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Abstract. Instances of a polytypic or generic program for a concrete recursive
type often exhibit a recursion scheme that is derived from the recursion scheme of
the instantiation type. In practice, the programs obtained from a generic program
are usually terminating, but the proof of termination cannot be carried out with
traditional methods as term orderings alone, since termination often crucially re-
lies on the program type. This problem is tackled by an adaption of type-based
termination to generic programming, and a framework for sized polytypic pro-
gramming is described.

1 Introduction

In the last decade,polytypicor genericprogramming has been explored for functional
programming languages [34, 7, 25, 28–30]. With polytypic programming, many repeti-
tive tasks, like writing asize -function for data structures of typeA, can be mechanized
by writing a genericsize -function which then can be instantiated to all sorts of types
A. Over the years, many useful examples of generic programs have been put forth,
like parsing and unparsing, map and zip functions, and even finite maps for key typeA.
When generic programs are defined by recursion on typeA, then the resulting programs
have often a recursion structure that corresponds to the recursion structure of typeA;
and it is the rule that they terminate, if applied to finite input. However, because of the
high degree of abstraction that generic programs usually involve, termination cannot be
proven with conventional methods like term orderings or initial algebras alone. It is the
purpose of this article to outline a systematic solution to the termination problem of
many generic programs.

As an example, we take Hinze’s [24] generic definition of finite maps. If instantiated
to key typelist of A, in Haskell syntax[a] , we get the following definition of a finite
map:

data MapList f v = Leaf
| Node (Maybe v) (f (MapList f v))
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Herein,v is the range of the finite map, andf w represents the finite maps froma to
w. Instantiatinga with Char andf w with Char →w, we would get finite maps over
strings. Such a finite map is either totally undefined (Leaf ) or a pair of maybe a piece
of data associated with the current key (Maybe v) plus a finite map for each extension
of the current key by one character (f (MapList f v) .

Merging finite maps is a completely generic operation. Again for the key type of
lists, we get the following instance. Let

comb :: (v -> v -> v) -> Maybe v -> Maybe v -> Maybe v

be a conflict resolution function for up to two candidate values of a finite map at a
certain key. Then the following Haskell program merges two finite maps over lists:

mergeList ::
(forall w. (w -> w -> w) -> f w -> f w -> f w) ->
(v -> v -> v) ->
MapList f v -> MapList f v -> MapList f v

mergeList mergeF c Leaf t = t
mergeList mergeF c t Leaf = t
mergeList mergeF c (Node m1 t1) (Node m2 t2) =

Node (comb c m1 m2) (mergeF (mergeList mergeF c) t1 t2)

This function has an extraordinary recursion behavior: As a recursive “call”, the whole
function mergeList mergeF c is passed to one of its arguments,mergeF . It is
not immediately obvious thatmergeList is a total function. Indeed, if we disregard
its type, we can create a non-terminating execution: Define

mf m t1 t2 = m (Node Nothing t1) (Node Nothing t2)

and runmergeList mf fst (Node Nothing t1) (Node Nothing t2) !
However,mf does not have the right type, and the polymorphic nature of the argument
mergeF is a critical ingredient for termination.

This example demonstrates that term-based termination arguments do not suffice for
generic programs. We need a method for establishing termination which takes thetype
of a program into account. Such a method istype-based termination, which has been
developed by Hughes, Pareto, and Sabry [31], and independently by Giménez [20] who
advanced the pioneering work of Mendler [37]. Since then, type-based termination has
been considered by several authors [1, 2, 8, 9, 14, 15, 18].

In this work, we show that type-based termination can be successfully applied to
generic programs. To this end, we have extended the approach to higher-order data
types, arriving at SystemFω̂, which is the object of the author’s thesis [3]. We will
briefly introduce the necessary concepts to the reader in Section 2 and then outline a
framework for total generic programming in Sect. 3. More related work and directions
for future research are discussed in Sect. 4.

1.1 Preliminaries

We assume that the reader is firm in the higher-order polymorphic lambda-calculus,
SystemFω (see Pierce’s text book [46]). Additionally, some familiarity with generic
programming would be helpful [29].



Generic programming takes a minimalistic view on data types: Each ground type
can be constructed using the unit type1, disjoint sum typeA + B, product typeA×B
and recursion. The following terms manipulate these types:

() : 1
pair : ∀A∀B. A → B → A×B
fst : ∀A∀B. A×B → A
snd : ∀A∀B. A×B → B
inl : ∀A∀B. A → A + B
inr : ∀A∀B. B → A + B
case : ∀A∀B∀C. A + B → (A → C) → (B → C) → C

Pairs pair r s are written(r, s). We assume the usual reduction rules, for instance,
fst (r, s) −→ r. Sometimes it is convenient to introduce abbreviations for derived data
constructors. For instance:

Nat = 1 + Nat
zero = inl ()
succ = λn. inr n

To improve readability, we will freely make use of the pattern matching notation

match r with p1 7→ t1 | · · · | pn 7→ tn

for patternspi generated from both elementary and derived data constructors. Similarly,
we use a non-recursivelet p=r in t.

2 Sized Types in a Nutshell

We use sized types for type-based termination checking, as described by Hughes, Pareto,
and Sabry [31, 44] and Barthe, Frade, Giménez, Pinto, and Uustalu [8]. In comparison
with the cited works, our system,Fω̂, also features higher-order polymorphism and het-
erogeneous (nested) and higher-order data types. In this section, we quickly introduce
the most important features ofFω̂ [3].

Inductive typesare recursively defined types which can only be unfolded finitely many
times. The classical example are lists which are given as the least fixed-point of the type
constructorλX. 1+A×X, whereA is the type of list elements. If the type constructor
underlying an inductive type is not covariant (monotone), non-terminating programs
can be constructed without explicit recursion [37]. Therefore we restrict inductive types
to fixed-points of covariant constructors. We write

∗ +→ ∗ or +∗ → ∗ for the kind of covariant,

∗ −→ ∗ or −∗ → ∗ for the kind of contravariant, and
∗ ◦→ ∗ or ◦∗ → ∗ for the kind of mixed-variant

type constructors, the last meaning constructors which are neither co- nor contravariant,
or the absence of variance information. For example,λX.X → 1 is contravariant, and



λX.X → X is mixed-variant. The notion of variance is extended to arbitrary kinds
andp-variant function kinds are written aspκ → κ′ or

κ
p→ κ′.

For instance, we have the following kindings for disjoint sum, product, function, and
polymorphic type constructor:

+ : ∗ +→ ∗ +→ ∗ disjoint sum

× : ∗ +→ ∗ +→ ∗ cartesian product

→ : ∗ −→ ∗ +→ ∗ function space

∀κ : (κ ◦→ ∗) +→ ∗ quantification

We assume asignatureΣ that contains the above type constructor constants together
with their kinding, plus some base types1, Char, Int . . . The signatureΣ is viewed as
a function, soΣ(C) returns the kind of the constructor constantC. A bit sloppily, we
write C ∈ Σ if C is in the domain of this function,C ∈ dom(Σ). Also, we usually
write ∀X :κ.A for ∀κλX.A, or∀XA, if the kindκ is inferable.

Sized inductive types.We write inductive types asµaF , whereF is a covariant con-
structor anda a constructor of special kindord. This kind models the stage expressions
of Barthe et. al. [8], which are interpreted as ordinals, and has the following construc-
tors:

s : ord
+→ ord successor of ordinal

∞ : ord infinity ordinal

The infinity ordinal is the closure ordinal of all inductive types considered, i. e., an
ordinal big enough such that the equation

F (µ∞F ) = µ∞F

holds for all type constructors which are allowed as basis for an inductive type. IfF
is first-order, i. e., does not mention function space, then the smallest infinite ordinalω
is sufficient. However, if we allow higher-order datatypes like the infinitely-branching
µ∞λX.1 + (Nat → X), higher ordinals are required.1

In the following, we will only make use of ordinal constructors that are either∞ or
ı + n, whereı is a constructor variable of kindord andn a natural number anda + n is
a shorthand for prepending the constructora with n successor constructorss.

Sized inductive types are explained by the equationµa+1F = F (µaF ). Viewing
inductive types as trees andF as the type of the node constructor, it becomes clear that
the size indexa is an upper bound on the height of trees inµaF . Hence, inductive types
are covariant in the size index, and their instances stand in the subtyping relation

µaF ≤ µa+1F ≤ µa+2F ≤ · · · ≤ µ∞F.

1 More details can be found in the forthcoming thesis of the author [3, Sect. 3.3.3].



Some examples for sized inductive types are:

Nat : ord
+→ ∗

Nat := λı. µıλX. 1 + X

List : ord
+→ ∗ +→ ∗

List := λıλA. µıλX. 1 + A×X

Tree : ord
+→ ∗ −→ ∗ +→ ∗

Tree := λıλBλA. µıλX. 1 + A× (B → X)

Nata denotes the type of natural numbers< a, ListaA the type of lists of length< a,
andTreeaB A the type ofB-branchingA-labeled trees of height< a. For lists, we
define the usual constructors:

nil := inl () : ∀ı∀A. Listı+1 A

cons := λaλas. inr (a, as) : ∀ı∀A.A → Listı A → Listı+1A.

Heterogeneous data types.Nothing prevents us from considering inductive types of

higher kind, i. e., suchµaF whereF is not of kind∗ +→ ∗, but, for instance, of kind

(∗ +→ ∗) +→ (∗ +→ ∗). For such anF we get an inductiveconstructor, or a heteroge-
neous data type [6], in the literature often called nested type [4, 11–13, 36, 22, 24, 26,

41–43]. In general, the least-fixed point constructorµκ can be used on anyF : κ
+→ κ

whereκ must be a pure kind, i. e., must not mention special kindord. Examples for
heterogeneous types are:

PList : ord
+→ ∗ +→ ∗

PList := λı. µı
+∗→∗λXλA.A + X (A×A)

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µı
+∗→∗λXλA. 1 + A×X (X A)

The typePLista A implements lists with exactly2n elements of typeA for somen < a.
The second type,bushylists, is an example of atruly nestedtype. It is well-defined
since we can infer covariance ofX (X A) in X from the assumption thatX is covariant
itself.2

Example 1 (A powerlist).Let a0, a1, a2, a3 : A andı : ord. We can construct the pow-
erlistPListı+3 A containing these four elements as follows:

((a0, a1), (a2, a3)) : ((A×A)× (A×A)) =: A4

inl ((a0, a1), (a2, a3)) : A4 + PListı (A4 ×A4)
inl ((a0, a1), (a2, a3)) : PListı+1 A4

inr (inl ((a0, a1), (a2, a3))) : A×A + PListı+1 A4

inr (inl ((a0, a1), (a2, a3))) : PListı+2 (A×A)
inr (inr (inl ((a0, a1), (a2, a3)))) : A + PListı+2 (A×A)
inr (inr (inl ((a0, a1), (a2, a3)))) : PListı+3 A

2 The constructor underlyingBush fails a purely syntactical covariance test, like the test for
strict positivityin Coq [32].



Structural recursion.Since we are considering a terminating programming language,
recursion cannot be available without restriction. In the following we give a typing rule
for structurally recursive functions. Herein, we interpretstructurally recursivein the
context of sized types: A function is structurally recursive if the recursive instance is of
smaller size than the calling instance. As typing rule, this definition reads:

ı :ord, f : A ı ` t : A (ı + 1)
fix (λf.t) : ∀ı. A ı

Of course, the typeA ı must mention the size variableı in a sensible way; with the con-
stant typeA ı = Nat∞ → Nat∞ one immediately allows non-terminating functions.
Barthe et. al. [8, 9] suggest types of the shapeA ı = µıF → C whereı does not occur in
F and only positively inC. In this article, we want to consider recursive functions that
simultaneously descent on serveral arguments, and also polymorphic recursion. Hence,
we consider types of the shape

∀X1 . . .∀Xk. µıF → B1 → · · · → Bm → C,

whereı does not occur inF , indexı occurs only positively inC, and each of theBi is
eitherı-free or of the shapeµıFi with Fi ı-free. More valid shapes for the typeA ı are
described by Hughes, Pareto, and Sabry [31], in Pareto’s thesis [44], my thesis [3] and
previous work of mine [1].

To obtain a strongly normalizing system, unrolling of fixed-point has to be restricted
to the case

fixµs v −→ s (fixµs) v,

wherev is a value (an injection, a pair, aλ-abstraction, an under-applied function
symbol). For convenience, we define the fixed-point combinatorfixµ

n that takesn non-
recursive arguments before the first recursive argument:

backn := λgλt1 . . . λtnλr. g r t1 . . . tn
frontn := λgλrλt1 . . . λtn. g t1 . . . tn r
fixµ

n := λs. backn (fixµ (λf. frontn (s (backn f)))).

Example 2 (Merge sort).Assume a typeA with a comparison function≤: A → A →
Bool, a functionmerge : List∞A → List∞A → List∞A which merges two ordered
lists into an ordered output list and a functionsplit : ∀ı. ListıA → ListıA×ListıA which
splits a list into two parts of roughly the same size. The type ofsplit expresses that none
of the output lists is bigger than the input. We can encode merge sortmsort a as for
non-empty listscons a as in Fω̂ as follows:

msort : ∀ı. A → ListıA → List∞A
msort := fixµ

1 λmsortλaλxs. match xs with
nil 7→ cons a nil
cons b l 7→ let (as, bs) = split l

in merge (msort a as) (msort b bs)



The recursive calls tomsort are legal because of the typing ofsplit. Indeed, we can
assign the following types:

msort : A → Listı A → List∞ A
a, b : A

xs : Listı+1 A
l : Listı A
as, bs : Listı A

The termination ofmsort depends on the fact thatsplit is non size-increasing. This
information could have been established by other means than typing, e. g., by a term
ordering as usual for termination of term rewriting systems. However, for the generic
programs we consider in the next section, the typing will be essential for termination
checking.

3 A Framework for Generic Programming with Sized Types

Hinze [25] describes a framework for generic programming which is later extended by
Hinze, Jeuring, and Löh [30] and implemented inGeneric Haskell[29]. In this frame-
work, both types and values can be constructed by recursion on some index type. The
behavior is only specified for the type and constructor constants likeInt, 1, + and×,
and this uniquely defines the constructed type or value. In the following we propose an
extension by sized types,sized polytypic programming, and demonstrate its strength by
giving termination guarantees for Hinze’s generalized tries [24].

Observe the following typographic conventions:

Capital Type〈A〉 a typeType indexed by typeA
UPPERCASE TYPE〈κ〉 the kindTYPE of typeType

indexed by kindκ of typeA
lowercase poly〈A〉 a polytypic programpoly instantiated at typeA
Capital Poly〈κ〉 the polykinded typePoly of programpoly

instantiated at kindκ of typeA

3.1 Type-indexed Types

In generic programming as proposed by Hinze, Jeuring, and Löh [30], one can define
a family Type〈A〉 indexed by another typeA. For instance, one can define the type
Map〈A〉V of finite maps fromA to V generically for all index typesA, by analyzing
the structure ofA. To this end, one specifies whatMap〈A〉 should be for base typesA0

and for the standard type constructors, e. g.,+ and×. Then,Map〈A〉 is computed for a
specific instance ofA, where recursion is interpreted as the infinite unfolding. We differ
from this setting in that we deal with inductive types instead of recursive types, thus, in
our case,Map〈A〉 for an inductive typeA will be itself an inductive type. In general, a



type-indexed typeType〈A〉 will obey the following laws:

Type〈C〉 = user-defined for C ∈ {1,+,×, Int,Char, . . . }
Type〈X〉 = X
Type〈λXF 〉 = λX.Type〈F 〉
Type〈F G〉 = Type〈F 〉 Type〈G〉
Type〈µκ〉 = µ?

What should the kind index toµ be in the last equation? We can answer this question
if we look at the kindTYPE〈κ〉 of a type-indexed typeType〈F 〉. (Actually, the term
constructor-indexed constructorwould be more appropriate, but we stick to the existing
terminology.) The kindTYPE〈κ〉 depends on the kindκ of constructorF . The given
equations for abstraction and application dictate the following laws for function kinds.

TYPE〈κ1
p→ κ2〉 = TYPE〈κ1〉

p→ TYPE〈κ2〉

The kindTYPE〈∗〉 has to be chosen such thatType〈C〉 : TYPE〈Σ(C)〉 for all basic
type constructorsC ∈ Σ. (Of course,Type〈C〉 can be undefined for someC, typically
for C = → andC = ∀κ.) For instance, the kindMAP〈κ〉 for the type of finite maps

Map〈F : κ〉 is defined byMAP〈∗〉 = ∗ +→ ∗. We can now complete the construction
law for types indexed by inductive types.

Type〈µκ〉 = µTYPE〈κ〉

Remark 1.Note that the presence of polarities restricts the choices forType〈C〉. How-
ever, if index types are constructed in a signature without polymorphism and function
space, as it is usual in the generic programming community, all function kinds are co-
variant and we do not have to worry about polarities.

We extend the framework to sized types by giving homomorphic construction rules
for everything that concerns sizes:

TYPE〈ord〉 = ord

Type〈s〉 = s
Type〈∞〉 = ∞

Theorem 1 (Well-kindedness of type-indexed types).Let Σ be a signature of con-
structor constants. IfType〈C〉 : TYPE〈κ〉 for all (C :κ) ∈ Σ, andX1 :p1κ1, . . . , Xn :
pnκn ` F : κ, thenX1 :p1TYPE〈κ1〉, . . . , Xn :pnTYPE〈κn〉 ` Type〈F 〉 : TYPE〈κ〉.

Proof. By induction on the kinding derivation.

Example: finite maps via generalized tries.Hinze [24] defines generalized triesMap〈F 〉
by recursion onF . In particular,Map〈K : ∗〉V is the type of finite maps from domain
K to codomainV . The following representation using type-levelλ can be found in his



article on type-indexed data types [30, page 139].

MAP〈∗〉 := ∗ +→ ∗

Map〈Int〉 := λV. efficient implementation ofInt →fin V
Map〈Char〉 := λV. efficient implementation ofChar →fin V
Map〈1〉 := λV. 1 + V
Map〈+〉 := λFλGλV. 1 + F V ×G V
Map〈×〉 := λFλGλV. F (G V )

Well-kindedness of these definitions is immediate, except maybe forMap〈×〉 which

must be of kind(∗ +→ ∗) +→ (∗ +→ ∗) +→ (∗ +→ ∗). For Map〈+〉 we have used the
variant ofspotted products(or lifted products) which Hinze mentions in section 4.1 of
his article [24]. This way we avoid that certain empty tries have an infinite normal form
(see [24, page 341]) which requires lazy evaluation. The constructor for finite maps
over strings can now be computed as follows:

Map〈λı. Listı Char〉
= Map〈λı. µı

∗ λX. 1 + Char ×X〉
= λı. µı

∗+→∗λX.Map〈+〉Map〈1〉 (Map〈×〉Map〈Char〉X)
= λı. µı

∗+→∗λXλV. 1 + (1 + V )×Map〈Char〉 (X V )

The matching kind is

MAP〈ord +→ ∗〉 = ord
+→ ∗ +→ ∗.

Note that the typeMap〈λı. Listı Char〉 of sized, string-indexed tries involves a higher-
kinded inductive typeµ∗+→∗. However, it is not heterogeneous, but homogeneous, mean-
ing thatX is always applied to the variableV . Thus, we have the option to simplify it
usingλ-droppingand obtain an ordinary inductive type:

Map〈λı. Listı Char〉 = λıλV. µı
∗ λY. 1 + (1 + V )×Map〈Char〉Y )

It is easy to interpret this type as a trie for strings with prefixp: The trie is either “()”
(first 1), meaning that strings with this prefix are undefined in the finite map, or it is a
pair of maybe a valuev (the value mapped top) and of one trie for strings with prefix
p · c for eachc ∈ Char. A trie for strings with empty prefix is then a finite map over all
strings.

3.2 Type-indexed Values

The key ingredient to generic programming are type-indexed values, meaning, pro-
gramspoly〈F 〉 which work for different type constructorsF but are uniformly (gener-
ically) constructed by recursion onF . Again, the user supplies the desired behavior
poly〈C〉 on base types and type constructorsC, and the polytypic programpoly〈F 〉 is
then constructed by the following laws:

poly〈C〉 = user-defined
poly〈X〉 = x
poly〈λXF : κ1 → κ2〉 = λx. poly〈F 〉
poly〈F G〉 = poly〈F 〉 poly〈G〉
poly〈µκ〉 = fix



(This definition is sensible if we consider all bound variables inF distinct and require
poly〈C〉 to be a closed expression.)

Hinze [27] has observed that type-indexed valuespoly〈F : κ〉 have kind-indexed
typesPoly〈F, . . . , F : κ〉 : ∗ with possibly several copies ofF , obeying the following
laws:

Poly〈A1, . . . , An : ∗〉 = user-defined

Poly〈F1, . . . , Fn : κ
p→ κ′〉 = ∀G1 :κ . . .∀Gn :κ.

Poly〈G1, . . . , Gn : κ〉 → Poly〈F1 G1, . . . , Fn Gn : κ′〉

For example, three copies ofF are required for a generic definition of zipping functions
[27, Sect. 7.2].

Hinze works in a framework where only covariant type constructors serve as in-
dices, i. e.,p = + in the above equation. However, with polarity information at hand,
it is sometimes useful to depart from Hinze’s scheme. One example is a generic map
function (monotonicity witness, functoriality witness, resp.):

GMap〈A,B : ∗〉 := A → B

GMap〈F,G : κ
−→ κ′〉 := ∀X∀Y. GMap〈Y, X : κ〉 → GMap〈F X, G Y : κ′〉

GMap〈F,G : κ
p→ κ′〉 := ∀X∀Y. GMap〈X, Y : κ〉 → GMap〈F X, G Y : κ′〉

for p ∈ {+, ◦}

With this refined definition of kind-indexed type, a generic map function is definable
which also works for data types with embedded function spaces, e. g.,Tree.

gmap〈1 : ∗〉 := λu. u

gmap〈+ : ∗ +→ ∗ +→ ∗〉 := λfλgλs. case s (λx. inl (fx)) (λy. inr (g y))
gmap〈× : ∗ +→ ∗ +→ ∗〉 := λfλgλp. (f (fst p), g (snd p))
gmap〈→ : ∗ −→ ∗ +→ ∗〉 := λfλgλhλx. g (h (f x))

For the main example we want to consider, generic operations for tries, typesPoly〈F :
κ〉 indexed by a single constructorF are sufficient, hence, we will restrict the following
development to this case.

In Fω̂, there is a second base kind,ord. Since ordinals are only used to increase
the static information about programs, not to carry out computations, the occurrence of
kind ord in a kind which indexes a type should not alter this type. Thus, the following
laws are sensible:

Poly〈A :∗〉 = user-defined

Poly〈F :ord
p→ κ〉 = ∀ı :ord.Poly〈F ı :κ〉

Poly〈F :κ1
p→ κ2〉 = ∀G :κ1.Poly〈G :κ1〉 → Poly〈F G :κ2〉

Kinds suitable as indexes must fit into the grammar:κ ::= ∗ | ord
p→ κ | κ1

p→ κ2.
Size expressions appearing in the typeA of a generic programpoly〈A〉 should not
influence the program. We only consider typesA which are normalized and contain



size expressions only as index to an inductive type. Then we can refine the generation
laws for type-indexed programs as follows:

poly〈C〉 = user-defined
poly〈X〉 = x
poly〈λıF : ord → κ〉 = poly〈F 〉
poly〈λXF : κ1 → κ2〉 = λx. poly〈F 〉 whereκ1 6= ord
poly〈F G〉 = poly〈F 〉 poly〈G〉
poly〈µa

κ〉 = fixµ
n for somen

In the last equation,n has to be chosen such that thenth argument to the resulting
recursive function is of an inductive type whose size is associated toa. The choice ofn
depends on the definition of the typePoly〈A :∗〉 of the type-indexed program given by
the user. For the example of map lookup functions (see below), the polytypic program
is of type

Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V.

Hence, we setn = 0, because the recursive argument of the function that is generated
in caseK = µaF is the first one, of typeK. In the example of finite map merging to
follow, we will have the type

Merge〈K :∗〉 := ∀V. BinV → Bin (Map〈K〉V )

with BinV = V → V → V . SinceMap〈K〉 is an inductive type for inductiveK, the
second argument is the recursive one and we haven = 1.

Example: finite map lookup.In the following, we implement Hinze’s generic lookup
function in our framework. The definitions on the program level are unchanged, only
the types are now sized, and we give termination guarantees. We use the bind operation
�= for theMaybemonadλV. 1 + V . It obeys the laws(inl() �= f) −→ inl() and
(inr v �= f) −→ f v.

Lookup〈K :∗〉 := ∀V. K → Map〈K〉V → 1 + V

lookup〈1〉 : ∀V. 1 → 1 + V → 1 + V
lookup〈1〉 := λkλm.m

lookup〈+〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A + B → 1 + (Map〈A〉V )× (Map〈B〉V ) → 1 + V

lookup〈+〉 := λlaλlbλabλtab. tab �= λ(ta, tb).
match ab with

inl a 7→ la a ta
inr b 7→ lb b tb

lookup〈×〉 : ∀A :∗. Lookup〈A〉 → ∀B :∗. Lookup〈B〉 →
∀V. A×B → Map〈A〉 (Map〈B〉V ) → 1 + V

lookup〈×〉 := λlaλlbλ(a, b)λtab. la a tab �= λtb. lb b tb

All these definitions are well-typed, which is easy to check since there are no references
to sizes.



Example: lookup for list-shaped keys.The previous definitions determine the instance
of the generic lookup function for the type constructor of lists.

lookup〈List〉
: Lookup〈List〉
: ∀ı∀K :∗. Lookup〈K〉 → Lookup〈Listı K〉
: ∀ı∀K :∗. Lookup〈K〉 → ∀V. ListıK → Map〈ListıK〉 → 1 + V
: ∀ı∀K :∗. Lookup〈K〉 → ∀V. ListıK → (µıλY. 1 + (1 + V )× Y ) → 1 + V

lookup〈List〉
= lookup〈λıλK. µıλX. 1 + K ×X〉
= λlookupK . fixµ

0 λlookup. lookup〈+〉 lookup〈1〉 (lookup〈×〉 lookupK lookup)
= λlookupK . fixµ

0 λlookupλlλm.m �= λ(n, c).
match l with

nil 7→ n
cons k l′ 7→ lookupK k c �= λm′. lookup l′ m′

Note that the type oflookup〈List〉 mentions the size variableı twice, as index to both
inductive arguments. This makes sense, since the length of the search keys determines
the depth of the trie. Welltypedness can be ensured on an abstract level:

lookupK : Lookup〈K〉
lookup : Lookup〈ListıK〉
lookup〈×〉 lookupK lookup =: r : Lookup〈K × ListıK〉
lookup〈+〉 lookup〈1〉 r =: s : Lookup〈1 + K × ListıK〉

: Lookup〈Listı+1K〉
fixµ

0 λlookup. s : Lookup〈ListıK〉

Finally, the typeLookup〈ListıK〉 is valid for recursion withfixµ
0 , according to criterion

given in Sect. 2.

Trie merging. Hinze [24] presents three elementary operations to construct finite tries:
empty, single, andmerge. In the following we replay the construction ofmerge in our
framework, since it exhibits a very interesting recursion scheme.

First we define the typeBin V for binary operations onV and a functioncomb
which lifts a merging function forV to a merging function for1 + V .

Bin : ∗ ◦→ ∗
Bin := λV. V → V → V

comb : ∀V. (V → V → V ) → (1 + V → 1 + V → 1 + V )
comb := λcλm1λm2. match (m1,m2) with

(inl(), _) 7→ m2

(_, inl()) 7→ m1

(inr v1, inr v2) 7→ inr (c v1 v2)



The following definitions determine a generic merging function.

Merge〈K :∗〉 := ∀V. BinV → Bin (Map〈K〉V )

merge〈1〉 : Merge〈1〉
merge〈1〉 := comb

merge〈+〉 : ∀A.Merge〈A〉 → ∀B.Merge〈B〉 → ∀V.BinV →
Bin (1 + Map〈A〉V ×Map〈B〉V )

merge〈+〉 := λmaλmbλc. comb
λ(ta1, tb1)λ(ta2, tb2). (ma c ta1 ta2, mb c tb1 tb2)

merge〈×〉 : ∀A.Merge〈A〉 → ∀B.Merge〈B〉 → ∀V.BinV →
Bin (Map〈A〉 (Map〈B〉V ))

merge〈×〉 := λmaλmbλc. ma (mb c)

The instance for list tries can be computed as follows:

merge〈List〉
: Merge〈List〉
: ∀ı∀K. Merge〈K〉 → Merge〈ListıK〉
: ∀ı∀K. (∀V.Bin V → Bin (Map〈K〉V )) →

∀W.Bin W → Bin (Map〈ListıK〉W )

merge〈List〉
= merge〈λıλK. µıλX. 1 + K ×X〉
= λmergeK . fixµ

1 λmerge.merge〈+〉merge〈1〉 (merge〈×〉mergeK merge)
= λmergeK . fixµ

1 λmergeλc. comb
λ(mv1, t1)λ(mv2, t2). (comb c mv1 mv2, mergeK (merge c) t1t2)

[= λmergeKλc. fixµ
0 λmerge. comb

λ(mv1, t1)λ(mv2, t2). (comb c mv1 mv2, mergeK merge t1 t2)]

In the last step, we have decreased the rank of recursion byλ-dropping. Surprisingly,
recursion happens not by invokingmerge on structurally smaller arguments, but by
passing the function itselfto a parameter,mergeK . Here, type-based termination reveals
its strength; it is not possible to show termination ofmerge〈List〉 disregarding its type.
With sized types, however, the termination proof is again just a typing derivation, as
easy as forlookup〈List〉. We reason again on the abstract level:

mergeK : Merge〈K〉
merge : Merge〈ListıK〉
merge〈×〉mergeK merge =: r : Merge〈K × ListıK〉
merge〈+〉merge〈1〉 r =: s : Merge〈1 + K × ListıK〉

: Merge〈Listı+1K〉
fixµ

1 λmerge. s : Merge〈ListıK〉

The typeMerge〈ListıK〉 is admissible for recursion on the second argument (the first
argument is of typeBinV ): The whole type is of shape∀V.BinV → µıF → µıF →



µıF for someF which does not depend on the size variableı. Hence, the type has the
required shape.

Merging bushy tries.An even more dazzling recursion pattern is exhibited by the merge
function for “bushy” tries, i. e., finite maps over bushy lists.

Bush : ord
+→ ∗ +→ ∗

Bush := λı. µı
∗+→∗λXλK. 1 + K ×X (X K)

Map〈Bush〉 : ord
+→ (∗ +→ ∗) +→ (∗ +→ ∗)

Map〈Bush〉 = λı. µı
(∗+→∗) +→(∗+→∗) λXλFλV. 1 + (1 + V )× F (X (X F ) V )

The merge function for bush-indexed tries can be derived routinely:

merge〈Bush〉
= merge〈λı. µı λXλK. 1 + K ×X (X K)〉
= fixµ

2 λmergeλmergeK .
merge〈+〉merge〈1〉 (merge〈×〉mergeK (merge (merge mergeK )))

= fixµ
2 λmergeλmergeK
λc. comb λ(mv1, t1)λ(mv2, t2).

(comb c mv1 mv2, mergeK (merge (merge mergeK ) c) t1 t2)

The recursion pattern ofmerge〈Bush〉 is adventurous. Not only is the recursive instance
merge passed to an argument to the functionmergeK , but also this function is modi-
fied during recursion: it is replaced by(merge mergeK ), which involves the recursive
instance again! All these complications are coolly handled by type-based termination!

4 Conclusions and Related Work

We have seen a polymorphicλ-calculus with sized higher-order data types,Fω̂, in which
all programs are terminating. This calculus is strong enough to certify termination of ar-
bitrary instances of generic programs, provided the generic programs themselves do not
use unrestricted recursion. A systematic method to certify termination using the frame-
work of sized polytypic programming has been sketched. The approach of type-based
termination we have seen can handle convoluted recursion patterns that go far beyond
schemes of iteration and primitive recursion stemming from the initial algebra seman-
tics of data types. The recursion patterns of many examples for generic programming
[28, 29] can be treated inFω̂, and I am still looking for sensible examples that exceed
the capabilities ofFω̂. It seems promising to pursue this approach further.

In this article, we have not addressed the problem of type-checking sized types.
However, some solutions exist in the literature: Pareto [44], Barthe, Gregorie, and
Pastawski [9], and Blanqui [15] have given constraint-based inference algorithms for
sized types.

SystemFω̂ is strongly normalizing [3], as is its non-polymorphic predecessorλ̂
[8]. More suitable for functional programming seems an interpretation of types as sets



of closed values or finite observations—this, however, is future work. Hughes, Pareto,
and Sabry [31] have presented a similar calculus, with ML-polymorphism, and given it
a domain-theoretic semantics. In my view, this semantics has the flaw that it introduces
undefinedness(⊥), only to show later that no well-typed program is undefined. I would
like to find a tailored semantics that can handle infinite objects (coinductive types) but
speaks of neither strong normalization nor undefinedness.

Related Work on Termination.The research onsize-change termination(SCT), which
is lead by Neil Jones, has received much attention. Recently, Sereni and Jones have
extended this method to higher-order functions [48]. Is SCT able to check termination
of the generic programs presented in this work? No, because SCT analyses only the
untypedprogram, and without typing information termination of, e. g.,mergeList
cannot be established, as explained in the introduction (mergeList diverges on ill-
typed arguments). Neither can the methods developed for higher-order term rewriting
systems, as for instance bundled in the tool AProve [19], be applied to the generic
program, since they disregard typing. (According experiments were carried out by the
author in Fall 2005.)

Related Work on Generic Programming.We have considered generic programming in
the style ofGeneric Haskellwhich has been formulated by Hinze, Jeuring, and Löh [23,
25, 27–30]. Another philosophy of generic programming is rooted in in the initial alge-
bra semantics for data types (see the introductory text by Backhouse, Jansson, Jeuring,
and Meertens [7]). Jansson and Jeuring [33–35] presentPolyP, a polytypic extension for
Haskell which gives more control in defining polytypic functions, for instance, “recur-
sion” is a type constructor one can treat in a clause of the polytypic program, whereas in
Generic Haskelland our extension to sized types, recursion on types is always mapped
to a recursive program.

Pfeifer and Rueß [45] study polytypic definitions in dependent type theory where
all expressions are required to terminate. Termination is achieved by limiting recursion
to the elimination combinators for inductive types, which correspond to the scheme of
primitive recursion orparamorphism. This excludes many interesting generic programs
we can treat, like merging of tries, that do not fit into this scheme. Benke, Dybjer, and
Jansson [10] extend the approach of Pfeifer and Rueß to generic definition over induc-
tive families. They also restrict recursion to iteration and primitive recursion. Altenkirch
and McBride [5] pursue a similar direction; they show that generic programming is de-
pendently type programming with tailored type universes. They construct a generic fold
for members of the universe of Haskell types, which allows to define genericiterative
functions (catamorphisms).

Norell and Jansson [39] exploit the type class mechanism to enable polytypic pro-
gramming in Haskell without language extensions. They also present an approach to
generic programming using template Haskell [40]. Finally, Norell [38] describes an en-
coding of generic programs in dependent type theory. None of these works considers
the problem of termination of the generated programs.

Generic programming within an intermediated language of a typed compiler has
been studied under the namesintensional polymorphismandintensional type analysis
by Harper and Morrisett [21] and Crary, Weirich, and Morrisett [17]. The gist of this



approach is to have atype caseconstruct on the level of programs, in later develop-
ments even also on the level of types. This way, certain compiler optimizations such
as untagging and unboxing can be performed in a type-safe way. Crary and Weirich
[16] even enrich the kind language by inductive kinds and the constructor language
by primitive recursion. Saha, Trifonov, and Shao [47] consider intensional analysis of
polymorphism. To this end, they introduce polymorphic kinds. For our purposes, this
would be contraproductive since a language with two impredicative universes on top of
each other is non-normalizing (Girard’s paradox).
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