Partielle Korrektheit

Verhält sich ein Algorithmus richtig für alle Eingaben, für die er terminiert, so spricht man von *partieller Korrektheit*.

Terminiert er außerdem für alle interessierenden Eingaben, so liegt *totale Korrektheit* vor.

Häufig kann man partielle Korrektheit unabhängig von der totalen Korrektheit und mit anderen Methoden zeigen.

Partielle Korrektheit rekursiver Funktionen

Seien A, B Mengen und $R \subseteq A \times B$ eine Relation. Sei A' eine Teilmenge von A. Wir möchten zu jedem $x \in A'$ ein $y \in B$ berechnen, sodass xRy gilt.

Satz von der partiellen Korrektheit: Sei

$$f = \mathbf{function}(x)\Phi(f, x)$$

In Φ befinde sich f nicht im Geltungsbereich einer weiteren Funktionsabstraktion außer $\mathbf{function}(x)$ (also z.B. nicht $\Phi(f,x) = \mathbf{function}(y)f(x)(y)$).

Um zu zeigen, dass für alle $x \in A' \subseteq A$ entweder f(x) undefiniert ist oder xRf(x) gilt, genügt es, folgendes nachzuweisen:

- ist $x \in A'$, so werden in $\Phi(f, x)$ nur Aufrufe f(x') mit $x' \in A'$ getätigt.
- Für alle $x \in A'$ gilt $xR\Phi(f,x)$ unter der Annahme, dass x'Rf(x') für alle in $\Phi(f,x)$ getätigten Aufrufe f(x') von f.

```
f = \mathbf{function}(x,y) \mathbf{if} \ x = 0 \ \mathbf{then} \ 0 \ \mathbf{else} \mathbf{if} \ x \ \mathrm{gerade} \ \mathbf{then} \ 2 \cdot f(x,y/2) \ \mathbf{else} \qquad 2f(x,\lceil y/2 \rceil) + x
```

Man zeige: für alle $x,y\in\mathbb{N}$ gilt: falls f(x,y) definiert ist, dann ist f(x,y)=xy.

$$f = \mathbf{function}(x)$$

 $\mathbf{if} \ x = 0 \ \mathbf{then} \ 0 \ \mathbf{else}$
 $\mathbf{if} \ x \ \mathbf{gerade} \ \mathbf{then} \ f(x/2) \ \mathbf{else} \ f(3x+1)$

Man zeige: für alle $x \in D(f)$ ist f(x) = 0.

McCarthy's Funktion

$$f = \mathbf{function}(x : \mathbf{int}) \mathbf{int}$$

$$\mathbf{if} \ x > 100 \ \mathbf{then} \ x - 10 \ \mathbf{else} \ f(f(x+11))$$

$$f(91) = f(f(102)) = f(92) = f(f(103)) = f(93) = \dots = f(101) = 91$$

$$f(70) = f(f(81)) = f^3(92) = f^4(103) = f^4(93) = f^4(104) = f^3(94) = f^4(105) = f^3(95) = f^4(106) = f^3(96) = f^4(107) = f^3(97) = f^4(108) = f^3(98) = f^4(109) = f^3(99) = f^4(110) = f^3(100) = f^4(111) = f^3(91) = \dots = 91$$

Man beweise: falls $x \in D(f)$, so gilt

 $f(x) = \text{if } x \ge 100 \text{ then } x - 10 \text{ else } 91.$

Denotationale Semantik

Die W-Funktion weist OCAML-Ausdrücken abstrakte mathematische Werte zu.

Etwa Funktionsausdrücken mathematische Funktionen, also (unendliche) Mengen von Paaren.

Man bezeichnet diese Art der Semantikgebung als denotationelle Semantik.

Vorteile der denotationellen Semantik:

Implementierungsdetails werden versteckt, mathematische Beweismethoden (Gleichungsschließen, Abstiegsfunktion, Induktion, Satz von der partiellen Korrektheit) werden verfügbar gemacht.

Operationale Semantik

Manchmal ist die denotationale Semantik zu abstrakt:

- Effizienzbetrachtungen
- Seiteneffekte wie Ein-/Ausgabe
- Verständnisschwierigkeiten bei mathematisch nicht einschlägig gebildeten Personen.

Die *operationale Semantik* beschreibt die Semantik eines Ausdrucks durch Rechenregeln, die sukzessive angewandt werden. Wert eines Ausdrucks ist dann das Endergebnis der Rechnung.

Problem: Was soll das Ergebnis eines Funktionsausdrucks sein?

Antwort: Der Funktionsausdruck selber, wobei allerdings die Werte freier Variablen gemerkt werden müssen.

```
let x = 1;;
let f = function y -> x + y;;
let x = 2;;
```

Hier sollte f den Wert "fun y \rightarrow y + x, wobei x=1" haben.

Solch ein Paar aus einem Funktionsausdruck und einer Umgebung (die freie Variablen des Funktionsausdrucks bindet) bezeichnet man als *Closure*.

Operationale Semantik formal

Definition *Werte* und *Umgebungen* (im Sinne der operationalen Semantik) werden wie folgt definiert:

- Eine OCAML-Konstante ist ein Wert
- Eine Umgebung ist ein Menge von Bindungen $\langle x, w \rangle$ von Bezeichnern an Werte.
- Ist e ein OCAML-Ausdruck, x ein Bezeichner und U eine Umgebung, so ist (fun x->e, U) ein Wert.
- Ist e ein OCAML-Ausdruck, f und x Bezeichner und U ein Umgebung, so ist (f = fun x -> e, U) ein Wert.

Habe x den Wert 7.

Nach den Deklarationen

```
let x = 7;;
let rec f = \text{fun } y \rightarrow \text{if } y=0 \text{ then } x \text{ else } f (y-1);;
let g = f;;
hat g \text{ den } Wert
(f = \text{fun } y \rightarrow \text{if } y=0 \text{ then } x \text{ else } f (y-1), \{\langle x, 7 \rangle\}).
```

Auswerterelation

Wir schreiben $U, e \to w$ um zu sagen, dass in der Umgebung U der Ausdruck e als Endergebnis den Wert w hat.

Diese Auswerterelation wird formal durch die folgenden Regeln definiert.

Auswerteregeln

- ist c eine Konstante, so gilt $U, c \rightarrow c$
- ist x ein Bezeichner und $\langle x, w \rangle \in U$, so gilt $U, x \to w$.
- für Funktionsausdrücke gilt U, fun $x->e \to (\text{fun }x->e,U')$, wobei U' die Einschränkung von U auf die freien Variablen von e ist.

Auswerteregeln

• ist op ein Infixoperator aber nicht | |, &&, welcher eine Basisfunktion \oplus bezeichnet so gilt folgendes: wenn $U, e_1 \to w_1$ und $U, e_2 \to w_2$, dann $U, e_1 \ op \ w_1 \oplus w_2$.

Natürlich müssen w_1, w_2 im Definitionsbereich von \oplus liegen.

Einstellige Basisfunktionen werden analog behandelt.

Fallunterscheidung

- Gilt $U, e_1 \rightarrow true \text{ und } U, e_2 \rightarrow w_2$, so auch $U, \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightarrow w_2$.
- Gilt $U, e_1 \rightarrow false$ und $U, e_3 \rightarrow w_3$, so auch U, if e_1 then e_2 else $e_3 \rightarrow w_3$.
- Die Infixoperatoren &&, | werden analog behandelt.

Applikation

- Gilt $U, e_1 \to w_1$ mit $w_1 = (\text{fun } x -> e, U')$ und $U, e_2 \to w_2$, so ist (in einer Nebenrechnung) ein Wert w mit $U' + \{\langle x, w_2 \rangle\}, e \to w$ zu bestimmen. Es ist dann $U, e_1 e_2 \to w$.
- Gilt $U, e_1 \to w_1$ mit $w_1 = (f = \text{fun } x -> e, U')$ und $U, e_2 \to w_2$, so ist zunächst (in einer Nebenrechnung) ein Wert w mit $U' + \{\langle x, w_2 \rangle, \langle f, w_1 \rangle\}, e \to w$ zu bestimmen. Es ist dann $U, e_1 e_2 \to w$.

Bindung

- Ist $U, e_1 \to w_1$, so ist zunächst (in einer Nebenrechnung) ein Wert w_2 mit $U + \{\langle x, w_1 \rangle\}, e_2 \to w_2$ zu bestimmen. Es ist dann U, let $x=e_1$ in $e_2 \to e'$.
- Es gilt U, let rec f=fun x-> e_1 in $e_2 \to w$, falls $U + \{ \langle f, f = \text{fun } x \rangle e_1 \rangle \}, e_2 \to w$.

Wir wollen

let
$$x=1+0$$
 in let rec $f = fun y->if y=0$ then x else $f(y-1)$ in let $x = 2$ in $f(x+x)$

in der leeren Umgebung auswerten.

Es ist \emptyset , $1 + 0 \rightarrow 1$ also muss

let rec f = fun y->if y=0 then x else
$$f(y-1)$$
 in let x = 2 in $f(x+x)$

in der Umgebung $U_1 = \{ \langle x, 1 \rangle \}$ auszuwerten. Das aber bedeutet, in der Umgebung

$$U_2 = \{ \langle x, 1 \rangle, \langle f, (f=fun y-\rangle f y=0 then x else f(y-1), U_1) \rangle \}$$

den Ausdruck let x=2 in f (x+x) auszuwerten. Dies schließlich

bedeutet, in der Umgebung

$$U_3 = \{ \langle x, 2 \rangle, \langle f, (f=fun y->if y=0 then x else f(y-1), U_1) \rangle \}$$

den Ausdruck f (x+x) auszuwerten.

Es gilt U_3 , $x+x \rightarrow 4$ und

$$U_3$$
, $f \rightarrow (f=fun y->if y=0 then x else $f(y-1), U_1)$, also müssen wir in der Umgebung$

$$U_4 = \{ \langle x, 1 \rangle, \langle f, (f=fun y-\rangle f y=0 then x else f(y-1), U_1) \rangle, \langle y, 4 \rangle \}$$

den Ausdruck

if
$$y=0$$
 then x else $f(y-1)$

auswerten. Der Ausdruck y=0 hat den Wert *false*, es gilt also in U_4 den Ausdruck f 2 auszuwerten...

Zusammenfassung Operationale Semantik

- Die operationale Semantik ordnet Umgebungen und Ausdrücken *Werte* zu. Diese Werte sind syntaktisch definiert.
- Rekursion wird durch wiederholte Auswertung, statt durch Rekursion auf der Meta-ebene definiert.
- Die operationale Semantik liegt näheran der tatsächlichen Implementierung als die denotationale Semantik.
- Denotationale Semantik ist günstiger für mathematische Beweismethoden (Gleichungsschließen, Induktion, Satz von der partiellen Korrektheit)

Zusammenhang operationale u. denotationale Semantik

Satz: Genau dann ist $W^{\emptyset}(e)$ definiert, wenn es einen Wert w gibt mit $\emptyset, e \to w$.

(Falls *e* vom Typ int ist, folgt daraus, dass beide Semantiken denselben Wert liefern. Wieso?)

Satz: Gilt $W^U(e_1) = W^U(e_2)$ für alle U, so sind e_1 und e_2 bezüglich der operationalen Semantik nicht voneinander zu unterscheiden, d.h., erhält man e_4 aus e_3 durch Ersetzen eines oder mehrerer Vorkommen von e_1 durch e_2 , dann gilt \emptyset , $e_3 \to w$ für ein w genau dann wenn \emptyset , $e_4 \to w'$ für ein w'. Ist der Typ von e_3 und e_4 gleich int, so gilt w = w'.

Bemerkung: die Umkehrung des Satzes gilt nicht: es gibt ununterscheidbare Ausdrücke, die doch nicht die gleiche denotationale Semantik haben.