Themenverteilung Hauptseminar Modallogik (SS2008)

Paul Harrenstein und Martin Lange

Ludwig-Maximilians-Universität, München

12. Februar 2008

Was ist und soll die Modallogik?

- Modallogische Sprachen sind einfache doch ausdruckstarke Sprachen um über relationale Strukturen zu reden, und relationale Strukturen sind allgegenwärtig.
- 2 Modallogische Sprachen beschreiben relationale Strukturen aus einem natürlichen lokalen Sichtpunkt. Somit unterscheiden modallogische Sprachen sich von, zum Beispiel, der Logik der ersten Stufe.
- Modallogische Sprachen haben viele verschiedenen Anwendungen in der Informatik, künstlichen Intelligenz, Philosophie und Mathematik.

Aussagenlogik

Syntax \mathcal{P} eine Menge von Aussagevariabelen mit typischem Element p.

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2$$

Semantik Model $V: \mathcal{P} \to \{\text{true}, \text{false}\}.$

$$\begin{array}{lll} V \Vdash p & \Leftrightarrow & V(p) = \texttt{true} \\ V \Vdash \neg \varphi & \Leftrightarrow & V \nvDash \varphi \\ V \Vdash \varphi \wedge \psi & \Leftrightarrow & V \Vdash \varphi \; \texttt{und} \; V \Vdash \psi \end{array}$$

Syntax und Semantik von modallogischen Sprachen

Syntax

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Box \varphi \mid \Diamond \varphi$$

Semantik Model $\mathfrak{M} = (S, R, V)$ wo $R \subseteq S \times S$ und $V \colon S \times \mathcal{P} \to \{\text{true}, \text{false}\}.$

$$\mathfrak{M}, s \Vdash \Box \varphi \Leftrightarrow \text{ für alle } s \in S, \text{ wenn } sRs' \text{ dann } \mathfrak{M}, s' \Vdash \varphi$$

 $\mathfrak{M}, s \Vdash \Diamond \varphi \Leftrightarrow \text{ für manche } s \in S, sRs' \text{ und } \mathfrak{M}, s' \Vdash \varphi$

Beispiele:

Alethische Modallogik: $\Box \varphi$ heißt " φ ist notwendig." Beweisbarkeitslogik: $\Box \varphi$ heißt " φ ist beweisbar."

Syntax und Semantik von modallogischen Sprachen

Syntax

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid [i]\varphi \mid \langle i \rangle \varphi$$

Semantik Model $\mathfrak{M} = (S, \{R_i\}_{i \in I}, V)$ wo $R \subseteq S \times S$ und $V : \mathcal{P} \to 2^S$.

$$\mathfrak{M}, s \Vdash [i]\varphi \Leftrightarrow \text{ für alle } s \in S, \text{ wenn } sR_is' \text{ dann } \mathfrak{M}, s' \Vdash \varphi$$

 $\mathfrak{M}, s \Vdash \langle i \rangle \varphi \Leftrightarrow \text{ es gibt } s \in S \text{ mit } sR_is' \text{ und } \mathfrak{M}, s' \Vdash \varphi$

Beispiele:

Epistemische Modallogik: $K_i\varphi$ heißt "Agent i weiß, dass φ ."

Dynamische Logik: $[\pi]\varphi$ heißt "nach Terminierung von Program π gilt φ "

Themen: Theorie der Modallogik

- Korrespondenztheorie
 - Characterisierung von Modellen und Rahmen
 - Standardübersetzung
 - Normale Modallogiken
 - Bisimulation
- Beweissysteme
 - Hilbertsche Beweissysteme für normalen Modallogiken
 - Vollständigkeit und Korrektheit
 - Kanonische Modelle
 - Alternative Beweissysteme: Tableaumethoden
- Entscheidbarkeit und Komplexität von Modallogiken

Themen: Anwendungen der Modallogik

- Epistemische Logik (philosophisch und künstliche Intelligenz)
- Temporale Logik (komputationell)
- Dynamische Logik (komputationell)
- Beschreibungslogiken (künstliche Intelligenz, Wissensdarstellung)
- Modale Fixpunktlogiken (komputationell)
- Intuitionistische Logik (mathematisch)
- Beweisbarkeitslogik (mathematisch)

Epistemische Logik

$$\varphi ::= p \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid K_i \varphi \mid B_i \varphi \mid D \varphi \mid E \varphi \mid C \varphi$$

 $K_i\varphi$: Agent *i* weiß, dass φ $B_i\varphi$: Agent *i* glaubt, dass φ

 $D\varphi$: Erkenntnis von φ ist distribuiert

Εφ: Jeder weiß, dass φ

 $C\varphi$: Es ist common knowledge, dass φ

Temporale Logik

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Box \varphi \mid \bigcirc \varphi \mid \varphi_1 U \varphi_2$$

 $\Box \varphi$: Von jetzt an φ $\bigcirc \varphi$: Als nächstes φ

 $\varphi U\psi$: φ bis ψ

Dynamische Logik

$$\varphi := p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid [\pi] \varphi$$

$$\pi := a \mid \pi_1; \pi_2 \mid \pi_1 \cup \pi_2 \mid \pi^* \mid \varphi?$$

 $[\pi]\varphi$: Nach π gilt φ

 π_1 ; π_2 : Führe zuerst π aus und als nächstes π'

 $\pi_1 \cup \pi_2$: Führe entweder π_1 oder π_2 aus π^* : Führe π null oder mehr Mal aus

 φ ? : Überprüfe ob φ gilt

Beschreibungslogiken

Beschreibungslogiken fürs Argumentieren über Ontologien.

Formale Ausarbeitung

- Zustände sind Instanzen von "Konzepten"
- Relation sind "Rollen"
- Interpretation von Formeln wiederum als Konzepte

Beispiel:

Konzept Mörder für die Mafia Beschreibungslogik killer □ ∃employer.killer Modallogik killer ∧ ⟨employer⟩gangster

Fixpunktlogiken

$$\varphi := p \mid X \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid [a]\varphi \mid \mu X.\varphi(X)$$
 (X positiv in φ)

Intuition: $\mu X.\varphi(X)$ äquivalent zu $\bot \lor \varphi(\bot) \lor \varphi(\varphi(\bot)) \lor \dots$

Normalerweise keine Rekursion in Modallogiken, mit Fixpunkten aber gegeben.

Beispiel: Erreichbarkeit in Graphen ohne Rekursion normalerweise nicht definierbar.

Intuitionistische Logik

- Tertium non Datur $\varphi \vee \neg \varphi$ und reductio ad absurdum
- Konstruktivistische Philosophie der Mathematik
- Dazugehörende Logik: intuitionistische Logik
- Intuitionistischer Logik kann eine modale Semantik gegeben werden

Beweisbarkeitslogik

- Frage: Was können mathematische Theorien über sich selbst aussagen?
- Gödels erster Unvollständigkeitssatz
- Peano Arithmetik (PA)
- $\lceil \varphi \rceil$ bezeignet die Gödelzahl von der Aussage φ
- $Prov(\lceil \varphi \rceil)$ heißt, dass φ in PA beweisbar ist
- Prov kann analysiert werden als eine Modalität

Hauptseminar

Voraussetzungen

- Bestandenes Vordiplom
- Elementare Kenntnisse in Aussagenlogik
- Affinität mit mathematische Argumentation

Organisation

- Vortrag halten (ca. 60 Minuten), danach eine Ausarbeitung schreiben
- Ein bis drei Termine mit dem Betreuer
- Anwesenheit bei den anderen Vorträge

Lernziele

- Erkenntnis erwerben von der Modallogik
- Einen kurzen Vortrag vorbereiten und halten über ein komplexes Thema

Themenverteilung

- Korrespondenztheorie
- Beweissysteme f
 ür Modallogiken
- Entscheidbarkeit und Komplexität von Modallogiken
- Epistemische Logik
- Temporale Logik
- Dynamische Logik
- Beschreibungslogiken
- Modale Fixpunktlogiken
- Intuitionistische Logik
- Beweisbarkeitslogik