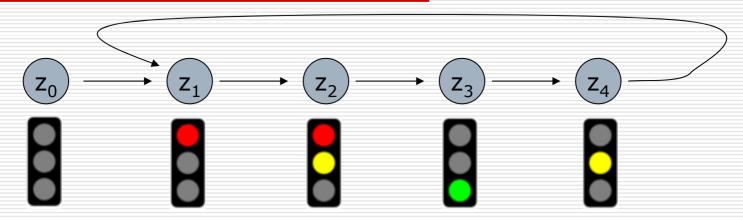
Vortrag Temporallogik

Nicolai Roth - 21. Mai 2008

Wozu temporale Logik?

- Anliegen der "üblichen" (mathematischen) Logik (klassische Logik):
 - Bereitstellung einer formalen Sprache zur präzisen Formulierung von (mathematischen) Aussagen
 - Untersuchung von Instrumenten, mit denen man feststellen kann, ob eine Aussage "zutrifft" oder "nicht zutrifft"
- ☐ Temporale Logik (TL) bezieht zusätzlich ein:
 - Betrachtung zeitabhängiger Aussagen
 - Bereitstellung einer Sprache zur präzisen Formulierung von zeitlichen Beziehungen von Aussagen und die Untersuchung des (ebenfalls zeitabhängigen) Zutreffens solcher Beziehungen

Beispiel: Ampelsystem



- □ Welche Aussagen möchte man beispielsweise formalisieren können:
 - Jetzt ist die Ampel grün gdw. im nächsten Zeitpunkt die Ampel gelb leuchtet
 - Wenn die Ampel jetzt rot ist dann gibt es einen Zeitpunkt in der Zukunft, an dem sie nicht mehr rot ist
 - Wenn die Ampel jetzt nicht aus ist, dann ist sie es auch nicht in allen zukünftigen Zeitpunkten

Beispiel: Ampelsystem

- Mit Hilfe der Aussagenlogik lassen sich die einzelnen Zustände beschreiben.
- Die Zustände samt der Erreichbarkeitsrelation k\u00f6nnen als Kripke-Struktur verstanden werden, bei der die Erreichbarkeitsrelation als zeitlicher Ablauf interpretiert wird.
- Die Modallogik eignet sich somit ideal für die Beschreibung solcher Systeme

Sprache der Temporallogik

- □ Lineare Temporal Logik (Linear-time Temporal Logic LTL)
 - Zeitabläufe sind linear, d.h., ihnen liegt eine endliche oder unendliche aufzählbare Sequenz <z₀, z₁, z₂, ... >von Zeitpunkten zu Grunde, die ein erstes Element z₀ besitzt
- Verzweigte Temporallogik (Computation Tree Logic CTL)
 - Annahme, dass die Zeit linear nicht ist
 - Um Alternativen und den Nichtdeterminismus beschreiben zu können, wird angenommen, dass die Zeit "verzweigt" ist, d.h., jeder Zeitpunkt kann mehrere direkte Nachfolgerzeitpunkte besitzen

Lineare temporale Aussagenlogik

- Eine Sprache \mathcal{L} der linearen temporalen Aussagenlogik ist gegeben durch ihre Signatur. Zusätzlich gehören zu \mathcal{L} die logischen Symbole der linearen temporalen Aussagenlogik.
- □ Die logischen Symbole der linearen temporalen Aussagenlogik sind die logischen Symbole der Aussagenlogik erweitert um die Menge der einstelligen Temporaljunktoren: {⋄,□,∘}
- □ Die Signatur einer Sprache £ der linearen temporalen Aussagenlogik ist genauso definiert wie für eine Sprache der Aussagenlogik

Whd. Aussagenlogik

- □ Die logischen Symbole der Aussagenlogik sind:
 - Die Menge der Hilfszeichen) und (
 - Die Menge der nullstelligen Junktoren: {⊥, ⊤}
 - Die Menge der einstelligen Junktoren: {¬}
 - Die Menge der zweistelligen Junktoren: {∧, ∨, ⇒, ⇔}
- Die Signatur einer Sprache \mathcal{L} der Aussagenlogik besteht aus einer einzigen Symbolmenge $Rel_{\mathcal{L}}^0$: einer Menge von Aussagensymbolen

Formel

Sei £ eine Sprache der temporalen Aussagenlogik

- \square Jedes Aussagensymbol von $\mathcal L$ ist eine atomare $\mathcal L$ -Formel.
- Die Menge \mathcal{F}_{ℓ} der ℓ -Formeln, ist die kleinste Menge, die die folgenden Bedingungen erfüllt:
 - 1. \top und \bot und alle atomaren \mathcal{L} -Formeln sind in \mathcal{F}_{ρ}
 - **2.** Ist $F \in \mathcal{F}_{\ell}$, so ist auch $\neg F \in \mathcal{F}_{\ell}$
 - 3. Ist $F \in \mathcal{F}_{\mathfrak{L}}$ und $G \in \mathcal{F}_{\mathfrak{L}}$ und θ ein zweistelliger Junktor, so ist auch $(F \theta G) \in \mathcal{F}_{\mathfrak{L}}$.
 - 4. Ist $F \in \mathcal{F}_{\ell}$, und ist μ ein einstelliger Temporaljunktor, so ist auch $\mu F \in \mathcal{F}_{\ell}$

Beispielformeln

- Lineare temporale Aussagenlogik
 - $\blacksquare \quad \mathsf{F}_1 = (\diamondsuit \circ \mathsf{p} \Leftrightarrow \circ \diamondsuit \mathsf{p})$
 - $\blacksquare \quad \mathsf{F}_2 = (\Diamond \mathsf{p} \Rightarrow (\mathsf{p} \lor \circ \Diamond \mathsf{p}))$

Beweistechnik der strukturellen Induktion

Sei \mathcal{L} eine Sprache der linearen Temporallogik. Um zu zeigen, dass alle \mathcal{L} Formeln eine Eigenschaft \mathcal{E} haben, genügt es, zu zeigen:

- □ Basisfälle: \top und \bot sowie alle atomaren \pounds -Formeln besitzen die Eigenschaft \pounds .
- Induktionsfälle:
 - Wenn eine \mathcal{L} -Formel F die Eigenschaft \mathcal{E} besitzt, so besitzt auch die Formel $\neg F$ die Eigenschaft \mathcal{E} .
 - Wenn zwei \mathcal{L} -Formeln F_1 und F_2 die Eigenschaft \mathcal{E} besitzen, dann besitzt für jeden zweistelligen Junktor θ auch die Formel $(F_1 \theta F_2)$ die Eigenschaft \mathcal{E} .
 - Wenn eine \mathcal{L} -Formel F die Eigenschaft \mathcal{E} besitzt, dann besitzt für jeden einstelligen Temporaljunktor μ auch die Formel μF die Eigenschaft \mathcal{E} .

Beispiel

- Sei jun[φ] die Anzahl der zweistelligen Junktoren in φ
- \square Sei rel[φ] die Anzahl der Vorkommen von Aussagensymbolen bzw. \top oder \bot in φ
- \square Behauptung: rel[φ] = jun[φ] + 1
- □ Betrachten wir $F_1 = (\diamondsuit \circ p \Leftrightarrow \circ \diamondsuit p)$ Hier gilt: rel[φ] = 2jun[φ] = 1
- \square Somit gilt: rel[φ] = jun[φ] + 1

Allgemeiner Beweis mit Hilfe der Strukturellen Induktion (1)

- □ 1. Basisfall Ist φ ein Aussagensymbol oder \top oder \bot dann ist rel[φ] = 1 und jun[φ] = 0, also gilt rel[φ] = jun[φ] + 1
- 2a. Induktionsfall Negation
 Sei φ = ¬ψ und rel[ψ] = jun[ψ] + 1Dann ist rel[φ] = rel[ψ]Und jun[φ] = jun[ψ]Also: rel[φ] = jun[φ] + 1
- 2c. Induktionsfall einstelliger Temporaljunktor analog zu 2a.

Allgemeiner Beweis mit Hilfe der Strukturellen Induktion (2)

□ 2b. Induktionsfall zweistelliger Junktur

```
Sei \varphi die Formel (\psi_1 \theta \psi_2) mit \theta als zweistelligem Junktor und mit rel[\psi_1] = jun[\psi_1] + 1 und mit rel[\psi_2] = jun[\psi_2] + 1.
```

```
Dann ist \text{rel}[\phi] = \text{rel}[\psi_1] + \text{rel}[\psi_2] \text{ und } \\ \text{jun}[\phi] = \text{jun}[\psi_1] + 1 + \text{jun}[\psi_2]

Also: \text{rel}[\phi] = \text{rel}[\psi_1] + \text{rel}[\psi_2] = \\ \text{jun}[\psi_1] + 1 + \text{jun}[\psi_2] + 1 = \\ \text{jun}[\phi] + 1
```

... bis hier her

- Wir wissen nun:
 - Aus welchen Symbolen Formel aufgebaut sein können.
 - Welche Formeln gültige Formeln sind
 - Wie man Eigenschaften für Formeln zeigen kann

Wir kennen die Syntax.

- Es fehlt:
 - Welche Bedeutung haben die temporal Junktoren
 - Welche Bedeutung hat eine Formel generell
 - Wie wird einer Formel ein Wahrheitswert zugeordnet

Uns fehlt die Semantik.

Semantik

Der Semantik einer Temporallogik liegt eine Repräsentation der Zeit mit folgenden Merkmalen zu Grunde:

- Die Zeit hat einen Ursprung, d.h., einen initialen Zeitpunkt, dem alle anderen Zeitpunkte folgen und der selbst keinem Zeitpunkt folgt
- Die Zeit ist in die Zukunft unbegrenzt, kann sich aber wiederholen
- Die Zeit kann sich in alternative Zeitstrome verzweigen

Zeitmodell

- Wir betrachten eine Kripke-Struktur mit der Menge Z der Zeitpunkte als Zustände und einer Erreichbarkeitsrelation ρ_Z.
- \square ρ_Z habe einen Ursprung: es gibt $z_{init} \in Z$, so dass
 - a) es kein $z \in Z$ gibt mit $(z, z_{init}) \in \rho_Z$
 - b) es für jedes $z \in Z$ einen ρ_Z -Pfad von z_{init} nach z gibt.

Zeitmodell

- Ist die Relation ρ_Z zusätzlich rechtseindeutig, d.h., gibt es für jedes $z \in Z$ nicht mehr als ein $z' \in Z$ mit $(z, z') \in \rho_Z$, so heißt das Zeitmodell mit Ursprung linear. Andernfalls heißt es verzweigt.
- Im linearen Fall ist das Zeitmodell also eine Funktion $\rho_Z:Z\to Z$, die jeden Zeitpunkt auf einen Nachfolgerzeitpunkt abbildet.
- \square ρ_Z^* sei die reflexive und transitive Hülle von ρ_{Z}

Interpretation

- Sei \mathcal{L} eine Sprache der linearen temporalen Aussagenlogik und ρ_Z ein Zeitmodell mit Ursprung über einer Menge Z von Zeitpunkten. Eine \mathcal{L} -Temporalinterpretation mit Zeitmodell ρ_Z ist eine Modalinterpretation $M = (W, E, \{M_w\}_{w \in W})$ mit:
 - W ist die nichtleere Menge der Welten. Hier mit W = Z die Menge der Zeitpunkte
 - E ist eine zweistellige Relation über W, d.h., E ⊆ W × W Hier E = ρ₇*
 - Für jedes w ∈ W ist M_w eine £-Interpretation im Sinne der Aussagenlogik

Interpretation

- Ist ρ_Z linear, heißt die \mathcal{L} -Temporalinterpretation ebenfalls linear, andernfalls verzweigt.
- Das Paar (W,E), also der gerichtete Graph der Welten mit der Erreichbarkeitsrelation, wird auch "Frame" oder Rahmen genannt

Modelbeziehung (1)

- Sei \mathcal{L} eine Sprache der linearen temporalen Aussagenlogik Sei $M = (Z, \rho_Z^*, \{M_z\}_{z \in Z})$ eine \mathcal{L} -Temporalinterpretation mit Zeitmodell ρ_Z , sei $Z \in Z$ und F eine \mathcal{L} -Temporalformel.
- Die Beziehung M * F ist rekursiv über den Aufbau von F definiert wie folgt:

```
\begin{array}{lll} \text{M} \models_{z} \text{A} & \text{gdw. } \text{M}_{z} \models \text{A f\"{u}r A Atom,} \; \top \; \text{oder} \; \bot \\ \text{M} \models_{z} \neg \text{G} & \text{gdw. } \text{M} \models_{z} \text{G nicht gilt} \\ \text{M} \models_{z} \left( \text{G}_{1} \land \text{G}_{2} \right) & \text{gdw. } \text{M} \models_{z} \text{G}_{1} \; \text{und } \text{M} \models_{z} \text{G}_{2} \\ \text{M} \models_{z} \left( \text{G}_{1} \lor \text{G}_{2} \right) & \text{gdw. } \text{M} \models_{z} \text{G}_{1} \; \text{oder} \; \text{M} \models_{z} \text{G}_{2} \\ \text{M} \models_{z} \left( \text{G}_{1} \Rightarrow \text{G}_{2} \right) & \text{gdw. } \text{wenn } \text{M} \models_{z} \text{G}_{1} \; \text{, so } \text{M} \models_{z} \text{G}_{2} \\ \text{M} \models_{z} \left( \text{G}_{1} \Leftrightarrow \text{G}_{2} \right) & \text{gdw. } \text{entweder } \text{M} \models_{z} \text{G}_{1} \; \text{und } \text{M} \models_{z} \text{G}_{2} \\ & \text{oder weder } \text{M} \models_{z} \text{G}_{1} \; \text{noch } \text{M} \models_{z} \text{G}_{2} \end{array}
```

Modelbeziehung (2)

```
\begin{array}{ll} M \models_z \ \Box \ G & \text{gdw. für alle } z' \in Z \ \text{mit } (z,\,z') \in \rho_Z^* \ \text{gilt } M \models_{z'} G \\ M \models_z \diamondsuit G & \text{gdw. es gibt } z' \in Z \ \text{mit } (z,\,z') \in \rho_Z^* \ , \ \text{so dass } M \models_{z'} G \\ M \models_z \circ G & \text{gdw. für alle } z' \in Z \ \text{mit } (z,\,z') \in \rho_Z \ \text{gilt } M \models_{z'} G \end{array}
```

Die Modellbeziehung M ⊧ F gilt genau dann, wenn für alle z ∈ Z die Beziehung M ⊧_z F gilt. Man sagt dann auch, M erfüllt F oder M ist ein Modell von F.

Modaloperatoren in Worten

- A "A trifft in unmittelbar folgenden Zeitpunkten zu" (nexttime Operator)
- A "A trifft jetzt oder in (mindestens) einem nachfolgenden Zeitpunkt zu" (sometime Operator)
- □ □ A "A trifft jetzt und in allen nachfolgenden Zeitpunkten zu" (always Operator)

Modaloperatoren in Worten

$$\Box \quad \mathsf{F}_1 = (\diamondsuit \circ \mathsf{p} \Leftrightarrow \circ \diamondsuit \mathsf{p})$$

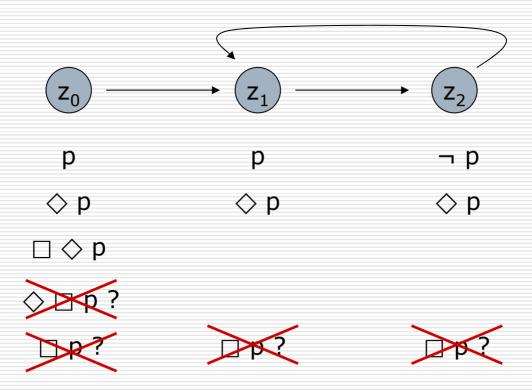
- Es gilt genau dann irgendwann, dass p unmittelbar danach zutrifft, wenn ab dem nächsten Zeitpunkt irgendwann p gilt
- $\Box \quad \mathsf{F}_2 = (\Diamond \mathsf{p} \Rightarrow (\mathsf{p} \vee \circ \Diamond \mathsf{p}))$
 - Wenn p irgendwann gilt, dann gilt p jetzt, oder ab dem nächsten Zeitpunkt gilt irgendwann p.

- \square Eine \mathcal{L} -Formel F heißt allgemeingültig, wenn sie von jeder \mathcal{L} -Temporalinterpretation erfüllt wird, andernfalls falsifizierbar
- ☐ Die folgenden Formel gelten für lineare Temporalinterpretationen:
 - (R1) ⊤ ⇔ □ ⊤
 - **■** (R2) ⊥ ⇔ □ ⊥
 - **■** (R3) T ⇔ ♦ T
 - (R4) ⊥ ⇔ ♦ ⊥
 - (R5) ⊤ ⇔ ∘ ⊤
 - (R6) ⊥ ⇔ ∘ ⊥

- Dualitäts-Gesetze
 - (R7) ¬∘A ⇔ ∘ ¬ A
 - (R8) ¬ □ A ⇔ ♦ ¬ A
 - (R9) ¬ ♦ A ⇔ □ ¬ A
- □ Reflexivitäts-Gesetze
 - (R9) □ A ⇒ A
 - (R10) A ⇒ ♦ A

- ☐ Gesetze über die "Stärke" der Operatoren
 - (R11) □ A ⇒ A
 - (R12) A ⇒ ♦ A
 - (R13) □ A ⇒ ♦ A
 - $\blacksquare \quad (R14) \diamondsuit \Box A \Rightarrow \Box \diamondsuit A$
 - Gilt auch $\square \diamondsuit A \Rightarrow \diamondsuit \square A$?

Gilt auch $\square \diamondsuit A \Rightarrow \diamondsuit \square A$? Nein!

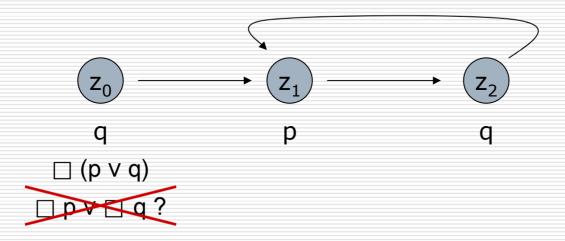


- □ Idempotenz-Gesetze
 - (R15) □ □ A ⇔ □ A
 - $\blacksquare \quad (R16) \diamondsuit \diamondsuit A \Leftrightarrow \diamondsuit A$
- ☐ Kommutativ-Gesetze
 - (R17) □ ∘ A ⇔ ∘ □ A
 - \blacksquare (R18) $\diamondsuit \circ A \Leftrightarrow \circ \diamondsuit A$

- Distributiv-Gesetze
 - \blacksquare (R19) \circ (A \wedge B) \Leftrightarrow \circ A \wedge \circ B
 - (R20) ∘(A ∨ B) ⇔ ∘A ∨ ∘B
 - $\blacksquare \quad (R21) \ \square \ (A \land B) \Leftrightarrow \square \ A \land \square \ B$
 - $\blacksquare (R22) \diamondsuit (A \lor B) \Leftrightarrow \diamondsuit A \lor \diamondsuit B$
- □ Schwache Distributiv-Gesetze
 - $\blacksquare \quad (R23) \square A \lor \square B \Rightarrow \square (A \lor B)$
 - $\blacksquare (R24) \diamondsuit (A \land B) \Rightarrow \diamondsuit A \land \diamondsuit B$

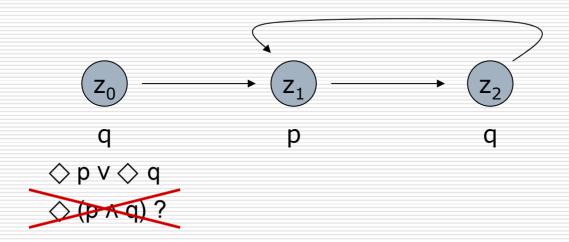
- Warum gelten die Gegenrichtungen der schwachen Distributiv-Gesetze nicht?

 - \triangle A $\land \diamondsuit$ B $\Rightarrow \diamondsuit$ (A \land B)



- Warum gelten die Gegenrichtungen der schwachen Distributiv-Gesetze nicht?

 - \triangle A $\land \diamondsuit$ B $\Rightarrow \diamondsuit$ (A \land B)



- ☐ Fixpunkt-Charakterisierungen
 - (R25) □ A ⇔ A ∧ ∘ □ A
 - $\blacksquare \quad (\mathsf{R26}) \diamondsuit \mathsf{A} \Leftrightarrow \mathsf{A} \land \circ \diamondsuit \mathsf{A}$
- Monotonie-Gesetze
 - $\blacksquare \quad (\mathsf{R27}) \ \Box \ (\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow (\circ \ \mathsf{A} \Rightarrow \circ \ \mathsf{B})$
 - $\blacksquare \quad (\mathsf{R28}) \ \Box \ (\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow (\diamondsuit \ \mathsf{A} \Rightarrow \diamondsuit \ \mathsf{B})$
- □ Rahmen-Gesetze
 - $\blacksquare \quad (\mathsf{R29}) \ \Box \ \mathsf{A} \Rightarrow (\circ \ \mathsf{B} \Rightarrow \circ (\mathsf{A} \land \mathsf{B}) \)$
 - $\blacksquare \quad (\mathsf{R30}) \ \square \ \mathsf{A} \Rightarrow (\square \ \mathsf{B} \Rightarrow \square (\mathsf{A} \land \mathsf{B}) \)$
 - $\blacksquare \quad (R31) \square A \Rightarrow (\diamondsuit B \Rightarrow \diamondsuit (A \land B))$

- □ Aus F folgt G, notiert F | G, gdw. für jede Temporalinterpretation M gilt: wenn M | F dann M | G (jedes Modell von F ist auch Modell von G).
- □ Sei \mathcal{L} eine Sprache der temporalen Aussagenlogik. Seien F und G \mathcal{L} -Formeln. Wenn (F \Rightarrow G) allgemeingültig ist, dann F \models G.
- □ Im Fall der klassischen Prädikatenlogik erster Stufe gilt auch die Gegenrichtung. Für die temporalen Aussagenlogik gilt diese im allgemeinen nicht.

Beweis: Vorausgesetzt sei, dass $(F \Rightarrow G)$ allgemeingültig ist, das heißt, für jede Temporalinterpretation M gelte M \models $(F \Rightarrow G)$.

Sei $M = (W, E, \{M_w\}_{w \in W})$ eine Temporalinterpretation mit $M \models F$. Nach Voraussetzung gilt auch $M \models (F \Rightarrow G)$.

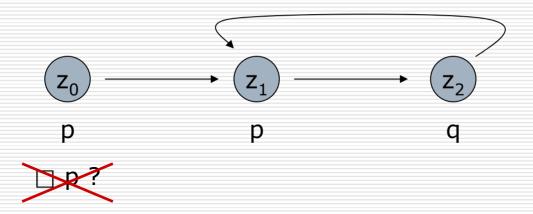
Sei $w \in W$ beliebig, aber fest. Nach Definition gilt $M \models_w F$ und $M \models_w (F \Rightarrow G)$. Dann gilt auch $M \models_w G$. Da w beliebig ist, gilt für alle $w \in W$ die Beziehung $M \models_w G$, das heißt, $M \models G$.

```
Widerlegung der Gegenrichtung: Sei \mathcal{L} eine Sprache mit dem Aussagensymbol p. Sei F = p und G = \Box p

Um zu zeigen, dass die Folgerungsbeziehung p \models \Box p gilt, sei M = (W, E, \{M_w\}_{w \in W}) eine Temporalinterpretation mit M \models p. Sei w_1 \in W. Weil M \models p gilt, gilt M \models_w p für alle w \in W, unter anderem für alle w_2 \in W, so dass (w_1, w_2) \in E. Also gilt M \models_{w_1} \Box p. Da w_1 beliebig ist, gilt M \models \Box p. Damit gilt die Folgerungsbeziehung p \models \Box p.
```

Es bleibt zu zeigen, dass $(p \Rightarrow \Box p)$ nicht allgemeingültig ist.

Beispiel:



Charakterisierung von Rahmeneigenschaften

Sei \mathcal{L} eine Sprache der Modallogik, deren Signatur mindestens ein Relationssymbol enthält. Sei (W, E) ein Rahmen.

- □ 1. E ist reflexiv gdw. für jede \mathcal{L} -Modalinterpretation $M = (W, E, \{M_w\}_{w \in W})$ mit dem gegebenen Rahmen und für jede \mathcal{L} -Formel gilt $M \models (\Box F \Rightarrow F)$
- \square 2. E ist transitiv gdw. für ... gilt M \models (\square F \Rightarrow \square \square F)
- □ 3. E ist symmetrisch gdw. für ... gilt M \models (F \Rightarrow □ \diamondsuit F)
- \square 4. E ist links total gdw. für ... gilt M \models (\square F \Rightarrow \diamondsuit F)
- □ 5. E ist rechtseindeutig gdw. für ... gilt M \models (\diamondsuit F \Rightarrow \square F)

Beweis zu 1. (Reflexivität) (1)

Richtung "→"

Voraussetzung: E ist reflexiv

Sei $M = (W, E, \{M_w\}_{w \in W})$ eine \mathcal{L} -Modalinterpretation mit gegebenem Rahmen und sei F eine \mathcal{L} -Formel.

Annahme: $M \neq (\Box F \Rightarrow F)$.

Dann gibt es eine Welt $w \in W$ mit $M \not\models_w (\Box F \Rightarrow F)$, das heißt $M \not\models_w \Box F$ und $M \not\models_w F$. Wegen der Reflexivität von E ist $(w,w) \in E$, und wegen $M \not\models_w \Box F$ gilt $M \not\models_w F$. Widerspruch

Beweis zu 1. (Reflexivität) (2)

Richtung "←"

Voraussetzung: für jede \mathcal{L} -Modalinterpretation $M = (W, E, \{M_w\}_{w \in W})$ mit dem gegebenem Rahmen und für jede \mathcal{L} -Formel F gilt: $M \models (\Box F \Rightarrow F)$

Annahme: E ist nicht reflexiv, das heißt, es gibt eine Welt $w_0 \in W$ mit $(w_0, w_0) \notin E$.

Sei F eine atomare \mathcal{L} -Formel. Sie ist also erfüllbar und falsifizierbar. Sei $M = (W, E, \{M_w\}_{w \in W})$ eine \mathcal{L} -Modalinterpretation mit $M \not\models_{w_0} F$ und $M \models_{w} F$ für alle $w \in W \setminus \{w_0\}$. Dann gilt insbesondere $M \models_{w} F$ für alle w mit $(w_0, w) \in E$. Das bedeutet, $M \models_{w_0} \Box F$. Wegen $M \not\models_{w_0} F$ gilt dann $M \not\models_{w_0} (\Box F \Rightarrow F)$, also $M \not\models_{w_0} F$.

Widerspruch.

Beweis zu 2. (Transitivität) (1)

Richtung "→"

Voraussetzung: E ist transitiv

Sei $M = (W, E, \{M_w\}_{w \in W})$ eine \mathcal{L} -Modalinterpretation mit gegebenem Rahmen und sei F eine \mathcal{L} -Formel.

Annahme: $M \neq (\Box F \Rightarrow \Box \Box F)$.

Dann gibt es eine Welt $w_1 \in W$ mit $M \not\models_{w_1} (\Box F \Rightarrow \Box \Box F)$, das heißt $M \models_{w_1} \Box F$ und $M \not\models_{w_1} \Box F$. Also gibt es Welten $w_2, w_3 \in W$ mit $(w_1, w_2) \in E$ und $(w_2, w_3) \in E$ und $M \not\models_{w_3} F$. Wegen der Transitivität von E ist $(w_1, w_3) \in E$, und wegen $M \models_{w_1} \Box F$ gilt $M \models_{w_3} F$.

Widerspruch.

Beweis zu 2. (Transitivität) (2)

Richtung "←"

Voraussetzung: für jede \mathcal{L} -Modalinterpretation $M = (W, E, \{M_w\}_{w \in W})$ mit dem gegebenem Rahmen und für jede \mathcal{L} -Formel F gilt: $M \models (\Box F \Rightarrow \Box \Box F)$

Annahme: E ist nicht transitiv, das heißt, es gibt Welten w_1 , w_2 , $w_3 \in W$ mit $(w_1, w_2) \in E$ und $(w_2, w_3) \in E$ und $(w_1, w_3) \notin E$

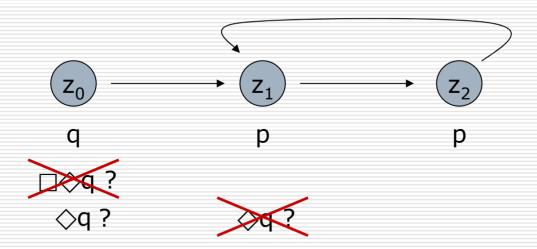
Sei F eine atomare \mathcal{L} -Formel. Sie ist also erfüllbar und falsifizierbar. Sei $M = (W, E, \{M_w\}_{w \in W})$ eine \mathcal{L} -Modalinterpretation mit $M \not\models_{w_3} F$ und $M \models_{w} F$ für alle $w \in W \setminus \{w_3\}$. Dann gilt insbesondere $M \models_{w_1} F$ für alle w mit $(w_1, w) \in E$. Das bedeutet, $M \models_{w_1} \Box F$. Wegen $(w_2, w_3) \in E$ und $M \not\models_{w_3} F$ gilt $M_{w_2} \not\models \Box F$ und wegen $(w_1, w_2) \in E$ auch $M_{w_1} \not\models \Box \Box F$. Damit gilt $M_{w_1} \not\models (\Box F \Rightarrow \Box \Box F)$, also $M \not\models (\Box F \Rightarrow \Box \Box F)$. Widerspruch.

Rahmeneigenschaften

- Für die lineare temporale Aussagenlogik sollten also folgende Rahmeneigenschaften allgemeingültig sein:
 - Reflexivität (□F ⇒ F)
 - Transitivität ($\Box F \Rightarrow \Box \Box F$)
 - Links Totalität (\Box F ⇒ \Diamond F)
 - Reflexivität gilt unmittelbar aus R9
 - Transitiv: $(\Box F \Rightarrow \Box \Box F)$ nach R15 gdw. $(\Box F \Rightarrow \Box F)$ gdw. \top
 - Links Totalität gilt unmittelbar aus R13

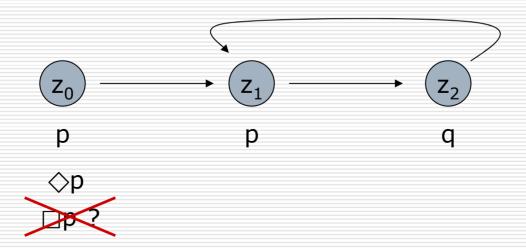
Rahmeneigenschaften

- Nicht hingegen:
 - Symmetrie ($F \Rightarrow \Box \diamondsuit F$)
 - Rechtseindeutigkeit (♦F ⇒ □F)



Rahmeneigenschaften

- □ Nicht hingegen:
 - Symmetrie ($F \Rightarrow \Box \diamondsuit F$)
 - Rechtseindeutigkeit (♦F ⇒ □F)



Spracherweiterungen

- □ Bisher können wir Aussagen über das "Jetzt" und über nachfolgende Zustände machen
- Es fehlen:
 - Aussagen über die Vergangenheit
 - "sequenzielle / bedingte" Aussagen (bis dahin, im ersten Zustand nach …)
 - Aussagen über den Anfangszustand

Past-Operatoren

- Aussagen über die Vergangenheit
 - ⊖A: "A trifft in vorhergehenden Zuständen zu" (previous-Operator)
 - ⊟A: "A trifft jetzt und in allen vorhergehenden Zuständen zu" (has-always-been-Operator)
 - # A: "A trifft jetzt oder in einem vorhergehenden Zustand zu" (once-Operator)

until / unless / atnext / before

- ☐ A until B: "Es gibt einen nachfolgenden Zustand, in dem B zutrifft, und A trifft in allen Zuständen bis dahin zu"
- A unless B: "Falls es einen nachfolgenden Zustand gibt, in dem B zutrifft, so trifft A in allen Zuständen bis dahin zu (andernfalls trifft A in allen nachfolgenden Zuständen zu)"
- A atnext B: "A trifft im ersten nachfolgenden Zustand zu, in dem B zutrifft (falls dieser Zustand existiert)"
- □ A before B: "Falls es einen nachfolgenden Zustand gibt, in dem B zutrifft, so trifft A in einem Zustand davor zu"

Anfangszustand

- Einführung einer Variablen init, die genau im Anfangszustand gilt.
- init ⇒ A: "A trifft im Anfangszustand zu"
- ☐ Mit Hilfe der Past-Operatoren auch ausdrückbar als:
 - \ominus false \Rightarrow A

Vielen Dank für die Aufmerksamkeit!