (type transformers), and put forth
generalized folds as a scheme for defining functions like substitution for the de
Bruijn notation of lambda terms in a natural fashion.

In [2], two of the authors of the present article showed that, making good use
of right notions of containment and monotonicity of constructors, the schemes of
? The first author gratefully acknowledges the support by the PhD Programme Logic

in Computer Science (GKLI) of the Deutsche Forschungs-Gemeinschaft.
?? The third author is partially supported by the Estonian Science Foundation (ETF)

under grant No. 4155. He is also grateful to the GKLI for two invitations to Munich;
the cooperation started during these visits.



iteration and coiteration are extensible to monotone (co)inductive constructors
of any finite kind. In the present article, we similarly extend the more liberal
generalized folds to all finite kinds. We accomplish this thanks to two ideas: a
simple, but powerful generalization of the notion of constructor containment, and
reformulation of the schemes in the style originated by Mendler [18]. The result
is a concise extension of system Fω of higher-order parametric polymorphism
with (co)inductive constructors of any finite kind, equipped with Mendler-style
generalized (co)iteration. Switching to Mendler style was not intentional, but in
the end turned out rewarding. The reasons are the following.

Firstly, any syntactic positivity requirement can be avoided in the formation
rules of (co)inductive types. This is beneficial as positivity and map terms as-
sociating to positive constructors would have to be defined by induction outside
the system and parametrically polymorphic quantification over all positive con-
structors is impossible. Moreover, for higher kinds, there is no obvious canonical
definition of positivity, although attempts of definition exist [14]. Replacing pos-
itivity with monotonicity [17, 2] gives an improvement, but formulations of the
systems and especially programming remain clumsy.

Secondly, Mendler style facilitates a programming style very close to pro-
gramming with general recursion (i.e., the letrec construct). The computation
rules for Mendler-style disciplined (co)recursion schemes are nearly identical to
the rule of letrec, the restrictive typings however ensure that all computations
terminate.

Thirdly, Mendler-style disciplined (co)recursion schemes tend to be amenable
for generalizations whereas conventional ones—making use of map terms or
monotonicity witnesses—typically get complicated. Examples are: primitive (co-)
recursion [18], course-of-value (co)iteration [21, 22], iteration over multiple induc-
tive types at the same time [22] and—as the examples of this article testify—
generalized iteration in the sense of generalized folds.

The article is organized as follows. In Sect. 2, we review our starting point
system Fω of higher-order parametric polymorphism. In Sect. 3, we present
our system MItω of (co)inductive constructors of finite ranks with generalized
Mendler-style iteration and describe some programming examples. The embed-
ding of MItω into Fω is presented in Sect. 4. We conclude with a summary and
discussion of related work.

Acknowledgements: Many thanks to Peter Hancock for his suggestion in Novem-
ber 2000 of the unusual notion F ≤κ1 G. It started this whole research project.

2 System Fω

Our development of higher-order datatypes takes place within a conservative
extension of Curry-style system Fω by binary sums and products, the unit type
and existential quantification. It contains three syntactic categories:

2



Kinds. Kinds are given by the following grammar and denoted by the letter κ.

κ ::= ∗ | κ→ κ′

rk(∗) := 0
rk(κ→ κ′) := max(rk(κ) + 1, rk(κ′))

The rank of kind κ is computed by rk(κ). We introduce abbreviations for some
special kinds: κ0 = ∗, types, κ1 = ∗ → ∗, unary type transformers and κ2 =
(∗ → ∗)→ ∗ → ∗ unary transformers of type transformers.

Note that each kind κ′ can be uniquely written as κ → ∗, where we write
κ for the sequence κ1, . . . , κn and set κ → κ := κ1 → . . . → κn → κ. Provided
another sequence κ′ = κ′1, . . . , κ

′
n of the same length, i.e., |κ′| = |κ|, set κ →

κ′ := κ1 → κ′1, . . . , κn → κ′n. This last abbreviation does not conflict with the
abbreviation κ→ κ due to the required |κ′| = |κ|.

Constructors. Uppercase latin letters denote constructors, given by the following
grammar. The metavariable X ranges over a denumerable set of constructor
variables.

A,B, F,G ::= X | λXκ.F | F G | ∀Fκ. A | ∃Fκ. A | A→ B
| A+B | A×B | 1

We identify β-equivalent constructors. A constructor F has kind κ if there is a
context Γ such that Γ ` F : κ. The kinding rules for constructors appear in
Appendix A.

The rank of a constructor is given by the rank of its kind. Preferably we will
use letters A,B,C,D for constructors of rank 0 (types) and F,G,H for construc-
tors of rank 1. If no kinds are given and cannot be guessed from the context, we
assume A,B,C,D : ∗ and F,G,H : κ1. Write Idκ := λXκ.X for the identity
constructor. If the kinding is clear from the context, we just write Id. Construc-
tor application associates to the left, i. e., F G1 . . . Gn = (. . . (F G1) . . .)Gn.
Setting G := G1, . . . , Gn, the constructor F G1 . . . Gn is also written as FG.
Sums and products can inductively be extended to all kinds: For F,G : κ1 → κ2

set F +G := λXκ1 .FX +GX and F ×G := λXκ1 .FX ×GX.

Objects (Curry terms). Lower case letters denote terms. In the grammar below,
the metavariable x ranges over a denumerable set of object variables.

r, s, t ::= x | λx.t | r s | inl t | inr t | case (r, x. s, y. t)
| 〈〉 | 〈t0, t1〉 | r.0 | r.1 | pack t | open (r, x. s)

Most term constructors are standard; “pack” introduces and “open” eliminates
existential quantification. The polymorphic identity λx.x : ∀A.A → A will be
denoted by id. We write f ◦ g for function composition λx. f (g x). Application
r s associates to the left, hence rs = (. . . (r s1) . . . sn) for s = s1, . . . , sn.

A term t has type A if Γ ` t : A for some context Γ . The relation −→ denotes
the usual one-step β-reduction which is confluent, type preserving and strongly
normalizing. The typing and reduction rules for terms are standard and can be
found in Appendix A.

In the following we will refer to the here defined system simply as “Fω”.

3



3 Generalized Mendler-Style Iteration and Coiteration

In this section, we recap and extend the notions of containment and monotonicity
presented in [2]. On top of these notions, we define the system MItω of generalized
(co)iteration for inductive and coinductive constructors of arbitrary ranks, which
we then specialize to rank 1 (types) and rank 2 (type transformers). To give a
feel for our system, we spell out some examples involving nested or non-uniform
datatypes [7].

3.1 Containment and Monotonicity of Constructors

Containment. The key to extending Mendler-style iteration and coiteration [19]
to finite kinds consists in identifying an appropriate containment relation for
constructors of the same kind κ. For types, the canonical choice is implication.
For an arbitrary kind κ = κ→ ∗, the easiest notion is “pointwise implication”:
The constructor ⊆κ: κ → κ → ∗ is defined by F ⊆κ G := ∀Xκ. FX → GX,
hence F ⊆κ G is a type which, as a proposition, states that F is contained in G.

A more refined notion ≤κ has been employed already in previous work [2]
which studies (co)iteration for monotone (co)inductive constructors of higher
kinds:

F ≤∗ G := F → G
F ≤κ→κ′ G := ∀Xκ∀Y κ. X ≤κ Y → F X ≤κ′ GY

Monotonicity. Using this notion of containment, we can define monotonicity
monκ : κ→ ∗ for kind κ directly by

monκ F := F ≤κ F.

The type monκ F , seen as a proposition, asserts that F is monotone. The same
type is used in polytypic programming for generic map functions [13, 3].

This notion does not enter the formulation of system MItω, but many appli-
cations. We omit the subscripted kind κ when clear from the context, as in the
definition of the following basic monotonicity witnesses. These are closed terms
whose type is some monF . They will pop up in examples later.

pair : mon(λAλB.A×B) := λfλgλp. 〈f (p.0), g (p.1)〉
fork : mon(λA.A×A) := λf. pair ff
either : mon(λAλB.A+B) := λfλgλx. case (x, a. inl (f a), b. inr (g b))
maybe : mon(λA.1 +A) := either id

Relativized refined containment. In order to be able to extend Mendler (co)itera-
tion to higher kinds so that generalized folds [8] are covered, we have to relativize
the notion ≤κ, κ = κ → ∗, to a vector H of constructors of kinds κ → κ. For
every kind κ = κ→ ∗, we define a constructor ≤(−)

κ : (κ→ κ)→ κ→ κ→ ∗ by
structural recursion on κ as follows:

F ≤∗ G := F → G

F ≤H,Hκ→κ′ G := ∀Xκ∀Y κ. X ≤κ H Y → F X ≤Hκ′ GY

4



Note that, in the second line, H has kind κ → κ. For H a vector of identity
constructors, the new notion ≤Hκ coincides with ≤κ. Similarly, we define another
constructor (−)≤κ: (κ → κ) → κ → κ → ∗, where the base case is the same as
before, hence no ambiguity with the notation arises.

F ≤∗ G := F → G
F H,H≤κ→κ′ G := ∀Xκ∀Y κ. H X ≤κ Y → F X H≤κ′ GY

As an example, for F,G,H : κ1, one has

F ≤Hκ1 G = ∀A∀B. (A→ HB)→ FA→ GB,
F H≤κ1 G = ∀A∀B. (HA→ B)→ FA→ GB.

3.2 System MItω

Now we are ready to define generalized Mendler-style iteration and coiteration,
which specialize to ordinary Mendler-style iteration and coiteration in the case
of (co)inductive types, and to a scheme encompassing generalized folds [8, 11,
15] and the dual scheme for coinductive constructors of rank 2. This gives an
extension of Mendler’s system [19] to finite kinds. The generalized scheme for
coinductive constructors is a new principle of programming with non-wellfounded
datatypes.

The system MItω is given as an extension of Fω by wellkinded constructor
constants µκ and νκ, welltyped term constants inκ,GItκ, outκ and GCoitκ for
every kind κ, and new term reduction rules.

Inductive constructors. Let κ = κ→ ∗ and κ′ = κ→ κ.

Formation. µκ : (κ→ κ)→ κ

Introduction. inκ : ∀Fκ→κ. F (µκF ) ⊆κ µκF

Elimination. GItκ : ∀Fκ→κ∀Hκ′∀Gκ. (∀Xκ. X ≤H G→ F X ≤H G)→ µκF ≤H G

Reduction. GItκ sf (inκ t) −→β s (GItκ s)f t

with |f | = |κ|.

Coinductive constructors. Let κ = κ→ ∗ and κ′ = κ→ κ.

Formation. νκ : (κ→ κ)→ κ

Elimination. outκ : ∀Fκ→κ. νκF ⊆κ F (νκF )
Introduction. GCoitκ : ∀Fκ→κ∀Hκ′∀Gκ. (∀Xκ. G H≤ X → G H≤ F X)→ G H≤ νκF
Reduction. outκ (GCoitκ sf t) −→β s (GCoitκ s)f t

with |f | = |κ|.

Notice that for every constructor F of kind κ → κ, µκF is a constructor of
kind κ. In Mendler’s original system [19] as well as its variant for the treatment
of primitive (co-)recursion [18], always positivity of F is required which is a very

5



natural concept in the case κ = ∗. However, for higher kinds, there does not
exist such a canonical syntactic restriction. Anyway, in [21] it has been observed
that, in order to prove strong normalization, there is no need for the restriction
to positive inductive types—an observation which has been the cornerstone for
the treatment of monotone inductive types in [16] and becomes even more useful
for our higher-order nested datatypes.

As for Fω, denote the term closure of the reduction rules by −→ and its
transitive closure by −→+.

3.3 Mendler-style (Co)Iteration for (Co)Inductive Types

In the case κ = ∗, the rules for µκ and νκ match with Mendler’s [19], except for
our removal of the positivity condition and our choice of Curry-style typing:

Inductive types.

Formation. µ∗ : (∗ → ∗)→ ∗
Introduction. in∗ : ∀F ∗→∗. F (µ∗F ) → µ∗F
Elimination. GIt∗ : ∀F ∗→∗∀Y ∗. (∀X∗. (X → Y )→ F X → Y )→ µ∗F → Y

Reduction. GIt∗ s (in∗ t) −→β s (GIt∗ s) t

Coinductive types.

Formation. ν∗ : (∗ → ∗)→ ∗
Elimination. out∗ : ∀F ∗→∗. ν∗F → F (ν∗F )
Introduction. GCoit∗ : ∀F ∗→∗∀Y ∗. (∀X∗. (Y → X)→ Y → F X)→ Y → ν∗F

Reduction. out∗ (GCoit∗ s t) −→β s (GCoit∗ s) t

Relation to general recursion. Typed functional programming languages like ML
and Haskell use recursive types instead of inductive and coinductive types and
general recursion instead of strongly normalizing restrictions such as Mendler
(co)iteration. General recursion can be introduced via a fixed-point combinator

fix : ∀A.(A→ A)→ A

fix s −→ s (fix s),

from which the more common let rec f = r in t can be defined as let f =
fix (λf. r) in t. A nice aspect of Mendler (co)iteration is that the reduction
behaviour GIt∗ and GCoit∗ is almost identical to the one of fix. The only difference
is that unfolding of GIt resp. GCoit is controlled by a guard “in” resp. “out”, which
gets removed in the reduction step. Guarded unfolding of recursion is essential
to strong normalization; similar setups can be found in other systems which
facilitate type-based termination, e.g. [10, 1, 5].

In some sense GIt and GCoit are just restricted versions of fix, i. e., each rank-1
MItω program translates (requiring minimal changes) into a Haskell program

6



with the same meaning. For higher kinds κ, GItκ and GCoitκ are not typable
in the Hindley-Milner type systems of Haskell 98 and ML, but their reduction
behaviour is still included in the one of fix. This suggests that one can code most
naturally with GIt and GCoit, which we will demonstrate in the next subsection
by some examples involving so-called nested or heterogeneous datatypes.

3.4 Programming with (Co)Inductive Constructors of Rank 2

Nested or non-uniform datatypes, i.e., inductive and coinductive constructors of
rank 2 (more exactly, inductive and coinductive constructors induced by con-
structors of rank 2), arise in our system as applications of µκ1 and νκ1 (recall
that κ1 = ∗ → ∗ and κ2 = κ1 → κ1). We obtain the following instances from
the general definitions.

Inductive constructors of rank 2.

Formation. µκ1 : κ2→ κ1

Introduction. inκ1 : ∀Fκ2∀A.F (µκ1F )A→ µκ1FA
Elimination. GItκ1 : ∀Fκ2∀Hκ1∀Gκ1. (∀Xκ1. X ≤H G→ F X ≤H G)→ µκ1F ≤H G

Reduction. GItκ1 s f (inκ1 t) −→β s (GItκ1 s) f t

Coinductive constructors of rank 2.

Formation. νκ1 : κ2→ κ1

Elimination. outκ1 : ∀Fκ2∀A. νκ1FA → F (νκ1F )A
Introduction. GCoitκ : ∀Fκ2∀Hκ1∀Gκ1. (∀Xκ1. G H≤ X → G H≤ F X)→ G H≤ νκ1F

Reduction. outκ1 (GCoitκ1 s f t) −→β s (GCoitκ1 s) f t

An example of a structure which can be modeled by a nested datatype is
lists of length 2n, which are called powerlists [6] or perfectly balanced, binary leaf
trees [11]. In our system, they are represented by the type transformer PList :=
µκ1 PListF where PListF : κ2 := λFλA.A+F (A×A). The data constructors are
given by

zero : ∀A.A→ PListA := λa. inκ1(inl a)
succ : ∀A. PList(A×A)→ PListA := λl. inκ1(inr l)

Assume a type Nat of natural numbers with addition “+” and multiplication
“×”, both written infix. Suppose we want to define a function sum : PList Nat→
Nat which sums up all elements of a powerlist by iteration over its structure. The
case sum (succ t) imposes some challenge, since sum cannot be directly applied
to t : PList(Nat×Nat). The solution is to define a more general function sum′ by
polymorphic recursion, which has the following behaviour.

sum′ : ∀A. (A→ Nat)→ PListA→ Nat

sum′ f (zero a) −→+ f a
sum′ f (succ l) −→+ sum′ (λp. f (p.0) + f (p.1)) l

7



Here, the iteration process builds up a continuation f which in the end sums up
the contents packed into a. From sum′, the summation function is obtained by
sum := sum′ id.

The system MItω has been designed so that functions like sum′ can be defined
directly via generalized iteration. In our case, use the instantiations F := PListF
and G := H := λ .Nat and define:

sum′ : µκ1F ≤H G

sum′ := GItκ1 λsum ′λfλx. case (x, a. f a,
l. sum ′ (λp. f (p.0) + f (p.1)) l)

The postulated reduction behaviour is verified by a simple calculation.
For another example consider the non-wellfounded version of perfectly bal-

anced, binary (node-labelled) trees. They are represented by the type trans-
former BTree := νκ1 BTreeF where BTreeF : κ2 := λFλA.A × F (A × A). The
data destructors are

root : ∀A. BTreeA→ A := λt. (outκ1t).0
subs : ∀A. BTreeA→ BTree(A×A) := λt. (outκ1t).1

We want to define the tree nats : BTree Nat filled with natural numbers starting
with 1 breadth-first left-first. A more general function nats′ : ∀A. (Nat→ A)→
(Nat→ BTreeA) with the reduction behaviour

root(nats′ f n) −→+ f n
subs(nats′ f n) −→+ nats′ (λm. 〈f (2×m), f (2×m+ 1)〉)n

is definable as a generalized coiteration by

nats′ := GCoitκ1 λnats ′λfλn. 〈f n, nats ′ (λm. 〈f (2×m), f (2×m+ 1)〉)n〉

choosing F := BTreeF, G := H := λ .Nat. To obtain nats, one sets nats :=
nats′ id 1.

Higher-order representation of de Bruijn terms. Bird & Paterson [9] and Al-
tenkirch & Reus [4] have shown that nameless untyped λ-terms can be repre-
sented by a heterogeneous datatype. As in the system GMIC of [2], this type is
obtained in MItω as the least fixed point of the monotone rank-2 constructor
LamF.

LamF : κ2 := λFλA.A+ (FA× FA+ F (1 +A))
lamf : mon LamF := λsλf. either f

(
either (fork (s f)) (s (maybe f))

)
The type LamA again represents all de Bruijn terms with free variables in A,
the constructors var, app and abs are simplified w. r. t. [2]. Again, we provide an
auxiliary function weak which lifts each variable in a term to provide space for

8



a fresh variable.
Lam : κ1 := µκ1 LamF
lam : mon Lam := GItκ1 λmapλfλx. inκ1 (lamf map f x)

var : ∀A.A→ LamA := λa. inκ1 (inl a)
app : ∀A. LamA→ LamA→ LamA := λt1λt2. inκ1 (inr (inl 〈t1, t2〉))
abs : ∀A. Lam(1 +A)→ LamA := λr. inκ1 (inr (inr r))

weak : ∀A. LamA→ Lam(1 +A) := lam (λa. inr a)

The most natural question on this representation of untyped λ-calculus is the
representability of substitution. With generalized iteration, it is possible to give
a direct definition of substitution (the bind or extension operation of the lambda
terms monad):

subst : ∀A∀B. (A→ LamB)→ LamA→ LamB ≡ Lam ≤Lam Lam
subst := GItκ1 λsubstλfλt. case (t,

a. f a, t′. case (t′,
p. app (subst f (p.0)) (subst f (p.1)),
r. abs (subst (lift f) r)),

lift : ∀A∀B. (A→ LamB)→ (1 +A)→ Lam (1 +B)
lift := λfλx. case (x, u. var (inl u), a. weak (f a))

Note that the formulation of generalized folds in [8] would yield the flattening
function (the join or multiplication operation of the monad)

flatten : ∀A. Lam(LamA)→ LamA.

We obtain flattening as special case of substitution by flatten := subst id.

Triangles. The dual of substitution for variables in a term or non-wellfounded
term is redecoration of a non-wellfounded or wellfounded decorated tree, cf. [23].
An interesting and intuitive example of decorated tree types arising from a rank-
2 coinductive constructor are triangles. Define

TriF := λEλFκ1λA. A× F (E ×A) : ?→ κ2
Tri := λE. νκ1(TriFE) : ?→ κ1

Then TriEA is the type of triangular tables of the sort

A E E E E . . .
A E E E . . .
A E E . . .
A E . . .
A . . .

decomposing into a scalar (an element of A) and a trapezium (an element of
TriE(E ×A)). The destructors and the monotonicity witness are

top := λt. (outκ1 t).0 : ∀E∀A.TriEA→ A
rest := λt. (outκ1 t).1 : ∀E∀A.TriEA→ TriE(E ×A)

tri := GCoitκ1 λmapλfλx. 〈f (top x), map (pair id f) (rest x)〉 : ∀E.monκ1(TriE)

9



Redecoration is an operation dual to substitution that takes a redecoration rule
f (an assignment of B-decorations to A-decorated trees) and an A-decorated tree
t, and returns a B-decorated tree t′. The return tree t′ is obtained from t by B-
redecorating every node based on the A-decorated subtree it roots, as instructed
by the redecoration rule. For streams, for instance redec : ∀A∀B. (StrA→ B)→
StrA→ StrB) takes f : StrA→ B and t : StrA and returns redec f t, which is
a B-stream obtained from t by replacing each of its elements by what f assigns
to the substream this element heads. Triangles are a generalization of streams
much in the same way as de Bruijn notations for lambda terms differ from terms
in the universal algebra style signature with one binary and one unary operator.
For triangles, redecoration works as follows: In the triangle

A E E E E . . .
A E E E . . .
A E E . . .
A E . . .
A . . .

the underlined A (as an example) gets replaced by the B assigned by the re-
decoration rule to the subtriangle cut out by the horizontal line; similarly, every
other A is replaced by a B. This is straightforward to define using GCoit:

lift : ∀E∀A∀B. (TriEA→ B)→ TriE(E ×A)→ E ×B
lift := λfλy. 〈(top y).0, f (tri (λp. p.1) y)〉
redec : ∀E∀A∀B. (TriEA→ B)→ TriEA→ TriEB
redec := GCoitκ1 λredecλfλx. 〈f x, redec (lift f) (restx)〉

4 Embedding into System Fω

In this section, we show how to embed MItω into Fω. The embedding establishes
strong normalization for MItω.

4.1 Kan extensions

For the sake of the embedding of MItω into its subsystem Fω, we use a syn-
tactic version of Kan extensions, see [20, chapter 10]. Compared with [2], Kan
extensions “along” are now defined for all kinds, not just for rank 1.

Right Kan extension along H. Let κ = κ → ∗ and κ′ = κ → κ and define for
G : κ, H : κ′ and X : κ the type (RanH G)X by iteration on |κ|:

Ran G := G
(RanH,H G)XX := ∀Y κ1. X ≤ HY → (RanH (GY ))X

10



Left Kan Extension along H. Let again κ = κ→ ∗ and κ′ = κ→ κ and define
for F : κ, H : κ′ and Y : κ the type (LanH F )Y by iteration on |κ|:

LanF := F
(LanH,H F )Y Y := ∃Xκ1. HX ≤ Y × (LanH (FX))Y

Proposition 1. Let F,G : κ→ ∗ and H : κ→ κ. The following pairs of types
are logically equivalent:

1. F ≤H G and ∀Xκ. FX → (RanH G)X.
2. F H≤ G and ∀Y κ. (LanH F )Y → GY .

Proof. Part 1 requires just a close look at the definition of ≤H . Part 2 is only
slightly more complicated. ut

4.2 Embedding

We can simply define the new constants of MItω in Fω. Let κ = κ → ∗ and
n := |κ|.

µκ : (κ→ κ)→ κ→ ∗
µκ := λFκ→κλXκ∀Hκ→κ∀Gκ. (∀Xκ. X ≤H G→ FX ≤H G)→ (RanH G)X

GItκ : ∀Fκ→κ∀Hκ→κ∀Gκ. (∀Xκ. X ≤H G→ F X ≤H G)→ µκF ≤H G
GItκ := λsλfλr. r sf

inκ : ∀Fκ→κ∀Xκ. F (µκF )X → µκF X
inκ := λtλsλf . s (GItκ s)f t

νκ : (κ→ κ)→ κ→ ∗
νκ := λFκ→κλY κ∃Hκ→κ∃Gκ. (∀Xκ. G H≤ X → G H≤ FX)× (LanH G)Y

GCoitκ : ∀Fκ→κ∀Hκ→κ∀Gκ. (∀Xκ. G H≤ X → G H≤ F X)→ G H≤ νκF
GCoitκ := λsλfλt. packn+1 〈s, pack〈f1, . . . , pack〈fn, t〉 . . .〉〉

outκ : ∀Fκ→κ∀Y κ. νκF Y → F (νκF )Y
outκ := λr. open (r, r1. open (r1, r2. . . . open (rn−1, rn. open (rn, ft0.

open (ft0.1, ft1. open (ft1.1, ft2. . . . open (ftn−1.1, ftn.
ft0.0 (GCoitκ ft0.0) ft1.0 . . . ftn.0 ftn.1) . . .)))) . . .))

Theorem 1 (Simulation). With the definitions above, the following reductions
take place in Fω:

GItκ sf (inκ t) −→+ s (GItκ s)f t
outκ (GCoitκ sf t) −→+ s (GCoitκ s)f t

Proof. By easy computation.

Corollary 1 (Strong Normalization). System MItω is strongly normalizing,
i. e., there is no infinite reduction sequence r0 −→ r1 −→ r2 −→ . . . for any
typable term r0.

11



Proof. Use strong normalization of Fω and simulation.

Since there are no critical pairs in MItω, reduction is locally confluent; by
strong normalization and Newman’s Lemma, it is confluent on well-typed terms.

5 Conclusion and Related Work

We have proposed MItω, a system of generalized (co)iteration for arbitrary ranks,
which turned out to be a definitional extension of Girard’s system Fω and hence
enjoys its good meta-theoretic properties, most notably strong normalization. It
combines the ideas of Mendler for (co)inductive types with the notion of gener-
alized folds for inductive constructors of rank 2 invented by Bird and Paterson.

MItω has been carefully set up to come with a perspicuous computational
behavior, which is very close to general recursion à la letrec—a distinctive fea-
ture of Mendler-style recursion schemes. For higher ranks, i.e., for the treatment
of fixed-points which are themselves type transformers, we described a modi-
fied containment relation (via the index H) in order to encompass generalized
folds, proposed by Bird and Paterson as a means of more elegant definitions of
functions operating on nested datatypes.

Therefore, MItω might serve as a basis of a total programming language for
nested datatypes. Alternatively, it can be seen as a discipline of programming in
existing languages like Haskell which gives termination guarantees for free.

Some related work. The generalized iteration scheme of the present article is a
reformulation working in all finite ranks of generalized folds in the liberal sense
of Sec. 4.1 and 6 of [8]. More exactly, it extends the “efficient” [11, 15] version of
that scheme. The efficient generalized folds differ from the original generalized
folds in the target type which is constructed with ≤H rather than ⊆H . Here,
⊆H is the appropriate relativized version of ⊆, defined by

F ⊆H G := ∀Xκ.F (HX)→ GX.

Future work. The realm of higher-rank datatypes seems hardly explored. We
certainly wish to try out our schemes on the examples of inductive constructors
of rank 3 from [12]. Further, we seek to extend MItω to cover other recursion
schemes on nested datatypes like a form of “generalized primitive recursion”.
This scheme, and others, would no longer have an operationally faithful embed-
ding into System Fω.

References

1. A. Abel. Termination checking with types. Technical Report 0201, Inst. für Infor-
matik, Ludwigs-Maximilians-Univ. München, 2002.

2. A. Abel and R. Matthes. (Co-)iteration for higher-order nested datatypes. To
appear in H. Geuvers, F. Wiedijk, eds., Post-Conf. Proc. of IST WG TYPES 2nd
Ann. Meeting, TYPES’02, Lect. Notes in Comput. Sci., Springer-Verlag.

12



3. T. Altenkirch and C. McBride. Generic programming within dependently typed
programming. To appear in J. Gibbons and J. Jeuring, Proc. of IFIP TC2 WC on
Generic Programming, WCGP 2002, Kluwer Acad. Publishers.

4. T. Altenkirch and B. Reus. Monadic presentations of lambda terms using general-
ized inductive types. In J. Flum and M. Rodŕıguez-Artalejo, eds., Proc. of 13th Int.
Wksh. on Computer Science Logic, CSL’99, vol. 1683 of Lect. Notes in Comput.
Sci., pp.53–468. Springer-Verlag, 1999.

5. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termi-
nation of recursive definitions. Math. Struct. in Comput. Sci., to appear.

6. R. Bird, J. Gibbons, and G. Jones. Program optimisation, naturally. In J. Davies,
B. Roscoe, J. Woodcock, eds., Millenial Perspectives in Computer Science. Pal-
grave, 2000.

7. R. Bird and L. Meertens. Nested datatypes. In J. Jeuring, ed., Proc. of 4th Int.
Conf. on Mathematics of Program Construction, MPC’98, vol. 1422 of Lect. Notes
in Comput. Sci., pp. 52–67. Springer-Verlag, 1998.

8. R. Bird and R. Paterson. Generalised folds for nested datatypes. Formal Aspects
of Comput., 11(2):200–222, 1999.

9. R. Bird and R. Paterson. De Bruijn notation as a nested datatype. J. of Funct.
Program., 9(1):77–91, 1999.

10. E. Giménez. Structural recursive definitions in type theory. In Proc. of 25th Int.
Coll. on Automata, Languages and Programming, ICALP’98, vol. 1443 of Lect.
Notes in Comput. Sci., pp. 397–408. Springer-Verlag, 1998.

11. R. Hinze. Efficient generalized folds. In J. Jeuring, ed., Proc. of 2nd Wksh. on
Generic Programming, WGP 2000, Tech. Report UU-CS-2000-19, Dept. of Com-
put. Sci., Utrecht Univ., pp. 1–16. 2000.

12. R. Hinze. Manufacturing datatypes. J. of Funct. Program., 11(5): 493–524, 2001.
13. R. Hinze. Polytypic values possess polykinded types. Sci. of Comput. Program.,

43(2–3):129–159, 2002.
14. C. B. Jay. Distinguishing data structures and functions: The constructor calculus

and functorial types. In S. Abramsky, ed., Proc. of 5th Int. Conf. on Typed Lambda
Calculi and Appl., TLCA’01, vol. 2044 of Lect. Notes in Comput. Sci., pp. 217–239.
Berlin, 2001.

15. C. Martin, J. Gibbons and I. Bayley. Disciplined, efficient, generalised folds for
nested datatypes. Submitted.

16. R. Matthes. Extensions of System F by Iteration and Primitive Recursion on
Monotone Inductive Types. PhD thesis, Ludwig-Maximilians-Univ. München, 1998.

17. R. Matthes. Monotone inductive and coinductive constructors of rank 2. In
L. Fribourg, ed., Proc. of 15th Int. Wksh. on Computer Science Logic, CSL 2001,
vol. 2142 of Lect. Notes in Comput. Sci., pp. 600–614. Springer-Verlag, 2001.

18. N. P. Mendler. Recursive types and type constraints in second-order lambda cal-
culus. In Proc. of 2nd Ann. IEEE Symp. on Logic in Computer Science, LICS’87,
pp. 30–36. IEEE CS Press, 1987.

19. N. P. Mendler. Inductive types and type constraints in the second-order lambda
calculus. Ann. of Pure and Appl. Logic, 51(1–2):159–172, 1991.

20. S. Mac Lane. Categories for the Working Mathematician, vol. 5 of Graduate Texts
in Mathematics, 2nd ed. Springer-Verlag, 1998.

21. T. Uustalu and V. Vene. A cube of proof systems for the intuitionistic predicate
µ-, ν-logic. In M. Haveraaen and O. Owe, eds., Selected Papers from the 8th Nordic
Wksh. on Programming Theory, NWPT ’96, Res. Rep. 248, Dept. of Informatics,
Univ. of Oslo, pp. 237–246, 1997.

13



22. T. Uustalu and V. Vene. Coding recursion à la Mendler (extended abstract). In
J. Jeuring, ed., Proc. of 2nd Wksh. on Generic Programming, WGP 2000, Tech.
Rep. UU-CS-2000-19, Dept. of Comput. Sci., Utrecht Univ., pp. 69–85. 2000.

23. T. Uustalu and V. Vene. The dual of substitution is redecoration. In K. Hammond
and S. Curtis, eds., Trends in Funct. Programming 3, pp. 99–110. Intellect, 2002.

A System Fω

In the following we present Curry-style system Fω enriched with binary sums and
products, unit type and existential quantification over constructors. Although we
choose a human-friendly notation of variables, we actually mean the nameless
version à la de Bruijn which identifies α-equivalent terms. (Capture-avoiding)
Substitution of an expression e for a variable x in expression f is denoted by
f [x := e].

Kinds are generated from the kind ∗ for types by the binary function kind
constructor →:

κ ::= ∗ | κ→ κ′

Constructors. (Denoted by uppercase letters.) Metavariable X ranges over an
infinite set of constructor variables.

A,B,C, F,G ::= X | λXκ.F | F G | ∀Fκ. A | ∃Fκ. A | A→ B
| A+B | A×B | 1

Equivalence on constructors. Equivalence F = F ′ for constructors F and F ′ is
given as the compatible closure of the following axiom.

(λX.F )G =β F [X := G]

We identify constructors up to equivalence, which is a decidable relation due to
normalization and confluence of simply-typed λ-calculus (where our constructors
are the terms and our kinds are the types of that calculus).

Objects (Terms). (Denoted by lowercase letters) The metavariable x ranges over
an infinite set of object variables.

r, s, t ::= x | λx.t | r s | inl t | inr t | case (r, x. s, y. t)
| 〈〉 | 〈t0, t1〉 | r.0 | r.1 | pack t | open (r, x. s)

Contexts. Variables in a context Γ are assumed to be distinct.

Γ ::= · | Γ,Xκ | Γ, x :A

Judgments. (Simultaneously defined)

Γ cxt Γ is a wellformed context
Γ ` F : κ F is a wellformed constructor of kind κ in context Γ
Γ ` t : A t is a wellformed term of type A in context Γ

14



Wellformed contexts. Γ cxt

· cxt

Γ cxt

Γ,Xκ cxt

Γ ` A : ∗

Γ, x :A cxt

Wellkinded constructors. Γ ` F : κ

Xκ ∈ Γ Γ cxt

Γ ` X : κ

Γ,Xκ ` F : κ′

Γ ` λXκ.F : κ→ κ′

Γ ` F : κ→ κ′ Γ ` G : κ

Γ ` F G : κ′

Γ,Xκ ` A : ∗

Γ ` ∀Xκ. A : ∗

Γ,Xκ ` A : ∗

Γ ` ∃Xκ. A : ∗

Γ ` A : ∗ Γ ` B : ∗

Γ ` A→ B : ∗
Γ ` A : ∗ Γ ` B : ∗

Γ ` A+B : ∗

Γ ` A : ∗ Γ ` B : ∗

Γ ` A×B : ∗
Γ cxt

Γ ` 1 : ∗

Welltyped terms. Γ ` t : A

(x :A) ∈ Γ Γ cxt

Γ ` x : A

Γ, x :A ` t : B

Γ ` λx.t : A→ B

Γ ` r : A→ B Γ ` s : A

Γ ` r s : B

Γ,Xκ ` t : A

Γ ` t : ∀Xκ.A

Γ ` t : ∀Xκ.A Γ ` F : κ

Γ ` t : A[X := F ]

Γ ` t : A[X := F ] Γ ` F : κ

Γ ` pack t : ∃Xκ.A

Γ ` r : ∃Xκ.A Γ,Xκ, x :A ` s : C

Γ ` open (r, x. s) : C

Γ cxt

Γ ` 〈〉 : 1

Γ ` t : A Γ ` B : ∗

Γ ` inl t : A+B

Γ ` t : B Γ ` A : ∗

Γ ` inr t : A+B

Γ ` r : A+B Γ, x :A ` s : C Γ, y :B ` t : C

Γ ` case (r, x. s, y. t) : C

Γ ` t0 : A0 Γ ` t1 : A1

Γ ` 〈t0, t1〉 : A0 ×A1

Γ ` r : A0 ×A1 i ∈ {0, 1}

Γ ` r.i : Ai

Reduction. The one-step reduction relation t −→ t′ between terms t and t′ is
defined as the closure of the following axioms under all term constructors.

(λx.t) s −→β t[x := s]
case (inl r, x. s, y. t) −→β s[x := r]
case (inr r, x. s, y. t) −→β t[y := r]
〈t0, t1〉.i −→β ti if i ∈ {0, 1}
open (pack t, x. s) −→β s[x := t]

We denote the transitive closure of −→ by −→+ and the reflexive-transitive
closure by −→∗.

The defined system is a conservative extension of system Fω. Reduction is
type-preserving, confluent and strongly normalizing.

15


