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Abstract. There has been recent progress in the selection problem, and
in median-finding in particular, after a lull of ten years. This paper re-
views some ancient and modern results on this problem, and suggests
possibilities for future research.

1 Introduction

The selection problem, determining the k't largest out of a set of n elements, is
a junior partner of the more fundamental sorting problem, but it has still been
studied extensively over several decades.

Our focus will be on performing selection using a minimal number of com-
parisons in the worst case. Let Vi(n) be the worst-case minimum number of
pairwise comparisons required to find the k't largest out of n distinct elements.
Of particular interest is finding the median, the [n/2]*" largest say. We denote
Viny21(n) by M(n).

The worst-case comparison complexity of sorting is nlog, n+O(n), and even
the coefficient of the linear term has been fairly closely estimated. However for
Vi(n) we do not yet have an asymptotic value, except when k& = o(n), (and
symmetrically, for £ — n = o(n)). For finding the median, we currently know
only a broad interval for the value of M(n).

In this survey, I shall review some of the classic results in the quest to de-
termine Vj(n) and M(n), report on some recent progress, and conjecture an
asymptotic value for M(n).

2 History

Credit for first raising the selection problem is often accorded to Charles Dodg-
son, who considered the proper allocation of the second and third prizes in tennis
tournaments. Steinhaus proposed the problem of finding Vz(n). The upper bound
of n + [log, n] — 2 was given by Schreier [22], but this was not shown to be the
exact value until the proof by Kislitsyn [15]. Hadian and Sobel [10] gave an upper
bound: Vi (n) < n —k+ (k — 1)[logy(n — k 4+ 2)]. This bound is asymptotically
optimal for fixed k. A good account of early work in this area can be found
n [16]. Successive improvements, for various ranges of k with respect to n, were
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Fig. 1. (a) SS:i; (b) and (c) both contain Sj.

made by Kirkpatrick [13, 14], Yap [25], Hyafil [11], Motoki [17], and Ramanan
and Hyafil [20].

The classic paper by Blum, Floyd, Pratt, Rivest and Tarjan [2] in 1973 was
the first to show that M(n) = O(n), and therefore that finding the median
is much easier than sorting. They gave an algorithm which requires at most
about 5.43n comparisons, and introduced a technique which has been a basis
of all subsequent improvements. In Section 3, I shall outline this technique, the
improvements to 3n by Schénhage, Paterson and Pippenger [21], and the very
recent further improvements by Dor and Zwick [5, 6, 7].

Blum et al. [2] were also the first to give a non-trivial lower bound for M (n),
and Vj(n) when k = £2(n). They showed that M(n) > 3n/2 — O(1) and, more
generally, that Vi (n) > n + min{k,n — k} — O(1), by using a simple adversary
argument. This lower bound was successively improved by several authors (see
[11, 13, 25, 18]), using more and more sophisticated adversaries and accounting
schemes, and the coefficient was raised closer to 2.

A breakthrough came in 1985, with an elegant lower bound of 2n — o(n) by
Bent and John [1]. It has taken a further ten years for this to be improved, by
Dor and Zwick (again!) [5, 8]. In Section 4, T will review the adversary argument
of Blum et al., and the use of a multitude of adversaries by Bent and John. I
will also describe the subtle improvement in [5, 8].

Notation

We shall use the natural Hasse diagrams to describe partial orders. In our figures,
the larger elements will be towards the top of the page. In the terminology of [21],
a partial order which is composed of a centre element ¢ together with u elements
larger than ¢ and v elements smaller than c is referred to as an S;/. The problem
of selecting the k" largest element corresponds to constructing some SS:,Ic from
a given set of n elements, i.e., determining some partial order which contains
S::,lc. (See Figure 1(a).) For example, the partial orders in Figure 1(b),(c) both
yield the median of seven elements.



Fig. 2. Median of medians

3 Upper bounds

The general algorithmic technique introduced by Blum et al. is to generate many
Sy’s, for suitable v, and then to find the median z of the set of centre elements of
the S7’s. The resulting partial order contains the partial order shown in Figure 2.
The ranking of the element z with respect to the whole set is determined next.
Suppose we are seeking the k" largest element. If the rank of z is k then we are
finished. If not, then suppose without loss of generality that the rank of z is less
than k. In this case, z and all the elements above z in the partial order (outlined
in dashed boxes in Figure 2) may be discarded. These constitute more than a
quarter of the elements. The algorithm proceeds with the appropriate selection
problem from the remaining set. If the algorithm requires only a linear number
of comparisons to discard a linear number of elements then a linear upper bound
is assured. Blum et al. found it convenient to use Ca,41’s, sorted chains of length
2v 4 1, as the Sy ’s in their algorithm and took » to be a small constant, seven.
Finding the median of the centre elements was done by using the algorithm
recursively. With some careful optimisation, they achieved an upper bound of
391n/72 ~ 5.43n.

Note that, in this algorithm, a set of elements which is discarded consists of
the top or bottom v + 1 elements from several Cy,41’s, and they leave behind
a residue of disconnected C,’s. Crucial to the performance of the algorithm is
how economically the Cg,41’s can be produced and how efficiently the returned
C)’s can be recycled into new Coy,41’s.

The balance of parameters used by Schonhage et al. [21] was very different.
We took v to be rather large, so that the number of S)’s at any stage was
O(n3/4). The centres of the S ’s could therefore be kept in sorted order, and the
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Fig. 4. (a) Hyperpair Hoi1010; (b) an S7 produced by pruning

main part of the partial order maintained during the algorithm had the form
shown in Figure 3.

The principal difference from the algorithm of Blum et al. was that whereas
they produced SY’s (actually Ca,41’s) in batches, we used a continuous produc-
tion line. Much of the efficiency of our S} factory arose from the nice properties
of hyperpairs. Hyperpairs are built up recursively from smaller hyperpairs us-
ing symmetric comparisons. An illustration of the hyperpair Hg11010 is given in
Figure 4(a). In (b) it is shown how an Hg11010 can be pruned to produce an S7.
Note also that the pieces pruned off are all in the form of smaller hyperpairs of
various sizes. These are retained in the factory for recycling.

When the top or bottom parts of hyperpairs together with the central element
are discarded during the algorithm, the remaining halves are returned to the
factory for recycling. Unfortunately these are not themselves hyperpairs, so they
are broken down to pairs and singletons, with a consequent loss in efficiency.



Dor and Zwick [5, 6, 7] introduce their green factories, which are able to
recycle efficiently more of the debris from discarded S ’s. Instead of just pairs
and singletons, they can recycle several larger partial order fragments. In [21],
we describe a process where pairs and singletons are “grafted” onto structures
to build S} ’s more economically. Dor and Zwick show how to graft with a vari-
ety of different components, including even some 16-tuples, and they generalise
hyperpairs to hyperproducts.

As a result of their many ingenious improvements, they achieve a median
algorithm which requires at most 2.9423n comparisons. They also extend these
techniques to the general selection problem to obtain improved bounds for Vi (n).

4 Lower bounds

Many lower bound proofs for combinatorial algorithms such as selection can be
usefully described in terms of an adversary, who “plays against” the algorithm
by providing answers to the comparisons performed, in such a way that a fairly
bad case is forced. The lower bound of n + min{k — 1,n — k} — 1 given by Blum
et al. [2] was proved in such a way.

Their adversary also provides some extra information to the algorithm from
time to time, which may even assist the algorithm, but is chiefly provided to
keep the state of the computation simple enough to deal with. As soon as any
element has been declared the larger in two comparisons, the adversary tells the
algorithm that this element is actually larger than the element being sought and
so there is no need to carry out any further comparisons involving this element.
Elements which are declared smaller in two comparisons are similarly eliminated.
The partial order on the remaining candidates for selection consists always of
only pairs and singletons. It is easy for the adversary to choose an outcome
for each comparison involving a pair so that one element is eliminated, two
comparisons are removed, and the simple form of the partial order is restored.

The adversary can continue with this “generous” strategy until either £ — 1
elements have been declared too large or n — k have been declared too small. At
this point, the problem has been reduced to finding the maximum or minimum,
respectively, of elements in the remaining r pairs or singletons. The adversary
now keeps quiet and r — 1 further comparisons are required. It can be seen that
at least 2min{k —1,n —k} +max{k —1,n—k} comparisons are required overall,
i.e., n + min{k — 1,n — k} — 1 comparisons.

A sequence of improvements on this lower bound [19, 13, 25, 18] took the
coefficient for medians from 3/2 up to about 1.837. The new proofs introduced
many new ideas and became more and more intricate, but were still based on a
similar type of adversary argument. The components of the partial order retained
at any time became larger and more varied: in [18] several hundred cases needed
to be verified. Elaborate accounting systems were employed, e.g., “safe-boxes”
and “joint accounts” in [25].

A different bounding method was introduced by Fussenegger and Gabow [9].
Instead of directly considering the depth of the decision tree of an algorithm,



they count the number of leaves. The power of the method comes from showing
that the decision tree has to contain many binary trees, each with a large number
of leaves. If the leaves of the different included trees are disjoint, or at least do
not overlap too much, then the decision tree must have many leaves and hence
large depth. Although they were able to raise the lower bounds for some ranges
of Vi (n) and for other similar problems, they did not improve the lower bound
in [2] for median-finding. A major improvement was made by Bent and John [1]
in 1985, using this “leaf-counting” argument.

Any algorithm requires j—1 comparisons to find the largest (or the smallest)
element from a set of size j. The corresponding decision tree will have at least
271 Jeaves. Also, any algorithm for selecting the k'" largest element 2 from a
set of size n will need at least n — 1 comparisons either involving z or between
pairs of elements which are both above or both below z. A comparison between
an element above ¢ and an element below z will be called a straddle. Note that
straddles do not contribute to the Hasse diagram of the final partial order for
selection. So, to prove a lower bound of n + m, it would suffice to show that
more than m straddles are sometimes made.

Bent and John use a multitude of adversaries in their lower bound proof for
Vi (n). Each adversary has its own special subset of elements A, where |4| = k.
Up to a point, each adversary will answer comparison queries by using the rule
that each element of A is above each element of the complement A4, i.e., 4 > A.
For other queries, of the form A4 : A and A : A, both answers are valid and we
regard the adversary as laying out a tree which branches at each such query.
Unfortunately such simple adversaries are not strong enough to force a good
bound — they need to be slightly malicious! When the algorithm is getting close
to its goal of determining the minimum element of A, to return as the k! largest,
the adversary is allowed to shift the goal-posts.

I will outline the proof of a lower bound which depends on some suitable
parameter q. The full strategy for the adversary with special set A is described
below. At any stage let MinA be the set of minimal elements in the partial order
restricted to A, and let MaxA be the set of maximal elements in the partial
order on A.

Phase 1. Answer comparison queries according to the partial order A > A. For
comparisons of the type A : A or A : A, follow both answers, creating a branching
tree. Continue Phase 1 until [MinA| = ¢. Now if [MaxA| < 2q then continue with
Phase 2a, otherwise use Phase 2b.

Phase 2a. Continue as in Phase 1 until the end, when |[MinA4| = 1.

Phase 2b. Choose an element y € MinA such that the set B(y) of elements in
MaxA which have been compared with y is as small as possible. Let A’ = A\ {y},
and answer the remaining comparison queries using the partial order A’ > A’.
Phase 1 requires k—|MinA|+n—k—|Max A| branching comparisons. Phase 2a
requires a further |[MinA|— 1 of these, giving a total of n — [MaxA| —1 > n —2q.
For Phase 2b, the algorithm must find the maximum of the set A’ in order
to satisfy the adversary’s strategy. At the beginning of Phase 2b, the maximal



elements of A’ are yU(MaxA\ B(y)), and so Phase 2b requires at least |[MaxA|—
| B(y)| comparisons, giving a total of at least n — ¢ — | B(y)| comparisons. But if
|B(y)| > ¢ then, by the choice of y, every element of MinA4 has been compared
with at least ¢ + 1 elements of MaxA by the end of Phase 1. If y were to be
chosen as the k*" largest element then the above comparisons already account
for at least (¢ — 1)(¢ + 1) straddles.

In summary, either there is a run of the algorithm producing ¢ — 1 straddles,
and so at least n+¢2 — 2 comparisons, or else every adversary generates a binary
tree with at least 27724 leaves. Any leaf corresponds to a choice of a set A’ for
the k — 1 largest elements (together with a choice for the k'! largest) and can be
reached only by an adversary whose set A contains A’, i.e., at most n — k+ 1 of
them. The number of different adversaries is (Z), so the decision tree must have
at least 2"~27(7) /(n — k + 1) leaves. The choice ¢ = \/n gives the bound

Vi(n) > n + log (”) —O(Vn).

k
In particular, Bent and John [1] prove M (n) > 2n — O(y/n).

Dor and Zwick [5, 8] use a delicate argument to increase these lower bounds
very slightly. They prove that M(n) > (2 + €)n + o(n) for some € > 2749, Their
proof follows the “leaf-counting” style of [9, 1]. Although they are not able to
prove that the decision tree contains more leaves than did Bent and John [1], they
can show that the tree is not balanced, so that some paths are longer than others.
There is now a single powerful adversary which summarises the combined effect
of the multitude of simple adversaries introduced above. Dor and Zwick look at
the earlier stages of an algorithm when there are still many singletons remaining,
and focus on the first and second comparisons in which each element is involved.
They show by a careful analysis that in many comparisons the adversary can
choose an outcome leading to a significantly larger number of leaves than the
alternative. At times this adversary discards some of the sets A which it has
been monitoring, and at other times it chooses an outcome leading to the smaller
number of leaves. Overall however it comes out a little bit ahead using its subtle
strategy. This gives the payoff of e.

5 Future progress

For ten years, the upper and lower bound coefficients for M(n) were sitting
sedately at integers, with neither showing much inclination to approach the
other. Now, thanks to Dor and Zwick [5, 6, 8], both coefficients have been given
a nudge. Where are they heading? Which of them is nearer to the true value?
Will the coefficient be semi-natural, such as 2.5, or rather unnatural, such as
log, /527 The intricacy of the arguments in [5, 6, 8] makes it appear that there is
no easy way to take large further steps without some substantially new approach.
Yao’s Hypothesis

In [23], Frances Yao considered the problem of finding a (u, v)-mediocre element,



(a) (b)

Fig. 5. Counter-example to generalised Yao’s Hypothesis

from m elements, i.e., an element which is smaller than at least u elements and
larger than at least v elements. This corresponds to constructing an Sy from m
elements, where m > u 4+ v + 1.

She defined S(u,v,m) to be the worst-case minimum number of compar-
isons needed to find a (u,v)-mediocre element from a set of size m. Obvi-
ously, S(u,v,m) > S(u,v,m’) for u + v+ 1 < m < m'. We have Vi(n) =
Sk — 1,n — k,n). Let V*(n) = limy_o S(k — 1,n — k, m), i.e., the cost of
producing an SS:,Ic from arbitrarily many elements.

Yao observed that Vi(n) = Vi*(n) for all n. We define as Yao’s Hypothesis
the equation:

Vi.(n) = Vi¥(n) for all £, n. (YH)

Yao proved in [23] that YH implies that M (n) < 3n + o(n). An analogous proof
in [21] showed that YH implies M (n) < 2.5n 4+ o(n).

To date, no counter-example to Yao’s Hypothesis is known. Since the con-
sequences of YH are so rewarding, it would be of great interest to resolve its
truth.

The generalisation of YH from S;'’s to arbitrary partial orders is known
not to hold. The partial order (a) can be shown by an exhaustive analysis to
require 8 comparisons when only 7 elements are present, whereas that shown
in (b) requires only the obvious 7 comparisons.

Information theory methods

Information theoretic technigues provide a powerful tool to prove lower bounds
for sorting and selection problems. In a typical application, a partial order = is
assigned the weight w(m), the number of its linear extensions, i.e., the number of
total orders consistent with #. A further comparison a : b yields one of the two
extensions (7U[a > b]) or (wU[a < b]). Since w(wU[a > b])+w(7U[a < b]) = w(w),
simple arguments show that the worst-case number of comparisons needed to
sort a partial order = is at least log, w(m). Unfortunately, this technique is too
weak for deriving useful bounds for selection. Since an S} has weight u!v!, the
information theoretic lower bound for V;(n) is only logQ((Z)k), which is at most
n + O(logn).

For a variation on this technique which is more suitable for selection prob-
lems, we consider “bipartitions”. A bipartition of the partial order m on the set
X is a mapping ¢ of the elements of X into {0, 1} which is compatible with =,
i.e, for all z,y € X, if 2 <, y then g(z) < ¢(y). Thus a bipartition of 7 is a



partition of X into two sets g=1(1), the up-set, and g=1(0), the down-set, such
that no element of the up-set is below an element of the down-set in .

6 Partition measures

Let P(7) be the set of bipartitions of m, and p(w) = |P(7)]. We will use the
notation P(w,a/b) for the set of bipartitions ¢ of 7= such that g(a) = 1 and
g(b) = 0, and similarly the notations P(w,b/a), P(w, ab/), and P(=,/ab) for
the other three cases where (g(a), g(b)) = (0,1),(1,1),(0,0), respectively. The
cardinalities of these sets are represented analogously using “p” in place of “P”.
Note that p(7) = p(7,a/b)+ p(w,b/a)+ p(w,ab/) + p(w, [ab).

The effect of a comparison is not now to give a splitting of P(x) into two
disjoint sets, as it was for linear extensions. Instead, we find

P(mUla > b)) = P(w,a/b)U P(w,ab/)U P(m, [ab),
and

P(mUla < b)) = P(m,b/a)U P(x,ab/)U P(m, [ab).

This has the advantage for lower bounding that we can hope that p decreases
more slowly per comparison than did w. Indeed the following theorem holds.

Theorem 1. For any partial order w, and elements a,b € X,
3
max{p(mUa > b)), p(rUa < b]) } > 2 p(T).

Proof. For convenience, we denote p(«), p(m, a/b), p(w,b/a), p(w,ab/), p(w, /ab)
by p, p1o, Po1s P11, Poo, respectively. The theorem is equivalent to showing that

min{po1, p1o} < p/4.
I will prove below that piopo1 < p11poo- The theorem follows quickly, since

(v/Po1 + M)Z = po1 + p1o + 24/P1opo1
< po1 + p1o + 24/P11Po0s since piopor < P11P00s
< po1 + p1o + p11 + Poos
since the geometric mean is at most the arithmetic mean,

:p‘

Hence, min{/po1, v/P10} < 3 (\/Po1 + v/P10) < 34/P, i.e., min{po1, p1o} < 1p.
Finally, to prove that piopo1 < p11Poo, I give an explicit injective map F
from P(w,a/b) x P(w,b/a) into P(w,ab/) x P(w,/ab). Any h € P(w) x P(w)
partitions X into four subsets H; ;, where ¢,j € {0,1}, where H; ; = {z € X :
h(z) = (i,7)}. These sets have the property that if z € Hig and y € Hoy then z
and y are unrelated in 7. Note that if h € P(w,a/b) x P(w,b/a) then a € Hyg
and b € Hoy, while for h € P(w,ab/) x P(w, /ab) we have a € Hyg and b € Hyo.
We regard the partial order as a directed graph on X, and h assigns la-
bels 10,01, 11,00 to the vertices. Vertex a has label 10, and b has label 01. Let



C}p be that weakly connected component of the vertices labelled 01 which con-
tains b. The map F : P(w, a/b) x P(w,b/a) — P(w,ab/) x P(=x,/ab) is defined
by specifying the four sets H{,, Hyq, Hiq, H)o corresponding to h' = F(h). Let
Hiy = HioUCy, Hyy = Ho1 \ Cy, Hy = H11, and H); = Hoo. With respect to
h', Cy is now the weakly connected component of the vertices labelled 10 which
contains b. Therefore the mapping F' is invertible and so injective, as required
to complete the proof. O

Some extensive generalisations of this result have been given by J. Daykin [3].
(See also [4] for related results.)

Under this new measure for partial orders, an adversary can guarantee an
outcome for each comparison such that the new p-value is at least 3/4 of the pre-
vious p-value. What are the applications? Disappointingly, the resulting bound
for median-finding is very weak. For the initial, empty, partial order, p is 27,

while, finally, we have p (S[:;j}_l) > ©(2[*/21). The lower bound is therefore

M(n) > logy5(2L7/2)) ~ 1.2n.

I shall suggest a possible alternative approach below. But first, for a small
non-trivial result using the p-measure, here is a lower bound for an approximate
sorting problem. Say that a set is k-nearly sorted if it is partially ordered so
that, for any rank r, the number of elements which could possibly have rank r
in the sorted order is at most k.

Theorem 2. The worst-case number of comparisons required to k-nearly sort a
set of n elements is at least (n — k — O(logn)) log, 3 2.

Proof. For any k-nearly sorted partial order 7 on n elements, p(7) = O(n2*),
since the up-sets of any given cardinality r differ only with respect to the at-
most-k elements of possible rank r. Our bipartition-counting technique gives a
lower bound of about

logy/5(2°/(n24)) = (n — k — O(log n)) logys 2. 0

For comparison, the linear extension counting measure w yields a bound of
logy(n!/k™) = n(logy(n/k) — O(1)). For small k, the latter bound is better, but
for k > n/12 the new bound is higher. For example:

Corollary 3. To n/8-nearly sort n elemenis requires at least 2.1n — O(1) com-
parisons in the worst case.

Equipartitions

In an attempt to tune our information-theoretic measure to be more sensitive to
median-finding, let us now define an equipartition to be a bipartition where the
up-set is of size [n/2]. Let Q(7) be the set of equipartitions compatible with .,
and let ¢(7) = |Q(7)|. For median-finding, we have initially ¢ = (rn’;ﬂ), for the

empty partial order, and finally ¢ = 1 for an S(er:}/ﬂﬂ =Y. If we could establish for



the g-measure the analogous result to Theorem 1, we would have a lower bound
of about nlog, 32 ~ 2.41n. We will see however that the analogous result does
not hold.

We may view Theorem 1 as an affirmation that the probabilities of a and b
being in the up-set of a random bipartition (under a suitable distribution) are
either positively correlated or independent, i.e.,

p(m,a/) p(m,b/) _ p(m,ab/)
p(z) p(m) —  p(7)

or, equivalently,

(P11 + p10o)(p11 + po1) < pr1(pio + po1 + P11 + Poo)-

Under the restriction to equipartitions, there is an extra slight tendency
toward negative correlation: if @ is in the up-set then there is less room up there
for b. This effect is extreme in the limiting case of a partial order @ where only
a and b remain as candidates for the median, the remaining [n/2] — 1 elements
of the up-set being determined. In this case, q(7,ab/) = ¢(m, /ab) = 0, and a
factor of 1/2 (as opposed to 3/4) results from the comparison a : b.

What can we hope to achieve? The measure p has the good 3/4 ratio prop-
erty, but is ill-matched to the median problem; the measure ¢ fits the median
problem well but fails to satisfy the ratio property. One approach would be to
design a compromise measure between p and ¢, which retains enough of the good
properties of each to be useful. For example, it could count all bipartitions, but
assign a greater weight the more balanced the partition. An alternative approach
is to retain the measure ¢, but try to show that ratios close enough to 3/4 could
be guaranteed for a sufficiently long initial phase to yield good bounds.

7 Conclusion

We have taken a quick tour of some old and new results in median-finding and
selection problems. As Dor and Zwick [5, 6, 7, 8] have broken through the long-
standing upper and lower barriers, the time seems ripe for a new leap forward.

I have proposed some speculative new approaches for lower bounds. In the
same vein, it would seem that an algorithm might do very well by choosing,
where possible, pairs of elements to compare which are each roughly equally
likely to lie in the top or bottom halves of the ordering and which are reasonably
independent. If this were achievable, the algorithm might come close to reducing
the equipartition measure by a factor of 3/4 per comparison. My ambitious guess
with which T close is therefore the following.

Conjecture 1 The worsi-case number of comparisons required to find the me-
dian of n elements is asymptotic to nlog, 32 ~ 2.4094 - n.
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