Kapitel 3.4 Termauswertung

Präzedenz- und Assoziationsregeln

Operator	Präzedenz	Assoziativität	Erklärung
Funktionsapplikation		links	
_	10		Präfix-Minus
* *	9	rechts	Potenzierung bei float
*. /. * / mod	8	links	
+ + -	7	links	
^	6	rechts	Verkettung
< > <= >= <> =	5	links	
not	4		Präfix-Verneinung
&&	3	links	
	2	links	
,	1		Paarbildung, in praxi meis
			geklammert
if let fun function	0		Quasi-Präfixoperatoren

Was bedeutet das?

Dass * / oberhalb von + - steht entspricht der Punkt-vor-Strich Regel.

Vergleichsoperatoren unterhalb von arithmetischen Operatoren bedeutet,

dass z.B.
$$i - j < 7$$
 bedeutet $(i - j) < 7$ und nicht etwa $i - (j < 7)$ was ein Typfehler wäre.

Das Funktionsapplikation über allem steht, bedeutet, dass man z.B.:

 $2 \times f(x)$ in OCAML als 2 * f x schreiben kann.

Dass if let fun ganz unten stehen, bedeutet, dass z.B.

if
$$i < j$$
 then 0 else $x - y + z$

als

if
$$i < j$$
 then 0 else $(x - y + z)$

und nicht etwa

(if
$$i < j$$
 then 0 else x) - $y + z$

Werte und Umgebungen

Wir wollen formal beschreiben, was der Wert eines OCAML-Ausdrucks ist.

Um den Wert eines Ausdrucks anzugeben, muss man die Werte der in ihm enthaltenen freien Variablen kennen.

Eine Zuweisung von Werten an freie Variablen heißt *Umgebung*.

Die *Semantik* eines OCAML-Ausdrucks ist also eine Abbildung von Umgebungen auf Werte.

Umgebungen

Eine Umgebung ist eine Menge von Bindungen < a, w > wobei a ein Bezeichner ist und w ein Wert.

Während einer OCAML Sitzung wird eine Umgebung (die *aktuelle Umgebung*) sukzessive aufgebaut.

Zu Beginn ist die aktuelle Umgebung leer.

Bei der Eingabe let x = t; wird der Term t in der aktuellen Umgebung ausgewertet.

Ist die Auswertung undefiniert, so entsteht eine Fehlermeldung, bzw. falls Nichttermination der Grund ist, wird nichts ausgegeben.

Anderenfalls wird die Bindung $\langle x, w \rangle$ der aktuellen Umgebung hinzugefügt, wobei w der berechnete Wert von t ist.

Eine frühere Bindung der Form $\langle x, w' \rangle$ wird dabei entfernt.

Die aktuelle Umgebung ist also zu jeder Zeit eine *endliche partielle Funktion* von Bezeichnern nach Werten.

Beispiel

Welche Umgebung liegt nach folgenden Eingaben vor?

```
let x = 2ii

let x = x + 1ii

let y = x + 2ii

let f = function z \rightarrow z - xii

let a = f + 1ii

let a = f (f(x)+1)ii
```

Auswertung von Termen

Sei U eine Umgebung und t ein Term.

Der Wert $W^U(t)$ des Terms t in der Umgebung U ist wie folgt rekursiv definiert:

- Ist c eine Konstante, so ist $W^U(c) = c$,
- Ist x ein Bezeichner, so ist $W^U(x) = w$, falls $\langle x, w \rangle \in U$. Anderenfalls ist $W^U(x)$ undefiniert.

Sind
$$W^U(t_1)$$
 und $W^U(t_2)$ beide definiert, so ist $W^U(t_1 \ op \ t_2) = W^U(t_1) \oplus W^U(t_2)$.

Ist auch nur einer der beiden undefiniert, so ist $W^{U}(t_1 \ op \ t_2)$ undefiniert.

Einstellige Basisfunktionen wie not und - sind analog.

Auswertung von Funktionstermen

Notation:

 $U + \{\langle x_1, w_1 \rangle, \dots, \langle x_n, w_n \rangle\} = U' \cup \{\langle x_1, w_1 \rangle, \dots, \langle x_n, w_n \rangle\},$ wobei U' aus U durch Entfernen aller eventuell vorhandenen Bindungen von x_1, \dots, x_n entsteht.

- Sei t eine Funktionsanwendung der Form t_1 t_2 . Es sei $W^U(t_1)$ die Funktion f und $W^U(t_2) = w$. Ist auch nur eines der beiden undefiniert, so ist $W^U(t)$ auch undefiniert. Ansonsten ist $W^U(t) = f(w)$. Dies kann trotzdem noch undefiniert sein, falls $w \notin D(f)$.
- Sei $t = \text{function}(x_1, \ldots, x_n) \rightarrow t'$. Im Falle n = 1 auch ohne Klammern. Es ist $W^U(t)$ diejenige Funktion, die (w_1, \ldots, w_n) auf $W^{U+\{\langle x_1, w_1 \rangle, \ldots, \langle x_n, w_n \rangle\}}(t')$ abbildet. Beachte: $W^U(t)$ ist immer definiert, könnte aber die nirgends definierte Funktion sein.
- Die alternativen Notationen für Funktionsdefinitionen (fun, let) haben analoge Bedeutung.

Auswertung von if und let

• Sei t ein bedingter Term der Gestalt if t_1 then t_2 else t_3 . Ist $W^U(t_1) = true$, so ist $W^U(t) = W^U(t_2)$. Beachte: $W^U(t_3)$ kann dann undefiniert sein.

Ist $W^U(t_1) = false$, so ist $W^U(t) = W^U(t_3)$. Beachte: $W^U(t_2)$ kann dann undefiniert sein.

In allen anderen Fällen ist $W^{U}(t)$ undefiniert.

• Sei t von der Form let $(x_1, \ldots, x_n) = t_1$ in t_2 im Falle n = 1 auch ohne Klammern.

Sei $W^U(t_1)$ definiert und von der Form $W^U(t_1) = (w_1, \dots, w_n)$, also ein n-Tupel von Werten. Dann ist

 $W^U(t) = W^{U+\{< x_1, w_1>, \dots, < x_n, w_n>\}}(t_2)$. Ansonsten ist $W^U(t)$ undefiniert. Beachte: $W^U(t_1)$ muss auf jeden Fall definiert sein, selbst wenn eines der oder gar alle x_i nicht in t_2 vorkommen.

Tupel und Boole'sche Operatoren

- Sei $t=(t_1,\ldots,t_n)$. Seien weiter $W^U(t_1)=w_1,\ldots,W^U(t_n)=w_n$ allesamt definiert. Dann ist $W^U(t)=(w_1,\ldots,w_n)$.
- $W^U(t_1 \mid \mid t_2) = W^U(\text{if } t_1 \text{ then true else } t_2)$
- $W^U(t_1 \&\& t_2) = W^U(\text{if } t_1 \text{ then } t_2 \text{ else false}).$

Zur Beachtung: Die Semantikdefinition im Skript [Kröger] ist teilweise nicht ganz richtig; maßgeblich sind daher die Folien^a.

Zur Beachtung: $t_1 \mid t_2$ kann definiert sein, auch wenn t_2 undefiniert ist. Auf jeden Fall muss aber t_1 definiert sein.

^aKann sein, dass die Folien auch nicht ganz richtig sind, maßgeblich ist daher der gesunde Menschenverstand :-)

Beispiel

```
W^{\{<\mathbf{x},1>\}}(let \mathbf{x}=2 in if \mathbf{x}=2 then 0 else 1) =W^{\{<\mathbf{x},2>\}}(if \mathbf{x}=2 then 0 else 1) =W^{\{<\mathbf{x},2>\}}(0) =0
```

Semantik von let rec

Eine rekursive let-Bindung

let rec
$$f x = t$$

bindet f an die durch

$$F(w) = W^{U + \{\langle x, w \rangle, \langle f, F \rangle\}}(t)$$

rekursiv definierte Funktion.

Das gilt analog für Phrasen mit let rec ...in und für Funktionen mit mehreren Argumenten.

Beispiel

```
let rec fakt n = if n = 0 then 1 else n * fakt(n-1)  {\rm Sei} \ F = W^{\emptyset}({\rm fakt}).
```

Es ist

```
F(3) = W^{\{\langle fakt, F \rangle, \langle n, 3 \rangle\}} (\text{if n = 0 then 1 else n * fakt(n-1)})
= W^{\{\langle fakt, F \rangle, \langle n, 3 \rangle\}} (\text{n * fakt(n-1)})
= W^{\{\langle fakt, F \rangle, \langle n, 3 \rangle\}} (\text{n}) \cdot W^{\{\langle fakt, F \rangle, \langle n, 3 \rangle\}} (\text{fakt(n-1)})
= 3 \cdot F(W^{\{\langle fakt, F \rangle, \langle n, 3 \rangle\}} (\text{n - 1}))
= 3 \cdot F(2)
= W^{\{\langle fakt, F \rangle, \langle n, 2 \rangle\}} (\text{if n = 0 then 1 else n * fakt(n-1)})
= \cdots = 6
```

Abstrakte Syntax

Die Definition von W bezieht sich auf *abstrakte Syntax*: Wir setzen voraus, dass der äußerste Operator eines verschachtelten Terms bekannt ist. Strenggenommen ist somit W auf *Herleitungsbäumen* (Ausgabe des Parsers) definiert.

Wie sollte man sonst z.B.

$$W^{U}(2 * 3 - 1)$$

verstehen? Als $W^{U}(2 * 3) - W^{U}(1)$ oder $W^{U}(2) \cdot W^{U}(3 - 1)$?

Im Interpreter oder Compiler werden tatsächlich die Herleitungsbäume ausgewertet.

Strikte Auswertung

Die Tatsache, dass alle Argumente eines Funktionsaufrufes definiert sein müssen, damit der Funktionsaufruf terminiert, bezeichnet man als *strikte Auswertung*.

In anderen Programmiersprachen gibt es die *verzögerte Auswertung*, wo nicht benutzte Terme auch nicht ausgewertet werden. Z.B.: in Haskell

$$f x y = y + 1$$
 $1 x = 1 x + 1$
 $f (1 0) 3$
 $---> 4$

In Haskell wird zudem ein einmal ausgewerter Term als Wert abgespeichert und nicht nochmal ausgewertet. Beispiel:

$$u + u$$
 where $u = f(10) 4$