VorlesungsskripRechnergesitztes Beweisen

Martin Hofmann

WS 2003/04

1 Introduction

Computer-aided theorem proving means to carry out matheahgroofs on a
computer whose job it is to check steps, to perform bookkeppasks and to
automate routine steps. Conducting a proof on a computerbmaypmpared to
and has a lot in common with implementing an informally giadgorithm or
model. For example, a number of details must be filled in aratermmportantly,
mistakes and shortcomings of the high-level model are brbiagthe surface.
Computer-aided theorem proving has numerous applicatiopgogram and
hardware verification as well as prototype development. TBsser, perhaps in-
creasing, degree it is used to aid the development of gemétieematical proofs.

1.1 Course outline

In this course, we will get to know the computer-based thmopgover PVS
(pvs.csl.sri.com) along with its theoretical foundations and some ramifi-
cations thereof.

e Logical foundations: sequent calculus, predicate cafguligher-order logic,
set theory

Automation of logical reasoning: resolution

Automation of equational reasoning: rewriting and decigpoocedures

Finite state verification: Modal logics and model checking

Infinite state verification: Abstract model checking

1

e Type theory: Modularisation, independent checking of praartificates,
computation within proofs.

Mostly in the tutorials we will apply this knowledge to a ety of problems
from

Solving logical puzzles

Algorithms on lists and trees

Hardware components such as adder, counter, multiplier

Distributed algorithms using invariants and reasoning

Distributed algorithms using abstract model checking

Experiments with other theorem provers.

1.2 Notions of proof

What exactly is a “proof”. When asked this question a typicathematician
would produce something like the following: A proof is a corsing, undebatable
argument establishing the truth of a mathematical staterBack to Euclid (300
B.C.) goes the following concretion of this definition: A pifas a derivation of a
statement from axioms by means of logical rules.

This sound good, but it remains to say what “axioms” shouldre what the
“logical rules” are. In Euclid’s case (geometry) the axiowere truisms such as
“for any two non-equal points there is exactly one line pagghrough them?”.
The logical rules were essentially the ones we still useyt@shal will learn about
later in the course. An example of such a rule: Af implies B” holds and “A”
holds then ‘B” holds, too (nodus ponens

Later on, more complicated concepts such as real numbernaitsl were
introduced which made it less clear what reasonable axitumsld be. For exam-
ple, even the famous 18th century mathematician Leonhaler Etruggled with
the infinite seried —14+1—1+1—1+ ... and ended up ascribing the value
1/2 to it on the basis of the same informal mathematical reagoménused for his
celebrated theorems.

The lack of solid logical foundations for mathematics, amgarticular anal-
ysis led to an actual crisis in mathemati€&rndlagenkrisgwhich was settled
early in the last century by the invention of set theory (dotlowing up on this,

2

by the formalisation of real numbers, limits, integrals @adon by Weierstrass,
Riemann and others.)

1.2.1 Settheory

Set theory is a formalism which allows onedsefineall other mathematical con-
cepts and tgrovetheir axioms, thus enabling a rigorous proof of thednsis-
tency i.e., sensibility. For instance, we can define points aéasiof real numbers
(which in turn are defined as certain sequences of ratiomabeus (which in turn
are defined as certain pairs of integer numbers (which indverdefined as cer-
tain pairs of natural numbers (which are defined as certam @e= (), 1 = {0},
2 = {0,1}, etc.)))) and themrovethat through any two distinct points goes one
and only one line (a line being defined, for instance, as afgabiats satisfying
some linear relation).

The present formulation of set theory consists of approtéiganine axiom$
among them

¢ two sets having the same elements are equal

for each set we can form the set of its subsets

there exists an infinite set

for each set we can form the subset consisting of those elsmsbkaring a
given property

for each set of setd there exists a set containing exactly one element of
each nonempty set iA (“axiom of choice”)

Using a formalised language statements in set theory camitiemas strings and
recognised as such, for example the first four axioms ar¢enrés follows:

o VaVb.Vrxx €a < xz€b) =a=0D

e Va.dbVr.x €b <— x Ca
(wherex C a & Yy.y € x =y € a)

lthe precise number depends on what we count as axiom and svaabgical rule.

e Ja.—finite(a)
def

(where finitda) = Vb.(0 € bA (VeVzc €bAz € a= cU{z} €D)) =
a € b)

HerecuU {z} is a notation for a set whose existence is asserted by two othe
axioms (union and singleton).

e Va.AbVr.x € b < (v € a N ¢(x)) (Whereg(x) is an arbitrary statement
involving z)

We should remark at this point that despite the formal notetine axioms of
set theory necessarily remain unproved and their justificatlies on philosoph-
ical and pragmatic arguments.

Thelogical rulesof set theory are precisely the ones of first-order logic Whic
we are going to learn about in more detail later in the course.

1.2.2 Proofs as formal derivations

Once we have a formal concept of axioms and rules, we can defineof of a
statemend as a sequence of statements

¢07¢17¢27¢37"'7¢n:¢

ending in¢ such that each; is either an axiom or follows from previous state-
ments by a logical rule.

So, to check whether an alleged proof indeed is one is a mattentirely
mechanical symbol manipulation and does not require argtigeeskills or intel-
ligence.

Rather than merely asserting the next formal@ne might tell by which log-
ical rule it follows and which of the);, j < ¢ were used as premises for that
inference. In this way, one arrives at the notions of proeé tor proof-DAG.
(DAG=directed acyclic graph = tree with shared nodes).

In practice, however, writing out proofs at this level ofaiewvould be far too
cumbersome and so checking whether a purported proof, sajournal submis-
sion, indeed is one, does require considerable matherhsitidaand devotion!

And while the vast majority of mathematicians agrees thgtaoof in math-
ematics cartheoreticallybe formalised in set theory and hence mechanically
checked, many of them believe thatpracticesuch formalisation is impossible
for all but the simplest toy examples. This belief might hasmained unchal-
lenged if there had not been the request for formalised privom informatics
and the advent of sufficiently powerful machines.

4

1.3 Proof assistants

So, why do we need formalised proofs in informatics? Wek, torrectness of
software (or hardware) is nothing but a mathematical statéramenable to for-
malisation and mechanical checking.

Here are some examples of formal theorem proving occurnmgformatics.

e |s programX correct?very rare
e Does methodX satisfy invariant™?

e Does variableX always hold values with property? E.g.,Y=points to a
sorted linked list, a balanced binary tree, data items stersi with store.

e Does protocolX guarantee property ? E.g.,Y'=cache coherence, sequen-
tial execution, absence of deadlock.

e Does circuitX implement functiony’? E.g.Y=FP multiplication, Fourier
transform.

e Does algorithmX satisfy specificatiotr? E.g.X =garbage collectol,=absence
of interference+liveness.

e Does theoremX about programming languag€é hold? E.g.X= type
safety, correctness of proof rules.

o Verification of certificates (“proof-carrying code”)

While in early stages of soft- and hardware developmentthesofs could be
carried out by hand (possibly using some notation and irgdrate calculations)
the size of systems has reached a state where this has beopossible in many
cases.

Prompted by these requirements systems caltedf assistant®r theorem
provershave been developed which perform not only the task of checgize-
able formalised proofs but also help with coming up with fafised proofs in the
first place by bookkeeping assumptions and variables, girmyitactics and deci-
sion procedures (e.g., for propositional formulas, cerbiagments of arithmetic,
modal and temporal logic, equational theories, etc.) angrbyiding libraries of
definitions and already proved theorems.

e Bookkeeping of assumptions and variables
e Tactics

e Type checking

e Decision procedures

e Libraries of definitions and theorems

Figure 1: Tasks of a proof assistant
e Expressive logic
e Powerful decision procedures

e Large body of basic notions

Figure 2: Strengths of PVS

1.3.1 The PVS System

In this course we will get to know one such proof assistanbme detail, namely
the PVS system developed by Owre, Rushby, and Shankar atV&RIp Park,
California. As any system, PVS has a number of strengths Bodixeaknesses.
As a partial compensation for the weaknesses we will latéhéncourse take a
look at complementary systems such as SPASS, Coq, Isabelle.

PVS has a very expressive underlying logic (classical hignger logic), it
comes equipped with a number of powerful decision procesjwesgy., for linear
arithmetic and equational reasoning, and it has a large bblolgsic notions which
allow one to start a formalisation on a relatively high level

On the other hand, PVS has recurrent soundness problemgs,tiram time
to time someone finds out that a weird combination of tact&ss and language
features allows one to prove= 1! Moreover, there is no formal representation of
proofs. One reason why these problems are not trivial to fpresisely the large
body of basic notions which here turns into a disadvantage.

Soundness problems

No formal representation of proofs

Large body of basic notions

(Bad heuristics for first-order instantiation)

Figure 3: Weaknesses of PVS

1.3.2 Soundness and proof objects

A problem with a proof assistant is that its correct behawvisthard to verify.
Whether a word processor provides decent looking outputbeaohecked at a
glance (correctness for all inouts notwithstanding), Eny a video game either
is fun to play with or not.

On the other hand, correct behaviour of a proof assistardtiser hard to
detect. After all it's because we don’t want to do the progffiand that we use a
proof assistant in the first place. The “output” of a proofistssit doesn’t consist
of a nice looking document or a thrilling sequence of images.

In PVS you can have a complicated looking subgoal to prove, type in
(grind) and PVS responds that this proves the statement. There isypoow
check this proof independently; all that’s being recordsetthat the tacti¢grind)
has been invoked.

PVS stands foprototype verification systemhich is explained by the follow-
ing quote from the PVS Prover Guide 2.3, gas.csl.sri.com

The primary purpose of PVS is to provide formal support far-co
ceptualization and debugging in early stages of the lifdecyf a
hardware or software system. In these stages, both thersgants
and designs are expressed in abstract terms that are noseaasy
executable. We find that the best way to analyse such an abstra
specification is by attempting proofs of desirable consegeg of the
specification.

So, provided soundness problems occur rafelyey do not really compromise
the usability of the system.

’they do sometimes, see the PVS web site

[1] FORALL (y: t, v_106: list[t]):
(FORALL (x: 1):
occ(x, merge(null, v_106)) =
occ(x, null) + occ(x, v_106))
IMPLIES
(FORALL (x: t):
occ(x, merge(null, cons(y, v_106))) =
occ(x, null) + occ(x, cons(y, v_106)))
Rule? (grind)

lots of rewrites etc. are printed

This completes the proof of mergel.4.

Figure 4: A quick proof in PVS

Proofs as guarantee In recent years researchers have proposed a use of proofs
as a certificate not unlike the cryptographic certificatehsas digital signatures,
etc. While the latter certify authenticity of a datum, i.@.relationship between
the datum and the sender, a formal proof certifies a propértyeodatum itself
which is independent of the sender.

For example, a third-party provider of a component of a gadetical system
might be required to provide a formal proof of correctness.

A referee of a paper in mathematics or theoretical inforosatnight not be
willing to verify all details of a proof but would rather ruhe formalised proofs
of the theorems in the paper through a proof checker.

Also it has been proposed under the ngraof-carrying codd ?] that mobile
code should be equipped with independently checkable prafo€ertain safety
properties, e.g. memory safety, type safety, etc.

The design of systems like Coq (to some extent also Isabhekelch that inde-
pendent verification is possible. These systems generateralf representation
of a proof (aproof objector proof tern) amenable to separate verification by a
proof checkemwhich is simple and small. Even if tactics or decision praced
contain bugs these will always show up at the checking stagfgesworst that can
happen is that an attempted proof has to be redone.

At present it seems that none of the systems with explicibfpobjects can

Atoms: A, B,C, D, ...
Connectives:

o AN ¢ “and” ¢ (conjunction)
oV ¢ "or’ i (disjunction)

o = . ¢ “implies” ¢y (implication)
—¢: “not” ¢ (negation)

Precedence—, A, V, =
Example: (A = B) A=A = ~Areads((A = B) A (-4)) = (-A)

Figure 5: Syntax of propositional formulas

compete with PVS or similar systems. However, | think thas ik mainly a
problem of organisation and manpower, not an inherent #ieat one. | believe
that in the not too distant future we will see powerful prosdigtants with (almost)
bug-free proof-checkers inside.

2 Sequent calculus

In this section we will learn about the “logical rules” whiahderly the PVS sys-
tem. In their present form they were introduced by the l@gidcerhard Gentzen
around 1940 as a means to analyse the proof-theoretic gtrehdprmal arith-
metic.

2.1 Formulas

We start with a set oitoms akaidentifiersor symbolsA, B, C, D, Formulas
are built up from atoms by theonnectivesv, A, = (binary) and— (unary), so
(A= B) A—A = Cisaformula. By convention the binding poweris> A >

V >=>, so the above formulareadsd = B) A (-A4)) = C.

Themeaningof a formula is given relative to an interpretation of themasoas
either true or false. For instance, Af is true, andB, C are both false, then our
example formula will be true because thén=- B is false (the only way for an
implication to be false is that its antecedent (hddeis true and its consequent
(hereB) is false).

Digression on semantics of implication Please notice that this so-callelds-
sical interpretation of implications sometimes at odds with our intuitive under-
standing of implication. For instance, the sentence “if MBlans a tie during the
lecture then he can turn lead into gold.” is actually truearritis interpretation. It
is possible to formalise the intuitive meaning of such seceeby implicitly quan-
tifying over a set ofworldsthat describe possibilities. One could then imagine a
world in which MH wears ties and also worlds in which he camtiead into gold,
but the latter would not form a superset of the former bec#use is no causal
relationship whatsoever. On the other hand,foee ¢ to be valid in this refined
sense one requires that the set of worlds in whidiolds forms a superset of the
set of worlds in whichp holds.

Another paradox involving classical implication goes alfofes: it is com-
monly agreed that in order to show that a recursively definethodm() is cor-
rect it suffices to show that its bodyis correct assuming that any recursive calls
to the method already perform correctly. In other words:

(m() correct=- e correch = m() correct

Were this rule valid in the sense of classical implicaticerntany method would be
correct: either itis correctin the first place or else itismwhich case the premise
to the above rule is trivially true whereby correctness efitiethod follows from
the rule!

Formalisation of meaning Anyway, under the aforementioned classical inter-

pretation the formulab A= (A = B) always comes out true, no matter
what A and B actually stand for.

Likewise,((A = B) = A) = A always holds.

Formally, a partial functiom; mapping atoms tdtt, ff} can be extended to
formulas by interpreting the connectives in the obvious.way

A formula is atautologyif its meaning is true regardless of the interpretation
of the atoms.

A formulaissatisfiablef it is true for someanterpretation of the atoms. Clearly,
A is satisfiable if and only if-A is not a tautology and thereforkis a tautology
if and only if = A is unsatisfiable.

2.2 Applications of propositional logic

Many naturally occurring problems admit encodings in psaponal logic in the
sense that to know whether a certain formula is satisfiabéetautology amounts

10

If n(A) =tt,n(B) =n(C) = ff then
(A= B)AN-A=C)

(
= Z(A:>B)/\n(w4):>ff
= ff=t)Aff=f=t

Figure 6: Formal meaning of a formula
A=A
(A=B)=A)= A
(A Vv Apa)

A(
—(A11 A Agp) A
—(Ajg A Agg) A

A V Ag) A (Asi V Aso) A
(A A Aszp) A—=(Ag A Asp)A
“(Agz A Aszg) A (A A Asz))

Figure 7: Examples of tautologies

to having a solution to the problem at hand. Examples are samsed in Fig-
ure 2.1.

It is therefore an important practical problem to determiiesther a given
propositional formula is a tautology or not and (equival@nivhether or not it is
satisfiable.

A formula with 100 atoms admits ca03? different valuations so checking
tautologies by examining truth tables may be unfeasible.

if Mary likes champaign then either Bob or Alice like red wine

Planning problems: find sequence of actions for a robot tof—samove a
certain item from a stockpile

Behaviour of digital hardware circuits

Combinatorial optimisation (scheduling, routing,...)

Figure 8: Applications of propositional logic

11

Sequents: ' = A wherel’ = ¢4,...,¢,, andA = y,...,v, are lists of
formulas.

Meaning: ¢1 A -+ A ¢y = Y1 V- VY,

Examples:A = B,C = D = U A (=V A B)

A= B, A= B

— A,A=B

A A=

—

Figure 9: Syntax of sequents

While no method is known to date which would be inherentlytdrethan
checking truth tables there has been considerable progrdsslast years at solv-
ing instances arising from practical problems (SAT solueftiese solvers vastly
outperform any human logician trying to attack proposiaildiormulas by logical
reasoning! So why should we look at axioms and logical rubegpfopositional
calculus?

The answer is that in many situations the atoms will thenesebe complex
formulas, typically a defined predicate applied to somealdeis, such as € a
or sorted(list;) and we want to be able to break down the validity of a formula
involving these atoms into basic implications between them

This is precisely the goal of sequent calculus which we vaivrdescribe.

2.3 Sequents

A sequents an expression of the forin — A wherel’, A are (possibly) empty
lists of formulas.

The meaningof a sequent” —- A is defined as the meaning of the formula
AT = VA where T is the conjunction (“and”A) of the formulas inl" and
\/ A is the disjunction (“or”,V) of the formulas inA.

For example, our formul@d = B) A =A = C'is equivalent to the sequent
A= B,-A=C.

A proof in sequent calculus is a tree labelled with sequents sutkhéeaves
are labelled withraxiomsand the label of an internal node is the conclusion of a
rule which has the labels of its immediate descendants as premise

A sequent’ = A is anaxiomif I and A have a formula in common. For
example, the sequent, B — A, C'is an axiom.

Therulesfor sequent calculus are best read backwards, i.e. “whahded to

12

F17¢7¢7F2 - A

(PERM-L)
F17¢7¢7 PZ — A
' = A, 0,0, A
L ¢ ¥, B (PERM-R)
I' = Alvwvgba AQ
= A
_ (WEAK-L)
o= A
= A
_— (WEAK-R)
= A¢
o, 0= A
L (CONTR-L)
o= A
= A
—’M (CoNTR-R)
I'= A¢

Figure 10: Structural rules

prove in order to establish a sequéht=- A?”". First, we havestructural rules
allowing to permute, duplicate or remove formulas. In theréiture sequents are
often defined as pairs cfetsrather than lists of formulas. This makes all the
structural rules except BAK redundant. For computer-aided formal reasoning it
is, however, useful to have explicit access to formulas,lsatheir position in a
list.

For each connective there are thogical rules one when the connective ap-
pears on the left, and one when it appears on the right.

To understand, e.gv;-L try to think as follows: to prove\ under the assump-
tion ¢ v) (and some other stuff) we must make a case distinction as to whether
¢ orv holds, hence we must proveunder assumptiorlg ¢ and then again under
assumptions’, 1.

Rule =-R is probably the easiest of these: to preves ¢» we must prove
1 under the additional assumptign(if we disregard the side formulds A...).

If we forget aboutA we can also explain-R: to prove—¢ we must derive a
contradiction (empty\) from the assumption.

The —-L rule says: if—¢ is among our assumptions then to prove anything
(A) its enough to prove (or A straightaway, of course). This is known a&s

13

Lo, = A
T,6 At = A

= A ¢ I = A,

= AoN¥
o= A My = A

ovy = A

I'= A ¢,9
= AoV
= A¢
I—¢= A
o= A
= A ¢
= Ao Iy = A

Io=v=A

I'¢g= v, A
= A¢=0

14

(A-L)

(A-R)

(v-1)

(V-R)

(=-L)

(—-R)

(=-L)

(=-R)

A= B,A B,A=— B
A= B A= B
A:>B:>B,ﬂAﬁ
A:>B,ﬁB:>ﬁAﬁ

=-L

-L

Figure 11: Example proof

A B= A, ANC A, B= B,ANC AC= AANB,A A,C= AN\B,C
AB=— AAB,ANC A,C= ANB,ANC
A, (BVC)= ANB,ANC

Figure 12: Example proof

falso quodlibet

Rule=--L, finally, says: if we want to use the assumptioas) then we can
add its conclusion) to our assumptions provided we succeed (independently)
in proving its antecedentj.

One can derive the implication rules from the encoding e$) as—¢ V .

2.4 Soundness and completeness

Definition: A sequent iglerivableif there exists a proof with it as root label.

Theorem: A sequent is derivable if and only if it is a tautology.

Proof: Let us call aproof treea tree whose nodes (and leaves) are labelled
with sequents in such a way that whenever a node lab#élleds immediate an-
cestorsSy, ..., S, then there is a logical rule witls;, ..., S, as assumptions
as S as conclusion. For exampl¢; = A — B andS, = A = (C and
S = A = B A C. Given the form of our rules we always hawe= 1 or
n = 2. The leaves may but do not need to be labelled with axiomsugetrite
Si,...S, F Stomean that there is a proof tree whose root is labefladd whose
leaves are labelled with,S,.

Notice that gproof of sequentS is a proof tree all whose leaves are labelled
with axioms.

By induction on (depth of) proof trees one easily shows théti..., S, F .S

15

and Sy, ..., S, are all true under some valuatignthen .S, too, comes out true
undern. Recall that the truth value of a sequént= ¢4, ..., ¢, = ¥1,... 9,
under some valuationis defined ag\; n(¢:;) = \V/; n(¢;), i.e.,S comes out false
precisely if all thep; come out true and all the; come out false.

The above proves that if a sequent has a proof, i.e., a preefwith axioms
labelling its leaves, then it is tautologous, i.e., trueemall valuations.

For completeness we first notice (again by induction on ptoeds) that if
Si,...,S, B Sis proved by a proof tree not involving rule &8k then S is
equivalent to the conjunction of the, i.e., S comes out false under some valu-
ationn as soon as one of th is falsified byn. Now, for any sequent we can
always find a proof tree not involving rule Ak whose root is labelled and
whose leaves are labelled with sequents consisting of atmtys This is done
by successively “breaking down” all the connectivesSinIf S is not derivable
then at least one of the atomic sequents labelling the lezfbss proof tree will
not be an axiom (otherwise our proof tree would be a proofh)isBequent will
thus be of the form¥,, ... A,, = B, ... B, where the4,; andB; are atoms and
{A1,..., An} N {By,..., B,} = 0. Any valuationn with n(4;) = tt, n(B;) = ff
will falsify this sequent, hencg. So.S is not a tautology. OJ

We remark that this also shows that if a sequent is derivaltterwles GONTR
and WEAK then it is provable without those rules; the “generic” prtrefe ob-
tained by breaking down the connectives must lead to a prothfis case, other-
wise we would obtain a falsifying valuation.

2.4.1 Linear logic

The fact that rules WAk and GONTR can be eliminated is due to their being built
into the other rules and axioms. lmear logic weakening and contraction are
removed and the side formulas in different premises of aatderequired to be
disjoint. For instance, a linear version &R would look thus:

F1:>A1,¢ F2:>A2,77D

Fl,rg — Al,AQ,Qb/\@b

Moreover, the only axioms ard —> A for A an atom. If we replace all rules
and axioms by their linear versions and removeAK and GNTR (which now
are no longer redundant) we obtain a (a fragment of) linegiclm which, e.g.,
the formulad = A A A is not provable.

(A-R-LIN)

16

2.4.2 Cut elimination

In spite of completeness it is useful to have yet another thkefamous cut rule:
' = A, ¢ Iy, 0 = Ay
[, Iy = A1, Ay
Usually,I'; and A, are empty. In this case,Ud corresponds to invocation
of a lemma: if we have proved “as a lemma” then we can add it to our list of

assumptions whenever we want. The completeness entagdtsstylemmas can
always be eliminated.

(CuT)

3 Introduction to PVS

As already mentioned, PVS is based on the sequent calculeswillstart by
using PVS as a proof-assistant for that system.
To do that we call PVS from the (Linux!) command line with

pvs

This brings up an Emacs window entitled PVS. A possible qoestoncerning
context creation should be answered affirmatively (meam inyes).
Now create a file nameskquent.pvs containing something like

sequent_calculus: THEORY
BEGIN

A,B,C,D: VAR boolean
Al11,A12,A21,A22,A31,A32: VAR boolean

K : PROPOSITION
A IMPLIES B IMPLIES A

S : PROPOSITION
(A IMPLIES B IMPLIES C) IMPLIES (A IMPLIES B)
IMPLIES (A IMPLIES C)

Peirce : PROPOSITION
(A IMPLIES B) IMPLIES A) IMPLIES A

17

Contra : PROPOSITION
(A IMPLIES B) IMPLIES NOT B IMPLIES NOT A

distl : PROPOSITION
A AND (B OR C) IMPLIES (A AND B) OR (A AND C)

dist2 : PROPOSITION
A AND B OR C AND D IMPLIES (A OR C) AND (B OR D)

schub : PROPOSITION
NOT (
(A11 OR A12) AND
(A21 OR A22) AND
(A31 OR A32) AND
NOT (A1l AND A21) AND
NOT (A1l AND A31) AND
NOT (A21 AND A31) AND
NOT (A12 AND A22) AND
NOT (A12 AND A32) AND
NOT (A22 AND A32))

END sequent_calculus

Click on the first “proposition”. This will bring up a proverimdow and a prompt
Rule? . The first rule you should enter {skolem!) . This will get rid of the
FORALLquantifier which we’ll talk about later and basically dispthe formula
as a sequent with empty premise list and one conclusion nfithed Unfortu-
nately, all the atoms are decorated with. { Now you can

e apply adisjunctive rulex-L, V-R,=--R) by enterindflatten X) where
x is the number of the formula you want to apply the rule tomust obvi-
ously bel at the beginning.

e apply a conjunctive rulen-R, V-L, =--L) by entering(split X) where,
again,z is the number of the formula.

The rules for negation are applied automatically.
Try to prove all the propositions in this way but don’t wagie tnuch time on
the last onegchub).

18

Rather give up after a few steps by typi(guit) and redo the proof (an-
swering no when asked whether you want to rerun the existiagfpthis time
typing (prop) after the(skolem!) step or(grind) right at the start.

You can display the tree structure of your current proof Witlx x-show-current-proof
and of a finished proof witM-x x-show-proof

You may wish to do some more ad-hoc experiments with PVS.rSkte doc-
umentation is available at the PVS homeppgs.csl.sri.com

4 Resolution

Gentzen’s sequent calculus provides a decision procedutied validity of propo-
sitional formulas: construct the proof tree as in the con@pless proof and check
whether all leaves are labelled with axioms.

Unfortunately, the complexity of this procedure is expdrann the size of
the formula to be proved. This is due to the duplication ofdigdin rulesv-L, A-

R, =--L. Worse still, a lot of work is done twice: if we break down—=- A, p Ay
intol' = A, ¢ andl’ = A, ¢ then the “breaking down” of and A must be
done in each branch individually.

Of course, unles® = N P we cannot expect a really efficient (polynomial)
method for deciding propositional formulas; however, ¢hare algorithms that
behave quite well in practice for moderately sized formul@se of these is the
method ofresolutioninvented by RBINSON which we will take a look at for one
thing for its popularity and for another because its appiida to first-order logic
which we will come to shortly.

Resolution is a method for decidirgatisfiability of a propositional formula
presented asset of clausesRecall that a formula is satisfiable if-¢ is not a tau-
tology. Aliteral is either an atom or a negated atom, ey B, door_closed, —alarm_on
are all literals. Aclauseis a set of literals whose meaning is their disjunction.
Some people write a clause as an explicit disjunction ugingthers use set nota-
tion. A set of clausesepresents the conjunction of the individual clauses. Watc
out for the empty clause (representifipand the empty set of clauses (represent-
ing tt).

To check whether a formula is a tautology we can represend as a set of
clauses and see whether it is not satisfiable.

19

e aliteral is either an atom or a negated ator:— B, ~door_closed.

e a clause is a set of literals understood as theulisjunction
{=lift_movesdoor.closedalarmon}

aset of clausess understood as the conjunction of the individual clauses.

empty clause #, empty set of clausestt

One is interested ipatisfiabilityof sets of clauses.

Validity (to be a tautology) is trivial for sets of clauseshy?

Figure 13: Clauses

4.1 Representation of formulas as sets of clauses

We all know that any formula@ can be converted into conjunctive normal form,
by “multyplying out” according to de Morgan’s rule. The pteln with this is that
in general the size of the conjunctive normal form will be exential in the size
of the formula to start with. Actually, if this blow up wouldhoccur we had a
simple method for checking whethers a tautology. Just bringinto conjunctive
normal form and see whether each clause is a tautology.

What we can do without exponential blowup, though, is to tes a set of
clausesC which is satisfiableif and only if ¢ is. To that end, we proceed as
follows: first, we may assume thatcontains connectiveg, A, — only and that,
moreover;~ occurs in front of atoms only. One calls this the negatiomradiform
of . Now, if ¢ happens to be a literal then there is nothing to de. H ¢, A¢, and
o1, ¢2 are equi-satisfiable wit; , C,, respectively, thed; U C, is equi-satisifable
with ¢. If, finally, ¢ = ¢; V ¢5 then(C; vV P) U (C2 V =P is equi-satisfiable with
¢. HereP is a fresh atom an@ v P means the addition a? to each clause i@.

4.2 The method of resolution

The method of resolution decides whether a given set of elis satisfiable.
It works as follows: given two clause&s; and C;, such thatC, contains some
literal ¢ andC’, contains its negation/ (with the understanding that the negation
of —A is A) then therule of resolutionapplied toC;, C; yields the claus€’; \
{} U Cy\ {~¢}. For example, applying the rule of resolution{td, =B, D} and

20

Rule of resolution:
Cy U {/} CyU {0}

C1UCy
Example:{—-A, B, D} and{—-B, X } yield {-A, D, X }.

Figure 14: The rule of resolution

INPUT: a set of clauses

WHILE () ¢ C ORC still grows DO
CHOOSEC,,C, € CS. T./ € C; and—/ € C, for some literal.
C:=CU{Ci\{{} UG\ {~(}}

IF) € C THEN OUTPUT ‘C is not satisfiable”
ELSE OUTPUT € is satisfiable”

Figure 15: The method of resolution

{A,-D, E} yields{A,-B, E}. The method of resolution consists of closing up
a set of clauses under the rule of resolution and seeing wh#th so closed-up
set ontains the empty clause or not. This is formalised inlBigNote that if the
initial clause set is finite then the algorithm terminates since there is onlyigefi
number of possible clauses over any given (finite) set obbdes.

4.3 Correctness of resolution

If the set of clauses—atfter this closure—contains the erolatyse then it is un-
satisfiable, otherwise we can find a satisfying valuations Tthe content of the
correctness theorem for resolution.

A set of clauseg is closed under resolutioii the result of applying the rule
of resolution to any two clauses ¢his already contained ifi. The above method
precisely computes the closure under resolution of anrarliset of clauses.

Let C be a set of clausesi an atom. We define the clause séfl—tt] by
removing fromC every clause that contains the literdland removing the literal
—A from every clause that contains it. Analogously, we defihé—ff]. It is
easily seen by case distinction thafifs closed under resolution so are these two
sets.

If n is a valuation that satisfigS[A—uv] then the valuatiom|A—v| which
mapsA to v and all other atoms according #owill satisfy C.

Theorem: Let C be a possibly infinite set of clauses closed under resolution

21

i.e., ThenC is satisfiable if and only i) & C.

Proof: If a set of clause€’ has been obtained fromsatisfiableset of clauses
C by a single application of the rule of resolution th&nis satisfiable, too. One
says that the rule of resolution preserves satisfiabilitysT if we derive front a
set of clauses containing the empty clause thenust have been unsatisfiable in
the first place.

For the converse, suppose tltadoes not contain the empty clause yet is
closed under the rule of resolution. We explicitly constiaugaluatiory that will
satisfy all the clauses iG: Enumerate the atoms a§, A,,.... We define the
valuesn(A;),n(Az),... in order. Let us begin with the variablé;. Not both
C[A; — tt] andC[A; — ff] can contain the empty clause for otherwiSayould
contain both{A,} and{—A;} and hence the empty clause by resolution step.
Thus, choose)(A;) such thatC[A;—n(A,)] does not contain the empty clause.
We continue in this way replacing; with A, andC with C[A;—n(A;)] yielding
a valuen(A,) such thatC[A;—n(A;)][A2—n(A2)] does not contain the empty
clause.

Continuing in this way, we obtain a valuatignwhich satisfies all the clauses
in C. This can be seen by noticing that as the variables are cnesi@very clause
in C eventually disappears.

An important corollary is the compactness theorem for psitmal logic:

Theorem: LetC be a (possibly infinite) set of clauses or propositional farm
las. If every finite subset af is satisfiable then the whole 6fis satisfiable.

Proof: If contrary to the conclusion the whole Gfis unsatisfiable then by
the previous theorem it must be possible to deduce the engquigefromC. But
such a proof will only involve a finite portion @ which would then already be
unsatisfiable contradicting the assumption.

4.4 Long resolution proofs

While for many tautologies (or rather their negations) heson works astonish-
ingly fast there are other ones, e.gchub above for which it is rather slow.
Indeed, FAKEN has shown that the resolution method has exponential wasst ¢
complexity.

Theorem (Haken): There is a constamt> 1 and an infinite family of (unsat-
isfiable) sets of clause®,, P, ... such thatP, consists ofD(n?) clauses yet any
derivation of() from P, will involve O(c¢™) many clauses.

To wit, the set of clauseB,, expresses that + 1 pigeons fit inton holes, e.g.,
P, < —schub.

22

The proof of Haken’s theorem is elementary but fairly longl aechnical.
Recently, WGDERSON has presented an important simplification. Use Google to
find his paper if you are interested.

4.5 Cook’s programme

Haken’s theorem is quite drastic evidence for exponeritiad tomplexity of the
resolution procedure. Even if Haken'’s theorem would notltad stated, reso-
lution could still fail to be a polynomial time procedure:nitight be difficult to
find a polynomially sized derivation dfeven if it exists and in the case sdtis-
fiablesets of clauses the process of closing up might result inrexqically many
clauses.

It is an important open complexity-theoretic question tedato P=NP as to
whether there is a proof system for propositional logic wiité property that any
tautology ¢ has a proof of size polynomial in the size of Refuting this for
concrete proof systems (as Haken has done for resoluti@apapular research
activity initiated by S. @oKk. As far as | know, it is presently not known whether
or not each tautology has a polynomially sized proof in satjgalculus with the
CuT rule.

4.6 The DPLL procedure

In practical implementations of decision procedures foppssitional logic (SAT-
solvers) resolution has been superseded by a surprisiaghg search procedure
known as DPLL algorithm (Davis-Putnam-Loveland-Logemann

It also operates on clause sets and is based on three intztlsgeps

e Unit propagation: if the clause set contains a unit clause,one containing
a single literal, then it is possible to set the value of thatreand propagate
it through the other clauses. We define unit propagation &igntoelow.

e Branching: choose an arbitrary atofnand try to satisfy firs€|A—tt] and
C[A—ff]. If either turns out to be satisfiable then s&isOtherwise(is
unsatisfiable.

e Learning clauses: if during the branching it turns out tlmatdome partial
valuatiornn, the clause seft[n| is unsatisfiable by unit propagation alone then
we can identify those settingsinwhich lead to the empty clause and build

23

a corresponding claugethat can be added tdwithout affecting satisfiabil-
ity. If e.g., we find that settingl—tt, B—ff, Ci—tt leads to a contradiction
(empty clause) then we can add the clafisel, B, -C'} to C. The hope
is that in the future this addition will speed up unit propéga in par-
ticular, if at a later stage we try to, again, settt, B—ff, C—tt then we
find out immeidately that this leads to a contradiction rathan having to
re-perform the corresponding steps of unit propagation.

Slightly more formally DPLL can be viewed as a recursive paiae that uses
a global variable containing a set of claugkslt is an invariant that clauses are
never removed fron® and whenever a clauseis to be added t@ then it is a
logical consequence @, i.e., whenevern satisfieL then it also satisfies.

The procedure takes as argument a partial valuatiand DPLL(7) returns
“satisfiable” if there exists a valuation extendingthat satisifiesC; it returns
“unsatisfiable”, if no such valuation exists. Figure 4.6 teams pseudo code for
DPLL. In a practical implementation a number of improvenseate possible.
Rather than using recursion one can maintain a stack ofapa&rvironments.
Furthermore, it is not necessary to compute the clausé€[gétexplicitly. For
details, we refer to the literature.

5 First-order logic

Propositional calculus is nice, but in many applicationsneed a way of talking
about elements, predicates, and operations. That is weabfuer logic is for.
Figure 5 shows some examples of sentences that lend thexageha formali-
sation in first-order logic. A formal system for writing dovenich statements is
obtained by augmenting propositional logic with tipeantifiersv (for all) and4
(there exists). As to the range of these quantifiers one haptrons which we
consider in order.

Untyped first-order logic. This is the traditional and most common version of
first-order logic. We let all quantifiers and variables ranger one and the same
implicit, a priori given, domain. In this case we must usecsglepredicates to
restrict the range of quantifiers. Figure 18 shows how thengka sentences are
formalised in untyped first-order logic.

24

UNITPRORC, 1) =

IF C[n] contains the empty clause
let p C n be the smallest sub-valuationgtuch that) € C[p]
RETURN (p, “unsatisfiable’)

ELSE IFC[n] is empty
RETURN (7, “satisfiable”)

ELSE IFC[n| contains a unit clausgA}
RETURNUNITPRORC, n|A—tt])

ELSE IFC[n| contains a unit clausg-A}
RETURNUNITPRORC, n[A—ff])

ELSE RETURN(7, "undecided’)

DPLL(p) =
(n',v) == UNITPRORC, n)
IF v = “satisfiable”
RETURN “satisfiable”
ELSE IFv = “unsatisfiable”
C := C U {k}wherek asserts that at least one atom is valued different fijom
RETURN *“unsatisfiable”
ELSE
choose an atom ¢ dom(7)
IF DPLL(7/[A—tt]) ="satisfiable”
RETURN “satisfiable”.
ELSE
RETURNDPLL(7'[A—ff])

INPUT a set of claused’

C=X
OUTPUTDPLL(0)

Figure 16: DPLL-algorithm with clause learning
??

25

o o M w N oPE

o o M w N oPE

Every student has a matric number.

If a student fails to matriculate she will be expelled.

Every human being is a philosopher.

There always is one student who complains about evergeour
There is a set with no elements.

For every natural numberthere exists a natural numbésuch thap? < n
andn < 29+,

The knirp of each bilg is a prugl but does not bebelf anytquis

Figure 17: First-order formulas (informal)

Vz.studentr) = In.numbefz) A hasmatricno(z, n)
Vz.studentr) = —hasmatriculatedz) = will _be expelledx)
Vz.humariz) = philosophefz)

Jdx.studentz) A Ve.courséc) = complainsaboutz, c)
Jx.Vy.~(y € x)

Vn.numberfn) = dd.numbefd) A leq(power2,d),n) A
It(n, power2, plus(d, 1)))

. Va.bilg(z) = prugl(knirp(z)) A Vy.quisty) = —bebelfgknirp(x), y)

Figure 18: Formalisation in untyped first-order logic

26

1. Va:studentn:numberhasmatric no(z, n)

Vz:student=- —hasmatriculatedr) = will _be expelledz)
Va:humanphilosophefz)
Jz:studentvc:coursecomplainsaboutz,)

Jr:setVy:set—(y € x)

o o &M w DN

Vn:number3d:numbereq(power(2, d), n)A
It(power2, plugd, 1)))
7. Va:bilg.prugl(knirp(z)) A Vy:quist—bebelfgknirp(z), y)

Figure 19: Typed first-order logic

Typed first-order logic. Alternatively, we fix a collection ofypesand require
that each quantifier is annotated with a type determiningaitge. Assuming that
we have fixed types

human, student, number, course, set, bilg, quist

we could write the example sentences as in Figure 5. Untypsteofider logic
has the advantage of being slightly simpler to formulate iasdffices for many
applications, especially in mathematics. Typed first-bldgic has the advantage
of being more readable and, more importantly, that it alldvesuser to distinguish
between actual properties he wants to prove and typing jed¢snwhich should
follow automatically in most cases. For example, if we wer@tove formula 6
above in the untyped setting then we would at some point cqmaitln ad and
would then have to prove numbiey as well as the actually interesting property
of d.

In the typed setting the first one falls under typing and caerobe discharged
automatically.

Of course, the distinction between types and predicatesudgctive one and
can be “misused”.

27

Typechecking can be difficult. For example, ifD is the “type” consisting of
quadruples of integer, y, z, n) such that. > 2 andz™ + y"™ = 2" then proving

dp:D.p=p

is tantamount to proving Wiles’ theorem!
If used reasonably then types can considerably simplifyn{fd) proofs and
the appearance of statements.

5.1 Typed first-order language
A typed first-order language is specified by the followingadat

1. acollection7 of types

2. acollectiorP of predicate constantgach endowed with aarity [rq,..., 7, —
booleahwherery, ..., 7, € T

3. acaollectionF of function constants each endowed with an drity. . ., 7,, —
Toni1] Wherery, ... 71 €T

The arity of a predicate constant is nothing but a list of §jlee brackets, the
arrow, and “boolean” are merely notation. We use the natatio [ry,..., 7, —
booleahand f : [r,...,7, — 7,41] to indicate the arities of predicate, resp.
function constants.

Examples: For the formulas 1,...,4 an appropriate language is asfstlo

7 = {studentnumbercoursg

P = {hasmatricno: [studenthnumber— boolean
hasmatriculated [student— boolean
will _be expelled: [student— boolear]
complainsabout: [studentcourse— boolean

F =10

For the formula 7 an appropriate first-order language woald b

7 = {bilg, quist knirp_t}
P = {prugl: [knirp_.t — boolean, bebelfs: [knirp_t, quist— boolean}
F = {knirp: [bilg — knirp_t|}

28

Typing contexts: K = x:71, ..., x,:7,; formally: finite function from variables

to types.
Typing rules:
K(x)=r
_— (VAR)
Kopax:T
folm, oo™ = Tapl] € F Koptiim,...,Koet, : 1 (Fun)

Kbﬁf(tlv"'vtn):,rn-l-l

Figure 20: Well formed terms

The type knirpt arises only as the range of a function symbol not as the range
of a quantifier. When translating this formula from natustduage to formal
language we could also have opted for a predicate constapt:Kibilg, knirp_t —
booleat denoting its graph. The content of the definite articlee'knirp of...”
could be rendered by another formula stating unique exagstenhis would require

the notion of equality which we will come to later.

5.2 Syntax

In order to define properly what formulas are we have to takualberms and
formulas possibly involving variables as those occur inpgsoof quantifiers. We
thus assume an infinite sitof variables distinct from the other symbols and fix
a first order languagg€. A typing contexis a finite partial function’ mapping
variables to types. If< is a typing context and ¢ dom(K) andr € 7 then
K, x:7 is the typing contexK extended withe — 7.

We write K >, t : 7 to mean that is a well formed term inC of type 7
possibly involving the variables declared and typed asrgiwe/’. This judgment
is inductively defined by the followintyping rules

Well-formed formulas are built up from atomic formulas (gieate constants
applied to appropriately typed terms) by propositionalraxtives and quantifiers
which bind variables. Formally, we introduce the judgmént-; ¢ : boolean to
mean thaty is a well formed formula inC possibly involving the free variables
declared and typed iR. This judgment is defined by the following rules:

P:[m,...,7, — booleah e P Kvoptiim,...,Kopt, i1y
Kvp P(ty,...,t,) : boolean

(ATOM)

29

K>, ¢ : boolean

NEG
K>, —¢ : boolean (NEC)
K :boolean K : boolean e {V,A,=
> ¢ > * €4 } (CONN)
K, ¢ %1 : boolean
K, x: : boolean e {v,d
LT Op @ Q€ {v,3} (QUANT)

K v, Qx:T.¢ : boolean
These rules definabstract syntaxogether withtyping (there latter is also
known and misnamed as “semantic analysis”). For concratéagyone needs
to specify precedence rules and use parentheses to dissatdigtherwise. The
connectives take precedence as before; quantifiers alwsgrsdeas far to the right
as possible, i.e., until an unmatched closing parenthegisdountered.

5.3 Semantics

A formula ¢ is closedif it contains no free variables, i.e., >, ¢ : boolean.
These are the ones we are really interested in; the open fasrmte introduced
only as an auxiliary device for the definition of the closeé®n

The meaning of a closed first-order formula is given as a trathe relative to
an interpretation of the types, the predicate constantsitenfunction constants.
To specify the meaning of a non closed formula we also needuatan of the
variables.

Interpretation An interpretatior? of a first-order languagg€Z, P, F) is given
by

1. asefr], foreachr € 7.

2. afunction[P]; : [m]; x -+ x [r,]; — {t, ff} foreachP : [r,..., 7, —
booleann.

3. afunction]f]; : [mi]; % - -+ x [7]; — [7m+1]7 for each function constant
folm, .o s T = Toga)-

Such an interpretation associates a truth value with evesed formula and
more generally, a function mapping valuations of varialdesuth values with
every open formula. For pedants we give here a formal defmniti

30

[[55]],),2 = p(z)
[f(te, ... atn)ﬂp,z = [[fﬂz([[tl]]p,za T [[tn]]p,z)
[Py,)], = [Pl([0],z [l 2)
=],z =~19],+
[ox 4],z =14],7 *f [[E[b]]ﬁ)l— or all -

_ _ it o] s =tforallv e [r];
v ol,z = { ff, otherv[vise]

_ _ e if [¢] ., 7 = tt for somev € [7];
[Ber-dl,z = { ff, otherv[vise]

Herep is a partial function on variables.

We note that ifp is compatible with typing context” in the sense that(x) €
[K(z)]; for all z € dom(K), in particular,p(z) is defined in this case, then
[t],; € [7]; wheneverk >t : T and[¢] , ; € {t, ff} wheneverK >, ¢ : boolean.

A closed formula isvalid if its meaning comes out as true under all possible
interpretations of the language it is based on. Examplesalf galid formulas are
as follows.

e Va:7.P(x) = Jy:7.P(y) (recall that quantifiers always extend to the left as
far as possible),

o (Vo:m.R(x, f(x))) = Vo:m.3y:me.R(x,y) whenf : [r — 7,
o (Vo Ny:m.P(x)V Q(y)) = Vo:m . P(x)) V (Vr:1.Q(2)),

e (QV Ju:r.P(x)) = Ju:m.QQ vV P(x) where(@ : [— booleanis a constant
and, moreover, we have a constanf— 7],

e Ju:7.P(x) = Vy:7.P(y) again in the presence of a constan{— 7.

Nullary predicate and function constants are propositiaeap., “ordinary”
constants. We may writ€ : boolean and:r instead ofQ) : [— boolean and
¢ : [— 7] to declare them and omit empty parentheses (as done aboga)using
them.

5.4 First-order sequent calculus

As before we form sequenis —, A from lists of closedformulasI’, A over
some languag€. The meaning of such a sequent is that the conjunction of the
formulas inl" implies the disjunction of the formulas .

31

Notice that the presence of constant€ioan affect the meaning of a formula
hence of a sequent even if these constants do not occur iyplichis explains
the explicit mentioning of_.

We introduce the notatiog, c:7 for the extension ofZ with a hew constant
c of typer. We keep all the rules for the propositional connectives auohdi four
rules to deal with the quantifiers which we will now explain.

To prove an existential statement we have the rule

I =—r Aa ¢[t/ﬂf]
[' =, A 3Jx:7.0

(E-R)

where(>t : 7.

Here¢[t/z] denotes the substitution ofosedtermt for variablez in ¢.

The rule says that to prove an existential statement we nomseap with a
witness. It corresponds to phrases liKene desired value is therefore given by
t...”. Next, we have the following rule to use a universally quiked statement.

[olt/a] = A
I\Vrr.g =, A

(V-L)

where(>t : 7.

To use a universally quantified statement we must instantiavith some
concrete term. The rule corresponds to phrasesWe apply Lemma xxx / the
above assumptionte = t...” or“Applying Lemma yyy / the above assumption
in this situation yields. . .

One should note that these two rules preserve but do not alvedect valid-
ity, i.e., it may be that the conclusion of a rule is valid, yle¢ premise is not.
After all, one might have chosen the wrong instantiation.réwer, it is possi-
ble that a universal assumption must be instantiated maredhce (consider e.g.
an assumption asserting that some relation is transigee3pmetimes one has to
keep the quantified formula for later use by prior invocatddnule CONTR.

Next, we have a rule for proving a universal statement:

I' =rcr A, ¢lc/x]
' =, AVr:71.0)
Herec : 7 is a fresh constant symbol not occurringdrhence inl’, A, ¢.
To provevz:7.¢p we must proveb for a fixed but arbitrary: : 7.

“Fix an arbitrary ¢ : 7...this prove&/z:7.¢
Finally, we need a rule to use an existential statement:

F? (b[C/.T] :>£,c:7' A
I, 3z =, A

(V-R)

E-L)

32

To use an existential statement we introduce a fresh namigsfaritness. We
know nothing about the witness except that it satisfies

“Lemma xxx provides us with @such thaty[c/x]”

“Let ¢ be thex provided by (13) above”

We notice that in the latter two rules no formulas with fre@afales arise as
the bound variable is immediately replaced with a fresh oris There are alter-
native presentations in which free variables are used ®f‘fiked but arbitrary
constants” occurring in those rules. In a typed setting &thgiempty domains of
guantification this seems less appropriate as we then wawiel to annotate each
sequent with the set of variables it depends on. Moreoveariabe is supposed
to vary, whereas these constants are fixed.

Let's take a look at a couple of representative examples.

AXIOM

P(c) =>r.er P(c)
P(c) =>r.er J:T.P(2)
= rer P(c) = Jx:m.P(x)

=, Vo:r.P(x) = Jo:7.P(x)

5.5 Soundness and completeness of first-order sequent calcu
lus

As before we have that a sequent is valid if and only if it isidle in the se-
guent calculus, i.e., if there is a proof tree whose leavesadnelled with axioms.
Unlike in the propositional case, the contraction ruleN@r is not redundant
corresponding to the fact that universal premises may rebd tised more than
once. This thwarts a naive decision procedure for validégdal on constructing
a generic proof tree and, indeed, as was shownbyINiG validity in first order
logic is undecidable. Actually, this result is not very sismg if we consider that
basically all of mathematics can be formalised in first-otdgic.

33

Theorem: A sequent is valid if and only if it is derivable in the sequealcu-
lus.

Proof: The “if” direction of the correctness theorem (“soundngss’proved
as before by induction on derivations; we simply have to kfbat all the rules
preservevalidity.

For the “only if” direction (“completeness”) we construcganeric proof tree
as in the propositional case by breaking down connectivesifanothing else
helps instantiating quantifieksL, 3-R. We must make sure that we keep those
guantified statements around usingO'R prior to instantiating. If we arrange
things in such a way that eventually a quantified formula ballinstantiated with
every possible term we are sure to find a proof if one exists.

If no proof exists our generic proof tree contains a leaf thabt an axiom or
has an infinite path.

From the infinite path we will construct a counter interptieta by taking
terms (also containing the constants newly introducedgibe path) to interpret
the types, function constants interpreting themselved,iaterpreting predicate
constants according to how atomic formulas involving thexwuo along the path.
This will ensure that the interpretation falsifies all thejsents along the path
hence the root sequent which by assumption has no proof.

Let us look at this in some more detail. Firstly, to counteritiformation loss
in the instantiating rul&-L and3-R we replace them by the following combina-
tions with rule ®NTR:

[Va:r.¢, o[t/z] = A

I\Vrr.g =, A

[' =, A, Jx:7.0, 9t/ 2]
' =, A dx:7.0
It is clear that there is a proof with the primed rules if andlgnf there is one
in the original system.
A generic proof treds a possibly infinite tree labelled with sequents which
has the following properties:

(v-L)

(G-R)

1. each internal node is the conclusion of its immediate stoce by some
proof rule.

2. rule WEAK is not used,

3. rulesv-L’ and 3-R’ are used only with conclusioh —-, A wherel"
contains atoms and universally quantified formulas only Andontains

34

atoms and existentially quantified formulas only. Otheenige could use
one of the validity-reflecting rules.

4. no internal node is labelled with an axiom, i.e., we stopsorwe have found
an axiom

5. on every infinite path starting frolh —, A, dz:¢ the formuladz:¢ is
instantiated with all (closed) terms of typan £

6. Ditto for infinite paths starting from, Vo:r =, A

These properties basically dictate a strategy for obtgimirgeneric proof tree
starting from any sequent. Simply apply the rules backwaiitts the mentioned
restriction on the rules that instantiate quantifiers. Whéellecting instantiations
make sure that every possible instantiation will be evdlytichosen unless of
course a path ends with an axiom leaf. Please note, that asaso@e make a
language extension we must instantiate our quantified flasnwith all the terms
in the new language as well.

Now suppose that a sequéhhas no proof. The generic proof tree constructed
from S might have a finite path ending in a non axiom consisting ofmatdor-
mulas only. In this case, we can argue as in the case of ptapwilogic that
the root sequent is unsatisfiable. Alternatively, and thibe interesting case, the
generic proof tree will contain an infinite path(starting from the root). This
is “Konig’s Lemma”: a finitely branching tree with infinitgimany nodes has an
infinite path. Along this infinite patlr we encounter an increasing (by constants)
sequence of languagés C £, C ... whose union we call.,. So, a term in
L. will be a term of one of the,.

To construct our desired counterinterpretatiowe interpret types by

[rl;={t| 0>, t:7}
We interpret function constants by
[f1: (s tn) = f(t1, oo tn)
We interpret predicate constants by

tt, if P(tq,...,t,)is among the antecedents
[Pl (t1,....t) = (left of =) of a sequent inr,
ff, in all other cases.

35

Now we show by induction on the size of formulas that whenavermula¢
appears as an antecedent of a sequentiven[¢], = tt and whenever a formula
1 appears as a succedent (to the right ofthe) of a sequent imr then[y], = ff,
so that in particular all the sequents alengncluding the root will be falsified by
7. So,7 shows that the root is not a valid sequent.

Atomic formulas are true undér precisely if they appear as an antecedent.
If an atomic formula appears as a succedent then—since @fomulas never
disappear along the path—it cannot also appear as an aatéded otherwise
we would have an axiom sequent ortontrary to the construction of the generic
proof tree. Thus, atomic formulas appearing as succedeatslaified byZ. A
formula which is not an existentially quantified succedard aniversally quan-
tified antecedent will eventually be broken down by a vajidéflecting rule into
its subformulas to which the induction hypothesis appl@snsider for example
a succedent of the foriviz:7.¢. At some point rulé/-L will be applied, sap[c/z]
also occurs as a succedentanBy the induction hypothesigp[c/z]] ; = ff, but
then[va:7.¢], = ff, too.

If, finally, we have an existentially quantified succederd, elx:¢ then by the
“round robin” policy used for instantiating all formulad] the formulase|[t/x]
with) >, __ ¢ : 7 will occur as succedents alomghence are falsified by. Since
7], comprises precisely all those terms we conclude [fBatr.¢] = ff, as well.
The case of a universally quantified antecedent is analogihis completes the
proof.

One should not underestimate the power of first-order logigeen without
function constants the counter interpretation may be itgfihiie to infinitely many
newly introduced constants. Consider for example the féamu

(Vx,y, z:1.R(x,y)AR(y, z) = R(x,2)) A (Vr:7.3y:7.R(z,y)) = 7. R(x, x)

It is not valid but holds in all finite interpretations. You ynfind it instructive to
form the generic proof tree for this formula.

5.6 First-order logic in PVS

Language concepts are declared anywhere in a theory, reldeging used
D, T1, T2 : TYPE+

c: T1
P : [D -> boolean]

36

Q : boolean
f: [T1->T2]

HereTYPE+stands fomonemptytype. There is also the declarati®nl YPE
which stands for a possibly empty type. In this case it woutlbe allowed to
declare a constant of typle

This design decision of PVS is open to debate. By declaringnatant of a
type we explicitly state that it is nonempty so why say it ®@#c

Quantifiers are writteRORALL(X:T): andEXISTS(x:T): Do not forget
the colon after the parenthesis.

exl : THEOREM
FORALL(x:D):P(x) IMPLIES EXISTS(x:D): P(x)
orex : THEOREM
(Q OR EXISTS(x:D):P(x)) IMPLIES EXISTS(x:D):Q OR P(x)
depp : THEOREM
EXISTS(x:D): FORALL(y:D): P(x) IMPLIES P(y)
gen : THEOREM
(EXISTS(x:D):P(x)) IMPLIES FORALL (x:D):P(x)

The rulesv-L and3-R are invoked with the commandst (instantiation).
The rulesy-L and3-R are invoked with the commarsttolem (after TH. SKOLEM).
Theinst command takes as argument a formula number (the formula to be
instantiated) and a term to instantiate with. For examplé&)é situation

{-1} P(d)

{1} EXISTS (x:T1): P(x)
the command

(inst 1 "d")

leads to

{-1} P(d)
{1} P@)

which is an axiom.
Theskolem command takes as argument a formula number and the name of
a new constant. If it isn’t fresh then PVS complains. For eglayin the situation

37

{1} FORALL(x:D):P(x) IMPLIES EXISTS(x:D): P(x)

The commandskolem 1 "c") is no good because we have already used
for a constant above. Howevéskolem 1 "d") succeeds and gives

{1} P(d) IMPLIES EXISTS(x:D): P(x)

The commandM-x show-skolem-constants displays all the constants in-
troduced in the course of the proof.

The commandist andskolem allow the treatment of several variables
at once. There are also the derived famat? which guesses an appropriate
instantiation heuristically (alas often quite badly) akdlem! which automati-
cally introduces as many constants as possible (makingesp fiames for them).
Furthermoreskosimp is a combination oskolem! and simplification. See
the PVS prover guide for details.

As an exercise try to prove all of the “theorems” below.

fol: THEORY

BEGIN

D, T1, T2 : TYPE+
c: T1

d: D

P : [D -> boolean]
Q : boolean

alE : THEOREM
FORALL(x:D): (FORALL(y:D): P(y)) IMPLIES P(x)

andall : THEOREM
(Q AND (FORALL(x:D):P(x))) IMPLIES FORALL(x:D):Q AND P(x)

exl : THEOREM
FORALL(x:D):P(x) IMPLIES EXISTS(x:D): P(x)

andex : THEOREM

38

(Q AND EXISTS(x:D):P(x)) IMPLIES EXISTS(x:D):Q AND P(x)

orex : THEOREM
(Q OR EXISTS(x:D):P(x)) IMPLIES EXISTS(x:D):Q OR P(x)

depp : THEOREM
EXISTS(x:D): FORALL(y:D): P(x) IMPLIES P(y)

doub : THEOREM
FORALL(X,y:D) : EXISTS (z:D) : P(z) IMPLIES P(X) & P(y)

P1 : [T1->boolean]
P2 : [T2 -> boolean]

por : THEOREM
(FORALL(x:T1,y:T2):P1(x) OR P2(y)) IMPLIES
(FORALL(x:T1):P1(x)) OR (FORALL(X:T2):P2(x))

R : [D,D->boolean]

per: THEOREM
(FORALL (x,y:D):R(x, y) IMPLIES R(y, x)) AND
(FORALL (x,y,z:D): R(X, y) AND R(y, z) IMPLIES R(x,z)) IMPLI
(FORALL (x:D): (EXISTS (y:D): R(x,y)) IMPLIES R(x,x))

END fol

6 First-order resolution

As in the propositional case the method of resolution presid generally more
efficient way to decide validity of formulas than proof sdairt Gentzen’s sequent
calculus. In the first-order case we may instantiate unallgrquantified variables
prior to resolving so as to achieve agreement of literals. éxample, we may
resolve the clauseSP(f(z, g(y))), Q(z)} which denote&/z, y.P(f(z,9(y))) V
Q(x) (types omitted) and—P(f(g(z),w)), R(w)} which denote§w, z.—P(f(g(z),w))V
R(w) to form {R(g(y)), Q(g(z))} which denotesy, z.R(g(y)) V Q(g(2)).

Notice that again a satisfying interpretation for the forrweo clauses will
also satisfy the latter. In this example, we could also hagtantiatedr with

39

Cr={P(f(z,9(y))),Q(z)} e, Va,yP(f(z,g(y))) v Q)
Cy={=P(f(g9(2),w))V R(w)} ,i.e., Yw,z=P(f(9(z),w))V R(w)}
resolve to

Cs ={R(g(y)) vV Qg(2))} e, Vy,z.R(g(y)) v Qg(2))
Figure 21: Example of resolution

something likey(f(h(c()))) and accordingly with f(h(c())). However, in order
to maximise future success it is advisable to choose tharitiation which makes
the least possible commitment or, in formal terms,ittast general unifiedWhile
this is in practice always done, it is, for the purpose ofldgthing completeness,
easier to allow arbitrary instantiations.

Let us look at the details. First-order resolution operateslauses which
are sets of first-order literals, i.e., negated or non-rezjatomic formulas, which
are understood as being universally quantified over thelkas they contain. In
order to avoid problems with empty types we assume that ewulage is such
that every type contains at least one closed term.

e Afirst-order literal is a negated or non-negated atomic fdem
o Afirst-order clause is a set of first-order literals

¢ It denotes the disjunction of the literals universally qtiféed over the vari-
ables

Given a set of first-order claus@swve can use first-order resolution to decide
whether it is satisfiable, i.e., whether there exists arrpmétation which makes
it true. If we can derive the empty clause frainby successive application of
rules INST and Resthen surelyC is unsatisfiable. Conversely,dfis unsatisfiable
then it is possible to derive the empty clause. The proofisfrigsult is based on
correctness of propositional resolution and Herbranasitém which asserts that
a set of formulas of the foriiz:7.¢ with ¢ quantifier-free is satisfiable if and only
if the set of its closed instantiations is propositionahyisfiable:

Theorem (“Herbrand’s theorem”): Le§ be a set of formulas of the forki.¢
with ¢ quantifier-free.

Define

S = {o[t1/x1, ..., ty/zn)] | V171, .. V0,700 € SandD b p t;:7;}

40

e Instantiation rule:
C

Clty/z1, ...t/ 2]

wherez; are the variables mentioneddhand thet; arepossibly opeterms
(of the right type!).

(INST)

e Resolution rule
Cy U{A} Cy U {—A}

Cy U0y

(RES)

e Side condition: there is a closed term of each type.

e Aim: try to derive empty clause from initial set so as to showatisfiability.

Figure 22: First-order resolution

as the set of closed instantiations of formulasin

There exists an interpretatidnvalidating all formulas irS if and only if there
exists a propositional valuatiopof the atomic formulas (viewed as propositional
atoms) validating all formulas i§.

Proof: GivenZ definen by n(P(ti,....t,)) = [P(t1,...,t,)];. Givenn
interpret types as sets of (closed) terms, function symbyplthemselves, and
predicates as given by O

Thus to establish unsatisfiability of a set of first-orderusks it is enough
to establish propositional unsatisfiability of their cldgastantiations, but that’s
precisely what rule Rs can do as shown in Section 4.

Rule INST on the other hand, allows us to generate the set of closeahimst
ations. Performing resolution on clauses containing @nsiily quantified) vari-
ables certainly does no harm, but may of course speed upssicce

6.1 Most general unifiers

As already mentioned, in practice one resolves clausesdtgritiating with the

most general unifierThe most general unifier of two open term&:, . . ., x,,)
andu(y, . .., y,) consists of two sequences of open terms. ., ¢, ands, .. ., s,
involving variables:, . . ., zi, such that(ty, . .., t,,) = v(sy, ..., s,) and, more-

over, any instantiation making equal tov arises from this one by instantiation,

41

o u(wy,...,xm),v(y1,...,y,) two term with free variables andy.

— -

Most general unifier consists 6fz) andt(z) such that.(s(z)) = v(t
and

— >,

wheneven(3) = v(t) thens' = 5(a),t' = t(b).
Example: u = f(x, g(y)),v = f(h(y), z):
= [h(z)/z,z/y],t = [z/y,g(:c)/af]

Note: the most general unifier might not exist, eg= f(x),t = g(y).

Figure 23: Most general unifier

QaaQaQaa

(C1
(C2
(C3
(C4
(C5
(C6

Figure 24: Example of first-order resolution

i.e., whenever (i) = v(5) theni’ = #]d/z] ands’ = 5]b/Z] for someg, b.

For example, the most general unifier pfz, g(y)) and f(h(y),z) is § =
[n(2)/x.x/y],t = [2/y, g(x) /2] because we hav&(z, g(y))[1(2) /=, z/y] = f(h(2),9(z)) =
f(h(y),x)[z/y, g(x)/z]. Notice that the variable namesutw as well as the com-
mon ones in the, t are rather arbitrary. In particular, if the same variablpgens
to occur in both: andwv, we can instantiate it differently in both.

The most general unifier is effectively found by comparing tidrms in ques-
tion in a top down fashion starting from the outermost fumrcitonstant. We omit
the details of the unification algorithm and also a formabptbat resolution with
most general unifiers is complete. The idea is to map any preioly REs and
INST to a proof using only the following combined rule.

Cl U {Al} 02 U {_|A2} §, Fmgu OfAl, A2
C1[3] U Colf]
Of course it goes without saying that all the instantiatiorele in the course

(RES-UNIF)

42

of resolution must be type correct, i.e., the resulting seemd atomic formulas
must be well-formed.

At this point it is worth reiterating the point made earliarS$ection 5 about
types separating interesting and potentially difficult$com uninteresting obvi-
ous facts. The number of clauses hence the search spacadartien becomes
smaller the more we make use of types.

6.2 Skolemisation

We now discuss how to translate arbitrary first-order foamsuhto first-order
clauses; somewhat surprisingly, any first-order formuéjisivalent to set of first-
order clauses albeit in a richer language.

In order to do that we use the following fact known s®lemisationagain
after TH. SKOLEM.

Fact: Let ¢ := Va7 ... Va,:7,.3y:7,11.0(Z, y) in some languag&€ and
let £’ be the languag€ extended with a new function constafit [r, ..., 7, —
T.+1]. The formulay is satisfiable if and only if the formulée,: 7y . . . Va,,:7,.0(Z, f(Z))
is satisfiable.

The function constant is called aSkolem function

Now consider an arbitrary first-order formufa Using the following tautolo-
gies

ax (Qr:r.B(z)) & Qu:T.aV () *e{V,A,=},Q € {V,3}
(Qu:T.a(z)) = B & Qut.afr) = 8
(=Qu:T.a(x)) & Qu:T.max)

where3 =V, V = 3 we can bring each formula (up to equivalence) into the form

Qlflj'lITl.le'giTQ in'nZTn.QSQ

with @4, ..., Q, € {¥, 3} and¢, quantifier-free. The latter formula is by defini-
tion in prenex form

Thereafter, using the “fact” we can successively replacgtential quantifiers
with new function constants that take all the previous urisighly quantified vari-
ables as arguments so as to obtain a universally quantifielédoo combination
of atomic formulas which in turn is equivalent to a set of fostler clauses. Sum-
ming up, we have the following result.

Theorem: For every first-order formula one can effectively find a set of
first-order clause€ such that is satisfiable if and only i€ is.

43

Proof: Bring ¢ into prenex form (move all quantifiers to the front exchaggin
v andd when moving out of a negative position). Replace existéqgtiantifiers
by Skolem functionsising language extension by function constants. Bring the
resulting universally quantified formula into clausal foasiin propositional case.

O

In my view, the reason why resolution is superior to proofrslean sequent
calculus is that the choice of instantiations is made atiekihg at two clauses
(and performing unification) which, when informally traatdd back to sequent
calculus, means that the form of the side formdlad in a sequent, say, —,
A, dz:7.¢ helps in finding an appropriate instantiation forl am not aware of a
precisation of this argument in the form of a unificationdshstrategy for finding
instantiations in sequent calculus proof search. In thigexd one should note
that the flattening of nested quantifications using Skolatius is crucial for the
success of unification.

6.3 Some puzzles

Here are some small examples that should be brought intealléarm and proved
by hand, using PVS, or automatically using SPASS.

The mislabelled boxes (from http://www.cs.miami.edu/"tptp/): There
are three boxes a, b, and c on a table. Each box contains apglasanas or or-
anges. No two boxes contain the same thing. Each box has lattabeays it
contains apples or says it contains bananas or says it nsraeanges. No box
contains what it says on its label. The label on box a saysléappThe label on
box b says "oranges”. The label on box ¢ says "bananas”. Yckiyp box b and

it contains apples. What do the other two boxes contain?

Barber’s problem (from http://www.cs.miami.edu/"tptp/): There
is a barbers’ club that obeys the following three conditions

1. If any member has shaved any other member — whether hiorsatbther —
then all members have shaved him, though not necessariig aaine time.

2. Four of the members are named Guido, Lorenzo, PetruaibCanrare.

3. Guido has shaved Cesare. Prove Petrucio has shaved borenz

44

Continuity of composition

7 ={p,1}
F={f:lp—0rl}
P = {€: [p,. — boolean}

Va:pVU:w. € (f(x),U) = IVu.e(x, V) AVy:p. € (y, V) =€ (f(y),U)
=
Va:pVU:w. € (f(f(x)),U) = IViu.e(x, V) AVy:p. € (y, V) =€ (f(f(y)),U)

6.4 Compactness of first-order logic

Theorem: Let ® be a set of first-order formulas over some signature. If every
finite subset ofb has a model the itself has a model, too.

Proof: Using skolemisation we may assume without loss of gengrihlit @
consists of formulas of the form
foralld:T.¢ with ¢ quantifier-free.

Let us form the propositional theofly consisting of closed-instantiations of
the formulasp as in Herbrand’s theorem. If every finite subsetboiias a model
then every finite subset @f will be satisfiable, since a finite subsetlbfcan only
involve a finite subset ob. By compactness of propositional logic therefore the
whole ofII is satisifable and by Herbrand’s theordnhas a model.

The compactness theorem has a number of perhaps surprisisgguences.
Consider, for example, the 98t of closed formulas (over the signatyret , +, x,0,1, >
) that are true in the standard interpretation that intesprat as the natural num-
bers etc. This set of formulas, tfiest-order theoryof the natural numbers con-
tains in particular all the instances of the Peano axiomsiugh more, e.g., those
formulas that are true but not provable from the Peano axioms

Now let us extend the signature by a special constanf— nat | and the
formulase,, := Jy:nat .c > 1+ ---+ 1 (n summands).

Every finite subset of this extended set has a model, namelgatural num-
bers withc interpreted as a large enough number. By compactness daheitbie
whole set has a model which is a structure validating the $asterder formulas
as the natural numbers themselves, yet contains an infinéeje number—the
interpretation of-.

Let us explore the structure of suchlan-standard modedf arithmetic. As
we have seen, it contains a numlsethat is greater than any standard number.
Since every number (includinghas a successor there are more infinite numbers

45

c+ 1,¢+4 2,c+ 3, etc. Since every non-zero number has a predecessor (that is
a valid first-order sentence!) there must alsacbe1,¢c — 2,¢ — 3, etc. So the
numbers around form a structure isomorphic td. Since every number can be
doubled and halved (in the floor-sense) there must be ansticb? block above

the one surroundingand one below. In between any two disti@eblocks there
must be another one, etc. So any countable non-standard hasdan order type
isomorphic toN + Z.Q.

In a similar way, we can use compactness to show consisteiittyrespect to
first-order logic!) of infinitesimal numbers. Add to the tingof the real numbers
the infinitely many axiom® < ¢ < 27". Every finite subset is consistent so the
whole set is and it thus has a model in which there is a consthat is arbitrarily
close to zero. Of course, then, say- c is arbitrarily close tor, etc. We can then
define a derivative as something lik¢x + c)/c. Notice that if we prove some
first-order statement from this extended theory then, aggaicompactness, only
finitely many of the assumptioris< ¢ < 2~ will have been used, so in this case,
an ordinaryc will do.

7 Equality

Most mathematical statements of interest involve equdtitg in principle possi-
ble to treat equality just as a predicate constant and tovassxioms stating that
equality is an equivalence relation compatible with alldtion and predicate con-
stants. For practical purposes itis, however, more coeveto introduce equality
as a special primitive concept.

So, in first order logic with equality atomic formulas can leenfied in two
ways:

e P(ty,...,t,)Wherety,..., t,aretermsoftypes,...,7,andP : [r,..., 7, —
boolean. That's as before.

e t; =ty Wherety, t, are terms of some common type

Such an equality formul& =t is true if and only if under the interpretation at
hand the two termsg,, ¢, have equal meaning.
The sequent calculus can be extended so as to cope with tyduakdding
the following rules:
(>, t: 7 for somer

F:>£A,t:t

(REFL)

46

Uity =to, lta/a] = A
Dt =ty, =, A, @[ts/ 7]
Uity =ty =1, A, —¢[t1 /7]
olt/a] = ——olti/z] Tt =ty m=¢[t1 /2] = A
Ity =to, [t1 /2] = A
REFL

—-

SuUBST-R

—_-

Cut

b=ty =,la=1
SUBST-R

by =ty =, ta=1

CuTting with the conclusion gives rules UBST-L-RL, SuBST-R-RL.
AXIOM

to =t3,t1 =ty =ty =13
SUBST-R

to =1t3,t1 =ty = t1 =13

Figure 25: Example derivations

[t =ty = A, @[t/ 7]
[t =ty = A, @[t1/7]

Rule REFL says that = t is vacuously true; if this is among our conclusions
then we're done.

Rule SUBST-R says that if we have an equality= ¢, among our assumptions
and we need to prove a formufé, /=] which containg; as a subexpression then
we can replace, by ¢, and therefore prove|t,/x] instead.

We immediately have the following derived rules:

F,tl = t2,¢[t2/l'] —r A
F,tl = t2,¢[t1/l'] —r A
[t =ty = A, @[t /7]
F? tl = t2 —r A? ¢[t2/$]
F7t1 = t27 (b[tl/'r] = A
F7t1 = t27 ¢[t2/x] = A
Figure 7 contains a derivation of ruleJ8sT-L.

It is possible to show that sequent calculus with the equalites derives

all valid formulas; to that end one considers the quotienthefterm model by

the congruence relation generated by the equations apgeasiantecedents of
sequents on the infinite path in the generic proof tree.

(SuBsT-R)

(SuBsT-L)

(SuBsT-R-RL)

(SuBsT-L-RL)

47

Similarly, one can extend resolution with rules that allave ®o replace equals
with equals within clauses. We will come back to this lateBactior??.

7.1 Equality in PVS

The rule REFL is treated like an axiom: as soon as PVS encounters an imstanc
of reflexivity the corresponding subgoal is discarded (STtwmpletes the proof
of ...”) or, if it was the last open branch of the proof, the gfres completed

(“Q.E.D”).

To invoke either 8BST-R or UBST-L we use the command
(replace (what_with) (where))

Here (what_with) must be the (negative) number of an equation among the an-
tecedents{where) must be the number of any formula either in the antecedents
(that's SUBST-L) or in the succedents (that'suBsT-R) which contains the left-
hand-side of what_with).

To invoke either rule 8BsT-L-RL or SuBsT-R-RL we use the command

(replace (what_with) (where) : dir RL)

7.2 Extended example: monoids

We assume a nonempty $dtvith an associative operatienin infix notation.

M : TYPE+
* . [M,M->M]
assoc : AXIOM
FORALL(X,y,z:M):(x *y) xz = X*(y *2)

Of course, all this must be placed in.pvs file and within something like
monoids : THEORY BEGIN...END

Generalised associativity We want to prove an extended law of associativity:

assoc4 : THEOREM
FORALL(X,y,z,w:M): ((x *Y) *Z) *W = Xx(y *(Z *W))

48

We will first do it the basic way and then using some more adedrcom-
mands.

After starting the prover we introduce constants for theversally quantified
variables with the comman(@kolem!)

{1} ((x'1 * yll) * zI1) + wll = x11 = (y'l1 =+ (zI1 =+ w!l))

wherex!1, y!1, z!1, w!l are fresh constants of typé
Recall, that in this casgskolem!) is equivalent tqskolem 1 ("x!1"
"yt vzt "wil") which inturnis equivalent t¢skolem 1 "x!1")

followed by(skolem 1 "y!1") followed by(skolem 1 "z!1") followed
by (skolem 1 "w!l1")

We first want to rewrite the subterffx!1 = y!1) = zl1) usingassoc .
To that end we adédssoc to our antecedents wittemma "assoc")

{-1} FORALL (%, y, z: M): (x *y) x Z =X *x (y * 2)

[1] ((x11 * yll) *= zI1) + wll = x!11 = (y!l1 = (zI1 =+ w!l))

Normally, thelemma command applies to something already proved, a “lemma”.
In that case it corresponds to the/Crule. With axioms it’s a bit different. We
can think of them as being implicitly added to the antecesleit that case the
lemma command simply highlights them. It is also possible to edtigre sequent
calculus by real axioms.

At any rate, we will need our axiom more than once, so we stacoipying it
corresponding to GNTR: copy -1 .

{-1} FORALL (%, y, z: M): (x * y) x Z
[-2] FORALL (x, y, z: M): (x * y) x Z

x x (y 2
X x (y *» 2

[1] ((x11 * yll) *= zI1) + wll = x11 *= (y'l1 = (zI1 =+ w!l))

The-1 formula must now be instantiated with thest command:(inst -1
"X!l" Ily!lll IIZ!lll)

{-1} (1 * yl1) o+ zI1 = x11 + (y'11 = zI1)
[-2] FORALL (X, y, z: M): (x *y) * z=X * (y *x 2)

[1] ((x11 * yl1) * zI1) + wll = x11 *= (y'1 =+ (zI1 =+ w!l))

49

Now we can use an equality rulgeplace -1 1)

[-1] (x!'1 * yl1) * zI1l = x11 = (yl1 = Zz!1)
[-2] FORALL (x, y, z: M): (x *y) x Z =X *x (y * 2)

{1} (x'1 * (Y11 o+ zI1)) =+ w!ll = xI1 =« (y'1 = (zI1 =+ w!l))

The parentheses around the just replaced subterm are ptayaid which is irri-

tating. Next, we must apply associativity to the whole lefhd side, the middle
term being this time not just a constant, it * z!1 . This time we use a
slightly more powerful commandnst-cp ~ which works likeinst but copies

the formula to be instantiated beforehand. So,

(inst-cp -2 "x!I1" "y!1 *zI11" "wll")
brings us to

-1 (x!1 * yl1) o+ zI1 = x11 + (y'1 =+ zI1)
[-2] FORALL (x, y, z: M): (x *y) x Z =X *x (y * 2)
{-3t 1 * (yl1 o+ zI1)) =+ wll = xI11 =+ (yl1 =+ zI1 =+ w!l)

[1] xI1 *= (y'1 =+ zI1) =+ w!l = xI11 = (yl1 == (211 = w!ll))
Now (replace -3 1) gives

[-1] (x'1 * yll) o+ zI1 = x11 *= (yl1 =+ 2z!1)
[-2] FORALL (%, y, z: M): (x * YY) x Zz =X x (y * 2)
[-3] (x!1 * (yl1 o+ zI1)) =+ wll = x!11 =+ (yl1 =+ zI1 =+ w!l)

{1} x11 = ((y'1 =+ zI1) =+ wll) = x!11 = (yl1 = (zI1 == w!l))

where again, I've inserted some parens. This is gettingeclosstantiating the
remaining copy of associativity with

(inst -2 "yl1" "z!1" "w!1")

followed by (replace -2 1) completes the proof.

50

High-level proof Now let’s do the same proof again with more powerful com-
mands: After(skolem!) we get as before

{1} ((x'1 * yl1) o+ zI1) + wll = xI1 * (y'1 =+ (zI1 * w!l))

Now rather than bringing imssoc , instantiating, and then rewriting our goal
with it, we can use the commanewrite-lemma (p. 65 ofprover-guide.ps)
which does these two steps in one go:

(reWrite-lemma "aSSOC" (IIXII IIX!lll Ilyll Ily!lll IIZII IIZ!1II))
results in

Rewriting using assoc where
X gets x!1,
y gets y!1,
z gets z!1,

this simplifies to:

assoc4 :

{1} x11 = (y"1 * z11) = wll =xI1 =+ (y'11 = (zI1 = w!l))

The commandewrite-lemma takes as second argument a substitution which
is an even length list providing the required values fortalibound variables in the
lemma. After perfoming this instantiation it must becomesgnation with which
rewriting then takes place. Admittedly, this syntax is samnat inconsistent with
the syntax of th€inst) command.

Now, we want to perform the same procedure again, but witlifardnt sub-
stitution:

(rewrite-lemma "assoc" ("x" "x!1" "y" "y!1 * zI1" "z" "wll"))

Fortunately, we don’t need to type in again from scratch:kiestrokeM-p, that

is the[Alt | key and theéP] key together, brings up the last command entered. We
only need to edit the substitution. Furtidrp bring up even earlier commands.

If we've gone too far, we can udd-n to go back again. There’s another way to
ease typing: If we start to type a command like so

(rewri

51

and then typeM-s it will be completed to the last command typed with the same
beginning, i.e., in our case the lasivrite-lemma command which again can
then be edited.

However we enter the command, it brings us to

{1} xI1 + (yl1 =+ zI1 *» w!l) = xI1 = (y'1 = (zI1 »* w!l))
at which point
(rewrite-lemma "assoc" ("x" "y!1" "y" "zI1" "z" "wlIl1"))

completes the job.
Therewrite-lemma command can also be given ttdir RL optional
argument, so we could have worked on the right hand sideadsiiee so:

{1} ((x'11 * yl1) o+ zI1) + wll = x!11 * (yll = (z!1 =+ w!l))
Rule? (rewrite-lemma "assoc" ("x" "y!1" "y" "z!1" "z" "w!l") :dir RL)
{1} ((x'1 * yl1) o+ zI1) + wll = xI1 =+ ((y!'1 =+ zI1) = wll)

Even quicker proofs: Filling in the instantiations is tedious and can partly be
automated. That's what the commanmavrite (p.64 ofprover-guide.ps)
does for us. Unfortunately, not always successfully, wheckvhy it's good to
know the more basic commands. In the example at hand it whdsever, and
we can do the entire proof by issuing the following four cormishet

(skolem?)

(rewrite "assoc")
(rewrite "assoc")
(rewrite "assoc")

Even quicker is the following approach: using the comman@8ggd. ofprover-guide.ps)
(auto-rewrite "assoc")

we tell PVS that it should consider all instancesagboc as automatic rewrite
rules. After that commandgrind) completes the task.

52

Uniqueness of neutral elements We postulate a neutral element by adding

e : M

neutral_left : AXIOM
FORALL(X:M):e *Xx=X

neutral_right : AXIOM
FORALL(X:M):x *e=x

Our goalis

neutral_unique : THEOREM
FORALL(el:M):
(FORALL(x:M): el =*x=x) AND
(FORALL(X:M): x *el=x) IMPLIES e=el

Here it is useful to first get an idea of how this proof shoulaibae informally:

If el is also a neutral element then= e*el. By neutrality ofe the right
hand side equalsl and we're done.

In PVS after(skolem!) and(flatten) or, more compactlyskosimp)
we get

{-1} FORALL (x: M): elll * X = X
{-2} FORALL (x: M): x * elll = x

{1} e = elll
We want to expand ase * elll using-2 . We instantiate. ..

(inst -2 "e")

{-1} FORALL (x: M): elll * X
{-2} e = elll = e

1
X

and replace
(replace -2 1 :dir RL)

bringing us to

53

[-1] FORALL (x: M): elll * X
[[2] e =+ elll = e

1
X

elll

{1} e = elll
which is an instance afeutral _left . The way to convince PVS of this is
(use "neutral_left")

A more pedestrian way would be to usenma andinst
A slightly quicker proof ~ After (skosimp) we can usérewrite-with-fnum
-2 ("x" "e") :dir RL) to achieve the expansion of the left hand side. The
commandrewrite-with-fnum , IS like rewrite , so doesn’t normally re-
quire a substitution (instantiation). In this case, we havgive it because other-

wise the replacement is applied to the right hand side, too!.
This brings us to

[-1] FORALL (x: M): elll * X = X
[-2] FORALL (x: M): x * elll = x

{1} e = elll = elll

At which point we conclude usin@se "neutral left")
| couldn’t find a more efficient proof of that one. Can you?

Invertible elements An element oMis invertible if it has an inverse:
Invertible(x:M) : boolean = EXISTS(y:M): x *y=e AND y*x =
We can prove that the neutral element is invertible:

inv_neutral : THEOREM
Invertible(e)

We see here, how, abbreviations a.k.a. definitions aredated.
After invoking the prover the first command mustdbgand "Invertible"”
to open the definition. This brings us to

{1} EXISTS (y: M): e *y=e ANDy~* e =¢e

54

e

Now we have to come up with an alleged inverse t&urprise, it's going to be
itself.

(inst 1 "e")

Here we could also have us@dst? 1) which would leave it to PVS to find
the correct instantiation. It sometimes does. ...

We conclude witl{rewrite "neutral Jleft") followed by(split)

The last theorem in this series is that invertibles are cdas®ler product:

{1} FORALL (X, y: M):

Invertible(x) AND Invertible(y) IMPLIES Invertible(x *)
(skosimp) then (expand "Invertible") brings us to
{-1} EXISTS (y: M): x!1 *» y=e AND y » xl11 = e
{-2} EXISTS (y: M): y!1 * y=e ANDy » yl1 = e

{1} EXISTS (y: M): x!1 * yl1 » y =e ANDy = (xI1 =* yl1) = e

Notice thethen “strategy” (p. 111 oprover-guide.ps). It sequences com-
mands.

Before being able to instantiafig i.e., come up with an alleged inverse to
(x!1 *y!l) we must “open” the assumptions, i.e., introduce fresh @mstfor
the inverses ox!1 andy!l , respectively, which are guaranteed-ly and-2 .

| find it better to give suggestive names to these, so we do

(skolem -1 "xinv") then (skolem -2 "yinv") then (flatten)

to get
{-1} x!1 * Xinv = e
{-2} xinv * X1 = e
{-3t yl1 * yinv = e
{-4} yinv * yll = e
[—
[1] EXISTS (y: M): x!1 * yl1 » y =e ANDy = (xI1 =* yl1) = e

55

Now, we have to think a bit as to what the inversextd *y!1 should be. Well,
thinking of * as sequencing of “actions” it becomes clear that the inveugght
to beyinv * xinv . That’s the “rule of sock and shoe”. Therefo(mst 1
"yinv *Xxinv") is the command of choice.

{-1} x!1 * Xinv
{-2} xinv * xI1
{-3t yl1 *yinv

e
e
e
{-4} yinv * yll = e

[1] xI1 * yl1 =+ (yinv +* xinv) = e AND (yinv * xinv) x (xI1 * yll)

Relying on PVS’ cleverness and doifigst? 1) isn'ta good idea here.
Splitting (A\-R) brings us two subgoals of which we’ll only treat the fireté:

{-1} «xI1 * Xinv
{-2} xinv * X1
{-3t yl1 *yinv
{-4} vyinv * yll

e
e
e
e

[1] xI1 =+ yl1 =+ (yinv =* Xinv) = e
Now we must first “rebracket” our goal to
xI1 + (yl1 =+ yinv) =* Xxinv = e

While this can certainly be done by successive applicatio@seociativity, it is
easier to just claim this and prove it separately. To do thésissue the command

(case "x!1 * (yl1 * yinv) * xinv = e")

This presents us with two subgoals. One asking us to provgaairunder the
extra assumption of the “claim”:

[-1] x!1 * (yl1 =+ yinv) * xinv = e
[-2] x!1 * Xinv
[-3] Xxinv * X1
[-4] y'1 *yinv

e
e
e
[-5] vyinv * yll = e

[1] xI1 *= yl1 * (yinv =* Xxinv) = e

56

This follows from associativity, so
(auto-rewrite "assoc") then (grind)
does the job. Next, we must prove our claim:

[-1] x!1 * Xinv = e

[-2] Xxinv * X1 = e
[-3] y1 * yinv = e
[-4] vyinv * yll = e

{1} xI1 = (yl1 =* yinv) =* Xxinv = e
[2] xI1 *= yl1 * (yinv =* Xxinv) = e

The old goal is still there, we can remove it wiitlelete 2) corresponding
to rule WEAK-R. The rest is a rewriting consequencenafutral _left and
neutral _right , so we install these and grind.

We could have turned off associativity with the commdstp-rewrite
"assoc") , butthis wasn't even necessary here.

8 Recursive functions

Many function definitions in mathematics, programming, amake so program
specification are recursive.

Even if—for the sake of efficiency—the actual program useseaative solu-
tion, for specification and verification a recursive defontis usually more con-
venient.

Examples of recursive definitions Sum in pattern-matching notation:

Z?:olai = o
Z?:o Qi = Ans1+ Do

Sum in fixpoint notation:

Yorgai=1fn=0
thenag
elsea, + .1 a; endif

57

Binary search in pattern-matching notation:

find(a, null) = ff
find(a,congb, 1)) = (a=b) V (a<b A find(a, left(l))) V (a>b A find(a, right(1)))

Binary search in fixpoint notation:

find(a,l) =if I =]
thenff
elsea = car(l)Vv
(a<b A find(a, left(cdr(l))))V
(a>b A find(a, right(cdr(l)))) endif

These clauses define honest-to-goodness functions orahatumbers and
lists (or arrays). As you probably know this need not alwag$he case. For one
thing, recursively defined functions may be partiglr() = f(n)), for another,
some equations may not define a function at all.

f(n) = f(n)

9(0)=0

9(n+2) =g(n)

9(1) = min{g(2n) | n € N}
h(n) =0

h(n) =1

Fixpoint form Fix ag, aq,... and letsum: N — R be the function defined by

sunin) = 37, ai.
We havesunin) = F'(sumn) where

F(f,n)=ifn=0
thena,o
elsea,, + f(n — 1) endif

Exercise: definéact(n) = n!. Give F' such thafact(n) = F(fact n).

In PVS all functions are total and therefore, general recerfinction defi-
nitions are not permitted. Rather, an explicit measure regirovided ensuring
that the definition terminates.

Theorem (Well-founded recursion): Let, B be nonempty sets, lét : (A —
B) — (A — B) be afunctionalw : A — N be a function (the “measure”).

58

Suppose that for each: A — B anda € A the valueF'(f,a) depends only
on those valueg(a') for whichw(a’) < w(a), that is to say

Va:ANf, g:A — B.(Vr:Aw(z) < w(a) = f(z)=9(z)) = F(f,a)=F(g,a)
Then there exists a uniquely determined functfpn A — B such that

Va:A.fr(a) = F(fr,a)

Proof. Letb, be a fixed element ab.

We definefr(a) by induction onw(a). Supposev(a) = 0. ThenF(f,a) is
independent of , so we can pufr(a) = F(f,a) wheref is an arbitrary function
from A to B, e.g. a constant one.

Suppose thafr(z) has already been defined for alith w(z) < n and that
w(a) = n. Then we define a functiofi: A — B by

() —{ fr(z), ifw(z) <n

) bo, ifw(z) >n

We then putfr(a) o F(f,a).

This procedure defineg-(a) for all valuesa.

Next, we show that'(fr,a) = fr(a) for all a. Well, given a fixed but arbi-
trary element. € A (PVS would call ita!1) we see thafr(a) has been defined as
F(f,a)wheref is the function which agrees witf on valuesr with w(z) < n
and ish, elsewhere.

But we have assumed thA{ fr, a) = F'(f, a) in this case.

For uniqueness we argue as follows. Suppose agta) = g(a) for some
functiong : A — B. We show by induction om(a) that f(a) = g(a). The
details are left to the reader. O

In many examples the evaluation®f f, a) proceeds by evaluating the function
f on a fixed number of arguments, . .., a, depending only o and having
measure smaller thani.e.,w(a;) < w(a). This was in particular the case for the
sumandfactexample.

Questions What would be an appropriate measure for the definiticimaf?

59

What is an appropriate measure for

Fmerge(fa ll) 52) =
if 1; = null
thenlg
elsifly, = null
thenl;

else con&car(l;), congcarnls), f(cdr(ly),cdr(ls))))
whereA = list[nat] x list[nat] andB = list[naf.
Hint: you may assume a functidength: listinat] — nat.

8.1 Defining functions in PVS

We have already seen the definition of a predicate, namnekrtible . For
PVS such a predicate is nothing but a function to the typalean .
Using the same syntax we can define other functions like so:

f(x,y:nat) : nat = (x+y) * (X-y)

and we can prove

a: THEOREM f(5,3) = 16

using(grind) . This method also does simple algebra:
b: THEOREM FORALL(X,y:nat):f(x,y)=x"2-y 2

Anyway, I'm gettting distracted from todays topic: recwesdefinitions. Here is
how we definesumin PVS provideda: [nat->real] has been defined or
declared:

sum(n:nat) : RECURSIVE real =
IF n=0 THEN a(0) ELSE a(n)+sum(n-1) ENDIF
MEASURE n

Try to memorise the slightly awkward syntax: the keywBHHCURSIVEgoes

between the colon and the result type. And don't forget thasuee either. It's
supposed to go down as you unfold the recursion.

60

8.2 TCCs

When PVS typechecks such a definition (and this takes plafmeebgou enter
the prover) it attempts to show that this is the case (the ureaping down, that
is). If it doesn’t succeed a typechecking condition (TCCyeserated which you
would then have to prove interactively using the prover.

You can display the TCC with the commaMix show-tccs . In the ex-
ample at hand the TCCs are simple enough

sum_TCC1: OBLIGATION FORALL (n: nat): NOT n
sum_TCC2: OBLIGATION FORALL (n: nat): NOT n

0 IMPLIES n - 1 >= 0;
O IMPLIES n -1 <n ;

The first one comes from the usemfl . The typenat is in fact a subtype of
the integers which is a subtype of the rationals, etc. A ptier minus function
returns an integer. In the situation at hand, we know thigtnot zero, sm-1 is
in fact a natural number. PVS was able to “prove” that by ftsel

The other TCC comes from the recursion. We must show that gesuore of
the argument of the recursive call (herel) is smaller than the measure of the
current argument (herg). Again, PVS can prove that itself.

We can now prove (usingrind) simple goals which follow directly from
the recursive definition like

c: THEOREM
sum(5) = a(0) + a(l) + a@4) + a(3) + a(2) + a(b)

We come to more interesting goals below.

8.2.1 Higher-order functions

Function types in PVS are like any other type. We can use ¢aitufe to pass the
sequence:[nat->nat] as an extra argument som:

sum(a:[nat->real],n:nat) : RECURSIVE real =
IF n=0 THEN a(0) ELSE a(n)+sum(a,n-1) ENDIF
MEASURE n

The old definition ofsum applies when the first argument isn’t a function, this is
an instance obverloading

We don’t even have to delete the previous definitiosurh. PVS can tell the
two apart by their types (this is known agerloading.

Now, we can applyumto concrete functions, e.g., we might define

61

8.2.2 Examples

id(x:nat):nat = x

d : THEOREM
sum(id,5) = 25
e : THEOREM

sum(LAMBDA(x:nat):x
id(x:nat):nat = x

and then prove

d : THEOREM
sum(id,5) = 25

xx,4) = 30

If we don’t want to sacrifice a hame for the argument functiom mwust use a

lambda abstraction

e : THEOREM
sum(LAMBDA(x:nat):x

Summary:

xx,4) = 30

e PVS allows for definition of functions by well-founded resian

e Such definitions generate proof obligations known as typeking condi-

tions (TCCs)

e TCCs also arise in conjunction with subtypes. More later.

¢ Within one and the same theory you can have several funabioihe same
name if their argument types are distinct (overloading)

e Functions can be arguments as well as results of functiohe. LAMBDA
notation allows one to construct function terms on the fly éoplassed as
argument to another function.

e PVS knows that a recursively defined function satisfies ifshohg) equa-

tions

62

9 Proof by induction and higher-order logic

So far we have proved simple consequences of the recursiaieqs in which
the recursive argument was a concrete value. If we want teprmre interesting
universally quantified statements then we need a more polyarhciple: proof
by induction.

You probably have seen induction already: to prove a statemie) for all
natural numbers you must prove it fof) and then—assuming a fixed but arbitrary
n’—you must prove it for’ + 1 under the extra assumption thabit»’) holds.

In first-order logic:

$(0) A (Vn:N.¢(n) = ¢(n + 1)) = Vn:N.¢(n)
In higher-order logic:
V¢:[N — boolean.¢(0) A (Vn:N.¢p(n) = ¢(n+ 1)) = Vn:N.¢p(n)
As a formula thignduction schemioks as follows:
$(0) A (Vn:N.¢(n) = ¢(n + 1)) = Vn:N.¢(n)

In first-order logic we need one such formula for every pratig. In higher-
order logicwe can quantify ovep just as we quantify over individuals:

V¢:[N — boolean.¢(0) A (Vn:N.g(n) = ¢(n + 1)) = Vn:N.¢(n)

The proof rules for higher-order logic are essentially tames as those for first-
order logic. Only the ways to form formulas are extended. ixfigla is just a term
of type boolean and these can be formed using the conneativeguantifiers as
well as by function application.

Semantically, the type boolean is interpreted as the seuttf values{tt, ff};
function types are interpreted as sets of all functionsikdrgure first-order logic,
higher-order logic do not admit complete proof systems. rElason is Godel’s in-
completeness theorem which you may have come across ingrguignce books.

Higher-order logic can thus be defined as first-order logtb wi

e Typebool andtypesclosedundgt,..., A, — B] (nary function space)
e Unary predicate on typeool , i.e., every term of typdool can be seen/

is a proposition

63

e n + lary function symbols for application of functions to argurtse

Intended semantics:interpretbool as{t, ff}, function spaces as sets of func-
tions. No complete axiomatisation exists.

Approximations: \-terms witnessing the existence of certain functions and
predicates5-equations, extensionality, comprehension axioms (ostzoms for
guantifiers, connectives, functions), choice axioms.

Complete for non-standard models: Henkin models, toposes.

Rather than formally defining higher-order logic with itsnggx and proof
rules we will introduce it in PVS and get to know it by example.

Here is how the induction axiom is formulated in PVS:

nat_induction : LEMMA
FORALL(p:[nat->boolean]):
(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))
IMPLIES (FORALL i: p(i))

This is proved from a slightly more general axiom (well-foedness ok on
nat) in lib/prelude.pvs

We are not so much interested in how to prove induction, but foocuse it in
order to prove other things.

Consider the classiy . i = n(n + 1)/2. We write ¢(n) = >_" i
n(n + 1)/2. We havep(0) = 0 = 0(0 + 1)/2. True. We haves(ng + 1)
(no+ 1)+ > iy i = (ng + 1)(ng + 2)/2.

Using the induction hypothesign,) this rewrites tqng+1)+ng(ng+1)/2 =
(no + 1)(no + 2)/2 which is true by simple arithmetic.

Now we want to do the same thing in PVS:

We start with

{1} FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1)/ 2
Detailed proof We bring innat _induction

Rule? (lemma "nat_induction")

{-1} FORALL (p: pred[nat]):

(p(0) AND (FORALL j: p() IMPLIES p(j + 1))
IMPLIES (FORALL i: p(i))

64

[1] FORALL (n: nat):
sum(LAMBDA (i: nat): i, n) = n * (n + 1)/ 2

Now nat _induction works for all predicatep, but we need it for a particular
one, so we must instantiate. But what with? We could haveditted an abbre-
viation for the predicate we're interested in but it's toteldor that now, so we
must resort to the lambda notation:

Rule? (inst -1 "LAMBDA(Nn:nat):
sum(LAMBDA (i: nat): i, n) = n * (n + 1) /2%

{-1} ((LAMBDA (n: nat): sum(LAMBDA (i: nat): i, n) =
n =+ (n+ 1) / 2)(0) AND
(FORALL j:
(LAMBDA (n: nat): sum(LAMBDA (i: nat): i, n) =
nx (n+ 1) / 2)(§) IMPLIES
(LAMBDA (n: nat): sum(LAMBDA (i: nat): i, n) =
n*(+1) 72+ 1))
IMPLIES
(FORALL (i_49: nat): (LAMBDA (n: nat): sum(LAMBDA (i: nat):
n) =
nx (n+ 1) / 2)(i_49))

[1] FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1)/ 2

That looks daunting. What has happened is that every ocwmerefp in -1 has
been literally replaced by the instantiation we providedt ®e would like a bit
more than just that: we would like to see argumenis soich a® in the base case
andi+1 in the induction step to be plugged in for the lambda-bourrchisée n.
This is known as beta reduction and we perform itin PVS byingsthe command
(beta)

Rule? (beta)

{-1} (sum(LAMBDA (i: nat): i, 0) = 0O * (0 + 1)/ 2 AND
(FORALL j:
sum(LAMBDA (i: nat): i, j) = j + (+ 1) / 2 IMPLIES
sum(LAMBDA (i: nat): i, j + 1) = (j + 1) * +1+1)/

IMPLIES (FORALL (i_49: nat):

65

sum(LAMBDA (i: nat): i, i 49) = i_49 x (49 + 1)/ 2)

[1] FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1)/ 2

What we have achieved so far is that the required instandeahtuction scheme
is among our antecedents. We now want to use it which shaueéndifficult as
it ends exactly with what we want to prove. So we use rd. which is of the
split kind:

Rule? (split)

This yields two subgoals, one asking us to dedué®m the conclusion ofl —
that’s a propositional axiom, so PVS won'’t bother presentis with it—, and
another one asking us to prove the premiselofor 1 again). Since the premise
of -1 is a conjunction (of base case and induction step) we musttRevhich

is again of thesplit kind and in fact PVS has already performed this at the last
split command so that we don’t need to enter it again. We are thisepied
with two actual subgoals:

{1} sum(LAMBDA (i: nat): i, 0) = 0O * (0 +1)/ 2
[2] FORALL (n: nat):

Sum(LAMBDA (i: nat): i, n) = n * n+ 1)/ 2
and
—
{1} sum(LAMBDA (i: nat): i, 0) = 0O * (0+1)/ 2
[2] FORALL (n: nat):
Sum(LAMBDA (i: nat): i, n) = n * n+ 1)/ 2

The first of these (the base case) follows by simple aritton@grind) disposes
of it.

We could also have proved this by hand using elementary piepef real
arithmetic summarised iprelude.pvs

The induction step is more interesting. We first de2t@nd then introduce a
“fixed but arbitrary” name, sag!0 by

Rule? (skolem 1 "n!0")

{1} sum(LAMBDA (i: nat): i, n!0) = n!0 * (N0 + 1) / 2 IMPLIES
Sum(LAMBDA (i: nat): i, n!l0 + 1) = (n!0 + 1) * (N0 + 1 + 1)

66

This being an implication we use--L or (flatten) to give
{-1} sum(LAMBDA (i: nat): i, n!0) = n!l0 * (N0 + 1) / 2
{1} sum(LAMBDA (i: nat):

i, N0 + 1) = (nI0 + 1) * N0+ 1+ 1)/ 2

This looks like what we had expected. We may assume that wiatamt to show
holds for a fixed but arbitramy!0 and from that we must show it foO+1 . Let’s
expand the sum in the succedent:

Rule? (expand "sum" 1)
[-1] sum(LAMBDA (i: nat): i, nl0) = nl0 * (N0 + 1) / 2

{1} 1 + sum(LAMBDA (i: nat): i, n!0) + nl0 =
(2 + nl0 + (n'0 * nl0 + 2 *= nl0)) / 2

Notice that with recursive definitions texpand command performs one recur-
sive unfolding rather than replacirggm with its definition using the keyword
RECURSIVE

We now recognise the left-hand-side-@f as a subterm, it's therefore a good
idea to replace it with the right hand side:

Rule? (replace -1 1)
[-1] sum(LAMBDA (i: nat): i, nl0) = nl0 * (N0 + 1) / 2

{1} 1+n0 =+ (nNO+ 1)/ 2+ nl0 =
(2 + nl0 + (nlO * nl0 + 2 * nl0) / 2

The conclusion is an arithmetic identity ggrind) can establish it.

Quicker proof The first few steps were rather awkward and independent of the
particular goal at hand. For this reason the commaddct has been provided

which performs them all in one go. In the situation

{1} FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1)/ 2

the commandinduct "n") produces two subgoals:

67

{1} sum(LAMBDA (i: nat): i, 0) = O * (0 +1)/ 2

{1} FORALL j:
Sum(LAMBDA (i: nat): i, j) =] * (j + 1) / 2 IMPLIES
Sum(LAMBDA (i: nat): i, j + 1) =
G+1 =~ (G+1+1)1/2

which we deal with as before. Actually, the second one carrdesol simply with
the commandskosimp!) then (grind)

An even quicker proof goes with the single comménduct-and-simplify
llnll)

PVS is surprisingly good at doing inductive proofs almogbanatically. For
example, Cassini’s identity

Fn+2Fn - Fsﬂ—l = (_1)”

can be proved with a single “induct-and-simplify”. One slibdefine(—1)" re-
cursively.

The following is known as Abel’'s lemma and plays a role in nemtheory,
more specificly, Dirichlet series.

Let (a,,) and(b,) be two sequences. Put:

n=p n=m'
App =y andS, v = ayb,
Then one has:
n=m'—1
Sm,m’ = Am,m’bm’ + Z Am,n<bn - bn+1)

Here one must induct not on a single quantity, but rather ifierdncem’ — m.
PVS provides the commamdeasure-induct+ for that purpose.

68

10 Lists

A datatype of finite list over arbitrary type of entries is gedined.
If t is a type thenist[t] is the type of finite lists with entries over.
Semantically, elements &bt]t] take the formzy, xo, .. ., z,,] where the
x; are elements of type.
The constanhull denotes the empty list, the function

cons : [tlist[t] -> list[t]]

tacks an element on to the beginning of a list. For examplesithe list[3, 4, 1, 2]
thencons(5,1) is [5, 3,4, 1, 2].

The type of lists has the subtypeons?[t]) , consisting of all non-empty
lists. The functiorcar takes a nonempty list and returns its first element, i.e., we
have

car : [(cons?[t]) -> {]

the functioncdr takes a nonempty list and returns its “tail”, i.e., the (plolys
empty) list obtained by stripping off its first element.

cdr : [(cons?[t]) -> list[t]]
For example, if = [5,4, 3,2] then

car(l) =5
cdr(l) = [4,3,2]

We also have a predicateill? which tells whether a list is empty
null? : [list[t] -> boolean]

and another—less used—predicab@s? which tells whether a listis nonempty.
In fact the subtypécons?][t]) is derived from that predicate and more gen-
erally, if p:[t->boolean] then(p) is the subtype of consisting of those
elements for whiclp holds.

In practice, the functionsar andcdr are applied to arguments of type
list[t] rather thar(cons?[t])

Such application generates a typechecking condition (M@@jh either we or
PVS has to prove. A typical case, when such a TCC can be praxtechatically,
is whencar(l) orcdr(l) is used in theELSE branch of a conditionalF
null?(l)

Another typical such case is a usage likig(cons(x,l)) which automat-
ically simplifies tol . Similarly, car(cons(x,l)) automatically simplifies to
X.

69

Subtypes If P : [t->bool] then(P) is atype.
If a:t andP(a) holds then alsa:(P)
If we implicitly asserta:(P) then a proof obligation (TCOp(a) arises.

10.1 Recursion on lists

There is a predefined function
length : [list[t] -> nat]

allowing us to define functions on lists by recursion (usiegpgth as a measure.
Here is a definition of the function which appends two lists.

t :TYPE

append(I1:list[t], 12:list[t]) : RECURSIVE list[t] =
IF null?(11)

THEN 12

ELSE cons(car(l1),append(cdr(l1),12))

ENDIF

MEASURE length(l1)

This means that the functicappend satisfies the following two defining equa-
tions:

append(null, 12) = 12
append(cons(x,l1), 12) = cons(x,append(l1,12))

In fact, PVS provides a cases-construct allowing us to wajeend in this
slightly more perspicuous form. Seeelude.pvs or the documentation.
Here are a few more function definitions:

occ(x:t,l:list[t]) : RECURSIVE nat =
IF null?(l)
THEN O
ELSIF x=car(l) THEN occ(x,cdr(l))+1 ELSE occ(x,cdr(l)) EN
MEASURE length(l)

filter(p:[t->boolean],l:list[t]) : RECURSIVE list[t] =
IF null?(l)

70

DI

THEN null
ELSIF p(car(l)) THEN cons(car(l),filter(p,cdr(1)))
ELSE filter(p,cdr(l)) ENDIF

MEASURE length(l)

rev(l:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN null
ELSE append(rev(cdr(l)),cons(car(l),null))
ENDIF
MEASURE length(l)

revl(l:list[t], acc:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN acc
ELSE revl(cdr(l),cons(car(l),acc))
ENDIF
MEASURE length(l)

occ(x,l) returns the number of occurrenceskah the listl ; filter(p,l)
returns the list consisting of those elementd ofvhich satisfy the predicatp.
rev(l) returns the reversal of lidt andrevl(l,acc) , finally, returns the
reversal ofl followed byacc .

10.2 Reduce

The length function itself admits a recursive definition:

length(l:list[t]) : RECURSIVE nat =
IF null?(l)

THEN O

ELSE 1 + length(cdr(l))
ENDIF
MEASURE ???7?

The trouble is that the only reasonable measure functidenigth itself. As

| said,length is fortunately predefined (iprelude.pvs), but nevertheless
it's worth knowing how, namely using theduce _nat functional, which now
really is basic. If

null_case : nat
cons_case : [t,nat -> nat]

71

are given terms of the indicated types then
reduce_nat(null_case, cons_case) : [list[t] -> nat]

is (as indicated) a function from lists to natural numbeesnely the functiorf
defined recursively by

f(null) = null_case
f(cons(x,l)) = cons_case(x,f(l))

It is clear that whatevemull _case andcons _case are this defines a unique
total function so thateduce _nat is justified.
The length function can now be defined as

length : [list[t] -> nat] =
reduce_nat(0, LAMBDA(x:t, prev:nat): prev+1)

More generally, we have a construetduce which allows for the definition
of functions on lists with result type other thamat by such structural recur-
sion; however, these are more easily defined using well fedmdcursion with
length as the measure, and indeed, if you fiedluce confusing, just take
length for granted and define all your functions usieggth or derived forms
as measure.

11 Proof by list induction
Also predefined is the following induction principle fortks

list_induction: AXIOM
FORALL (p: [list -> boolean]):
(p(null) AND
(FORALL (consl_var: T, cons2_var: list):
p(cons2_var) IMPLIES p(cons(consl_var, cons2_var))))
IMPLIES (FORALL (list_var: list): p(list_var))

which states that a propenywhich
1. holds for the empty list

2. holds for an arbitrary list of the formons(x,I) provided it holds fot

72

holds for all lists.
This principle can be invoked just aat _induction usinglemma, inst

beta , etc. or using thexduct command, or, indeed, using the powerfuduct-and-simplify

command.

11.1 Associativity of append

Let’s do an example proof: associativity sppend

{1} FORALL (11, 12, 13: list[t]):
append(append(l1, 12), 13) = append(l1, append(I2, I3))

We need to do induction on oneldf 12, 13

Induction onll will make a defining equation fappend applicable which
(in thecons case) brings even the outermagipend into a rewritable form, so
that looks promising: We invok@nduct "|1") and get two subgoals, the
first of which is

{1} FORALL (12, I3: list[t]):
append(append(null, 12), 13) = append(null, append(l2, 13

We could either try to induct ol2 or I3 here, or solve it directly which should
intuitively be possible, as by virtue of the recursive egquat both sides equal
append(12,13) . The way to convince PVS of this is either to ygeind)

or to introduce fresh names for the universal quantifgkolem 1 ("12!1"
"I311"))

{1} append(append(null, 12!1), 13!11) = append(null, appen

Now we want to replace the second and third occurrencappiend by their
definitions (as this will bring about a simplification), buitrithe first and fourth (as
this will make things more complicated. The commdagpand "append"”

1 2) expands the second occurrenceappend in formula 1. Using this again
on occurrence 3 achieves our goal. Alternatively, we carthiseommand

(expand "append" :if-simplifies T)

73

)

d(2!1, 1311

which only expands those occurrencesippend which result in a simplification
(formally: those whose definition contains an if-then-eld®mse guard is equal to
eitherTRUEor FALSE).

At any rate, we get

{1} append(I2!1, 1311) = append(I2!1, 13!1)

which is an instance of reflexivity and thus discharged.
Now, we get to see the second subgoal:

{1} FORALL (consl_var: t, cons2_var: list[t]):

(FORALL (12, 13: list[t]):
append(append(cons2_var, 12), 13) =
append(cons2_var, append(12, 13)))

IMPLIES

(FORALL (12, 13: list[t]):
append(append(cons(consl_var, cons2_var), 12), 13) =

append(cons(consl_var, cons2_var), append(l2, 13)))

We introduce fresh names for the universally quantified toris:
(skolem 1 ("x!1" "I'1")
and(flatten) giving us

{-1} FORALL (12, 13: list[t]):
append(append(l!l, 12), 13) = append(I'l, append(I2, 13))

{1} FORALL (12, 13: list[t]):
append(append(cons(x!1, I'1), 12), I13) =
append(cons(x!1, 1'1), append(l2, 13))

Here-1 is the induction hypothesis. We must now introduce skolemstants
for the universal quantifier as in the base case Wgtkolem 1 ("I2!1"

"I311") and we can in fact at this point isntantiate the inductiondtlgpsis
with these valueg(inst -1 "l2!1" "I3!1") . This means that we cannot
use the induction hypothesis with values other than theee lgeneral, this is
risky as there are cases in which we have to use the inductipatihesis with
other cleverly chosen instantiations, see Section 11 @bdHere, however, it is
safe. If in doubt, postpone instantiations as long as plessib

74

{-1} append(append(l'l, 12!1), I13!1) = append(l'l, append (12'1, 1311))

[1] append(append(cons(x!1, 1'1), 12!11), I13!1) =
append(cons(x!1, I'1), append(l2!1, 13!1))

Now we see that we have a couple of instancespgfend which can be simpli-
fied by way of the recursive equations.

(expand "append" :if-simplifies T)

Remember that typin(exp followed byM-s, i.e., produces this com-
mand.

[-1] append(append(l'l, 12!1), I13!1) = append(l'l, append (12'1, 1311))

{1} cons(x!1, append(append(l'1, 12!1), 13!1)) =
cons(x!1, append(l'1, append(l2!1, 13!1)))

Now we discover the lhs of the induction hypothesis (-1) astdesm and in fact
the current sequent follows by mere equational reasonirgeréfore, it can be
dispatched witi(grind) . If we insist on doing it by hand we d@eplace
-1 1) leading to an instance of reflexivity.

This entire proof could also be done with the single comn{arduct-and-simplify
"11")

11.2 Occurrences

Recall the functiorocc which counts the number of occurrences of a given ele-
ment in a list. We want to prove:

{1} FORALL (x: t, 11, 12: list[t]):
occ(x, append(l1, 12)) = occ(x, 11) + occ(x, 12)

Again, (induct-and-simplify "11") will do the job, but for the sake of
it we go for something more elementary. We start witiduct "I1") . As
said before, there is no general rule as to whether one shailskolemise or use
induction and if yes on which argument. Rule of thumb is thabtrems involving
recursively defined functions require proof by inductiom ahat the induction
should be on the argument which promises the most simplditsito happen.

Here thisid1l so we do(induct "I1") giving us two subgoals, first the
base case:

75

{1} FORALL (x: t, 12: list[t]):
occ(x, append(null, 12)) = occ(x, null) + occ(x, 12)

which after rewriting the append-term and the second oeoge ofocc becomes
an arithmetic identity. We dispatch the whole subgoal {gttind) bringing us
to the second subgoal, the inductive step which after skelagmand flattening
looks like so:

{-1} FORALL (x: t, 12: list[t]):
occ(x, append(l'1, 12)) = occ(x, I'1) + occ(x, 12)

{1} FORALL (x: t, 12: list[t]):
occ(x, append(cons(x!1, I'1), 12)) = occ(x, cons(x!1, I'1)

As before we introduce fresh names and instantiate our traulbypothesis with
them giving us

{-1} occ(x!2, append(l'1, 12!1)) = occ(x!2, I'1) + occ(x!2,

[1] occ(x!2, append(cons(x!1, II1), 12!11)) =
occ(x!2, cons(x!1, 1'1)) + occ(x!2, 1211)

Again, we find a number of occurrences of recursively definedttions which
now admit a simplification:

(expand "occ" :if-simplifies T)
(expand "append" :if-simplifies T)
(expand "occ" :if-simplifies T)

[-1] occ(x!2, append(l'1, 12!1)) = occ(x!2, I'1) + occ(x!2,

{1} IF x12 = x1
THEN 1 + occ(x!2, append(l'l, 12!1))
ELSE occ(x!2, append(l'1, 12!1))
ENDIF

IF x!12 = x!1 THEN 1 + occ(x!2, 1!1) ELSE occ(x!2, 1!1) ENDIF

occ(x!2, 1211)

76

1211)

1211)

We can now directly replace the Ihs of the induction hypaghesth its rhs and
end up with an instance of reflexivity thus completing thegbroFor the sake
of the example let's move the if-then-else constructs tostiméace and proceed
by case distinction: the commafidt-if) followed by (split) brings us
two subgoals

[-1] occ(x!2, append(l'1, [2!1)) = occ(x!2, I'1) + occ(x!2, 1211)
{1} x!12 = x!1 IMPLIES

1 + occ(x!2, append(l'1, 12!1)) = 1 + occ(x!2, I'1) + occ(x!2,
and

[-1] occ(x!2, append(l'1, 12!1)) = occ(x!2, I'1) + occ(x!2, 1211)

{1} NOT x!2 = x!1 IMPLIES
occ(x!2, append(l'1, 12!1)) = occ(x!2, 1!1) + occ(x!'2, 121)

corresponding to the two branches of the conditional. Ths §ubgoal is first
flattened and then dispatched w(tjrind) as it is an equational consequence
of the induction hypothesis. The second even becomes agitigoal axiom after
flattening.

11.2.1 Completeness of filtering

Of a similar kind is

filter_complete : THEOREM
FORALL(x:t, l:list[t], p:[t->boolean]):
p(x) IMPLIES occ(x,filter(p,l)) = occ(x,l)

Invoking induction ol , grinding away the base case, skolemising and instantiat-
ing brings us to

{-1} p!'1(x!2) IMPLIES occ(x!2, filter(p!1l, 1!1)) = occ(x!2 , 1)
[-2] p!l(x!2)
—
[1] occ(x!2, filter(p!l, cons(x!1, I'1))) = occ(x!2, cons(x!1, 111))

Simplifying the recursive function calls gives

77

[-1] p!'2(x!2) IMPLIES occ(x!2, filter(p!l, I'1)) = occ(x!2 , 1)
[-2] p!'1(x!12)

{1} occ(x!2,
IF p!'1(x!1)
THEN cons(x!1, filter(p!1, 1'1))
ELSE filter(p!1, 111)
ENDIF)
= IF x!12 = x11 THEN 1 + occ(x!2, I'1) ELSE occ(x!2, 1'1) ENDIF

(lift-if) followed by(split 1) followed by (flatten) gives two sub-

goals the first of which is

{-1} p!1(x11)

[-2] p!1(x!2) IMPLIES occ(x!2, filter(p!l, I'1)) = occ(x!2 , 111)
[-3] p!L(x!2)

{1} occ(x!2, cons(x!'1, filter(p!l, 1'1))) =
IF x12 = x!1 THEN 1 + occ(x!2, 1!1) ELSE occ(x!2, 1!1) ENDIF

This gives now the opportunity for another simplification:

[-1] p!1(x'1)
[-2] p!'2(x!2) IMPLIES occ(x!2, filter(p'l, I'1)) = occ(x!2 , 111)
[-3] p!1(x!2)

{1} IF x12 = x1
THEN 1 + occ(x!2, filter(p'l, 111))
ELSE occ(x!2, filter(p!l, 1'1))
ENDIF
= IF x!12 = x11 THEN 1 + occ(x!2, I'1) ELSE occ(x!2, 1'1) ENDIF

and again we must lift the conditionals and split: to deahwitis we need to
invoke lift-if again and split giving us

{-1} xI2 = x!1

[-2] p!'1(x!1)

[-3] p!'2(x!2) IMPLIES occ(x!2, filter(p!l, I'1)) = occ(x!2 , 1)
[-4] p!1(x!2)

78

{1} 1 + occ(x!2, filter(p!l, I'1)) = 1 + occ(x!2, I'1)

Now we finally are in a position to use the induction hypothe@plit -3)
followed by (replace -1 1) dispatches this branch of the proof. The other
ones are dealt with similarly. Of course at the displayedpand even before we
could have use(@rind) as well.

11.3 Listreversal
Here is one way to reverse a list:

rev(l:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN null
ELSE append(rev(cdr(l)),cons(car(l),null))
ENDIF
MEASURE length(l)

This is considered inefficient because the recursive imetgation of the append
function takes linear time hence the overall runtime is qatcl
Better is the following tail recursive formulation of regat:

revl(l:list[t], acc:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN acc
ELSE revl(cdr(l),cons(car(l),acc))
ENDIF
MEASURE length(l)

The idea is thatev1(l,acc) equals the reversal dffollowed byacc , so that
we obtain the reversal of asrevl(l,null) . Let’s prove that this is true:

rev_revl : THEOREM
FORALL(l,acc:list[t]):
revi(l,acc) = append(rev(l),acc)

Induction onl , grinding away the base case, skolemising and flattenimgbris
to

[-1] FORALL (acc: list[t]): revl(l'l, acc) = append(rev(l! 1), acc)
{1} revl(cons(x!l, I'1), acc!l) = append(rev(cons(x!1, [! 1)), acc!l)

79

Now in this case, it is wrong to instantiate the induction diyyesis withacc!l

and that’s the reason wihiyduct-and-simplify doesn’'t work here. We just
leave the induction hypothesis and simplify our recursivections.
[-1] FORALL (acc: list[t]): revl(l'l, acc) = append(rev(l! 1), acc)

{1} revl(l'l, cons(x!1l, acc!l)) =
append(append(rev(l'1), cons(x!1, null)), acc!l)

Now we see that the Ihs is in fact an instance of the |hs of tthedhion hypothesis,
however withacc set tocons(x!1,acc!l) . This suggests to instantiate the
induction hypothesis accordingly:

(inst -1 "cons(x!1,acc!1)")

{-1} revi(l!1, cons(x!1, acc!l)) append(rev(I'1), cons(x!1, acc!l))

[1] revl(I'l, cons(x!l, acc!l)) =
append(append(rev(l!1), cons(x!1, null)), acc!l)

If the induction hypothesis holds for a&tc , then in particular for the one we just
gave...
Now we rewrite with the induction hypothesigplace -1 1) and get

[-1] revl(l!l, cons(x!1, acc!l)) = append(rev(l!l), cons(x!1, acc!l))

{1} append(rev(l!1), cons(x!1l, acc!l)) =
append(append(rev(l'1), cons(x!1, null)), acc!l)

This looks like an instance of associativity of append albkghtly hidden. We
could now usglemma "append _assoc") etc. but it is easier to tell PVS
to consider it as a rewrite rulgauto-rewrite "append _assoc") after
which(grind) can complete the proof.

11.4 Summary

To prove theorems involving recursively defined functiorsusually need induc-
tion. The first decision to make is which variable to induct ®his should be the
one leading to the most simplifications of recursively defifnctions.

Once this decision has been made one can alwaysdugct-and-simplify
If that doesn't help then we follow the following steps:

80

1. Invoke induction with thenduct command
2. Skolemize and flatten

3. Simplify instances of recursively defined functions gsiexpand ...
[if-simplifies T)

4. make case distinctions on conditionals udifigf andsplit

5. try to massage your goal so that the induction hypothesieres applica-
ble

6. when the induction hypothesis is universally quantified ynust decide
on the right instantiation. Often but not always it consgdtshe constants

obtained from skolemising the current goal.

When you get stuck:

e Try to figure out what your current goal really says and whabitld be a
consequence of.

e Try not to get into a “symbol-pushing mode” and just blindlyter com-
mands

e At least sketch an informal proof before you attempt a proith \®VS

e If your current goal seems true, but you can’t get PVS to prbyeu may
try to isolate it as a separate lemma, i.e., abandon the ptgoé in the
lemma, prove it separately (perhaps again using inducéind)then retry.

12 General datatypes

Inductive datatypes other than lists can be defined in PM&)uke datatype con-
struct. Rather than going into formalities let’s look at taancrete examples:

12.1 Labelled binary trees

If T"is a set then the set of binary treesee(7") with labels in7" is inductively
defined as follows:

o |leaf isatree,

81

e if label € T andleft, right € tree(7) then node (label left right) €
tree(T).

E.g.node(3,node(2, leaf, leaf), leaf) € tree(N).

One may ask in what sense this prima facie self-referentigllb@ation is at
all a valid definition.

Some people just take it for granted, others prefer to empian terms of set
theory. For instance, we can say that a tree is a finite prédsed set of paths, or
we can define trees by induction on their depth level. Thetinetree of level O
would be a leaf, encoded e.g. as the empty set; a tree ofrlevdlis either a tree
of leveln or a triple(label, left, right) wherelabel € T" andleft, right are trees of
leveln. We thendefinethe constructoleaf as being the empty set andde as
the function which groups three things into a triple.

Since trees are inductively generated, we have the follgpwimciple of tree
induction:

Let P be a property of binary’-labelled trees.

If

e P(leaf)and

e wheneverP(left) and P(right) for someleft, right € tree(7’) then also
P(node(label, left, right)) for all label € T

then P holds for all binaryl'-labelled trees.

If we take inductive definitions for granted then we must dtdce this prin-
ciple on board; if we define trees in terms of more primitive@epts then tree
induction becomes a theorem, e.g., provable by coursedais induction on the
level.

Another principle is that nodes are different from leaves:

node(label, left, right) # leaf
e depth(leaf) =0
e depth(label leaf, right) = max(depth(left), depth(right)) + 1

To define functions on trees we need some measure on them;otgonm-
itive such is the depth given as on the slide. Again, we cdreeiiake the depth
for granted or define it as the least level containing the tireéhat case the above
equation could be proved.

82

Once we've got the depth we can define other functions by feealhded re-
cursion:

e no_leaves(leaf) =1
e no_leaves(node(label left right)) = no_leaves(left)+no_leaves(right)
e nonodes(leaf) =0

e no_nodes(node(label, left, right)) = no_nodes(left) +no_nodes(right)+ 1

This was the pattern-matching form. In order to get the firpfrm we need
(partial) destructor functions:

Defineleaf?(t) <= t = leaf,

Definenode?(t) <= dlabel left, right.t = node(label left, right),

Define(leaf?) = {leaf}

Define(node?) = {¢ |node?(t)}.

Notice: Vt:tree(T').1leaf?(t) V node?(t)

We have
label : (node?) — T
left : (node?) — tree(T)
right : (node?) — tree(7)
defined by

label(node(label, left, right)) = label
left(node(label left, right)) = left
right(node(label left, right)) = right

1,if leaf?(t)

no-leaves(t) = { no_leaves(left(t)) + no_leaves(right(t)), o/w

0, if leaf?(t)

no-nodes(t) = { no_nodes(left(t)) + no_nodes(right(t)) + 1, o/lw

Both recursive definitions are well-founded using the dggstmeasure.
Vit:tree(T).no_leaves(t) = no_nodes(t) + 1.
Proof by tree induction:

e no_leaves(leaf) = 1 =0+ 1 =no.nodes(leaf) + 1

83

e no_leaves(node(label left, right)) =

no_leaves(left) + no_leaves(right) g
no_nodes(left) + 1 4+ no_nodes(right) + 1 =
(no_nodes(left) + no_nodes(right) +1) + 1 =
no_nodes(node(label, left, right)) + 1

tree[t: TYPE]: DATATYPE
BEGIN
leaf : leaf?
node(label:t,left,right:itree) : node?
END tree

To introduce trees into PVS we use the above declaration.lllbutomati-
when we type check the file containing the

cally generate a fillee _adt.pvs
declaration. The contents ke _adt.pvs are as follows:

tree_adt[t: TYPE]: THEORY
BEGIN

tree: TYPE

leaf?, node?: [tree -> boolean]
leaf: (leaf?)

node: [[t, tree, tree] -> (node?)]
label: [(node?) -> {]

left: [(node?) -> tree]

right: [(node?) -> tree]

tree_label node: AXIOM
FORALL (nodel var: t, node2_var: tree, node3 var: tree):
label(node(nodel var, node2 var, node3 var)) = nodel va

tree_left node: AXIOM
FORALL (nodel var: t, node2_var: tree, node3 var: tree):
left(node(nodel_var, node2_ var, node3_var)) = node2_var

tree_right_node: AXIOM

FORALL (nodel_var: t, node2_var: tree, node3_var: tree):
right(node(nodel_var, node2_ var, node3 var)) = node3_va

84

tree_inclusive: AXIOM
FORALL (tree_var: tree): leaf?(tree_var) OR node?(tree_v

tree_induction: AXIOM
FORALL (p: [tree -> boolean)):
(p(leaf) AND
(FORALL (nodel var: t, node2_var: tree, node3_var: tree):
p(node2_var) AND p(node3 var) IMPLIES
p(node(nodel_var, node2_var, node3 var))))
IMPLIES (FORALL (tree_var: tree): p(tree_var));

The file contains other useful stuff such as the definition stibtree rela-
tion, a mapping functional, as well as properties desagiltihrese. Take a look
yourselves!

Unfortunately, the depth isn’t defined for us, so we do it elwss using the
reduce _nat functional which also works for trees with different typirigough.
Can you work out the typing afeduce _nat from the example? If not take a
look attree _adt.pvs where it’s defined.

tree_depth[t: TYPE]: THEORY
BEGIN
IMPORTING tree_adt

depth: [tree[t] -> nat] =
reduce_nat(0, LAMBDA(x:t,l,r:nat):max(l,r)+1)

END tree_depth
IMPORTING tree_adt

gives us the type formetree|, €.9.tree[nat] is the type ofat labelled trees.
leaf[t], nodelt], leaf?[t], node?][t] etc.
can usually be abbreviated by
leaf, node, leaf?, node? etc.
With

IMPORTING tree_adt, tree_depth

85

ar);

we also get thelepth function.

{1} FORALL (t: tree[t]): no_leaves(t) = no_nodes(t) + 1
Rule? (induct-and-simplify "t")

Alternatively,induct "t" , Skosimp , etc.

12.2 The option datatype

We saw that partial functions can be turned into total fuoriby defining them
on a subset. Another possibility is to change the result tyfpthe function so
as to contain a special “error element” which—when taken fiags that we are
outwith the domain of the function. An example: the predsoe$unction on
natural numbers can be defined on the{getn > 0}, then returning a natural
number. Alternatively, we can define it on the wholeNbénd then return a value
in NU {none} with the understanding thaked(0) = none andpred(n) =n—1
otherwise.

Since this situation occurs sufficiently often, it is handyave a new type for-
mer which tacks on a special element to any other type. Shisestror element
might already have been present it's more convenient tofidgathe other ele-
ments which is achieved with tloption datatype. IfT"is aset soisption (7)
and its members arene andsome(x) whenz € T'.

A property holds for all elements ioption (7") provided it holds fomone
and for all elements of the forsome(z). That's the induction principle for the
type option . We also have the subsdtsone?), (some?) consisting ofnone
and thesome(x), respectively.

So, everything is as before, except that this time the coctsrs don'’t take
arguments from the inductively defined set. In this case’itftiction principle”
is equivalent to a first-order formula (no quantification iopeedicates). Do you
see, which one?

option[t:TYPE]: DATATYPE
BEGIN
none : none?
some(content:t) : some?
END option

86

Again, a fileoption _adt.pvs is created; look at it and try to understand
its contents.

87

