
VorlesungsskriptRechnergestütztes Beweisen

Martin Hofmann

WS 2003/04

1 Introduction

Computer-aided theorem proving means to carry out mathematical proofs on a
computer whose job it is to check steps, to perform bookkeeping tasks and to
automate routine steps. Conducting a proof on a computer maybe compared to
and has a lot in common with implementing an informally givenalgorithm or
model. For example, a number of details must be filled in and, more importantly,
mistakes and shortcomings of the high-level model are brought to the surface.

Computer-aided theorem proving has numerous applicationsin program and
hardware verification as well as prototype development. To alesser, perhaps in-
creasing, degree it is used to aid the development of genuinemathematical proofs.

1.1 Course outline

In this course, we will get to know the computer-based theorem prover PVS
(pvs.csl.sri.com) along with its theoretical foundations and some ramifi-
cations thereof.

• Logical foundations: sequent calculus, predicate calculus, higher-order logic,
set theory

• Automation of logical reasoning: resolution

• Automation of equational reasoning: rewriting and decision procedures

• Finite state verification: Modal logics and model checking

• Infinite state verification: Abstract model checking

1

• Type theory: Modularisation, independent checking of proof certificates,
computation within proofs.

Mostly in the tutorials we will apply this knowledge to a variety of problems
from

• Solving logical puzzles

• Algorithms on lists and trees

• Hardware components such as adder, counter, multiplier

• Distributed algorithms using invariants and reasoning

• Distributed algorithms using abstract model checking

• Experiments with other theorem provers.

1.2 Notions of proof

What exactly is a “proof”. When asked this question a typicalmathematician
would produce something like the following: A proof is a convincing, undebatable
argument establishing the truth of a mathematical statement. Back to Euclid (300
B.C.) goes the following concretion of this definition: A proof is a derivation of a
statement from axioms by means of logical rules.

This sound good, but it remains to say what “axioms” should beand what the
“logical rules” are. In Euclid’s case (geometry) the axiomswere truisms such as
“for any two non-equal points there is exactly one line passing through them”.
The logical rules were essentially the ones we still use today and will learn about
later in the course. An example of such a rule: if “A impliesB” holds and “A”
holds then “B” holds, too (modus ponens).

Later on, more complicated concepts such as real numbers andlimits were
introduced which made it less clear what reasonable axioms should be. For exam-
ple, even the famous 18th century mathematician Leonhard Euler struggled with
the infinite series1 − 1 + 1 − 1 + 1 − 1 + . . . and ended up ascribing the value
1/2 to it on the basis of the same informal mathematical reasoning he used for his
celebrated theorems.

The lack of solid logical foundations for mathematics, and in particular anal-
ysis led to an actual crisis in mathematics (Grundlagenkrise) which was settled
early in the last century by the invention of set theory (and,following up on this,

2

by the formalisation of real numbers, limits, integrals andso on by Weierstrass,
Riemann and others.)

1.2.1 Set theory

Set theory is a formalism which allows one todefineall other mathematical con-
cepts and toprove their axioms, thus enabling a rigorous proof of theirconsis-
tency, i.e., sensibility. For instance, we can define points as triples of real numbers
(which in turn are defined as certain sequences of rational numbers (which in turn
are defined as certain pairs of integer numbers (which in turnare defined as cer-
tain pairs of natural numbers (which are defined as certain sets: 0 = ∅, 1 = {0},
2 = {0, 1}, etc.)))) and thenprovethat through any two distinct points goes one
and only one line (a line being defined, for instance, as a set of points satisfying
some linear relation).

The present formulation of set theory consists of approximately nine axioms1

among them

• two sets having the same elements are equal

• for each set we can form the set of its subsets

• there exists an infinite set

• for each set we can form the subset consisting of those elements sharing a
given property

• for each set of setsA there exists a set containing exactly one element of
each nonempty set inA (“axiom of choice”)

Using a formalised language statements in set theory can be written as strings and
recognised as such, for example the first four axioms are written as follows:

• ∀a.∀b.(∀x.x ∈ a ⇐⇒ x ∈ b) ⇒ a = b

• ∀a.∃b.∀x.x ∈ b ⇐⇒ x ⊆ a

(wherex ⊆ a
def
= ∀y.y ∈ x⇒ y ∈ a)

1the precise number depends on what we count as axiom and what as a logical rule.

3

• ∃a.¬finite(a)

(where finite(a)
def
= ∀b.(∅ ∈ b ∧ (∀c.∀x.c ∈ b ∧ x ∈ a ⇒ c ∪ {x} ∈ b)) ⇒

a ∈ b)

Herec∪ {x} is a notation for a set whose existence is asserted by two other
axioms (union and singleton).

• ∀a.∃b.∀x.x ∈ b ⇔ (x ∈ a ∧ φ(x)) (whereφ(x) is an arbitrary statement
involving x)

We should remark at this point that despite the formal notation the axioms of
set theory necessarily remain unproved and their justification relies on philosoph-
ical and pragmatic arguments.

Thelogical rulesof set theory are precisely the ones of first-order logic which
we are going to learn about in more detail later in the course.

1.2.2 Proofs as formal derivations

Once we have a formal concept of axioms and rules, we can definea proof of a
statementφ as a sequence of statements

φ0, φ1, φ2, φ3, . . . , φn = φ

ending inφ such that eachφi is either an axiom or follows from previous state-
ments by a logical rule.

So, to check whether an alleged proof indeed is one is a matterof entirely
mechanical symbol manipulation and does not require any creative skills or intel-
ligence.

Rather than merely asserting the next formulaφi one might tell by which log-
ical rule it follows and which of theφj, j < i were used as premises for that
inference. In this way, one arrives at the notions of proof tree or proof-DAG.
(DAG=directed acyclic graph = tree with shared nodes).

In practice, however, writing out proofs at this level of detail would be far too
cumbersome and so checking whether a purported proof, say ina journal submis-
sion, indeed is one, does require considerable mathematical skill and devotion!

And while the vast majority of mathematicians agrees that any proof in math-
ematics cantheoreticallybe formalised in set theory and hence mechanically
checked, many of them believe thatin practicesuch formalisation is impossible
for all but the simplest toy examples. This belief might haveremained unchal-
lenged if there had not been the request for formalised proofs from informatics
and the advent of sufficiently powerful machines.

4

1.3 Proof assistants

So, why do we need formalised proofs in informatics? Well, the correctness of
software (or hardware) is nothing but a mathematical statement amenable to for-
malisation and mechanical checking.

Here are some examples of formal theorem proving occurring in informatics.

• Is programX correct?very rare

• Does methodX satisfy invariantY ?

• Does variableX always hold values with propertyY ? E.g.,Y =points to a
sorted linked list, a balanced binary tree, data items consistent with store.

• Does protocolX guarantee propertyY ? E.g.,Y =cache coherence, sequen-
tial execution, absence of deadlock.

• Does circuitX implement functionY ? E.g.Y =FP multiplication, Fourier
transform.

• Does algorithmX satisfy specificationY ? E.g.X=garbage collector,Y =absence
of interference+liveness.

• Does theoremX about programming languageY hold? E.g.X= type
safety, correctness of proof rules.

• Verification of certificates (“proof-carrying code”)

While in early stages of soft- and hardware development these proofs could be
carried out by hand (possibly using some notation and intermediate calculations)
the size of systems has reached a state where this has become impossible in many
cases.

Prompted by these requirements systems calledproof assistantsor theorem
provershave been developed which perform not only the task of checking size-
able formalised proofs but also help with coming up with formalised proofs in the
first place by bookkeeping assumptions and variables, providing tactics and deci-
sion procedures (e.g., for propositional formulas, certain fragments of arithmetic,
modal and temporal logic, equational theories, etc.) and byproviding libraries of
definitions and already proved theorems.

5

• Bookkeeping of assumptions and variables

• Tactics

• Type checking

• Decision procedures

• Libraries of definitions and theorems

Figure 1: Tasks of a proof assistant

• Expressive logic

• Powerful decision procedures

• Large body of basic notions

Figure 2: Strengths of PVS

1.3.1 The PVS System

In this course we will get to know one such proof assistant in some detail, namely
the PVS system developed by Owre, Rushby, and Shankar at SRI,Menlo Park,
California. As any system, PVS has a number of strengths and also weaknesses.
As a partial compensation for the weaknesses we will later inthe course take a
look at complementary systems such as SPASS, Coq, Isabelle.

PVS has a very expressive underlying logic (classical higher-order logic), it
comes equipped with a number of powerful decision procedures, e.g., for linear
arithmetic and equational reasoning, and it has a large bodyof basic notions which
allow one to start a formalisation on a relatively high level.

On the other hand, PVS has recurrent soundness problems, that is, from time
to time someone finds out that a weird combination of tactics use and language
features allows one to prove0 = 1! Moreover, there is no formal representation of
proofs. One reason why these problems are not trivial to fix isprecisely the large
body of basic notions which here turns into a disadvantage.

6

• Soundness problems

• No formal representation of proofs

• Large body of basic notions

• (Bad heuristics for first-order instantiation)

Figure 3: Weaknesses of PVS

1.3.2 Soundness and proof objects

A problem with a proof assistant is that its correct behaviour is hard to verify.
Whether a word processor provides decent looking output canbe checked at a
glance (correctness for all inouts notwithstanding), similarly a video game either
is fun to play with or not.

On the other hand, correct behaviour of a proof assistant is rather hard to
detect. After all it’s because we don’t want to do the proofs by hand that we use a
proof assistant in the first place. The “output” of a proof assistant doesn’t consist
of a nice looking document or a thrilling sequence of images.

In PVS you can have a complicated looking subgoal to prove, you type in
(grind) and PVS responds that this proves the statement. There is no way to
check this proof independently; all that’s being recorded is that the tactic(grind)
has been invoked.

PVS stands forprototype verification systemwhich is explained by the follow-
ing quote from the PVS Prover Guide 2.3, seepvs.csl.sri.com .

The primary purpose of PVS is to provide formal support for con-
ceptualization and debugging in early stages of the life cycle of a
hardware or software system. In these stages, both the requirements
and designs are expressed in abstract terms that are not necessarily
executable. We find that the best way to analyse such an abstract
specification is by attempting proofs of desirable consequences of the
specification.

So, provided soundness problems occur rarely2 they do not really compromise
the usability of the system.

2they do sometimes, see the PVS web site

7

|-------
[1] FORALL (y: t, v_106: list[t]):

(FORALL (x: t):
occ(x, merge(null, v_106)) =

occ(x, null) + occ(x, v_106))
IMPLIES
(FORALL (x: t):

occ(x, merge(null, cons(y, v_106))) =
occ(x, null) + occ(x, cons(y, v_106)))

Rule? (grind)

lots of rewrites etc. are printed

This completes the proof of merge1.4.

Figure 4: A quick proof in PVS

Proofs as guarantee In recent years researchers have proposed a use of proofs
as a certificate not unlike the cryptographic certificates such as digital signatures,
etc. While the latter certify authenticity of a datum, i.e.,a relationship between
the datum and the sender, a formal proof certifies a property of the datum itself
which is independent of the sender.

For example, a third-party provider of a component of a safety-critical system
might be required to provide a formal proof of correctness.

A referee of a paper in mathematics or theoretical informatics might not be
willing to verify all details of a proof but would rather run the formalised proofs
of the theorems in the paper through a proof checker.

Also it has been proposed under the nameproof-carrying code[?] that mobile
code should be equipped with independently checkable proofs of certain safety
properties, e.g. memory safety, type safety, etc.

The design of systems like Coq (to some extent also Isabelle)is such that inde-
pendent verification is possible. These systems generate a formal representation
of a proof (aproof objector proof term) amenable to separate verification by a
proof checkerwhich is simple and small. Even if tactics or decision procedures
contain bugs these will always show up at the checking stage so the worst that can
happen is that an attempted proof has to be redone.

At present it seems that none of the systems with explicit proof objects can

8

Atoms: A,B,C,D, . . .
Connectives:
φ ∧ ψ: φ “and” ψ (conjunction)
φ ∨ ψ: φ “or” ψ (disjunction)
φ⇒ ψ: φ “implies” ψ (implication)
¬φ: “not” φ (negation)

Precedence:¬,∧,∨,⇒
Example: (A⇒ B) ∧ ¬A⇒ ¬A reads((A⇒ B) ∧ (¬A)) ⇒ (¬A)

Figure 5: Syntax of propositional formulas

compete with PVS or similar systems. However, I think that this is mainly a
problem of organisation and manpower, not an inherent theoretical one. I believe
that in the not too distant future we will see powerful proof assistants with (almost)
bug-free proof-checkers inside.

2 Sequent calculus

In this section we will learn about the “logical rules” whichunderly the PVS sys-
tem. In their present form they were introduced by the logician Gerhard Gentzen
around 1940 as a means to analyse the proof-theoretic strength of formal arith-
metic.

2.1 Formulas

We start with a set ofatoms, akaidentifiersor symbolsA,B,C,D, Formulas
are built up from atoms by theconnectives∨,∧,⇒ (binary) and¬ (unary), so
(A⇒ B) ∧ ¬A⇒ C is a formula. By convention the binding power is¬ > ∧ >
∨ >⇒, so the above formula reads((A⇒ B) ∧ (¬A)) ⇒ C.

Themeaningof a formula is given relative to an interpretation of the atoms as
either true or false. For instance, ifA is true, andB,C are both false, then our
example formula will be true because thenA ⇒ B is false (the only way for an
implication to be false is that its antecedent (hereA) is true and its consequent
(hereB) is false).

9

Digression on semantics of implication Please notice that this so-calledclas-
sical interpretation of implicationis sometimes at odds with our intuitive under-
standing of implication. For instance, the sentence “if MH wears a tie during the
lecture then he can turn lead into gold.” is actually true under this interpretation. It
is possible to formalise the intuitive meaning of such sentence by implicitly quan-
tifying over a set ofworlds that describe possibilities. One could then imagine a
world in which MH wears ties and also worlds in which he can turn lead into gold,
but the latter would not form a superset of the former becausethere is no causal
relationship whatsoever. On the other hand, forφ ⇒ ψ to be valid in this refined
sense one requires that the set of worlds in whichψ holds forms a superset of the
set of worlds in whichφ holds.

Another paradox involving classical implication goes as follows: it is com-
monly agreed that in order to show that a recursively defined methodm() is cor-
rect it suffices to show that its bodye is correct assuming that any recursive calls
to the method already perform correctly. In other words:

(m() correct⇒ e correct) ⇒ m() correct

Were this rule valid in the sense of classical implication then any method would be
correct: either it is correct in the first place or else it isn’t in which case the premise
to the above rule is trivially true whereby correctness of the method follows from
the rule!

Formalisation of meaning Anyway, under the aforementioned classical inter-

pretation the formulaφ
def
= ¬A ⇒ (A ⇒ B) always comes out true, no matter

whatA andB actually stand for.
Likewise,((A⇒ B) ⇒ A) ⇒ A always holds.
Formally, a partial functionη mapping atoms to{tt, ff} can be extended to

formulas by interpreting the connectives in the obvious way.
A formula is atautologyif its meaning is true regardless of the interpretation

of the atoms.
A formula issatisfiableif it is true forsomeinterpretation of the atoms. Clearly,

A is satisfiable if and only if¬A is not a tautology and thereforeA is a tautology
if and only if¬A is unsatisfiable.

2.2 Applications of propositional logic

Many naturally occurring problems admit encodings in propositional logic in the
sense that to know whether a certain formula is satisfiable ora tautology amounts

10

If η(A) = tt, η(B) = η(C) = ff then

η((A⇒ B) ∧ ¬A ⇒ C)
= η(A⇒ B) ∧ η(¬A) ⇒ ff

= (ff ⇒ tt) ∧ ff ⇒ ff = tt

Figure 6: Formal meaning of a formula

A⇒ A

((A⇒ B) ⇒ A) ⇒ A

¬((A11 ∨ A12) ∧ (A21 ∨ A22) ∧ (A31 ∨ A32)∧
¬(A11 ∧A21) ∧ ¬(A11 ∧ A31) ∧ ¬(A21 ∧A31)∧
¬(A12 ∧A22) ∧ ¬(A12 ∧ A32) ∧ ¬(A22 ∧A32))

Figure 7: Examples of tautologies

to having a solution to the problem at hand. Examples are summarised in Fig-
ure 2.1.

It is therefore an important practical problem to determinewhether a given
propositional formula is a tautology or not and (equivalently) whether or not it is
satisfiable.

A formula with 100 atoms admits ca.1033 different valuations so checking
tautologies by examining truth tables may be unfeasible.

• if Mary likes champaign then either Bob or Alice like red wine. . .

• Planning problems: find sequence of actions for a robot to—say—remove a
certain item from a stockpile

• Behaviour of digital hardware circuits

• Combinatorial optimisation (scheduling, routing,. . .)

Figure 8: Applications of propositional logic

11

Sequents: Γ =⇒ ∆ whereΓ = φ1, . . . , φm and∆ = ψ1, . . . , ψn are lists of
formulas.
Meaning: φ1 ∧ · · · ∧ φm ⇒ ψ1 ∨ · · · ∨ ψn

Examples:A⇒ B,C ⇒ D =⇒ U ∧ (¬V ∧ B)
A⇒ B,A =⇒ B
=⇒ A,A⇒ B
A,¬A =⇒
=⇒

Figure 9: Syntax of sequents

While no method is known to date which would be inherently better than
checking truth tables there has been considerable progressin the last years at solv-
ing instances arising from practical problems (SAT solvers). These solvers vastly
outperform any human logician trying to attack propositional formulas by logical
reasoning! So why should we look at axioms and logical rules for propositional
calculus?

The answer is that in many situations the atoms will themselves be complex
formulas, typically a defined predicate applied to some variables, such asx ∈ a
or sorted(list1) and we want to be able to break down the validity of a formula
involving these atoms into basic implications between them.

This is precisely the goal of sequent calculus which we will now describe.

2.3 Sequents

A sequentis an expression of the formΓ =⇒ ∆ whereΓ,∆ are (possibly) empty
lists of formulas.

Themeaningof a sequentΓ =⇒ ∆ is defined as the meaning of the formula
∧

Γ ⇒
∨

∆ where
∧

Γ is the conjunction (“and”,∧) of the formulas inΓ and
∨

∆ is the disjunction (“or”,∨) of the formulas in∆.
For example, our formula(A ⇒ B) ∧ ¬A ⇒ C is equivalent to the sequent

A⇒ B,¬A =⇒ C.
A proof in sequent calculus is a tree labelled with sequents such that the leaves

are labelled withaxiomsand the label of an internal node is the conclusion of a
rule which has the labels of its immediate descendants as premises.

A sequentΓ =⇒ ∆ is anaxiom if Γ and∆ have a formula in common. For
example, the sequentA,B =⇒ A,C is an axiom.

Therulesfor sequent calculus are best read backwards, i.e. “what do Ineed to

12

Γ1, φ, ψ,Γ2 =⇒ ∆

Γ1, ψ, φ,Γ2 =⇒ ∆
(PERM-L)

Γ =⇒ ∆1, φ, ψ,∆2

Γ =⇒ ∆1, ψ, φ,∆2

(PERM-R)

Γ =⇒ ∆

Γ, φ =⇒ ∆
(WEAK-L)

Γ =⇒ ∆

Γ =⇒ ∆, φ
(WEAK-R)

Γ, φ, φ =⇒ ∆

Γ, φ =⇒ ∆
(CONTR-L)

Γ =⇒ ∆, φ, φ

Γ =⇒ ∆, φ
(CONTR-R)

Figure 10: Structural rules

prove in order to establish a sequentΓ =⇒ ∆?”. First, we havestructural rules
allowing to permute, duplicate or remove formulas. In the literature sequents are
often defined as pairs ofsetsrather than lists of formulas. This makes all the
structural rules except WEAK redundant. For computer-aided formal reasoning it
is, however, useful to have explicit access to formulas, sayby their position in a
list.

For each connective there are twological rules, one when the connective ap-
pears on the left, and one when it appears on the right.

To understand, e.g.,∨-L try to think as follows: to prove∆ under the assump-
tionφ∨ψ (and some other stuffΓ) we must make a case distinction as to whether
φ orψ holds, hence we must prove∆ under assumptionsΓ, φ and then again under
assumptionsΓ, ψ.

Rule⇒-R is probably the easiest of these: to proveφ ⇒ ψ we must prove
ψ under the additional assumptionφ (if we disregard the side formulasΓ,∆. . .).
If we forget about∆ we can also explain¬-R: to prove¬φ we must derive a
contradiction (empty∆) from the assumptionφ.

The¬-L rule says: if¬φ is among our assumptions then to prove anything
(∆) its enough to proveφ (or ∆ straightaway, of course). This is known asex

13

Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆
(∧-L)

Γ =⇒ ∆, φ Γ =⇒ ∆, ψ

Γ =⇒ ∆, φ ∧ ψ
(∧-R)

Γ, φ =⇒ ∆ Γ, ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆
(∨-L)

Γ =⇒ ∆, φ, ψ

Γ =⇒ ∆, φ ∨ ψ
(∨-R)

Γ =⇒ ∆, φ

Γ,¬φ =⇒ ∆
(¬-L)

Γ, φ =⇒ ∆

Γ =⇒ ∆,¬φ
(¬-R)

Γ =⇒ ∆, φ Γ, ψ =⇒ ∆

Γ, φ⇒ ψ =⇒ ∆
(⇒-L)

Γ, φ =⇒ ψ,∆

Γ =⇒ ∆, φ⇒ ψ
(⇒-R)

14

A =⇒ B,A B,A =⇒ B
⇒-L

A⇒ B,A =⇒ B
¬-L

A⇒ B =⇒ B,¬A
¬-L

A⇒ B,¬B =⇒ ¬A

Figure 11: Example proof

A,B =⇒ A,A ∧ C A,B =⇒ B,A ∧ C

A,B =⇒ A ∧ B,A ∧ C

A,C =⇒ A ∧B,A A,C =⇒ A ∧ B,C

A,C =⇒ A ∧B,A ∧ C

A, (B ∨ C) =⇒ A ∧ B,A ∧ C

Figure 12: Example proof

falso quodlibet.
Rule⇒-L, finally, says: if we want to use the assumptionφ⇒ ψ then we can

add its conclusion (ψ) to our assumptions provided we succeed (independently)
in proving its antecedent (φ).

One can derive the implication rules from the encoding ofφ⇒ ψ as¬φ ∨ ψ.

2.4 Soundness and completeness

Definition: A sequent isderivableif there exists a proof with it as root label.
Theorem: A sequent is derivable if and only if it is a tautology.
Proof: Let us call aproof treea tree whose nodes (and leaves) are labelled

with sequents in such a way that whenever a node labelledS has immediate an-
cestorsS1, . . . , Sn then there is a logical rule withS1, . . . , Sn as assumptions
asS as conclusion. For example,S1 = A =⇒ B andS2 = A =⇒ C and
S = A =⇒ B ∧ C. Given the form of our rules we always haven = 1 or
n = 2. The leaves may but do not need to be labelled with axioms. Letus write
S1, . . . Sℓ ⊢ S to mean that there is a proof tree whose root is labelledS and whose
leaves are labelled withS1, . . . Sℓ.

Notice that aproof of sequentS is a proof tree all whose leaves are labelled
with axioms.

By induction on (depth of) proof trees one easily shows that if S1, . . . , Sn ⊢ S

15

andS1, . . . , Sn are all true under some valuationη thenS, too, comes out true
underη. Recall that the truth value of a sequentS = φ1, . . . , φm =⇒ ψ1, . . . ψn

under some valuationη is defined as
∧

i η(φi) ⇒
∨

j η(ψj), i.e.,S comes out false
precisely if all theφi come out true and all theψj come out false.

The above proves that if a sequent has a proof, i.e., a proof tree with axioms
labelling its leaves, then it is tautologous, i.e., true under all valuations.

For completeness we first notice (again by induction on prooftrees) that if
S1, . . . , Sn ⊢ S is proved by a proof tree not involving rule WEAK thenS is
equivalent to the conjunction of theSi, i.e.,S comes out false under some valu-
ationη as soon as one of theSi is falsified byη. Now, for any sequentS we can
always find a proof tree not involving rule WEAK whose root is labelledS and
whose leaves are labelled with sequents consisting of atomsonly. This is done
by successively “breaking down” all the connectives inS. If S is not derivable
then at least one of the atomic sequents labelling the leavesof this proof tree will
not be an axiom (otherwise our proof tree would be a proof!). This sequent will
thus be of the formA1, . . . Am =⇒ B1, . . . Bn where theAi andBj are atoms and
{A1, . . . , Am} ∩ {B1, . . . , Bn} = ∅. Any valuationη with η(Ai) = tt, η(Bj) = ff

will falsify this sequent, henceS. SoS is not a tautology. �

We remark that this also shows that if a sequent is derivable with rules CONTR

and WEAK then it is provable without those rules; the “generic” prooftree ob-
tained by breaking down the connectives must lead to a proof in this case, other-
wise we would obtain a falsifying valuation.

2.4.1 Linear logic

The fact that rules WEAK and CONTR can be eliminated is due to their being built
into the other rules and axioms. Inlinear logic weakening and contraction are
removed and the side formulas in different premises of a ruleare required to be
disjoint. For instance, a linear version of∧-R would look thus:

Γ1 =⇒ ∆1, φ Γ2 =⇒ ∆2, ψ

Γ1,Γ2 =⇒ ∆1,∆2, φ ∧ ψ
(∧-R-LIN)

Moreover, the only axioms areA =⇒ A for A an atom. If we replace all rules
and axioms by their linear versions and remove WEAK and CONTR (which now
are no longer redundant) we obtain a (a fragment of) linear logic in which, e.g.,
the formulaA⇒ A ∧ A is not provable.

16

2.4.2 Cut elimination

In spite of completeness it is useful to have yet another rule: the famous cut rule:
Γ1 =⇒ ∆1, φ Γ2, φ =⇒ ∆2

Γ1,Γ2 =⇒ ∆1,∆2

(CUT)

Usually,Γ1 and∆1 are empty. In this case, CUT corresponds to invocation
of a lemma: if we have provedφ “as a lemma” then we can add it to our list of
assumptions whenever we want. The completeness entails says that lemmas can
always be eliminated.

3 Introduction to PVS

As already mentioned, PVS is based on the sequent calculus. We will start by
using PVS as a proof-assistant for that system.

To do that we call PVS from the (Linux!) command line with

pvs

This brings up an Emacs window entitled PVS. A possible question concerning
context creation should be answered affirmatively (means: type inyes).

Now create a file namedsequent.pvs containing something like

sequent_calculus: THEORY
BEGIN

A,B,C,D: VAR boolean
A11,A12,A21,A22,A31,A32: VAR boolean

K : PROPOSITION
A IMPLIES B IMPLIES A

S : PROPOSITION
(A IMPLIES B IMPLIES C) IMPLIES (A IMPLIES B)

IMPLIES (A IMPLIES C)

Peirce : PROPOSITION
((A IMPLIES B) IMPLIES A) IMPLIES A

17

Contra : PROPOSITION
(A IMPLIES B) IMPLIES NOT B IMPLIES NOT A

dist1 : PROPOSITION
A AND (B OR C) IMPLIES (A AND B) OR (A AND C)

dist2 : PROPOSITION
A AND B OR C AND D IMPLIES (A OR C) AND (B OR D)

schub : PROPOSITION
NOT (

(A11 OR A12) AND
(A21 OR A22) AND
(A31 OR A32) AND
NOT (A11 AND A21) AND
NOT (A11 AND A31) AND
NOT (A21 AND A31) AND
NOT (A12 AND A22) AND
NOT (A12 AND A32) AND
NOT (A22 AND A32))

END sequent_calculus

Click on the first “proposition”. This will bring up a prover window and a prompt
Rule? . The first rule you should enter is(skolem!) . This will get rid of the
FORALLquantifier which we’ll talk about later and basically display the formula
as a sequent with empty premise list and one conclusion named[1] . Unfortu-
nately, all the atoms are decorated with!1 . ¡ Now you can

• apply a disjunctive rule (∧-L, ∨-R,⇒-R) by entering(flatten x) where
x is the number of the formula you want to apply the rule to. (x must obvi-
ously be1 at the beginning.

• apply a conjunctive rule (∧-R,∨-L, ⇒-L) by entering(split x) where,
again,x is the number of the formula.

The rules for negation are applied automatically.
Try to prove all the propositions in this way but don’t waste too much time on

the last one (schub).

18

Rather give up after a few steps by typing(quit) and redo the proof (an-
swering no when asked whether you want to rerun the existing proof) this time
typing (prop) after the(skolem!) step or(grind) right at the start.

You can display the tree structure of your current proof withM-x x-show-current-proof
and of a finished proof withM-x x-show-proof .

You may wish to do some more ad-hoc experiments with PVS. Extensive doc-
umentation is available at the PVS homepagepvs.csl.sri.com .

4 Resolution

Gentzen’s sequent calculus provides a decision procedure for the validity of propo-
sitional formulas: construct the proof tree as in the completeness proof and check
whether all leaves are labelled with axioms.

Unfortunately, the complexity of this procedure is exponential in the size of
the formula to be proved. This is due to the duplication of “goals” in rules∨-L, ∧-
R,⇒-L. Worse still, a lot of work is done twice: if we break downΓ =⇒ ∆, φ∧ψ
into Γ =⇒ ∆, φ andΓ =⇒ ∆, ψ then the “breaking down” ofΓ and∆ must be
done in each branch individually.

Of course, unlessP = NP we cannot expect a really efficient (polynomial)
method for deciding propositional formulas; however, there are algorithms that
behave quite well in practice for moderately sized formulas. One of these is the
method ofresolutioninvented by ROBINSON which we will take a look at for one
thing for its popularity and for another because its applicability to first-order logic
which we will come to shortly.

Resolution is a method for decidingsatisfiabilityof a propositional formula
presented as aset of clauses. Recall that a formulaφ is satisfiable if¬φ is not a tau-
tology. A literal is either an atom or a negated atom, e.g.,A,¬B, door closed,¬alarm on
are all literals. Aclauseis a set of literals whose meaning is their disjunction.
Some people write a clause as an explicit disjunction using∨, others use set nota-
tion. A set of clausesrepresents the conjunction of the individual clauses. Watch
out for the empty clause (representingff) and the empty set of clauses (represent-
ing tt).

To check whether a formulaφ is a tautology we can represent¬φ as a set of
clauses and see whether it is not satisfiable.

19

• a literal is either an atom or a negated atom:A,¬B,¬door closed.

• a clause is a set of literals understood as theirdisjunction:
{¬lift moves, door closed, alarmon}

• aset of clausesis understood as the conjunction of the individual clauses.

• empty clause =ff, empty set of clauses =tt

• One is interested insatisfiabilityof sets of clauses.

• Validity (to be a tautology) is trivial for sets of clauses. Why?

Figure 13: Clauses

4.1 Representation of formulas as sets of clauses

We all know that any formulaφ can be converted into conjunctive normal form,
by “multyplying out” according to de Morgan’s rule. The problem with this is that
in general the size of the conjunctive normal form will be exponential in the size
of the formula to start with. Actually, if this blow up would not occur we had a
simple method for checking whetherφ is a tautology. Just bringφ into conjunctive
normal form and see whether each clause is a tautology.

What we can do without exponential blowup, though, is to construct a set of
clausesC which is satisfiableif and only if φ is. To that end, we proceed as
follows: first, we may assume thatφ contains connectives∨,∧,¬ only and that,
moreover,¬ occurs in front of atoms only. One calls this the negation normal form
of φ. Now, if φ happens to be a literal then there is nothing to do. Ifφ = φ1∧φ2 and
φ1, φ2 are equi-satisfiable withC1, C2, respectively, thenC1 ∪C2 is equi-satisifable
with φ. If, finally, φ = φ1 ∨ φ2 then(C1 ∨ P) ∪ (C2 ∨ ¬P is equi-satisfiable with
φ. HereP is a fresh atom andC ∨P means the addition ofP to each clause inC.

4.2 The method of resolution

The method of resolution decides whether a given set of clauses is satisfiable.
It works as follows: given two clausesC1 andC2 such thatC1 contains some
literal ℓ andC2 contains its negation¬ℓ (with the understanding that the negation
of ¬A is A) then therule of resolutionapplied toC1, C2 yields the clauseC1 \
{ℓ} ∪C2 \ {¬ℓ}. For example, applying the rule of resolution to{A,¬B,D} and

20

Rule of resolution:
C1 ∪ {ℓ} C2 ∪ {¬ℓ}

C1 ∪ C2

Example:{¬A,B,D} and{¬B,X} yield {¬A,D,X}.

Figure 14: The rule of resolution

INPUT: a set of clausesC
WHILE ∅ 6∈ C ORC still grows DO

CHOOSEC1, C2 ∈ C S. T.ℓ ∈ C1 and¬ℓ ∈ C2 for some literalℓ.
C := C ∪ {C1 \ {ℓ} ∪ C2 \ {¬ℓ}}

IF ∅ ∈ C THEN OUTPUT “C is not satisfiable”
ELSE OUTPUT “C is satisfiable”

Figure 15: The method of resolution

{A,¬D,E} yields{A,¬B,E}. The method of resolution consists of closing up
a set of clauses under the rule of resolution and seeing whether the so closed-up
set ontains the empty clause or not. This is formalised in Fig.15. Note that if the
initial clause setC is finite then the algorithm terminates since there is only a finite
number of possible clauses over any given (finite) set of variables.

4.3 Correctness of resolution

If the set of clauses—after this closure—contains the emptyclause then it is un-
satisfiable, otherwise we can find a satisfying valuation. This is the content of the
correctness theorem for resolution.

A set of clausesC is closed under resolutionif the result of applying the rule
of resolution to any two clauses inC is already contained inC. The above method
precisely computes the closure under resolution of an arbitrary set of clauses.

Let C be a set of clauses,A an atom. We define the clause setC[A7→tt] by
removing fromC every clause that contains the literalA and removing the literal
¬A from every clause that contains it. Analogously, we defineC[A7→ff]. It is
easily seen by case distinction that ifC is closed under resolution so are these two
sets.

If η is a valuation that satisfiesC[A7→v] then the valuationη[A7→v] which
mapsA to v and all other atoms according toη will satisfy C.

Theorem: Let C be a possibly infinite set of clauses closed under resolution,

21

i.e., ThenC is satisfiable if and only if∅ 6∈ C.
Proof: If a set of clausesC′ has been obtained from asatisfiableset of clauses

C by a single application of the rule of resolution thenC′ is satisfiable, too. One
says that the rule of resolution preserves satisfiability. Thus, if we derive fromC a
set of clauses containing the empty clause thenC must have been unsatisfiable in
the first place.

For the converse, suppose thatC does not contain the empty clause yet is
closed under the rule of resolution. We explicitly construct a valuationη that will
satisfy all the clauses inC: Enumerate the atoms asA1, A2, We define the
valuesη(A1), η(A2), . . . in order. Let us begin with the variableA1. Not both
C[A1 7→ tt] andC[A1 7→ ff] can contain the empty clause for otherwise,C would
contain both{A1} and{¬A1} and hence the empty clause by resolution step.
Thus, chooseη(A1) such thatC[A1 7→η(A1)] does not contain the empty clause.
We continue in this way replacingA1 with A2 andC with C[A1 7→η(A1)] yielding
a valueη(A2) such thatC[A1 7→η(A1)][A2 7→η(A2)] does not contain the empty
clause.

Continuing in this way, we obtain a valuationη which satisfies all the clauses
in C. This can be seen by noticing that as the variables are considered every clause
in C eventually disappears.

An important corollary is the compactness theorem for propositional logic:
Theorem: Let C be a (possibly infinite) set of clauses or propositional formu-

las. If every finite subset ofC is satisfiable then the whole ofC is satisfiable.
Proof: If contrary to the conclusion the whole ofC is unsatisfiable then by

the previous theorem it must be possible to deduce the empty clause fromC. But
such a proof will only involve a finite portion ofC which would then already be
unsatisfiable contradicting the assumption.

4.4 Long resolution proofs

While for many tautologies (or rather their negations) resolution works astonish-
ingly fast there are other ones, e.g.,schub above for which it is rather slow.
Indeed, HAKEN has shown that the resolution method has exponential worst case
complexity.

Theorem (Haken): There is a constantc > 1 and an infinite family of (unsat-
isfiable) sets of clausesP1, P2, . . . such thatPn consists ofO(n2) clauses yet any
derivation of∅ from Pn will involve O(cn) many clauses.

To wit, the set of clausesPn expresses thatn+ 1 pigeons fit inton holes, e.g.,
P2 ⇔ ¬schub.

22

The proof of Haken’s theorem is elementary but fairly long and technical.
Recently, WIGDERSONhas presented an important simplification. Use Google to
find his paper if you are interested.

4.5 Cook’s programme

Haken’s theorem is quite drastic evidence for exponential time complexity of the
resolution procedure. Even if Haken’s theorem would not hold as stated, reso-
lution could still fail to be a polynomial time procedure: itmight be difficult to
find a polynomially sized derivation of∅ even if it exists and in the case ofsatis-
fiablesets of clauses the process of closing up might result in exponentially many
clauses.

It is an important open complexity-theoretic question related to P=NP as to
whether there is a proof system for propositional logic withthe property that any
tautologyφ has a proof of size polynomial in the size ofφ. Refuting this for
concrete proof systems (as Haken has done for resolution) isa popular research
activity initiated by S. COOK. As far as I know, it is presently not known whether
or not each tautology has a polynomially sized proof in sequent calculus with the
CUT rule.

4.6 The DPLL procedure

In practical implementations of decision procedures for propositional logic (SAT-
solvers) resolution has been superseded by a surprisingly naive search procedure
known as DPLL algorithm (Davis-Putnam-Loveland-Logemann).

It also operates on clause sets and is based on three interleaved steps

• Unit propagation: if the clause set contains a unit clause, i.e., one containing
a single literal, then it is possible to set the value of that atom and propagate
it through the other clauses. We define unit propagation formally below.

• Branching: choose an arbitrary atomA and try to satisfy firstC[A7→tt] and
C[A7→ff]. If either turns out to be satisfiable then so isC. Otherwise,C is
unsatisfiable.

• Learning clauses: if during the branching it turns out that for some partial
valuationη the clause setC[η] is unsatisfiable by unit propagation alone then
we can identify those settings inη which lead to the empty clause and build

23

a corresponding clausek that can be added toC without affecting satisfiabil-
ity. If e.g., we find that settingA7→tt, B 7→ff, C 7→tt leads to a contradiction
(empty clause) then we can add the clause{¬A,B,¬C} to C. The hope
is that in the future this addition will speed up unit propagation; in par-
ticular, if at a later stage we try to, again, setA7→tt, B 7→ff, C 7→tt then we
find out immeidately that this leads to a contradiction rather than having to
re-perform the corresponding steps of unit propagation.

Slightly more formally DPLL can be viewed as a recursive procedure that uses
a global variable containing a set of clausesC. It is an invariant that clauses are
never removed fromC and whenever a clausek is to be added toC then it is a
logical consequence ofC, i.e., wheneverη satisfiesC then it also satisfiesk.

The procedure takes as argument a partial valuationη andDPLL(η) returns
“satisfiable” if there exists a valuation extendingη that satisifiesC; it returns
“unsatisfiable”, if no such valuation exists. Figure 4.6 contains pseudo code for
DPLL. In a practical implementation a number of improvements are possible.
Rather than using recursion one can maintain a stack of partial environments.
Furthermore, it is not necessary to compute the clause setC[η′] explicitly. For
details, we refer to the literature.

5 First-order logic

Propositional calculus is nice, but in many applications weneed a way of talking
about elements, predicates, and operations. That is what first order logic is for.
Figure 5 shows some examples of sentences that lend themselves to a formali-
sation in first-order logic. A formal system for writing downsuch statements is
obtained by augmenting propositional logic with thequantifiers∀ (for all) and∃
(there exists). As to the range of these quantifiers one has two options which we
consider in order.

Untyped first-order logic. This is the traditional and most common version of
first-order logic. We let all quantifiers and variables rangeover one and the same
implicit, a priori given, domain. In this case we must use special predicates to
restrict the range of quantifiers. Figure 18 shows how the example sentences are
formalised in untyped first-order logic.

24

UNITPROP(C, η) =
IF C[η] contains the empty clause

let ρ ⊆ η be the smallest sub-valuation ofη such that∅ ∈ C[ρ]
RETURN(ρ, “unsatisfiable”)

ELSE IFC[η] is empty
RETURN(η, “satisfiable”)

ELSE IFC[η] contains a unit clause{A}
RETURNUNITPROP(C, η[A7→tt])

ELSE IFC[η] contains a unit clause{¬A}
RETURNUNITPROP(C, η[A7→ff])

ELSE RETURN(η, ”undecided”)

DPLL(η) =
(η′, v) := UNITPROP(C, η)
IF v = “satisfiable”

RETURN “satisfiable”
ELSE IFv = “unsatisfiable”

C := C ∪ {k}wherek asserts that at least one atom is valued different fromη′.
RETURN “unsatisfiable”

ELSE
choose an atomA 6∈ dom(η′)
IF DPLL(η′[A7→tt]) =”satisfiable”

RETURN “satisfiable”.
ELSE

RETURNDPLL(η′[A7→ff])

INPUT a set of clausesX
C := X
OUTPUTDPLL(∅)

Figure 16: DPLL-algorithm with clause learning
??

25

1. Every student has a matric number.

2. If a student fails to matriculate she will be expelled.

3. Every human being is a philosopher.

4. There always is one student who complains about every course.

5. There is a set with no elements.

6. For every natural numbern there exists a natural numberd such that2d ≤ n
andn < 2d+1.

7. The knirp of each bilg is a prugl but does not bebelf any quist.

Figure 17: First-order formulas (informal)

1. ∀x.student(x) ⇒ ∃n.number(x) ∧ hasmatric no(x, n)

2. ∀x.student(x) ⇒ ¬hasmatriculated(x) ⇒ will be expelled(x)

3. ∀x.human(x) ⇒ philosopher(x)

4. ∃x.student(x) ∧ ∀c.course(c) ⇒ complainsabout(x, c)

5. ∃x.∀y.¬(y ∈ x)

6. ∀n.number(n) ⇒ ∃d.number(d) ∧ leq(power(2, d), n) ∧
lt(n, power(2, plus(d, 1)))

7. ∀x.bilg(x) ⇒ prugl(knirp(x)) ∧ ∀y.quist(y) ⇒ ¬bebelfs(knirp(x), y)

Figure 18: Formalisation in untyped first-order logic

26

1. ∀x:student.∃n:number.hasmatric no(x, n)

2. ∀x:student⇒ ¬hasmatriculated(x) ⇒ will be expelled(x)

3. ∀x:human.philosopher(x)

4. ∃x:student.∀c:course.complainsabout(x, c)

5. ∃x:set.∀y:set.¬(y ∈ x)

6. ∀n:number.∃d:number.leq(power(2, d), n)∧

lt(power(2, plus(d, 1)))

7. ∀x:bilg.prugl(knirp(x)) ∧ ∀y:quist.¬bebelfs(knirp(x), y)

Figure 19: Typed first-order logic

Typed first-order logic. Alternatively, we fix a collection oftypesand require
that each quantifier is annotated with a type determining itsrange. Assuming that
we have fixed types

human, student, number, course, set, bilg, quist

we could write the example sentences as in Figure 5. Untyped first-order logic
has the advantage of being slightly simpler to formulate andit suffices for many
applications, especially in mathematics. Typed first-order logic has the advantage
of being more readable and, more importantly, that it allowsthe user to distinguish
between actual properties he wants to prove and typing judgments which should
follow automatically in most cases. For example, if we were to prove formula 6
above in the untyped setting then we would at some point come up with ad and
would then have to prove number(d) as well as the actually interesting property
of d.

In the typed setting the first one falls under typing and can often be discharged
automatically.

Of course, the distinction between types and predicates is asubjective one and
can be “misused”.

27

Typechecking can be difficult. For example, ifD is the “type” consisting of
quadruples of integers(x, y, z, n) such thatn > 2 andxn + yn = zn then proving

∃p:D.p = p

is tantamount to proving Wiles’ theorem!
If used reasonably then types can considerably simplify (formal) proofs and

the appearance of statements.

5.1 Typed first-order language

A typed first-order language is specified by the following data:

1. a collectionT of types

2. a collectionP of predicate constants, each endowed with anarity [τ1, . . . , τn →
boolean] whereτ1, . . . , τn ∈ T

3. a collectionF of function constants each endowed with an arity[τ1, . . . , τn →
τn+1] whereτ1, . . . , τn+1 ∈ T

The arity of a predicate constant is nothing but a list of types; the brackets, the
arrow, and “boolean” are merely notation. We use the notation P : [τ1, . . . , τn →
boolean] andf : [τ1, . . . , τn → τn+1] to indicate the arities of predicate, resp.
function constants.

Examples: For the formulas 1,. . . ,4 an appropriate language is as follows:

T = {student, number, course}
P = {hasmatric no : [student, number→ boolean]

hasmatriculated: [student→ boolean]
will be expelled: [student→ boolean]]]
complainsabout: [student, course→ boolean]

F = ∅

For the formula 7 an appropriate first-order language would be

T = {bilg, quist, knirp t}
P = {prugl : [knirp t → boolean], bebelfs: [knirp t, quist→ boolean]}
F = {knirp : [bilg → knirp t]}

28

Typing contexts: K = x1:τ1, . . . , xn:τn; formally: finite function from variables
to types.
Typing rules:

K(x) = τ

K ⊲L x : τ
(VAR)

f : [τ1, . . . , τn → τn+1] ∈ F K ⊲L t1 : τ1, . . . , K ⊲L tn : τn

K ⊲L f(t1, . . . , tn) : τn+1

(FUN)

Figure 20: Well formed terms

The type knirpt arises only as the range of a function symbol not as the range
of a quantifier. When translating this formula from natural language to formal
language we could also have opted for a predicate constant knirp : [bilg, knirp t →
boolean] denoting its graph. The content of the definite article “the knirp of. . . ”
could be rendered by another formula stating unique existence. This would require
the notion of equality which we will come to later.

5.2 Syntax

In order to define properly what formulas are we have to talk about terms and
formulas possibly involving variables as those occur in scopes of quantifiers. We
thus assume an infinite setV of variables distinct from the other symbols and fix
a first order languageL. A typing contextis a finite partial functionK mapping
variables to types. IfK is a typing context andx 6∈ dom(K) andτ ∈ T then
K, x:τ is the typing contextK extended withx 7→ τ .

We writeK ⊲L t : τ to mean thatt is a well formed term inL of type τ
possibly involving the variables declared and typed as given byK. This judgment
is inductively defined by the followingtyping rules.

Well-formed formulas are built up from atomic formulas (predicate constants
applied to appropriately typed terms) by propositional connectives and quantifiers
which bind variables. Formally, we introduce the judgmentK ⊲L φ : boolean to
mean thatφ is a well formed formula inL possibly involving the free variables
declared and typed inK. This judgment is defined by the following rules:

P : [τ1, . . . , τn → boolean] ∈ P K ⊲L t1 : τ1, . . . , K ⊲L tn : τn

K ⊲L P (t1, . . . , tn) : boolean
(ATOM)

29

K ⊲L φ : boolean

K ⊲L ¬φ : boolean
(NEG)

K ⊲L φ : boolean K ⊲L ψ : boolean ⋆ ∈ {∨,∧,⇒}

K ⊲L φ ⋆ ψ : boolean
(CONN)

K, x:τ ⊲L φ : boolean Q ∈ {∀, ∃}

K ⊲L Qx:τ.φ : boolean
(QUANT)

These rules defineabstract syntaxtogether withtyping (there latter is also
known and misnamed as “semantic analysis”). For concrete syntax one needs
to specify precedence rules and use parentheses to disambiguate otherwise. The
connectives take precedence as before; quantifiers always extend as far to the right
as possible, i.e., until an unmatched closing parenthesis is encountered.

5.3 Semantics

A formula φ is closedif it contains no free variables, i.e., if∅ ⊲L φ : boolean.
These are the ones we are really interested in; the open formulas are introduced
only as an auxiliary device for the definition of the closed ones.

The meaning of a closed first-order formula is given as a truthvalue relative to
an interpretation of the types, the predicate constants, and the function constants.
To specify the meaning of a non closed formula we also need a valuation of the
variables.

Interpretation An interpretationI of a first-order language(T ,P,F) is given
by

1. a set[[τ]]
I

for eachτ ∈ T .

2. a function[[P]]
I

: [[τ1]]I × · · · × [[τn]]
I
→ {tt, ff} for eachP : [τ1, . . . , τn →

boolean].

3. a function[[f]]
I

: [[τ1]]I × · · · × [[τn]]
I
→ [[τn+1]]I for each function constant

f : [τ1, . . . , τn → τn+1].

Such an interpretation associates a truth value with every closed formula and
more generally, a function mapping valuations of variablesto truth values with
every open formula. For pedants we give here a formal definition.

30

[[x]]ρ,I = ρ(x)

[[f(t1, . . . , tn)]]ρ,I = [[f]]
I
([[t1]]ρ,I , . . . , [[tn]]ρ,I)

[[P (t1, . . . , tn)]]ρ,I = [[P]]
I
([[t1]]ρ,I , . . . , [[tn]]ρ,I)

[[¬φ]]ρ,I = ¬[[φ]]ρ,I

[[φ ⋆ ψ]]ρ,I = [[φ]]ρ,I ⋆ [[φ]]ρ,I

[[∀x:τ.φ]]ρ,I =

{

tt, if [[φ]]ρ[x 7→v],I = tt for all v ∈ [[τ]]
I

ff, otherwise

[[∃x:τ.φ]]ρ,I =

{

tt, if [[φ]]ρ[x 7→v],I = tt for somev ∈ [[τ]]
I

ff, otherwise

Hereρ is a partial function on variables.
We note that ifρ is compatible with typing contextK in the sense thatρ(x) ∈

[[K(x)]]
I

for all x ∈ dom(K), in particular,ρ(x) is defined in this case, then
[[t]]ρ,I ∈ [[τ]]

I
wheneverK⊲L t : τ and[[φ]]ρ,I ∈ {tt, ff} wheneverK⊲L t : boolean.

A closed formula isvalid if its meaning comes out as true under all possible
interpretations of the language it is based on. Examples of such valid formulas are
as follows.

• ∀x:τ.P (x) ⇒ ∃y:τ.P (y) (recall that quantifiers always extend to the left as
far as possible),

• (∀x:τ1.R(x, f(x))) ⇒ ∀x:τ1.∃y:τ2.R(x, y) whenf : [τ1 → τ2],

• (∀x:τ1.∀y:τ2.P (x) ∨Q(y)) ⇒ (∀x:τ1.P (x)) ∨ (∀x:τ2.Q(x)),

• (Q ∨ ∃x:τ.P (x)) ⇒ ∃x:τ.Q ∨ P (x) whereQ : [→ boolean] is a constant
and, moreover, we have a constantc : [→ τ],

• ∃x:τ.P (x) ⇒ ∀y:τ.P (y) again in the presence of a constantc : [→ τ].

Nullary predicate and function constants are propositional, resp., “ordinary”
constants. We may writeQ : boolean andc:τ instead ofQ : [→ boolean] and
c : [→ τ] to declare them and omit empty parentheses (as done above) when using
them.

5.4 First-order sequent calculus

As before we form sequentsΓ =⇒L ∆ from lists of closedformulasΓ,∆ over
some languageL. The meaning of such a sequent is that the conjunction of the
formulas inΓ implies the disjunction of the formulas in∆.

31

Notice that the presence of constants inL can affect the meaning of a formula
hence of a sequent even if these constants do not occur explicitly. This explains
the explicit mentioning ofL.

We introduce the notationL, c:τ for the extension ofL with a new constant
c of typeτ . We keep all the rules for the propositional connectives andadd four
rules to deal with the quantifiers which we will now explain.

To prove an existential statement we have the rule

Γ =⇒L ∆, φ[t/x]

Γ =⇒L ∆, ∃x:τ.φ
(∃-R)

where∅ ⊲L t : τ .
Hereφ[t/x] denotes the substitution ofclosedtermt for variablex in φ.
The rule says that to prove an existential statement we must come up with a

witness. It corresponds to phrases like “The desired valuex is therefore given by
t. . .”. Next, we have the following rule to use a universally quantified statement.

Γ, φ[t/x] =⇒L ∆

Γ, ∀x:τ.φ =⇒L ∆
(∀-L)

where∅ ⊲L t : τ .
To use a universally quantified statement we must instantiate it with some

concrete term. The rule corresponds to phrases like“We apply Lemma xxx / the
above assumption tox = t. . . ” or “Applying Lemma yyy / the above assumption
in this situation yields. . .

One should note that these two rules preserve but do not always reflect valid-
ity, i.e., it may be that the conclusion of a rule is valid, yetthe premise is not.
After all, one might have chosen the wrong instantiation. Moreover, it is possi-
ble that a universal assumption must be instantiated more than once (consider e.g.
an assumption asserting that some relation is transitive),so sometimes one has to
keep the quantified formula for later use by prior invocationof rule CONTR.

Next, we have a rule for proving a universal statement:

Γ =⇒L,c:τ ∆, φ[c/x]

Γ =⇒L ∆, ∀x:τ.φ
(∀-R)

Herec : τ is a fresh constant symbol not occurring inL hence inΓ,∆, φ.
To prove∀x:τ.φ we must proveφ for a fixed but arbitraryc : τ .
“Fix an arbitrary c : τ . . . this proves∀x:τ.φ
Finally, we need a rule to use an existential statement:

Γ, φ[c/x] =⇒L,c:τ ∆

Γ, ∃x:τ.φ =⇒L ∆
(∃-L)

32

To use an existential statement we introduce a fresh name forits witness. We
know nothing about the witness except that it satisfiesφ.

“Lemma xxx provides us with ac such thatφ[c/x]”
“Let c be thex provided by (13) above”
We notice that in the latter two rules no formulas with free variables arise as

the bound variable is immediately replaced with a fresh constant. There are alter-
native presentations in which free variables are used for the “fixed but arbitrary
constants” occurring in those rules. In a typed setting admitting empty domains of
quantification this seems less appropriate as we then would have to annotate each
sequent with the set of variables it depends on. Moreover, a variable is supposed
to vary, whereas these constants are fixed.

Let’s take a look at a couple of representative examples.
AXIOM

P (c) =⇒L,c:τ P (c)
∃-R

P (c) =⇒L,c:τ ∃x:τ.P (x)
⇒-R

=⇒L,c:τ P (c) ⇒ ∃x:τ.P (x)
∀-R

=⇒L ∀x:τ.P (x) ⇒ ∃x:τ.P (x)
PROP

P (c1) ∨Q(c2) =⇒L,c1:τ1,c2:τ2 P (c1), Q(c2)
∀-L

∀y:τ2.P (c1) ∨Q(y) =⇒L,c1:τ1,c2:τ2 P (c1), Q(c2)
∀-L

∀x:τ1.∀y:τ2.P (x) ∨Q(y) =⇒L,c1:τ1,c2:τ2 P (c1), Q(c2)
∀-R

∀x:τ1.∀y:τ2.P (x) ∨Q(y) =⇒L ∀x:τ1.P (x), ∀x:τ2.Q(x)
∨-R

∀x:τ1.∀y:τ2.P (x) ∨Q(y) =⇒L (∀x:τ1.P (x)) ∨ (∀x:τ2.Q(x))

5.5 Soundness and completeness of first-order sequent calcu-
lus

As before we have that a sequent is valid if and only if it is derivable in the se-
quent calculus, i.e., if there is a proof tree whose leaves are labelled with axioms.
Unlike in the propositional case, the contraction rule CONTR is not redundant
corresponding to the fact that universal premises may need to be used more than
once. This thwarts a naive decision procedure for validity based on constructing
a generic proof tree and, indeed, as was shown by TURING validity in first order
logic is undecidable. Actually, this result is not very surprising if we consider that
basically all of mathematics can be formalised in first-order logic.

33

Theorem: A sequent is valid if and only if it is derivable in the sequentcalcu-
lus.

Proof: The “if” direction of the correctness theorem (“soundness”) is proved
as before by induction on derivations; we simply have to check that all the rules
preservevalidity.

For the “only if” direction (“completeness”) we construct ageneric proof tree
as in the propositional case by breaking down connectives and if nothing else
helps instantiating quantifiers∀-L, ∃-R. We must make sure that we keep those
quantified statements around using CONTR prior to instantiating. If we arrange
things in such a way that eventually a quantified formula willbe instantiated with
every possible term we are sure to find a proof if one exists.

If no proof exists our generic proof tree contains a leaf thatis not an axiom or
has an infinite path.

From the infinite path we will construct a counter interpretation by taking
terms (also containing the constants newly introduced along the path) to interpret
the types, function constants interpreting themselves, and interpreting predicate
constants according to how atomic formulas involving them occur along the path.
This will ensure that the interpretation falsifies all the sequents along the path
hence the root sequent which by assumption has no proof.

Let us look at this in some more detail. Firstly, to counter the information loss
in the instantiating rule∀-L and∃-R we replace them by the following combina-
tions with rule CONTR:

Γ, ∀x:τ.φ, φ[t/x] =⇒L ∆

Γ, ∀x:τ.φ =⇒L ∆
(∀-L’)

Γ =⇒L ∆, ∃x:τ.φ, φ[t/x]

Γ =⇒L ∆, ∃x:τ.φ
(∃-R’)

It is clear that there is a proof with the primed rules if and onnly if there is one
in the original system.

A generic proof treeis a possibly infinite tree labelled with sequents which
has the following properties:

1. each internal node is the conclusion of its immediate ancestors by some
proof rule.

2. rule WEAK is not used,

3. rules∀-L’ and ∃-R’ are used only with conclusionΓ =⇒L ∆ whereΓ
contains atoms and universally quantified formulas only and∆ contains

34

atoms and existentially quantified formulas only. Otherwise we could use
one of the validity-reflecting rules.

4. no internal node is labelled with an axiom, i.e., we stop once we have found
an axiom

5. on every infinite path starting fromΓ =⇒L ∆, ∃x:φ the formula∃x:φ is
instantiated with all (closed) terms of typeτ in L

6. Ditto for infinite paths starting fromΓ, ∀x:τ =⇒L ∆

These properties basically dictate a strategy for obtaining a generic proof tree
starting from any sequent. Simply apply the rules backwardswith the mentioned
restriction on the rules that instantiate quantifiers. Whenselecting instantiations
make sure that every possible instantiation will be eventually chosen unless of
course a path ends with an axiom leaf. Please note, that as soon as we make a
language extension we must instantiate our quantified formulas with all the terms
in the new language as well.

Now suppose that a sequentS has no proof. The generic proof tree constructed
from S might have a finite path ending in a non axiom consisting of atomic for-
mulas only. In this case, we can argue as in the case of propositional logic that
the root sequent is unsatisfiable. Alternatively, and this is the interesting case, the
generic proof tree will contain an infinite pathπ (starting from the root). This
is “König’s Lemma”: a finitely branching tree with infinitely many nodes has an
infinite path. Along this infinite pathπ we encounter an increasing (by constants)
sequence of languagesL1 ⊆ L2 ⊆ . . . whose union we callL∞. So, a term in
L∞ will be a term of one of theLi.

To construct our desired counterinterpretationI we interpret types by

[[τ]]
I

= {t | ∅ ⊲L∞
t : τ}

We interpret function constants by

[[f]]
I
(t1, . . . , tn) = f(t1, . . . , tn)

We interpret predicate constants by

[[P]]
I
(t1, . . . , tn) =

tt, if P (t1, . . . , tn) is among the antecedents
(left of =⇒) of a sequent inπ,

ff, in all other cases.

35

Now we show by induction on the size of formulas that whenevera formulaφ
appears as an antecedent of a sequent inπ then[[φ]]

I
= tt and whenever a formula

ψ appears as a succedent (to the right of the=⇒) of a sequent inπ then[[ψ]]
I

= ff,
so that in particular all the sequents alongπ including the root will be falsified by
I. So,I shows that the root is not a valid sequent.

Atomic formulas are true underI precisely if they appear as an antecedent.
If an atomic formula appears as a succedent then—since atomic formulas never
disappear along the path—it cannot also appear as an antecedent for otherwise
we would have an axiom sequent onπ contrary to the construction of the generic
proof tree. Thus, atomic formulas appearing as succedents are falsified byI. A
formula which is not an existentially quantified succedent or a universally quan-
tified antecedent will eventually be broken down by a validity reflecting rule into
its subformulas to which the induction hypothesis applies.Consider for example
a succedent of the form∀x:τ.φ. At some point rule∀-L will be applied, soφ[c/x]
also occurs as a succedent onπ. By the induction hypothesis[[φ[c/x]]]

I
= ff, but

then[[∀x:τ.φ]]
I

= ff, too.
If, finally, we have an existentially quantified succedent, e.g.,∃x:φ then by the

“round robin” policy used for instantiating all formulas, all the formulasφ[t/x]
with ∅ ⊲L∞

t : τ will occur as succedents alongπ hence are falsified byI. Since
[[τ]]

I
comprises precisely all those terms we conclude that[[∃x:τ.φ]] = ff, as well.

The case of a universally quantified antecedent is analogous. This completes the
proof.

One should not underestimate the power of first-order logic.Even without
function constants the counter interpretation may be infinite due to infinitely many
newly introduced constants. Consider for example the formula

(∀x, y, z:τ.R(x, y)∧R(y, z) ⇒ R(x, z)) ∧ (∀x:τ.∃y:τ.R(x, y)) ⇒ ∃x:τ.R(x, x)

It is not valid but holds in all finite interpretations. You may find it instructive to
form the generic proof tree for this formula.

5.6 First-order logic in PVS

Language concepts are declared anywhere in a theory, but before being used

D, T1, T2 : TYPE+
c : T1
P : [D -> boolean]

36

Q : boolean
f : [T1->T2]

HereTYPE+stands fornonemptytype. There is also the declarationT:TYPE
which stands for a possibly empty type. In this case it would not be allowed to
declare a constant of typeT.

This design decision of PVS is open to debate. By declaring a constant of a
type we explicitly state that it is nonempty so why say it twice?

Quantifiers are writtenFORALL(x:T): andEXISTS(x:T): Do not forget
the colon after the parenthesis.

exI : THEOREM
FORALL(x:D):P(x) IMPLIES EXISTS(x:D): P(x)

orex : THEOREM
(Q OR EXISTS(x:D):P(x)) IMPLIES EXISTS(x:D):Q OR P(x)

depp : THEOREM
EXISTS(x:D): FORALL(y:D): P(x) IMPLIES P(y)

gen : THEOREM
(EXISTS(x:D):P(x)) IMPLIES FORALL (x:D):P(x)

The rules∀-L and∃-R are invoked with the commandinst (instantiation).
The rules∀-L and∃-R are invoked with the commandskolem (after TH. SKOLEM).

The inst command takes as argument a formula number (the formula to be
instantiated) and a term to instantiate with. For example, in the situation

{-1} P(d)
|-------

{1} EXISTS (x:T1): P(x)

the command

(inst 1 "d")

leads to

{-1} P(d)
|-------

{1} P(d)

which is an axiom.
Theskolem command takes as argument a formula number and the name of

a new constant. If it isn’t fresh then PVS complains. For example, in the situation

37

|-------
{1} FORALL(x:D):P(x) IMPLIES EXISTS(x:D): P(x)

The command(skolem 1 "c") is no good because we have already usedc
for a constant above. However,(skolem 1 "d") succeeds and gives

|-------
{1} P(d) IMPLIES EXISTS(x:D): P(x)

The commandM-x show-skolem-constants displays all the constants in-
troduced in the course of the proof.

The commandsinst andskolem allow the treatment of several variables
at once. There are also the derived forminst? which guesses an appropriate
instantiation heuristically (alas often quite badly) andskolem! which automati-
cally introduces as many constants as possible (making up fresh names for them).
Furthermore,skosimp is a combination ofskolem! and simplification. See
the PVS prover guide for details.

As an exercise try to prove all of the “theorems” below.

fol: THEORY
BEGIN
D, T1, T2 : TYPE+
c : T1
d : D
P : [D -> boolean]
Q : boolean

allE : THEOREM
FORALL(x:D): (FORALL(y:D): P(y)) IMPLIES P(x)

andall : THEOREM
(Q AND (FORALL(x:D):P(x))) IMPLIES FORALL(x:D):Q AND P(x)

exI : THEOREM
FORALL(x:D):P(x) IMPLIES EXISTS(x:D): P(x)

andex : THEOREM

38

(Q AND EXISTS(x:D):P(x)) IMPLIES EXISTS(x:D):Q AND P(x)

orex : THEOREM
(Q OR EXISTS(x:D):P(x)) IMPLIES EXISTS(x:D):Q OR P(x)

depp : THEOREM
EXISTS(x:D): FORALL(y:D): P(x) IMPLIES P(y)

doub : THEOREM
FORALL(x,y:D) : EXISTS (z:D) : P(z) IMPLIES P(x) & P(y)

P1 : [T1->boolean]
P2 : [T2 -> boolean]

por : THEOREM
(FORALL(x:T1,y:T2):P1(x) OR P2(y)) IMPLIES

(FORALL(x:T1):P1(x)) OR (FORALL(x:T2):P2(x))

R : [D,D->boolean]

per: THEOREM
(FORALL (x,y:D):R(x, y) IMPLIES R(y, x)) AND
(FORALL (x,y,z:D): R(x, y) AND R(y, z) IMPLIES R(x,z)) IMPLI ES
(FORALL (x:D): (EXISTS (y:D): R(x,y)) IMPLIES R(x,x))

END fol

6 First-order resolution

As in the propositional case the method of resolution provides a generally more
efficient way to decide validity of formulas than proof search in Gentzen’s sequent
calculus. In the first-order case we may instantiate universally quantified variables
prior to resolving so as to achieve agreement of literals. For example, we may
resolve the clauses{P (f(x, g(y))), Q(x)} which denotes∀x, y.P (f(x, g(y))) ∨
Q(x) (types omitted) and{¬P (f(g(z), w)), R(w)}which denotes∀w, z.¬P (f(g(z), w))∨
R(w) to form{R(g(y)), Q(g(z))} which denotes∀y, z.R(g(y)) ∨Q(g(z)).

Notice that again a satisfying interpretation for the former two clauses will
also satisfy the latter. In this example, we could also have instantiatedx with

39

C1 = {P (f(x, g(y))), Q(x)} , i.e., ∀x, y.P (f(x, g(y))) ∨Q(x)
C2 = {¬P (f(g(z), w)) ∨ R(w)} , i.e., ∀w, z.¬P (f(g(z), w)) ∨ R(w)}

resolve to
C3 = {R(g(y)) ∨Q(g(z))} , i.e., ∀y, z.R(g(y)) ∨Q(g(z))

Figure 21: Example of resolution

something likeg(f(h(c()))) and accordinglyy with f(h(c())). However, in order
to maximise future success it is advisable to choose the instantiation which makes
the least possible commitment or, in formal terms, themost general unifier. While
this is in practice always done, it is, for the purpose of establishing completeness,
easier to allow arbitrary instantiations.

Let us look at the details. First-order resolution operateson clauses which
are sets of first-order literals, i.e., negated or non-negated atomic formulas, which
are understood as being universally quantified over the variables they contain. In
order to avoid problems with empty types we assume that our language is such
that every type contains at least one closed term.

• A first-order literal is a negated or non-negated atomic formula.

• A first-order clause is a set of first-order literals

• It denotes the disjunction of the literals universally quantified over the vari-
ables

Given a set of first-order clausesC we can use first-order resolution to decide
whether it is satisfiable, i.e., whether there exists an interpretation which makes
it true. If we can derive the empty clause fromC by successive application of
rules INST and RES then surelyC is unsatisfiable. Conversely, ifC is unsatisfiable
then it is possible to derive the empty clause. The proof of this result is based on
correctness of propositional resolution and Herbrand’s theorem which asserts that
a set of formulas of the form∀~x:~τ .φwith φ quantifier-free is satisfiable if and only
if the set of its closed instantiations is propositionally satisfiable:

Theorem (“Herbrand’s theorem”): LetS be a set of formulas of the form∀~x.φ
with φ quantifier-free.

Define

S := {φ[t1/x1, . . . , tn/xn)] | ∀x1:τ1, . . .∀xn:τn.φ ∈ S and∅ ⊲L ti:τi}

40

• Instantiation rule:
C

C[t1/x1, . . . , tn/xn]
(INST)

wherexi are the variables mentioned inC and theti arepossibly openterms
(of the right type!).

• Resolution rule
C1 ∪ {A} C2 ∪ {¬A}

C1 ∪ C2

(RES)

• Side condition: there is a closed term of each type.

• Aim: try to derive empty clause from initial set so as to show unsatisfiability.

Figure 22: First-order resolution

as the set of closed instantiations of formulas inS.
There exists an interpretationI validating all formulas inS if and only if there

exists a propositional valuationη of the atomic formulas (viewed as propositional
atoms) validating all formulas inS.

Proof: Given I defineη by η(P (t1, . . . , tn)) = [[P (t1, . . . , tn)]]
I
. Given η

interpret types as sets of (closed) terms, function symbolsby themselves, and
predicates as given byη. �

Thus to establish unsatisfiability of a set of first-order clauses it is enough
to establish propositional unsatisfiability of their closed instantiations, but that’s
precisely what rule RES can do as shown in Section 4.

Rule INST on the other hand, allows us to generate the set of closed instanti-
ations. Performing resolution on clauses containing (universally quantified) vari-
ables certainly does no harm, but may of course speed up success.

6.1 Most general unifiers

As already mentioned, in practice one resolves clauses by instantiating with the
most general unifier. The most general unifier of two open termsu(x1, . . . , xm)
andv(y1, . . . , yn) consists of two sequences of open termst1, . . . , tm ands1, . . . , sn

involving variablesz1, . . . , zk, such thatu(t1, . . . , tm) = v(s1, . . . , sn) and, more-
over, any instantiation makingu equal tov arises from this one by instantiation,

41

• u(x1, . . . , xm), v(y1, . . . , yn) two term with free variables~x and~y.

• Most general unifier consists of~s(~z) and~t(~z) such thatu(~s(~z)) = v(~t(~(z)))
and

• wheneveru(~s′) = v(~t′) thens′ = ~s(~a), t′ = ~t(~b).

• Example: u = f(x, g(y)), v = f(h(y), x):

~s = [h(z)/x, x/y],~t = [z/y, g(x)/x]

• Note: the most general unifier might not exist, e.g.,s = f(x), t = g(y).

Figure 23: Most general unifier

{ {¬S(r),¬A(r, x, y), A(r, y, x)}, (C1)
{A(r, f(r), g(r)), S(r)}, (C2)
{¬A(r, g(r), f(r)), S(r)}, (C3)
{S(s())}, (C4)
{A(s(), a(), b())}, (C5)
{¬A(s(), b(), a())} } (C6)

Figure 24: Example of first-order resolution

i.e., wheneveru(~t′) = v(~s′) then~t′ = ~t[~a/~z] and~s′ = ~s[~b/~z] for some~a,~b.
For example, the most general unifier off(x, g(y)) and f(h(y), x) is ~s =

[h(z)/x, x/y],~t = [z/y, g(x)/x] because we havef(x, g(y))[h(z)/x, x/y] = f(h(z), g(x)) =
f(h(y), x)[z/y, g(x)/x]. Notice that the variable names inu, v as well as the com-
mon ones in thes, t are rather arbitrary. In particular, if the same variable happens
to occur in bothu andv, we can instantiate it differently in both.

The most general unifier is effectively found by comparing the terms in ques-
tion in a top down fashion starting from the outermost function constant. We omit
the details of the unification algorithm and also a formal proof that resolution with
most general unifiers is complete. The idea is to map any proofusing RES and
INST to a proof using only the following combined rule.

C1 ∪ {A1} C2 ∪ {¬A2} ~s,~t m.g.u. ofA1, A2

C1[~s] ∪ C2[~t]
(RES-UNIF)

Of course it goes without saying that all the instantiationsmade in the course

42

of resolution must be type correct, i.e., the resulting terms and atomic formulas
must be well-formed.

At this point it is worth reiterating the point made earlier in Section 5 about
types separating interesting and potentially difficult facts from uninteresting obvi-
ous facts. The number of clauses hence the search space for resolution becomes
smaller the more we make use of types.

6.2 Skolemisation

We now discuss how to translate arbitrary first-order formulas into first-order
clauses; somewhat surprisingly, any first-order formula isequivalent to set of first-
order clauses albeit in a richer language.

In order to do that we use the following fact known asskolemisation, again
after TH. SKOLEM.

Fact: Let ψ := ∀x1:τ1 . . .∀xn:τn.∃y:τn+1.φ(~x, y) in some languageL and
let L′ be the languageL extended with a new function constantf : [τ1, . . . , τn →
τn+1]. The formulaψ is satisfiable if and only if the formula∀x1:τ1 . . .∀xn:τn.φ(~x, f(~x))
is satisfiable.

The function constantf is called aSkolem function.
Now consider an arbitrary first-order formulaφ. Using the following tautolo-

gies

α ⋆ (Qx:τ.β(x)) ⇔ Qx:τ.α ∨ β(x) ⋆ ∈ {∨,∧,⇒}, Q ∈ {∀, ∃}
(Qx:τ.α(x)) ⇒ β ⇔ Q̄x:τ.α(x) ⇒ β
(¬Qx:τ.α(x)) ⇔ Q̄x:τ.¬α(x)

where∃̄ = ∀, ∀̄ = ∃ we can bring each formula (up to equivalence) into the form

Q1x1:τ1.Q2x2:τ2.Qnxn:τn.φ0

with Q1, . . . , Qn ∈ {∀, ∃} andφ0 quantifier-free. The latter formula is by defini-
tion in prenex form.

Thereafter, using the “fact” we can successively replace existential quantifiers
with new function constants that take all the previous universally quantified vari-
ables as arguments so as to obtain a universally quantified boolean combination
of atomic formulas which in turn is equivalent to a set of first-order clauses. Sum-
ming up, we have the following result.

Theorem: For every first-order formulaφ one can effectively find a set of
first-order clausesC such thatφ is satisfiable if and only ifC is.

43

Proof: Bring φ into prenex form (move all quantifiers to the front exchanging
∀ and∃ when moving out of a negative position). Replace existential quantifiers
by Skolem functionsusing language extension by function constants. Bring the
resulting universally quantified formula into clausal formas in propositional case.

�

In my view, the reason why resolution is superior to proof search in sequent
calculus is that the choice of instantiations is made after looking at two clauses
(and performing unification) which, when informally translated back to sequent
calculus, means that the form of the side formulasΓ,∆ in a sequent, say,Γ =⇒L

∆, ∃x:τ.φ helps in finding an appropriate instantiation forx. I am not aware of a
precisation of this argument in the form of a unification-based strategy for finding
instantiations in sequent calculus proof search. In this context one should note
that the flattening of nested quantifications using Skolemisation is crucial for the
success of unification.

6.3 Some puzzles

Here are some small examples that should be brought into clausal form and proved
by hand, using PVS, or automatically using SPASS.

The mislabelled boxes (from http://www.cs.miami.edu/˜tptp/): There
are three boxes a, b, and c on a table. Each box contains applesor bananas or or-
anges. No two boxes contain the same thing. Each box has a label that says it
contains apples or says it contains bananas or says it contains oranges. No box
contains what it says on its label. The label on box a says ”apples”. The label on
box b says ”oranges”. The label on box c says ”bananas”. You pick up box b and
it contains apples. What do the other two boxes contain?

Barber’s problem (from http://www.cs.miami.edu/˜tptp/): There
is a barbers’ club that obeys the following three conditions:

1. If any member has shaved any other member – whether himselfor another –
then all members have shaved him, though not necessarily at the same time.

2. Four of the members are named Guido, Lorenzo, Petrucio, and Cesare.

3. Guido has shaved Cesare. Prove Petrucio has shaved Lorenzo

44

Continuity of composition

T = {ρ, ι}
F = {f : [ρ→ ρ]}
P = {∈: [ρ, ι→ boolean]}

∀x:ρ∀U :ι. ∈ (f(x), U) ⇒ ∃V :ι.∈(x, V) ∧ ∀y:ρ. ∈ (y, V) ⇒∈ (f(y), U)
⇒
∀x:ρ∀U :ι. ∈ (f(f(x)), U) ⇒ ∃V :ι.∈(x, V) ∧ ∀y:ρ. ∈ (y, V) ⇒∈ (f(f(y)), U)

6.4 Compactness of first-order logic

Theorem: Let Φ be a set of first-order formulas over some signature. If every
finite subset ofΦ has a model thenΦ itself has a model, too.

Proof: Using skolemisation we may assume without loss of generality thatΦ
consists of formulas of the form
forall~x:~τ .φ with φ quantifier-free.

Let us form the propositional theoryΠ consisting of closed-instantiations of
the formulasφ as in Herbrand’s theorem. If every finite subset ofΦ has a model
then every finite subset ofΠ will be satisfiable, since a finite subset ofΠ can only
involve a finite subset ofΦ. By compactness of propositional logic therefore the
whole ofΠ is satisifable and by Herbrand’s theoremΦ has a model.

The compactness theorem has a number of perhaps surprising consequences.
Consider, for example, the setΘN of closed formulas (over the signature(nat ,+,×, 0, 1,≥
) that are true in the standard interpretation that interpretsnat as the natural num-
bers etc. This set of formulas, thefirst-order theoryof the natural numbers con-
tains in particular all the instances of the Peano axioms butmuch more, e.g., those
formulas that are true but not provable from the Peano axioms.

Now let us extend the signature by a special constantc : [→ nat] and the
formulasφn := ∃y:nat .c ≥ 1 + · · ·+ 1 (n summands).

Every finite subset of this extended set has a model, namely the natural num-
bers withc interpreted as a large enough number. By compactness therefore the
whole set has a model which is a structure validating the samefirst-order formulas
as the natural numbers themselves, yet contains an infinitely large number—the
interpretation ofc.

Let us explore the structure of such anon-standard modelof arithmetic. As
we have seen, it contains a numberc that is greater than any standard number.
Since every number (includingc has a successor there are more infinite numbers

45

c + 1, c + 2, c + 3, etc. Since every non-zero number has a predecessor (that is
a valid first-order sentence!) there must also bec − 1, c − 2, c − 3, etc. So the
numbers aroundc form a structure isomorphic toZ. Since every number can be
doubled and halved (in the floor-sense) there must be anothersuchZ block above
the one surroundingc and one below. In between any two distinctZ-blocks there
must be another one, etc. So any countable non-standard model has an order type
isomorphic toN + Z.Q.

In a similar way, we can use compactness to show consistency (with respect to
first-order logic!) of infinitesimal numbers. Add to the theory of the real numbers
the infinitely many axioms0 < c < 2−n. Every finite subset is consistent so the
whole set is and it thus has a model in which there is a constantc that is arbitrarily
close to zero. Of course, then, say,π+ c is arbitrarily close toπ, etc. We can then
define a derivative as something likef(x + c)/c. Notice that if we prove some
first-order statement from this extended theory then, againby compactness, only
finitely many of the assumptions0 < c < 2−n will have been used, so in this case,
an ordinaryc will do.

7 Equality

Most mathematical statements of interest involve equality. It is in principle possi-
ble to treat equality just as a predicate constant and to assume axioms stating that
equality is an equivalence relation compatible with all function and predicate con-
stants. For practical purposes it is, however, more convenient to introduce equality
as a special primitive concept.

So, in first order logic with equality atomic formulas can be formed in two
ways:

• P (t1, . . . , tn) wheret1, . . . , tn are terms of typesτ1, . . . , τn andP : [τ1, . . . , τn →
boolean]. That’s as before.

• t1 = t2 wheret1, t2 are terms of some common typeτ .

Such an equality formulat1=t2 is true if and only if under the interpretation at
hand the two termst1, t2 have equal meaning.

The sequent calculus can be extended so as to cope with equality by adding
the following rules:

∅ ⊲L t : τ for someτ

Γ =⇒L ∆, t = t
(REFL)

46

φ[t1/x] =⇒L ¬¬φ[t1/x]

Γ, t1 = t2, φ[t2/x] =⇒L ∆
¬-R

Γ, t1 = t2,=⇒L ∆,¬φ[t2/x]
SUBST-R

Γ, t1 = t2 =⇒L ∆,¬φ[t1/x]
¬-L

Γ, t1 = t2,¬¬φ[t1/x] =⇒L ∆
CUT

Γ, t1 = t2, φ[t1/x] =⇒L ∆

REFL
t1 = t2 =⇒L t2 = t2

SUBST-R
t1 = t2 =⇒L t2 = t1

CUTting with the conclusion gives rules SUBST-L-RL, SUBST-R-RL.
AXIOM

t2 = t3, t1 = t2 =⇒L t2 = t3
SUBST-R

t2 = t3, t1 = t2 =⇒L t1 = t3

Figure 25: Example derivations

Γ, t1 = t2 =⇒L ∆, φ[t2/x]

Γ, t1 = t2 =⇒L ∆, φ[t1/x]
(SUBST-R)

Rule REFL says thatt = t is vacuously true; if this is among our conclusions
then we’re done.

Rule SUBST-R says that if we have an equalityt1 = t2 among our assumptions
and we need to prove a formulaφ[t1/x] which containst1 as a subexpression then
we can replacet1 by t2 and therefore proveφ[t2/x] instead.

We immediately have the following derived rules:
Γ, t1 = t2, φ[t2/x] =⇒L ∆

Γ, t1 = t2, φ[t1/x] =⇒L ∆
(SUBST-L)

Γ, t1 = t2 =⇒L ∆, φ[t1/x]

Γ, t1 = t2 =⇒L ∆, φ[t2/x]
(SUBST-R-RL)

Γ, t1 = t2, φ[t1/x] =⇒L ∆

Γ, t1 = t2, φ[t2/x] =⇒L ∆
(SUBST-L-RL)

Figure 7 contains a derivation of rule SUBST-L.
It is possible to show that sequent calculus with the equality rules derives

all valid formulas; to that end one considers the quotient ofthe term model by
the congruence relation generated by the equations appearing as antecedents of
sequents on the infinite path in the generic proof tree.

47

Similarly, one can extend resolution with rules that allow one to replace equals
with equals within clauses. We will come back to this later inSection??.

7.1 Equality in PVS

The rule REFL is treated like an axiom: as soon as PVS encounters an instance
of reflexivity the corresponding subgoal is discarded (“This completes the proof
of . . . ”) or, if it was the last open branch of the proof, the proof is completed
(“Q.E.D.”).

To invoke either SUBST-R or SUBST-L we use the command

(replace 〈what with〉 〈where〉)

Here〈what with〉 must be the (negative) number of an equation among the an-
tecedents;〈where〉 must be the number of any formula either in the antecedents
(that’s SUBST-L) or in the succedents (that’s SUBST-R) which contains the left-
hand-side of〈what with〉.

To invoke either rule SUBST-L-RL or SUBST-R-RL we use the command

(replace 〈what with〉 〈where〉 : dir RL)

7.2 Extended example: monoids

We assume a nonempty setMwith an associative operation* in infix notation.

M : TYPE+

* : [M,M->M]
assoc : AXIOM

FORALL(x,y,z:M):(x * y) * z = x * (y * z)

Of course, all this must be placed in a.pvs file and within something like
monoids : THEORY BEGIN. . .END.

Generalised associativity We want to prove an extended law of associativity:

assoc4 : THEOREM
FORALL(x,y,z,w:M): ((x * y) * z) * w = x* (y * (z * w))

48

We will first do it the basic way and then using some more advanced com-
mands.

After starting the prover we introduce constants for the universally quantified
variables with the command(skolem!) :

|-------
{1} ((x!1 * y!1) * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

wherex!1, y!1, z!1, w!1 are fresh constants of typeM.
Recall, that in this case(skolem!) is equivalent to(skolem 1 ("x!1"

"y!1" "z!1" "w!1")) which in turn is equivalent to(skolem 1 "x!1")
followed by(skolem 1 "y!1") followed by(skolem 1 "z!1") followed
by (skolem 1 "w!1") .

We first want to rewrite the subterm((x!1 * y!1) * z!1) usingassoc .
To that end we addassoc to our antecedents with(lemma "assoc") .

{-1} FORALL (x, y, z: M): (x * y) * z = x * (y * z)
|-------

[1] ((x!1 * y!1) * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

Normally, thelemma command applies to something already proved, a “lemma”.
In that case it corresponds to the CUT rule. With axioms it’s a bit different. We
can think of them as being implicitly added to the antecedents. In that case the
lemma command simply highlights them. It is also possible to extend the sequent
calculus by real axioms.

At any rate, we will need our axiom more than once, so we start by copying it
corresponding to CONTR: copy -1 .

{-1} FORALL (x, y, z: M): (x * y) * z = x * (y * z)
[-2] FORALL (x, y, z: M): (x * y) * z = x * (y * z)

|-------
[1] ((x!1 * y!1) * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

The-1 formula must now be instantiated with theinst command:(inst -1
"x!1" "y!1" "z!1") .

{-1} (x!1 * y!1) * z!1 = x!1 * (y!1 * z!1)
[-2] FORALL (x, y, z: M): (x * y) * z = x * (y * z)

|-------
[1] ((x!1 * y!1) * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

49

Now we can use an equality rule:(replace -1 1) :

[-1] (x!1 * y!1) * z!1 = x!1 * (y!1 * z!1)
[-2] FORALL (x, y, z: M): (x * y) * z = x * (y * z)

|-------
{1} (x!1 * (y!1 * z!1)) * w!1 = x!1 * (y!1 * (z!1 * w!1))

The parentheses around the just replaced subterm are not displayed which is irri-
tating. Next, we must apply associativity to the whole left hand side, the middle
term being this time not just a constant, buty!1 * z!1 . This time we use a
slightly more powerful command:inst-cp which works likeinst but copies
the formula to be instantiated beforehand. So,

(inst-cp -2 "x!1" "y!1 * z!1" "w!1")

brings us to

-1] (x!1 * y!1) * z!1 = x!1 * (y!1 * z!1)
[-2] FORALL (x, y, z: M): (x * y) * z = x * (y * z)
{-3} (x!1 * (y!1 * z!1)) * w!1 = x!1 * (y!1 * z!1 * w!1)

|-------
[1] x!1 * (y!1 * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

Now (replace -3 1) gives

[-1] (x!1 * y!1) * z!1 = x!1 * (y!1 * z!1)
[-2] FORALL (x, y, z: M): (x * y) * z = x * (y * z)
[-3] (x!1 * (y!1 * z!1)) * w!1 = x!1 * (y!1 * z!1 * w!1)

|-------
{1} x!1 * ((y!1 * z!1) * w!1) = x!1 * (y!1 * (z!1 * w!1))

where again, I’ve inserted some parens. This is getting close; instantiating the
remaining copy of associativity with

(inst -2 "y!1" "z!1" "w!1")

followed by(replace -2 1) completes the proof.

50

High-level proof Now let’s do the same proof again with more powerful com-
mands: After(skolem!) we get as before

|-------
{1} ((x!1 * y!1) * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

Now rather than bringing inassoc , instantiating, and then rewriting our goal
with it, we can use the commandrewrite-lemma (p. 65 ofprover-guide.ps)
which does these two steps in one go:

(rewrite-lemma "assoc" ("x" "x!1" "y" "y!1" "z" "z!1"))

results in

Rewriting using assoc where
x gets x!1,
y gets y!1,
z gets z!1,

this simplifies to:
assoc4 :

|-------
{1} x!1 * (y!1 * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

The commandrewrite-lemma takes as second argument a substitution which
is an even length list providing the required values for all the bound variables in the
lemma. After perfoming this instantiation it must become anequation with which
rewriting then takes place. Admittedly, this syntax is somewhat inconsistent with
the syntax of the(inst) command.

Now, we want to perform the same procedure again, but with a different sub-
stitution:

(rewrite-lemma "assoc" ("x" "x!1" "y" "y!1 * z!1" "z" "w!1"))

Fortunately, we don’t need to type in again from scratch: thekeystrokeM-p, that
is the Alt key and theP key together, brings up the last command entered. We
only need to edit the substitution. FurtherM-p bring up even earlier commands.
If we’ve gone too far, we can useM-n to go back again. There’s another way to
ease typing: If we start to type a command like so

(rewri

51

and then typeM-s it will be completed to the last command typed with the same
beginning, i.e., in our case the lastrewrite-lemma command which again can
then be edited.

However we enter the command, it brings us to

|-------
{1} x!1 * (y!1 * z!1 * w!1) = x!1 * (y!1 * (z!1 * w!1))

at which point

(rewrite-lemma "assoc" ("x" "y!1" "y" "z!1" "z" "w!1"))

completes the job.
The rewrite-lemma command can also be given the:dir RL optional

argument, so we could have worked on the right hand side instead like so:

|-------
{1} ((x!1 * y!1) * z!1) * w!1 = x!1 * (y!1 * (z!1 * w!1))

Rule? (rewrite-lemma "assoc" ("x" "y!1" "y" "z!1" "z" "w!1") :dir RL)
|-------

{1} ((x!1 * y!1) * z!1) * w!1 = x!1 * ((y!1 * z!1) * w!1)

Even quicker proofs: Filling in the instantiations is tedious and can partly be
automated. That’s what the commandrewrite (p.64 ofprover-guide.ps)
does for us. Unfortunately, not always successfully, whichis why it’s good to
know the more basic commands. In the example at hand it works,however, and
we can do the entire proof by issuing the following four commands:

(skolem!)
(rewrite "assoc")
(rewrite "assoc")
(rewrite "assoc")

Even quicker is the following approach: using the command (p. 89 f. ofprover-guide.ps)

(auto-rewrite "assoc")

we tell PVS that it should consider all instances ofassoc as automatic rewrite
rules. After that command,(grind) completes the task.

52

Uniqueness of neutral elements We postulate a neutral element by adding

e : M
neutral_left : AXIOM

FORALL(x:M):e * x=x
neutral_right : AXIOM

FORALL(x:M):x * e=x

Our goal is

neutral_unique : THEOREM
FORALL(e1:M):

(FORALL(x:M): e1 * x=x) AND
(FORALL(x:M): x * e1=x) IMPLIES e=e1

Here it is useful to first get an idea of how this proof should bedone informally:
If e1 is also a neutral element thene = e* e1 . By neutrality ofe the right

hand side equalse1 and we’re done.
In PVS after(skolem!) and(flatten) or, more compactly,(skosimp) ,

we get

{-1} FORALL (x: M): e1!1 * x = x
{-2} FORALL (x: M): x * e1!1 = x

|-------
{1} e = e1!1

We want to expande ase * e1!1 using-2 . We instantiate. . .

(inst -2 "e")

{-1} FORALL (x: M): e1!1 * x = x
{-2} e * e1!1 = e

|-------
{1} e = e1!1

and replace

(replace -2 1 :dir RL)

bringing us to

53

[-1] FORALL (x: M): e1!1 * x = x
[-2] e * e1!1 = e

|-------
{1} e * e1!1 = e1!1

which is an instance ofneutral left . The way to convince PVS of this is

(use "neutral_left")

A more pedestrian way would be to uselemma andinst .

A slightly quicker proof After (skosimp) we can use(rewrite-with-fnum
-2 ("x" "e") :dir RL) to achieve the expansion of the left hand side. The
commandrewrite-with-fnum , is like rewrite , so doesn’t normally re-
quire a substitution (instantiation). In this case, we haveto give it because other-
wise the replacement is applied to the right hand side, too!.

This brings us to

[-1] FORALL (x: M): e1!1 * x = x
[-2] FORALL (x: M): x * e1!1 = x

|-------
{1} e * e1!1 = e1!1

At which point we conclude using(use "neutral left") .
I couldn’t find a more efficient proof of that one. Can you?

Invertible elements An element ofMis invertible if it has an inverse:

Invertible(x:M) : boolean = EXISTS(y:M): x * y=e AND y* x = e

We can prove that the neutral element is invertible:

inv_neutral : THEOREM
Invertible(e)

We see here, how, abbreviations a.k.a. definitions are introduced.
After invoking the prover the first command must beexpand "Invertible"

to open the definition. This brings us to

|-------
{1} EXISTS (y: M): e * y = e AND y * e = e

54

Now we have to come up with an alleged inverse toe. Surprise, it’s going to bee
itself.

(inst 1 "e")

|-------
{1} e * e = e AND e * e = e

Here we could also have used(inst? 1) which would leave it to PVS to find
the correct instantiation. It sometimes does. . . .

We conclude with(rewrite "neutral left") followed by(split) .
The last theorem in this series is that invertibles are closed under product:

|-------
{1} FORALL (x, y: M):

Invertible(x) AND Invertible(y) IMPLIES Invertible(x * y)

(skosimp) then (expand "Invertible") brings us to

{-1} EXISTS (y: M): x!1 * y = e AND y * x!1 = e
{-2} EXISTS (y: M): y!1 * y = e AND y * y!1 = e

|-------
{1} EXISTS (y: M): x!1 * y!1 * y = e AND y * (x!1 * y!1) = e

Notice thethen “strategy” (p. 111 ofprover-guide.ps). It sequences com-
mands.

Before being able to instantiate1, i.e., come up with an alleged inverse to
(x!1 * y!1) we must “open” the assumptions, i.e., introduce fresh constants for
the inverses ofx!1 andy!1 , respectively, which are guaranteed by-1 and-2 .

I find it better to give suggestive names to these, so we do

(skolem -1 "xinv") then (skolem -2 "yinv") then (flatten)

to get

{-1} x!1 * xinv = e
{-2} xinv * x!1 = e
{-3} y!1 * yinv = e
{-4} yinv * y!1 = e

|-------
[1] EXISTS (y: M): x!1 * y!1 * y = e AND y * (x!1 * y!1) = e

55

Now, we have to think a bit as to what the inverse tox!1 * y!1 should be. Well,
thinking of * as sequencing of “actions” it becomes clear that the inverseought
to beyinv * xinv . That’s the “rule of sock and shoe”. Therefore,(inst 1
"yinv * xinv") is the command of choice.

{-1} x!1 * xinv = e
{-2} xinv * x!1 = e
{-3} y!1 * yinv = e
{-4} yinv * y!1 = e

|-------
[1] x!1 * y!1 * (yinv * xinv) = e AND (yinv * xinv) * (x!1 * y!1)

Relying on PVS’ cleverness and doing(inst? 1) isn’t a good idea here.
Splitting (∧-R) brings us two subgoals of which we’ll only treat the first here:

{-1} x!1 * xinv = e
{-2} xinv * x!1 = e
{-3} y!1 * yinv = e
{-4} yinv * y!1 = e

|-------
[1] x!1 * y!1 * (yinv * xinv) = e

Now we must first “rebracket” our goal to

x!1 * (y!1 * yinv) * xinv = e

While this can certainly be done by successive application of associativity, it is
easier to just claim this and prove it separately. To do this,we issue the command

(case "x!1 * (y!1 * yinv) * xinv = e")

This presents us with two subgoals. One asking us to prove ourgoal under the
extra assumption of the “claim”:

[-1] x!1 * (y!1 * yinv) * xinv = e
[-2] x!1 * xinv = e
[-3] xinv * x!1 = e
[-4] y!1 * yinv = e
[-5] yinv * y!1 = e

|-------
[1] x!1 * y!1 * (yinv * xinv) = e

56

This follows from associativity, so

(auto-rewrite "assoc") then (grind)

does the job. Next, we must prove our claim:

[-1] x!1 * xinv = e
[-2] xinv * x!1 = e
[-3] y!1 * yinv = e
[-4] yinv * y!1 = e

|-------
{1} x!1 * (y!1 * yinv) * xinv = e
[2] x!1 * y!1 * (yinv * xinv) = e

The old goal is still there, we can remove it with(delete 2) corresponding
to rule WEAK-R. The rest is a rewriting consequence ofneutral left and
neutral right , so we install these and grind.

We could have turned off associativity with the command(stop-rewrite
"assoc") , but this wasn’t even necessary here.

8 Recursive functions

Many function definitions in mathematics, programming, andmore so program
specification are recursive.

Even if—for the sake of efficiency—the actual program uses aniterative solu-
tion, for specification and verification a recursive definition is usually more con-
venient.

Examples of recursive definitions Sum in pattern-matching notation:

∑0
i=0 ai = a0

∑n+1
i=0 ai = an+1 +

∑n

i=0 ai

Sum in fixpoint notation:

∑n

i=0 ai = if n = 0
thena0

elsean +
∑n−1

i=0 ai endif

57

Binary search in pattern-matching notation:

find(a, null) = ff

find(a, cons(b, l)) = (a=b) ∨ (a≤b ∧ find(a, left(l))) ∨ (a>b ∧ find(a, right(l)))

Binary search in fixpoint notation:

find(a, l) = if l = []
thenff

elsea = car(l)∨
(a≤b ∧ find(a, left(cdr(l))))∨
(a>b ∧ find(a, right(cdr(l)))) endif

These clauses define honest-to-goodness functions on natural numbers and
lists (or arrays). As you probably know this need not always be the case. For one
thing, recursively defined functions may be partial (f(n) = f(n)), for another,
some equations may not define a function at all.

f(n) = f(n)
g(0) = 0
g(n+ 2) = g(n)
g(1) = min{g(2n) | n ∈ N}
h(n) = 0
h(n) = 1

Fixpoint form Fix a0, a1, . . . and letsum: N → R be the function defined by
sum(n) =

∑n

i=0 ai.
We havesum(n) = F (sum, n) where

F (f, n) = if n = 0
thena0

elsean + f(n− 1) endif

Exercise: definefact(n) = n!. GiveF such thatfact(n) = F (fact, n).
In PVS all functions are total and therefore, general recursive function defi-

nitions are not permitted. Rather, an explicit measure mustbe provided ensuring
that the definition terminates.

Theorem (Well-founded recursion): LetA,B be nonempty sets, letF : (A→
B) → (A→ B) be a functional,w : A→ N be a function (the “measure”).

58

Suppose that for eachf : A → B anda ∈ A the valueF (f, a) depends only
on those valuesf(a′) for whichw(a′) < w(a), that is to say

∀a:A.∀f, g:A→ B.(∀x:A.w(x) < w(a) ⇒ f(x)=g(x)) ⇒ F (f, a)=F (g, a)

Then there exists a uniquely determined functionfF : A→ B such that

∀a:A.fF (a) = F (fF , a)

Proof. Let b0 be a fixed element ofB.
We definefF (a) by induction onw(a). Supposew(a) = 0. ThenF (f, a) is

independent off , so we can putfF (a) = F (f, a) wheref is an arbitrary function
fromA toB, e.g. a constant one.

Suppose thatfF (x) has already been defined for allx with w(x) < n and that
w(a) = n. Then we define a functionf : A→ B by

f(x) =

{

fF (x), if w(x) < n
b0, if w(x) ≥ n

We then putfF (a)
def
= F (f, a).

This procedure definesfF (a) for all valuesa.
Next, we show thatF (fF , a) = fF (a) for all a. Well, given a fixed but arbi-

trary elementa ∈ A (PVS would call ita!1) we see thatfF (a) has been defined as
F (f, a) wheref is the function which agrees withfF on valuesx with w(x) < n
and isb0 elsewhere.

But we have assumed thatF (fF , a) = F (f, a) in this case.
For uniqueness we argue as follows. Suppose thatF (g, a) = g(a) for some

function g : A → B. We show by induction onw(a) that f(a) = g(a). The
details are left to the reader. �

In many examples the evaluation ofF (f, a) proceeds by evaluating the function
f on a fixed number of argumentsa1, . . . , an depending only ona and having
measure smaller thana, i.e.,w(ai) < w(a). This was in particular the case for the
sumandfactexample.

Questions What would be an appropriate measure for the definition offind?

59

What is an appropriate measure for

Fmerge(f, l1, l2) =
if l1 = null

thenl2
elsif l2 = null

thenl1
else cons(car(l1), cons(car(l2), f(cdr(l1), cdr(l2))))

whereA = list[nat]× list[nat] andB = list[nat].
Hint: you may assume a functionlength: list[nat] → nat.

8.1 Defining functions in PVS

We have already seen the definition of a predicate, namelyInvertible . For
PVS such a predicate is nothing but a function to the typeboolean .

Using the same syntax we can define other functions like so:

f(x,y:nat) : nat = (x+y) * (x-y)

and we can prove

a: THEOREM f(5,3) = 16

using(grind) . This method also does simple algebra:

b: THEOREM FORALL(x,y:nat):f(x,y)=xˆ2-yˆ2

Anyway, I’m gettting distracted from todays topic: recursive definitions. Here is
how we definesumin PVS provideda: [nat->real] has been defined or
declared:

sum(n:nat) : RECURSIVE real =
IF n=0 THEN a(0) ELSE a(n)+sum(n-1) ENDIF

MEASURE n

Try to memorise the slightly awkward syntax: the keywordRECURSIVEgoes
between the colon and the result type. And don’t forget the measure either. It’s
supposed to go down as you unfold the recursion.

60

8.2 TCCs

When PVS typechecks such a definition (and this takes place before you enter
the prover) it attempts to show that this is the case (the measure going down, that
is). If it doesn’t succeed a typechecking condition (TCC) isgenerated which you
would then have to prove interactively using the prover.

You can display the TCC with the commandM-x show-tccs . In the ex-
ample at hand the TCCs are simple enough

sum_TCC1: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;
sum_TCC2: OBLIGATION FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n ;

The first one comes from the use ofn-1 . The typenat is in fact a subtype of
the integers which is a subtype of the rationals, etc. A priori the minus function
returns an integer. In the situation at hand, we know thatn is not zero, son-1 is
in fact a natural number. PVS was able to “prove” that by itself.

The other TCC comes from the recursion. We must show that the measure of
the argument of the recursive call (heren-1) is smaller than the measure of the
current argument (heren). Again, PVS can prove that itself.

We can now prove (usinggrind) simple goals which follow directly from
the recursive definition like

c: THEOREM
sum(5) = a(0) + a(1) + a(4) + a(3) + a(2) + a(5)

We come to more interesting goals below.

8.2.1 Higher-order functions

Function types in PVS are like any other type. We can use this feature to pass the
sequencea:[nat->nat] as an extra argument tosum:

sum(a:[nat->real],n:nat) : RECURSIVE real =
IF n=0 THEN a(0) ELSE a(n)+sum(a,n-1) ENDIF

MEASURE n

The old definition ofsum applies when the first argument isn’t a function, this is
an instance ofoverloading.

We don’t even have to delete the previous definition ofsum. PVS can tell the
two apart by their types (this is known asoverloading).

Now, we can applysum to concrete functions, e.g., we might define

61

8.2.2 Examples

id(x:nat):nat = x
d : THEOREM

sum(id,5) = 25
e : THEOREM

sum(LAMBDA(x:nat):x * x,4) = 30

id(x:nat):nat = x

and then prove

d : THEOREM
sum(id,5) = 25

If we don’t want to sacrifice a name for the argument function we must use a
lambda abstraction

e : THEOREM
sum(LAMBDA(x:nat):x * x,4) = 30

Summary:

• PVS allows for definition of functions by well-founded recursion

• Such definitions generate proof obligations known as typechecking condi-
tions (TCCs)

• TCCs also arise in conjunction with subtypes. More later.

• Within one and the same theory you can have several functionsof the same
name if their argument types are distinct (overloading)

• Functions can be arguments as well as results of functions. The LAMBDA
notation allows one to construct function terms on the fly to be passed as
argument to another function.

• PVS knows that a recursively defined function satisfies its defining equa-
tions

62

9 Proof by induction and higher-order logic

So far we have proved simple consequences of the recursive equations in which
the recursive argument was a concrete value. If we want to prove more interesting
universally quantified statements then we need a more powerful principle: proof
by induction.

You probably have seen induction already: to prove a statement φ(n) for all
natural numbersn you must prove it for0 and then—assuming a fixed but arbitrary
n′—you must prove it forn′ + 1 under the extra assumption that itφ(n′) holds.

In first-order logic:

φ(0) ∧ (∀n:N.φ(n) ⇒ φ(n+ 1)) ⇒ ∀n:N.φ(n)

In higher-order logic:

∀φ:[N → boolean].φ(0) ∧ (∀n:N.φ(n) ⇒ φ(n+ 1)) ⇒ ∀n:N.φ(n)

As a formula thisinduction schemelooks as follows:

φ(0) ∧ (∀n:N.φ(n) ⇒ φ(n+ 1)) ⇒ ∀n:N.φ(n)

In first-order logic we need one such formula for every predicateφ. In higher-
order logicwe can quantify overφ just as we quantify over individuals:

∀φ:[N → boolean].φ(0) ∧ (∀n:N.φ(n) ⇒ φ(n+ 1)) ⇒ ∀n:N.φ(n)

The proof rules for higher-order logic are essentially the same as those for first-
order logic. Only the ways to form formulas are extended. A formula is just a term
of type boolean and these can be formed using the connectivesand quantifiers as
well as by function application.

Semantically, the type boolean is interpreted as the set of truth values{tt, ff};
function types are interpreted as sets of all functions. Unlike pure first-order logic,
higher-order logic do not admit complete proof systems. Thereason is Gödel’s in-
completeness theorem which you may have come across in popular science books.

Higher-order logic can thus be defined as first-order logic with

• Typebool and types closed under[A1, . . . , An → B] (nary function space)

• Unary predicate on typebool , i.e., every term of typebool can be seen /
is a proposition

63

• n+ 1ary function symbols for application of functions to arguments.

Intended semantics: interpretbool as{tt, ff}, function spaces as sets of func-
tions. No complete axiomatisation exists.

Approximations: λ-terms witnessing the existence of certain functions and
predicates,β-equations, extensionality, comprehension axioms (or constants for
quantifiers, connectives, functions), choice axioms.

Complete for non-standard models: Henkin models, toposes.
Rather than formally defining higher-order logic with its syntax and proof

rules we will introduce it in PVS and get to know it by example.
Here is how the induction axiom is formulated in PVS:

nat_induction : LEMMA
FORALL(p:[nat->boolean]):

(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))
IMPLIES (FORALL i: p(i))

This is proved from a slightly more general axiom (well-foundedness of< on
nat) in lib/prelude.pvs .

We are not so much interested in how to prove induction, but how to use it in
order to prove other things.

Consider the classic
∑n

i=0 i = n(n + 1)/2. We write φ(n) ≡
∑n

i=0 i =
n(n + 1)/2. We haveφ(0) ≡ 0 = 0(0 + 1)/2. True. We haveφ(n0 + 1) ≡
(n0 + 1) +

∑n0

i=0 i = (n0 + 1)(n0 + 2)/2.
Using the induction hypothesisφ(n0) this rewrites to(n0+1)+n0(n0+1)/2 =

(n0 + 1)(n0 + 2)/2 which is true by simple arithmetic.
Now we want to do the same thing in PVS:
We start with

|-------
{1} FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

Detailed proof We bring innat induction

Rule? (lemma "nat_induction")

{-1} FORALL (p: pred[nat]):
(p(0) AND (FORALL j: p(j) IMPLIES p(j + 1)))

IMPLIES (FORALL i: p(i))

64

|-------
[1] FORALL (n: nat):

sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

Now nat induction works for all predicatesp, but we need it for a particular
one, so we must instantiate. But what with? We could have introduced an abbre-
viation for the predicate we’re interested in but it’s too late for that now, so we
must resort to the lambda notation:

Rule? (inst -1 "LAMBDA(n:nat):
sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2")

{-1} ((LAMBDA (n: nat): sum(LAMBDA (i: nat): i, n) =
n * (n + 1) / 2)(0) AND

(FORALL j:
(LAMBDA (n: nat): sum(LAMBDA (i: nat): i, n) =

n * (n + 1) / 2)(j) IMPLIES
(LAMBDA (n: nat): sum(LAMBDA (i: nat): i, n) =

n * (n + 1) / 2)(j + 1)))
IMPLIES
(FORALL (i_49: nat): (LAMBDA (n: nat): sum(LAMBDA (i: nat): i,

n) =
n * (n + 1) / 2)(i_49))

|-------
[1] FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

That looks daunting. What has happened is that every occurrence ofp in -1 has
been literally replaced by the instantiation we provided. But we would like a bit
more than just that: we would like to see arguments top such as0 in the base case
andi+1 in the induction step to be plugged in for the lambda-bound variablen.
This is known as beta reduction and we perform it in PVS by issuing the command
(beta)

Rule? (beta)
{-1} (sum(LAMBDA (i: nat): i, 0) = 0 * (0 + 1) / 2 AND

(FORALL j:
sum(LAMBDA (i: nat): i, j) = j * (j + 1) / 2 IMPLIES

sum(LAMBDA (i: nat): i, j + 1) = (j + 1) * (j + 1 + 1) /
IMPLIES (FORALL (i_49: nat):

65

sum(LAMBDA (i: nat): i, i_49) = i_49 * (i_49 + 1) / 2)
|-------

[1] FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

What we have achieved so far is that the required instance of the induction scheme
is among our antecedents. We now want to use it which shouldn’t be difficult as
it ends exactly with what we want to prove. So we use rule⇒-L which is of the
split kind:

Rule? (split)

This yields two subgoals, one asking us to deduce1 from the conclusion of-1 —
that’s a propositional axiom, so PVS won’t bother presenting us with it—, and
another one asking us to prove the premise of-1 (or 1 again). Since the premise
of -1 is a conjunction (of base case and induction step) we must use∧-R which
is again of thesplit kind and in fact PVS has already performed this at the last
split command so that we don’t need to enter it again. We are thus presented
with two actual subgoals:

|-------
{1} sum(LAMBDA (i: nat): i, 0) = 0 * (0 + 1) / 2
[2] FORALL (n: nat):

sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

and

|-------
{1} sum(LAMBDA (i: nat): i, 0) = 0 * (0 + 1) / 2
[2] FORALL (n: nat):

sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

The first of these (the base case) follows by simple arithmetic: (grind) disposes
of it.

We could also have proved this by hand using elementary properties of real
arithmetic summarised inprelude.pvs .

The induction step is more interesting. We first delete2 and then introduce a
“fixed but arbitrary” name, sayn!0 by

Rule? (skolem 1 "n!0")
|-------

{1} sum(LAMBDA (i: nat): i, n!0) = n!0 * (n!0 + 1) / 2 IMPLIES
sum(LAMBDA (i: nat): i, n!0 + 1) = (n!0 + 1) * (n!0 + 1 + 1)

66

This being an implication we use⇒-L or (flatten) to give

{-1} sum(LAMBDA (i: nat): i, n!0) = n!0 * (n!0 + 1) / 2
|-------

{1} sum(LAMBDA (i: nat):
i, n!0 + 1) = (n!0 + 1) * (n!0 + 1 + 1) / 2

This looks like what we had expected. We may assume that what we want to show
holds for a fixed but arbitraryn!0 and from that we must show it forn!0+1 . Let’s
expand the sum in the succedent:

Rule? (expand "sum" 1)

[-1] sum(LAMBDA (i: nat): i, n!0) = n!0 * (n!0 + 1) / 2
|-------

{1} 1 + sum(LAMBDA (i: nat): i, n!0) + n!0 =
(2 + n!0 + (n!0 * n!0 + 2 * n!0)) / 2

Notice that with recursive definitions theexpand command performs one recur-
sive unfolding rather than replacingsum with its definition using the keyword
RECURSIVE.

We now recognise the left-hand-side of-1 as a subterm, it’s therefore a good
idea to replace it with the right hand side:

Rule? (replace -1 1)

[-1] sum(LAMBDA (i: nat): i, n!0) = n!0 * (n!0 + 1) / 2
|-------

{1} 1 + n!0 * (n!0 + 1) / 2 + n!0 =
(2 + n!0 + (n!0 * n!0 + 2 * n!0)) / 2

The conclusion is an arithmetic identity so(grind) can establish it.

Quicker proof The first few steps were rather awkward and independent of the
particular goal at hand. For this reason the commandinduct has been provided
which performs them all in one go. In the situation

|-------
{1} FORALL (n: nat): sum(LAMBDA (i: nat): i, n) = n * (n + 1) / 2

the command(induct "n") produces two subgoals:

67

|-------
{1} sum(LAMBDA (i: nat): i, 0) = 0 * (0 + 1) / 2

and

|-------
{1} FORALL j:

sum(LAMBDA (i: nat): i, j) = j * (j + 1) / 2 IMPLIES
sum(LAMBDA (i: nat): i, j + 1) =

(j + 1) * (j + 1 + 1) / 2

which we deal with as before. Actually, the second one can be proved simply with
the command(skosimp!) then (grind) .

An even quicker proof goes with the single command(induct-and-simplify
"n") .

PVS is surprisingly good at doing inductive proofs almost automatically. For
example, Cassini’s identity

Fn+2Fn − F 2
n+1 = (−1)n

can be proved with a single “induct-and-simplify”. One should define(−1)n re-
cursively.

The following is known as Abel’s lemma and plays a role in number theory,
more specificly, Dirichlet series.

Let (an) and(bn) be two sequences. Put:

Am,p =

n=p
∑

n=m

an andSm,m′ =

n=m′

∑

n=m

anbn

Then one has:

Sm,m′ = Am,m′bm′ +
n=m′−1
∑

n=m

Am,n(bn − bn+1)

Here one must induct not on a single quantity, but rather the differencem′ −m.
PVS provides the commandmeasure-induct+ for that purpose.

68

10 Lists

A datatype of finite list over arbitrary type of entries is predefined.
If t is a type thenlist[t] is the type of finite lists with entries overt .
Semantically, elements oflist[t] take the form[x1, x2, . . . , xn] where the

xi are elements of typet .
The constantnull denotes the empty list, the function

cons : [t,list[t] -> list[t]]

tacks an element on to the beginning of a list. For example, ifl is the list[3, 4, 1, 2]
thencons(5, l) is [5, 3, 4, 1, 2].

The type of lists has the subtype(cons?[t]) , consisting of all non-empty
lists. The functioncar takes a nonempty list and returns its first element, i.e., we
have

car : [(cons?[t]) -> t]

the functioncdr takes a nonempty list and returns its “tail”, i.e., the (possibly
empty) list obtained by stripping off its first element.

cdr : [(cons?[t]) -> list[t]]

For example, ifl = [5, 4, 3, 2] then

car(l) = 5
cdr(l) = [4, 3, 2]

We also have a predicatenull? which tells whether a list is empty

null? : [list[t] -> boolean]

and another—less used—predicatecons? which tells whether a list is nonempty.
In fact the subtype(cons?[t]) is derived from that predicate and more gen-
erally, if p:[t->boolean] then (p) is the subtype oft consisting of those
elements for whichp holds.

In practice, the functionscar and cdr are applied to arguments of type
list[t] rather than(cons?[t]) .

Such application generates a typechecking condition (TCC)which either we or
PVS has to prove. A typical case, when such a TCC can be proved automatically,
is whencar(l) or cdr(l) is used in theELSE branch of a conditionalIF
null?(l) .

Another typical such case is a usage likecdr(cons(x,l)) which automat-
ically simplifies tol . Similarly, car(cons(x,l)) automatically simplifies to
x .

69

Subtypes If P : [t->bool] then(P) is a type.
If a:t andP(a) holds then alsoa:(P) .
If we implicitly asserta:(P) then a proof obligation (TCC)P(a) arises.

10.1 Recursion on lists

There is a predefined function

length : [list[t] -> nat]

allowing us to define functions on lists by recursion (using)length as a measure.
Here is a definition of the function which appends two lists.

t :TYPE

append(l1:list[t], l2:list[t]) : RECURSIVE list[t] =
IF null?(l1)

THEN l2
ELSE cons(car(l1),append(cdr(l1),l2))

ENDIF
MEASURE length(l1)

This means that the functionappend satisfies the following two defining equa-
tions:

append(null, l2) = l2
append(cons(x,l1), l2) = cons(x,append(l1,l2))

In fact, PVS provides a cases-construct allowing us to writeappend in this
slightly more perspicuous form. Seeprelude.pvs or the documentation.

Here are a few more function definitions:

occ(x:t,l:list[t]) : RECURSIVE nat =
IF null?(l)

THEN 0
ELSIF x=car(l) THEN occ(x,cdr(l))+1 ELSE occ(x,cdr(l)) EN DIF

MEASURE length(l)

filter(p:[t->boolean],l:list[t]) : RECURSIVE list[t] =
IF null?(l)

70

THEN null
ELSIF p(car(l)) THEN cons(car(l),filter(p,cdr(l)))

ELSE filter(p,cdr(l)) ENDIF
MEASURE length(l)

rev(l:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN null

ELSE append(rev(cdr(l)),cons(car(l),null))
ENDIF
MEASURE length(l)

rev1(l:list[t], acc:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN acc

ELSE rev1(cdr(l),cons(car(l),acc))
ENDIF
MEASURE length(l)

occ(x,l) returns the number of occurrences ofx in the listl ; filter(p,l)
returns the list consisting of those elements ofl which satisfy the predicatep.
rev(l) returns the reversal of listl and rev1(l,acc) , finally, returns the
reversal ofl followed byacc .

10.2 Reduce

The length function itself admits a recursive definition:

length(l:list[t]) : RECURSIVE nat =
IF null?(l)

THEN 0
ELSE 1 + length(cdr(l))

ENDIF
MEASURE ????

The trouble is that the only reasonable measure function islength itself. As
I said, length is fortunately predefined (inprelude.pvs), but nevertheless
it’s worth knowing how, namely using thereduce nat functional, which now
really is basic. If

null_case : nat
cons_case : [t,nat -> nat]

71

are given terms of the indicated types then

reduce_nat(null_case, cons_case) : [list[t] -> nat]

is (as indicated) a function from lists to natural numbers, namely the functionf
defined recursively by

f(null) = null_case
f(cons(x,l)) = cons_case(x,f(l))

It is clear that whatevernull case andcons case are this defines a unique
total function so thatreduce nat is justified.

The length function can now be defined as

length : [list[t] -> nat] =
reduce_nat(0, LAMBDA(x:t, prev:nat): prev+1)

More generally, we have a constructreduce which allows for the definition
of functions on lists with result type other thannat by such structural recur-
sion; however, these are more easily defined using well founded recursion with
length as the measure, and indeed, if you findreduce confusing, just take
length for granted and define all your functions usinglength or derived forms
as measure.

11 Proof by list induction

Also predefined is the following induction principle for lists

list_induction: AXIOM
FORALL (p: [list -> boolean]):

(p(null) AND
(FORALL (cons1_var: T, cons2_var: list):

p(cons2_var) IMPLIES p(cons(cons1_var, cons2_var))))
IMPLIES (FORALL (list_var: list): p(list_var))

which states that a propertyp which

1. holds for the empty list

2. holds for an arbitrary list of the formcons(x,l) provided it holds forl

72

holds for all lists.
This principle can be invoked just asnat induction usinglemma, inst ,

beta , etc. or using theinduct command, or, indeed, using the powerfulinduct-and-simplify
command.

11.1 Associativity of append

Let’s do an example proof: associativity ofappend

|-------
{1} FORALL (l1, l2, l3: list[t]):

append(append(l1, l2), l3) = append(l1, append(l2, l3))

We need to do induction on one ofl1, l2, l3 .
Induction onl1 will make a defining equation forappend applicable which

(in thecons case) brings even the outermostappend into a rewritable form, so
that looks promising: We invoke(induct "l1") and get two subgoals, the
first of which is

|-------
{1} FORALL (l2, l3: list[t]):

append(append(null, l2), l3) = append(null, append(l2, l3))

We could either try to induct onl2 or l3 here, or solve it directly which should
intuitively be possible, as by virtue of the recursive equations both sides equal
append(l2,l3) . The way to convince PVS of this is either to use(grind)
or to introduce fresh names for the universal quantifier:(skolem 1 ("l2!1"
"l3!1"))

|-------
{1} append(append(null, l2!1), l3!1) = append(null, appen d(l2!1, l3!1))

Now we want to replace the second and third occurrence ofappend by their
definitions (as this will bring about a simplification), but not the first and fourth (as
this will make things more complicated. The command(expand "append"
1 2) expands the second occurrence ofappend in formula 1. Using this again
on occurrence 3 achieves our goal. Alternatively, we can usethe command

(expand "append" :if-simplifies T)

73

which only expands those occurrences ofappend which result in a simplification
(formally: those whose definition contains an if-then-elsewhose guard is equal to
eitherTRUEor FALSE).

At any rate, we get

|------
{1} append(l2!1, l3!1) = append(l2!1, l3!1)

which is an instance of reflexivity and thus discharged.
Now, we get to see the second subgoal:

|-------
{1} FORALL (cons1_var: t, cons2_var: list[t]):

(FORALL (l2, l3: list[t]):
append(append(cons2_var, l2), l3) =

append(cons2_var, append(l2, l3)))
IMPLIES
(FORALL (l2, l3: list[t]):

append(append(cons(cons1_var, cons2_var), l2), l3) =
append(cons(cons1_var, cons2_var), append(l2, l3)))

We introduce fresh names for the universally quantified constants:

(skolem 1 ("x!1" "l!1"))

and(flatten) giving us

{-1} FORALL (l2, l3: list[t]):
append(append(l!1, l2), l3) = append(l!1, append(l2, l3))

|-------
{1} FORALL (l2, l3: list[t]):

append(append(cons(x!1, l!1), l2), l3) =
append(cons(x!1, l!1), append(l2, l3))

Here -1 is the induction hypothesis. We must now introduce skolem constants
for the universal quantifier as in the base case with(skolem 1 ("l2!1"
"l3!1")) and we can in fact at this point isntantiate the induction hypothesis
with these values:(inst -1 "l2!1" "l3!1") . This means that we cannot
use the induction hypothesis with values other than these two. In general, this is
risky as there are cases in which we have to use the induction hypothesis with
other cleverly chosen instantiations, see Section 11.3 below. Here, however, it is
safe. If in doubt, postpone instantiations as long as possible.

74

{-1} append(append(l!1, l2!1), l3!1) = append(l!1, append (l2!1, l3!1))
|-------

[1] append(append(cons(x!1, l!1), l2!1), l3!1) =
append(cons(x!1, l!1), append(l2!1, l3!1))

Now we see that we have a couple of instances ofappend which can be simpli-
fied by way of the recursive equations.

(expand "append" :if-simplifies T)

Remember that typing(exp followed byM-s , i.e., Alt s produces this com-
mand.

[-1] append(append(l!1, l2!1), l3!1) = append(l!1, append (l2!1, l3!1))
|-------

{1} cons(x!1, append(append(l!1, l2!1), l3!1)) =
cons(x!1, append(l!1, append(l2!1, l3!1)))

Now we discover the lhs of the induction hypothesis (-1) as a subterm and in fact
the current sequent follows by mere equational reasoning. Therefore, it can be
dispatched with(grind) . If we insist on doing it by hand we do(replace
-1 1) leading to an instance of reflexivity.

This entire proof could also be done with the single command(induct-and-simplify
"l1") .

11.2 Occurrences

Recall the functionocc which counts the number of occurrences of a given ele-
ment in a list. We want to prove:

|-------
{1} FORALL (x: t, l1, l2: list[t]):

occ(x, append(l1, l2)) = occ(x, l1) + occ(x, l2)

Again, (induct-and-simplify "l1") will do the job, but for the sake of
it we go for something more elementary. We start with(induct "l1") . As
said before, there is no general rule as to whether one shouldjust skolemise or use
induction and if yes on which argument. Rule of thumb is that theorems involving
recursively defined functions require proof by induction and that the induction
should be on the argument which promises the most simplifications to happen.

Here this isl1 so we do(induct "l1") giving us two subgoals, first the
base case:

75

|-------
{1} FORALL (x: t, l2: list[t]):

occ(x, append(null, l2)) = occ(x, null) + occ(x, l2)

which after rewriting the append-term and the second occurrence ofocc becomes
an arithmetic identity. We dispatch the whole subgoal with(grind) bringing us
to the second subgoal, the inductive step which after skolemising and flattening
looks like so:

{-1} FORALL (x: t, l2: list[t]):
occ(x, append(l!1, l2)) = occ(x, l!1) + occ(x, l2)

|-------
{1} FORALL (x: t, l2: list[t]):

occ(x, append(cons(x!1, l!1), l2)) = occ(x, cons(x!1, l!1))

As before we introduce fresh names and instantiate our induction hypothesis with
them giving us

{-1} occ(x!2, append(l!1, l2!1)) = occ(x!2, l!1) + occ(x!2, l2!1)
|-------

[1] occ(x!2, append(cons(x!1, l!1), l2!1)) =
occ(x!2, cons(x!1, l!1)) + occ(x!2, l2!1)

Again, we find a number of occurrences of recursively defined functions which
now admit a simplification:

(expand "occ" :if-simplifies T)
(expand "append" :if-simplifies T)
(expand "occ" :if-simplifies T)

[-1] occ(x!2, append(l!1, l2!1)) = occ(x!2, l!1) + occ(x!2, l2!1)
|-------

{1} IF x!2 = x!1
THEN 1 + occ(x!2, append(l!1, l2!1))

ELSE occ(x!2, append(l!1, l2!1))
ENDIF

=
IF x!2 = x!1 THEN 1 + occ(x!2, l!1) ELSE occ(x!2, l!1) ENDIF

occ(x!2, l2!1)

76

We can now directly replace the lhs of the induction hypothesis with its rhs and
end up with an instance of reflexivity thus completing the proof. For the sake
of the example let’s move the if-then-else constructs to thesurface and proceed
by case distinction: the command(lift-if) followed by(split) brings us
two subgoals

[-1] occ(x!2, append(l!1, l2!1)) = occ(x!2, l!1) + occ(x!2, l2!1)
|-------

{1} x!2 = x!1 IMPLIES
1 + occ(x!2, append(l!1, l2!1)) = 1 + occ(x!2, l!1) + occ(x!2,

and

[-1] occ(x!2, append(l!1, l2!1)) = occ(x!2, l!1) + occ(x!2, l2!1)
|-------

{1} NOT x!2 = x!1 IMPLIES
occ(x!2, append(l!1, l2!1)) = occ(x!2, l!1) + occ(x!2, l2!1)

corresponding to the two branches of the conditional. The first subgoal is first
flattened and then dispatched with(grind) as it is an equational consequence
of the induction hypothesis. The second even becomes a propositional axiom after
flattening.

11.2.1 Completeness of filtering

Of a similar kind is

filter_complete : THEOREM
FORALL(x:t, l:list[t], p:[t->boolean]):

p(x) IMPLIES occ(x,filter(p,l)) = occ(x,l)

Invoking induction onl , grinding away the base case, skolemising and instantiat-
ing brings us to

{-1} p!1(x!2) IMPLIES occ(x!2, filter(p!1, l!1)) = occ(x!2 , l!1)
[-2] p!1(x!2)

|-------
[1] occ(x!2, filter(p!1, cons(x!1, l!1))) = occ(x!2, cons(x!1, l!1))

Simplifying the recursive function calls gives

77

[-1] p!1(x!2) IMPLIES occ(x!2, filter(p!1, l!1)) = occ(x!2 , l!1)
[-2] p!1(x!2)

|-------
{1} occ(x!2,

IF p!1(x!1)
THEN cons(x!1, filter(p!1, l!1))

ELSE filter(p!1, l!1)
ENDIF)

= IF x!2 = x!1 THEN 1 + occ(x!2, l!1) ELSE occ(x!2, l!1) ENDIF

(lift-if) followed by(split 1) followed by(flatten) gives two sub-
goals the first of which is

{-1} p!1(x!1)
[-2] p!1(x!2) IMPLIES occ(x!2, filter(p!1, l!1)) = occ(x!2 , l!1)
[-3] p!1(x!2)

|-------
{1} occ(x!2, cons(x!1, filter(p!1, l!1))) =

IF x!2 = x!1 THEN 1 + occ(x!2, l!1) ELSE occ(x!2, l!1) ENDIF

This gives now the opportunity for another simplification:

[-1] p!1(x!1)
[-2] p!1(x!2) IMPLIES occ(x!2, filter(p!1, l!1)) = occ(x!2 , l!1)
[-3] p!1(x!2)

|-------
{1} IF x!2 = x!1

THEN 1 + occ(x!2, filter(p!1, l!1))
ELSE occ(x!2, filter(p!1, l!1))
ENDIF

= IF x!2 = x!1 THEN 1 + occ(x!2, l!1) ELSE occ(x!2, l!1) ENDIF

and again we must lift the conditionals and split: to deal with this we need to
invoke lift-if again and split giving us

{-1} x!2 = x!1
[-2] p!1(x!1)
[-3] p!1(x!2) IMPLIES occ(x!2, filter(p!1, l!1)) = occ(x!2 , l!1)
[-4] p!1(x!2)

78

|-------
{1} 1 + occ(x!2, filter(p!1, l!1)) = 1 + occ(x!2, l!1)

Now we finally are in a position to use the induction hypothesis: (split -3)
followed by (replace -1 1) dispatches this branch of the proof. The other
ones are dealt with similarly. Of course at the displayed point and even before we
could have used(grind) as well.

11.3 List reversal

Here is one way to reverse a list:

rev(l:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN null

ELSE append(rev(cdr(l)),cons(car(l),null))
ENDIF
MEASURE length(l)

This is considered inefficient because the recursive implementation of the append
function takes linear time hence the overall runtime is quadratic.

Better is the following tail recursive formulation of reversal:

rev1(l:list[t], acc:list[t]) : RECURSIVE list[t] =
IF null?(l) THEN acc

ELSE rev1(cdr(l),cons(car(l),acc))
ENDIF
MEASURE length(l)

The idea is thatrev1(l,acc) equals the reversal ofl followed byacc , so that
we obtain the reversal ofl asrev1(l,null) . Let’s prove that this is true:

rev_rev1 : THEOREM
FORALL(l,acc:list[t]):

rev1(l,acc) = append(rev(l),acc)

Induction onl , grinding away the base case, skolemising and flattening brings us
to

[-1] FORALL (acc: list[t]): rev1(l!1, acc) = append(rev(l! 1), acc)
|-------

{1} rev1(cons(x!1, l!1), acc!1) = append(rev(cons(x!1, l! 1)), acc!1)

79

Now in this case, it is wrong to instantiate the induction hypothesis withacc!1
and that’s the reason whyinduct-and-simplify doesn’t work here. We just
leave the induction hypothesis and simplify our recursive functions.

[-1] FORALL (acc: list[t]): rev1(l!1, acc) = append(rev(l! 1), acc)
|-------

{1} rev1(l!1, cons(x!1, acc!1)) =
append(append(rev(l!1), cons(x!1, null)), acc!1)

Now we see that the lhs is in fact an instance of the lhs of the induction hypothesis,
however withacc set tocons(x!1,acc!1) . This suggests to instantiate the
induction hypothesis accordingly:

(inst -1 "cons(x!1,acc!1)")

{-1} rev1(l!1, cons(x!1, acc!1)) = append(rev(l!1), cons(x!1, acc!1))
|-------

[1] rev1(l!1, cons(x!1, acc!1)) =
append(append(rev(l!1), cons(x!1, null)), acc!1)

If the induction hypothesis holds for allacc , then in particular for the one we just
gave . . .

Now we rewrite with the induction hypothesis (replace -1 1) and get

[-1] rev1(l!1, cons(x!1, acc!1)) = append(rev(l!1), cons(x!1, acc!1))
|-------

{1} append(rev(l!1), cons(x!1, acc!1)) =
append(append(rev(l!1), cons(x!1, null)), acc!1)

This looks like an instance of associativity of append albeit slightly hidden. We
could now use(lemma "append assoc") etc. but it is easier to tell PVS
to consider it as a rewrite rule:(auto-rewrite "append assoc") after
which (grind) can complete the proof.

11.4 Summary

To prove theorems involving recursively defined functions we usually need induc-
tion. The first decision to make is which variable to induct on. This should be the
one leading to the most simplifications of recursively defined functions.

Once this decision has been made one can always tryinduct-and-simplify .
If that doesn’t help then we follow the following steps:

80

1. Invoke induction with theinduct command

2. Skolemize and flatten

3. Simplify instances of recursively defined functions using (expand ...
:if-simplifies T)

4. make case distinctions on conditionals usinglift-if andsplit

5. try to massage your goal so that the induction hypothesis becomes applica-
ble

6. when the induction hypothesis is universally quantified you must decide
on the right instantiation. Often but not always it consistsof the constants
obtained from skolemising the current goal.

When you get stuck:

• Try to figure out what your current goal really says and what itcould be a
consequence of.

• Try not to get into a “symbol-pushing mode” and just blindly enter com-
mands

• At least sketch an informal proof before you attempt a proof with PVS

• If your current goal seems true, but you can’t get PVS to proveit you may
try to isolate it as a separate lemma, i.e., abandon the proof, type in the
lemma, prove it separately (perhaps again using induction)and then retry.

12 General datatypes

Inductive datatypes other than lists can be defined in PVS using the datatype con-
struct. Rather than going into formalities let’s look at twoconcrete examples:

12.1 Labelled binary trees

If T is a set then the set of binary treestree(T) with labels inT is inductively
defined as follows:

• leaf is a tree,

81

• if label ∈ T and left, right ∈ tree(T) then node (label, left, right) ∈
tree(T).

E.g.node(3, node(2, leaf, leaf), leaf) ∈ tree(N).
One may ask in what sense this prima facie self-referential explanation is at

all a valid definition.
Some people just take it for granted, others prefer to explain it in terms of set

theory. For instance, we can say that a tree is a finite prefix-closed set of paths, or
we can define trees by induction on their depth level. Then theonly tree of level 0
would be a leaf, encoded e.g. as the empty set; a tree of leveln+ 1 is either a tree
of leveln or a triple(label, left, right) wherelabel∈ T andleft, right are trees of
leveln. We thendefinethe constructorleaf as being the empty set andnode as
the function which groups three things into a triple.

Since trees are inductively generated, we have the following principle of tree
induction:

Let P be a property of binaryT -labelled trees.
If

• P (leaf) and

• wheneverP (left) andP (right) for someleft, right ∈ tree(T) then also
P (node(label, left, right)) for all label∈ T

thenP holds for all binaryT -labelled trees.
If we take inductive definitions for granted then we must alsotake this prin-

ciple on board; if we define trees in terms of more primitive concepts then tree
induction becomes a theorem, e.g., provable by course-of-values induction on the
level.

Another principle is that nodes are different from leaves:

node(label, left, right) 6= leaf

• depth(leaf) = 0

• depth(label, leaf, right) = max(depth(left), depth(right)) + 1

To define functions on trees we need some measure on them; the most prim-
itive such is the depth given as on the slide. Again, we can either take the depth
for granted or define it as the least level containing the tree. In that case the above
equation could be proved.

82

Once we’ve got the depth we can define other functions by well-founded re-
cursion:

• no leaves(leaf) = 1

• no leaves(node(label, left, right)) = no leaves(left)+no leaves(right)

• no nodes(leaf) = 0

• no nodes(node(label, left, right)) = no nodes(left)+no nodes(right)+1

This was the pattern-matching form. In order to get the fixpoint form we need
(partial) destructor functions:

Defineleaf?(t) ⇐⇒ t = leaf,
Definenode?(t) ⇐⇒ ∃label, left, right.t = node(label, left, right),
Define(leaf?) = {leaf}
Define(node?) = {t | node?(t)}.
Notice:∀t:tree(T).leaf?(t) ∨ node?(t)
We have

label : (node?) → T
left : (node?) → tree(T)
right : (node?) → tree(T)

defined by

label(node(label, left, right)) = label
left(node(label, left, right)) = left
right(node(label, left, right)) = right

no leaves(t) =

{

1, if leaf?(t)
no leaves(left(t)) + no leaves(right(t)), o/w

no nodes(t) =

{

0, if leaf?(t)
no nodes(left(t)) + no nodes(right(t)) + 1, o/w

Both recursive definitions are well-founded using the depthas measure.
∀t:tree(T).no leaves(t) = no nodes(t) + 1.
Proof by tree induction:

• no leaves(leaf) = 1 = 0 + 1 = no nodes(leaf) + 1

83

• no leaves(node(label, left, right)) =

no leaves(left) + no leaves(right)
IH
=

no nodes(left) + 1 + no nodes(right) + 1 =
(no nodes(left) + no nodes(right) + 1) + 1 =
no nodes(node(label, left, right)) + 1

tree[t:TYPE]: DATATYPE
BEGIN

leaf : leaf?
node(label:t,left,right:tree) : node?

END tree

To introduce trees into PVS we use the above declaration. It will automati-
cally generate a filetree adt.pvs when we type check the file containing the
declaration. The contents oftree adt.pvs are as follows:

tree_adt[t: TYPE]: THEORY
BEGIN

tree: TYPE
leaf?, node?: [tree -> boolean]
leaf: (leaf?)
node: [[t, tree, tree] -> (node?)]
label: [(node?) -> t]
left: [(node?) -> tree]
right: [(node?) -> tree]

tree_label_node: AXIOM
FORALL (node1_var: t, node2_var: tree, node3_var: tree):

label(node(node1_var, node2_var, node3_var)) = node1_va r;

tree_left_node: AXIOM
FORALL (node1_var: t, node2_var: tree, node3_var: tree):

left(node(node1_var, node2_var, node3_var)) = node2_var ;

tree_right_node: AXIOM
FORALL (node1_var: t, node2_var: tree, node3_var: tree):

right(node(node1_var, node2_var, node3_var)) = node3_va r;

84

tree_inclusive: AXIOM
FORALL (tree_var: tree): leaf?(tree_var) OR node?(tree_v ar);

tree_induction: AXIOM
FORALL (p: [tree -> boolean]):

(p(leaf) AND
(FORALL (node1_var: t, node2_var: tree, node3_var: tree):

p(node2_var) AND p(node3_var) IMPLIES
p(node(node1_var, node2_var, node3_var))))

IMPLIES (FORALL (tree_var: tree): p(tree_var));

The file contains other useful stuff such as the definition of asubtree rela-
tion, a mapping functional, as well as properties describing these. Take a look
yourselves!

Unfortunately, the depth isn’t defined for us, so we do it ourselves using the
reduce nat functional which also works for trees with different typing, though.
Can you work out the typing ofreduce nat from the example? If not take a
look at tree adt.pvs where it’s defined.

tree_depth[t:TYPE]: THEORY
BEGIN
IMPORTING tree_adt

depth: [tree[t] -> nat] =
reduce_nat(0, LAMBDA(x:t,l,r:nat):max(l,r)+1)

END tree_depth

IMPORTING tree_adt

gives us the type formertree[], e.g.tree[nat] is the type ofnat labelled trees.
leaf[t], node[t], leaf?[t], node?[t] etc.
can usually be abbreviated by
leaf, node, leaf?, node? etc.
With

IMPORTING tree_adt, tree_depth

85

we also get thedepth function.

|-------
{1} FORALL (t: tree[t]): no_leaves(t) = no_nodes(t) + 1

Rule? (induct-and-simplify "t")

Alternatively,induct "t" , skosimp , etc.

12.2 The option datatype

We saw that partial functions can be turned into total functions by defining them
on a subset. Another possibility is to change the result typeof the function so
as to contain a special “error element” which—when taken on—flags that we are
outwith the domain of the function. An example: the predecessor function on
natural numbers can be defined on the set{n |n > 0}, then returning a natural
number. Alternatively, we can define it on the whole ofN and then return a value
in N∪{none} with the understanding thatpred(0) = none andpred(n) = n−1
otherwise.

Since this situation occurs sufficiently often, it is handy to have a new type for-
mer which tacks on a special element to any other type. Since this error element
might already have been present it’s more convenient to alsoflag the other ele-
ments which is achieved with theoption datatype. IfT is a set so isoption (T)
and its members arenone andsome(x) whenx ∈ T .

A property holds for all elements inoption (T) provided it holds fornone
and for all elements of the formsome(x). That’s the induction principle for the
type option . We also have the subsets(none?), (some?) consisting ofnone
and thesome(x), respectively.

So, everything is as before, except that this time the constructors don’t take
arguments from the inductively defined set. In this case, the“induction principle”
is equivalent to a first-order formula (no quantification over predicates). Do you
see, which one?

option[t:TYPE]: DATATYPE
BEGIN

none : none?
some(content:t) : some?

END option

86

Again, a fileoption adt.pvs is created; look at it and try to understand
its contents.

87

