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Abstract. A type theoretic programming language is introduced that is
based on lambda calculus with coproducts, products and inductive types,
and additionally allows the definition of recursive functions in the way
that is common in most functional programming languages. A formal
system is presented that checks whether such a definition is structurally
recursive and a soundness theorem is shown for this system. Thus all
functions passing this check are ensured to terminate on all inputs. For
the moment only non-mutual recursive functions are considered.

1 Introduction

In lambda calculi with inductive types the standard means to construct a func-
tion over an inductive type is the recursor. This method, however, has several
drawbacks, as discussed, e.g., in [Coq92]. One of them is that it is not very in-
tuitive: For instance it is not obvious how to code the following “division by
2”-function with recursors:

half 0 = 0
half 1 = 0
half n+2 = (half n)+1

Therefore an alternative approach has been investigated: recursive definitions
with pattern matching, as they are common in nearly all functional programming
languages. To define total functions, they have to satisfy two conditions:

1. The patterns have to be exhaustive and mutually exclusive. We will not
focus on this point further since the foetus language we introduce in Sect. 2
uses only case expressions and thus this condition is always fulfilled. For a
discussion see [Coq92].

2. The definition must be well-founded, which means that for all arguments the
function value has a well-founded computation tree. This can be ensured if
one can give a termination ordering for that function, i.e., a ordering with
respect to which its arguments in each recursive call are smaller than the
input parameters of that function.



We will restrict ourselves to structural orderings, since they can be checked au-
tomatically and still allow the definition of a large number of total functions di-
rectly. By introducing an extra wellfounded argument (which is decreased struc-
turally in each recursive call), one can code any function that can be proven
total in Martin-Löf’s Type Theory (MLTT [Mar84]) or an equivalent system.

We say an expression s is structurally smaller than an expression t if s appears
in the computation tree of t. Sometimes this is called “component relation”.

In [Abe98] the implementation of the termination checker foetus has been
presented. This checker, which accepts structurally recursive functions of the
kind described above, has been reimplemented as part of Agda by C. Coquand
[Coq00]. In [AA02] a semantics for the foetus language has been defined, and
for all types the wellfoundedness wrt. the structural ordering on values has been
proven. Furthermore a function has been defined to be (semantically) struc-
turally recursive if it terminates on input value w under the condition that it
terminates on all values v that are smaller than w wrt. a structural ordering on
the value domain. Thus we could prove termination for all terms by assuming
that all named functions are structurally recursive.

This article is meant to close a gap that has remained in [AA02]. For it to be
self-contained, we repeat the definitions of the foetus language, operational and
value semantics as far as we refer to them in this presentation. (Old definitions
are laid out in tables.) The new contributions start with a formalization of the
termination checker in the form of a predicate “sr” (syntactically structurally
recursive) on terms. This extends the derivation system for structural ordering
on terms. First we will show that the ordering on terms is reflected by that on
the values, i.e., evaluation preserves the ordering. Second we will prove that all
functions captured by the sr-predicate are indeed total, i.e., that they terminate
on all inputs. Thus we establish the soundness of our system formally.

At the moment we exclude mutually recursive functions, since they require
more sophisticated concepts. For non-mutual recursion—which we will treat
here—the proof is beautiful in its straightforwardness. The specification consists
mostly of strictly positive inductive definitions, and the proof is constructive.
Also, since most details have been completely formalized, we can almost directly
implement it in a system like MLTT. On the final theorem, “all closed terms
evaluate to a good value”, we can apply program extraction. Thus we would
obtain an interpreter for the lambda calculus with inductive types and recursive
functions, for which termination is verified.

1.1 Related Work

Giménez also presents a syntactic criterion for structural recursion which he calls
“guarded-by-destructors” [Gim95]. He gives, however, no proof for the soundness
of his criterion. Furthermore we believe that our approach is more concise and
more flexible in how functions can be defined.

Jouannaud, Okada [JO97] and later also Blanqui [BJO01] deal with inductive
types, too, but in the area of extensible term rewriting systems. Since they also
do not handle mutual recursion, our present approach seems to have the same



expressive power than their Extended General Schema. But both approaches
differ considerably in the notion of a recursive call with a smaller argument.

Telford and Turner [TT99] are investigating Strong Functional Programming,
i.e., functional programming languages where only terminating functions can
be defined. Technically they use abstract interpretations to ensure termination.
Since they count constructors and destructors, they can handle a wider class of
functions. I consider their approach as very promising but it seems that it is not
yet fully formalized and verified. Maybe the ideas of my work presented here
could be transferred to their approach.

Christoph Walther has invented reduction checking, which is sometimes re-
ferred to as “Walther recursion” [MA96]. Here functions are not only examined
whether they are terminating, but also whether they are reducers or preservers,
i.e., whether the output of the function is (strictly) smaller than the input. This
information can be used to check termination of nested recursive functions or
just for functions which decrease their input via a previously defined function in
a recursive call. It seems that my system could be extended to reduction check-
ing in a straightforward way, since I already use assumptions (dependencies) in
my judgements (see Def. 5).

Finally, Pientka and Pfenning [PP00] have implemented termination and re-
duction checking for the Twelf system [PS98] based on LF [HHP93]. Although
coming from the realm of logic programming, their formal system that imple-
ments the check is similar to mine. However, theirs is constructor based and
mine is destructor based. They justify the stringency of their system by a cut
admissibility proof, but have not shown soundness yet.

In comparision with the work discussed above, the main contribution of this
article is giving a clear and straightforward soundness proof for my system, based
on a semantics for the judgements of my formal system.

1.2 Notational conventions

We are using vectors to simplify our notation. If we have a family of (meta)
expressions E1, E2, . . . , En we write E for the whole sequence. Sn denotes the
set of permutations on {1, . . . , n}. Furthermore we use the denotations

X, Y , Z for type variables
ρ, σ, τ for types
g, x, y, z for term variables
r, s, t, a for terms
f , u, v, w for values
c for closures
e for environments
p, q for atoms (containing a relation between terms)

We use rule notation for inductive definitions, but also for propositions (cf.
Lemma 1). On top of the bar we put the premises and on bottom the conclu-
sion(s), in both cases to be read as a conjunction.



2 The foetus Language and its Semantics

In [AA02] we already introduced the term language foetus and its semantics.
Here we will only briefly repeat the definitions and main results (see Tables 2
and 3). The types are constructed by type variables X,Y, Z, . . . and the type con-
structors Σ (finite sum), Π (finite product), → (function space) and µ (strictly
positive inductive type).

Types Ty(X) (over a finite list of type variables X)

τ, σ,σ ::= Xi | Σσ | Πσ | σ → τ | µXn.σ precedence: Π,Σ,→, µ
0 := Σ() empty sum
1 := Π() empty product

Ty := Ty() closed types

Contexts
Γ = x

σ1
1 , . . . , x

σn
n ∈ Cxt xipairwise distinct

Terms Tmσ [Γ ] of closed type σ in context Γ

(var)
Γ ∈ Cxt x /∈ Γ

x ∈ Tmσ [Γ, x
σ

]
(weak)

t ∈ Tmσ [Γ ] x /∈ Γ

t ∈ Tmσ [Γ, x
τ
]

(in)
t ∈ Tmσj [Γ ] σ ∈ Ty

inj(t) ∈ TmΣσ [Γ ]
(case)

t ∈ TmΣσ [Γ ] ti ∈ Tmρ[Γ, x
σi
i ]

case(t, x
σ1
1 .t1, . . . , x

σn
n .tn) ∈ Tmρ[Γ ]

(tup)
ti ∈ Tmσi [Γ ] for 1 ≤ i ≤ n

(t1, . . . , tn) ∈ TmΠσ [Γ ]

(pi)
t ∈ TmΠσ [Γ ]

pij(t) ∈ Tmσj [Γ ]

(lam)
t ∈ Tmτ [Γ, x

σ
]

λx
σ
.t ∈ Tmσ→τ [Γ ]

(rec)
t ∈ Tmτ [Γ, g

Πσ→τ
, x
Πσ

] ` g(x) sr t

fun g
Πσ→τ

(x
Πσ

)= t ∈ TmΠσ→τ [Γ ]

(app)
t ∈ Tmσ→τ [Γ ] s ∈ Tmσ [Γ ]

t s ∈ Tmτ [Γ ]

(fold)
t ∈ Tmσ(µX.σ)

[Γ ]

fold(t) ∈ TmµX.σ [Γ ]

(unfold)
t ∈ TmµX.σ [Γ ]

unfold(t) ∈ Tmσ(µX.σ)
[Γ ]

Syntactic sugar for fun g(yΠσ)=t[x1 := pi1(y), . . . , xn := pin(y)]

t ∈ Tmτ [Γ, g
Πσ→τ

, x
σ1
1 , . . . , x

σn
n ] ` g(y) sr t[x1 := pi1(y), . . . , xn := pin(y)]

fun g(x
σ1
1 , . . . , x

σn
n )= t ∈ TmΠσ→τ [Γ ]

Table 2. The foetus Language



2.1 Recursive Terms

The terms inhabiting closed types are the terms of a lambda calculus with sums
and products plus folding and unfolding for inductive types plus structurally
recursive terms (see Table 2). Here fold and unfold establish the isomorphism
between µX.σ and σ(µX.σ). The rule (rec) introduces a recursive term resp.
named function that solves the equation g = λx.t in place of g.1 We require the
argument of g to be of product type to simplify the handling of lexicographic
termination orderings.2

In the function body t the identifier g may only appear structurally recursive
with respect to parameter x. This property is ensured by the judgement

∆ ` g(x) sr t

Read “under the dependencies ∆ the function g with parameter x is structurally
recursive in t”. For example the following judgement is valid

x′ <Tm x ` g(x) sr g x′

which expresses that a recursive call g x′ in a function g is admissible for the
function g(x) to be structurally recursive, if the argument x′ of the call is strictly
smaller than the parameter x of the function. A function g is structurally re-
cursive, if it is structurally recursive in its whole body t under no assumptions
(dependencies), i.e., if all calls are decreasing.

We will present the proof rules for <Tm and sr in Sect. 3. The intention is
that is defined simultaneously with the terms.

2.2 Operational Semantics

We define a big step operational semantics “↓” as a relation between closures and
values. The intention behind values is that they are the results of the evaluation
process. Closures are (open) terms paired with a mapping of the free variables
to values (environment). Closures of the form f@u (value applied to values) are
convenient to define the operational semantics without casting values back to
terms.

Table 3 presents the operational semantics. (For reasons of readability we
leave out type and context annotations wherever possible.) Our strategy is call-
by-value (see rule (opapp)) and we do not evaluate under λ and recursive terms
(see rules (oplam) and (oprec)). Furthermore ↓ is deterministic, i.e., c ↓ v and
c ↓ v′ imply v = v′. Thus we can invert all rules for ↓. We denote the inversion
of the rule (X) by (X−1).

1 In the literature one often finds the notation µg.λx.t, expressing that the function
is the smallest fixed-point of λx.t[Γ, g]. Our notation is inspired by the functional
programming language SML.

2 Note that 1-element tuples are allowed as arguments, so this is not really a restriction.



Values Valσ , environments Env[Γ ] and closures Clτ

v, w, v ∈ Val ::= inj(v) | (v1, . . . , vn) | fold(v) | 〈λx.t; e〉 | 〈fun g(x)= t; e〉

Env[Γ ] :=
{
x1 =v1, . . . , xn=vn : vi ∈ Valσi

}
Γ = x

σ1
1 , . . . , x

σn
n

Clτ := {〈t; e〉 : ∃Γ ∈ Cxt. t ∈ Tmτ [Γ ] ∧ e ∈ Env[Γ ]}
∪ {f@u : f ∈ Valσ→τ , u ∈ Valσ} (“@” is a new symbol)

Notation

terms: tσ [Γ ] expresses t, where t ∈ Tmσ [Γ ] (σ, Γ optional)
values: vσ expresses v, where v ∈ Valσ

Operational Semantics ↓σ⊆ Clσ × Valσ

(opvar)
〈x; e, x = v〉 ↓ v

(opweak)
〈t[Γ ]; e〉 ↓ v

〈t[Γ, x]; e, x = w〉 ↓ v
(opin)

〈t; e〉 ↓ v

〈inj(t); e〉 ↓ inj(v)

(opcase)
〈tΣσ [Γ ]; e〉 ↓ inj(w

σj ) 〈tτj [Γ, x
σj
j ]; e, xj = w〉 ↓ vτ

〈case(t,x.t); e〉 ↓ v

(optup)
〈ti; e〉 ↓ vi for 1 ≤ i ≤ n

〈(t); e〉 ↓ (v)
(oppi)

〈t; e〉 ↓ (v)

〈pij(t); e〉 ↓ vj

(oplam)
〈λx.t; e〉 ↓ 〈λx.t; e〉

(oprec)
〈fun g(x)= t; e〉 ↓ 〈fun g(x)=t; e〉

(opapp)
〈t; e〉 ↓ f 〈s; e〉 ↓ u f@u ↓ v

〈t s; e〉 ↓ v

(opappvl)
〈t; e, x = u〉 ↓ v

〈λx.t; e〉@u ↓ v
(opappvr)

〈t; e, g = 〈fun g(x)= t; e〉, x = u〉 ↓ v

〈fun g(x)=t; e〉@u ↓ v

(opfold)
〈t; e〉 ↓ v

〈fold(t); e〉 ↓ fold(v)
(opunfold)

〈t; e〉 ↓ fold(v)

〈unfold(t); e〉 ↓ v

Table 3. Values and Operational Semantics

2.3 Semantics and Structural Ordering on Values

We give a semantics of the types in foetus that captures the “good” values, i.e.
these values that ensure termination. In this sense f will be a good function
value if it evaluates to a good result if applied to a good argument.

Definition 1 (Semantics on values). For every closed type σ ∈ Ty the se-
mantics VALσ ⊆ Valσ contains the good values of type σ. Especially for arrow
types:

f ∈ VALσ→τ ⇐⇒ ∀u ∈ VALσ. ∃v ∈ VALτ . f@u ↓ v

More details do not matter at this point. We refer the interested reader to
[Abe99], where the construction of this semantics has been carried out, and to



[AA02] for an even predicative construction. Note that in both papers VALσ is
denoted with [[σ]].

Definition 2 (Good environment). Let Γ = xσ1
1 , . . . , xσnn . Then

ENV[Γ ] := {x1 = vn, . . . , xn = vn : vi ∈ VALσi for 1 ≤ i ≤ n}

Definition 3 (Strong evaluation). We say a closure c ∈ Clσ evaluates strongly
to a value v ∈ Valσ, if v is a good value.

c ⇓ v :⇐⇒ c ↓ v & v ∈ VALσ

For closures of the form c ≡ 〈t; e〉 we additionally require that every subterm s
of t evaluates strongly 〈s; e′〉 ⇓ in environment e′ where e′ is e, a shortening of
e or the extension of e by a good value w. We refer to this requirement as the
subterm property.

Structural ordering Rσ,τ ⊆ VALσ × VALτ (R ∈ {<,≤})

(≤refl)
v ≤σ,σ v

(Rin)

w Rρ,σj v

w Rρ,Σσ inj(v)
(Rtup)

∃j. w Rρ,σj vj

w Rρ,Πσ (v)

(Rarr)

f@u ⇓ v w Rρ,τ v

w Rρ,σ→τ f
(Rfold)

w ≤σ,τ(µX.τ) v

w Rσ,µX.τ fold(v)

Admissible rules (besides transitivity)

(≤<)

w <ρ,τ v

w ≤ρ,τ v
(Rin’)

inj(v) R w

v R w

(Rtup’)
(v) R w

vj R w

(Rarr’)
f R w f@u ⇓ v

v R w

(Rfold’)
fold(v) ≤ w

v R w

Lexicographic ordering ≺kπ,σ ⊆ VALΠσ × VALΠσ for closed types σ, a
permutation π ∈ Sn and k ∈ IN

(lex<)

vπ(k) < wπ(k)

(v) ≺kπ,σ (w)
(lex≤)

vπ(k) ≤ wπ(k) (v) ≺k+1
π,σ (w)

(v) ≺kπ,σ (w)

Table 4. Ordering on Values

Table 4 shows the definition of the lexicographic extension ≺π of the struc-
tural ordering on values, which we obtain from ≺kπ for k = 1. In [AA02] we
proved that it is wellfounded. We will exploit this fact later in the proof of “f
terminates at input v”, doing noetherian induction. Thus we have the hypothesis
for all smaller v′ ≺ v at hand for the proof of termination at v.



3 A Formal System for Structural Recursion

In this section we will introduce the foetus termination calculus, but first mo-
tivate it by an example. Consider the following foetus implementation of the
addition of ordinal numbers. We define two type abbreviations

Nat ≡ µX.1 +X

Ord ≡ µX.1 +X + (Nat→ X)

The constructors of Ord and the addition function are

O ≡ fold(in1())
S(v) ≡ fold(in2(v))

Lim(f) ≡ fold(in3(f))

add ≡ λxOrd. fun addΠ(Ord)→Ord(yOrd)=
case(unfold(y),

1. x,
nOrd. S(add(n)),
fNat→Ord. Lim(λzNat. add(f z)))

(The superindex 1 in the first branch of the case expression is just a type anno-
tation, stating that the variable can only contain the empty tuple.)

In our term language we can only define add, if add is structurally recursive
in its function body. For this we require that in all recursive calls the argument
is structurally smaller than the input parameter of the function. In our case this
gives us the proof obligations

1. n < y
2. f z < y

Our approach works as follows: We descend into the function body until we reach
the recursive calls, and on our way we collect dependency information between
variables. These dependencies are generated whenever we pass a case-expression.
Thus for call 1 we get the dependency n ≤ unfold(y). From this we infer n < y
since we require a folding step to increase the structural ordering strictly.

For call 2 we infer f z < y from f ≤ unfold(y). We justify this by f z ≤ f .
The latter is valid since we regard functions as (possibly infinitely branching)
trees and application as selection of one branch.

The formalization of the above informally described method consists of three
relations on terms:

1. the structural ordering <Tm,
2. its lexicographic extension ≺Tm (needed e.g. for the Ackermann function)

and
3. the predicate of structural recursiveness “sr”.



3.1 Structural Ordering on Terms

In the following we will make precise the definition of the structural ordering on
terms and give rules that allow us to derive a relation between two terms under
a given set of dependencies.

Right hand side rules (R ∈ {<Tm,≤Tm}):

(RcaseR)
∆, xi ≤Tm

s ` si R t for i=1, ..., n

∆ ` case(s,x.s) R t

(RpiR)

∆ ` s R t

∆ ` pij(s) R t

(RappR)
∆ ` s R t

∆ ` s a R t

(RunfR)
∆ ` s ≤Tm

t

∆ ` unfold(s) R t

Left hand side rules (R ∈ {<Tm,≤Tm}):

(RcaseL)
∆, xi ≤Tm

t, y R ti, ∆
′ ` p for i=1, ..., n

∆, y R case(t,x.t), ∆
′ ` p

(RpiL)
∆, y R t,∆

′ ` p

∆, y R pij(t), ∆
′ ` p

(RappL)
∆, y R s,∆

′ ` p

∆, y R s a,∆
′ ` p

(RunfL)
∆, y <

Tm
t,∆
′ ` p

∆, y R unfold(t), ∆
′ ` p

Reflexivity and transitivity:

(≤Tmrefl)
∆ ` t ≤Tm

t

(<TmtransL)
∆ ` s R t y <

Tm
s ∈ ∆ R ∈ {<Tm

,≤Tm}

∆ ` y <Tm
t

(<TmtransR)
∆ ` s <Tm

t y R s ∈ ∆ R ∈ {<Tm
,≤Tm}

∆ ` y <Tm
t

(≤Tmtrans)
∆ ` s R t y S s ∈ ∆ R, S ∈ {<Tm

,≤Tm}

∆ ` y ≤Tm
t

Table 5. Structural ordering on Terms

Declaration 1 (Structural ordering). The structural ordering on terms <Tm

and its non-strict version ≤Tm are defined as families of relations indexed over
a pair of types: For all σ, τ ∈ Ty we define

<Tm
σ,τ ⊆ Tmσ × Tmτ

≤Tm
σ,τ ⊆ Tmσ × Tmτ

For purposes of readability we will generally omit the indices.



Definition 4 (Dependencies). A set of dependencies ∆ consists of relations

y R t where y ∈ TmVarσ, t ∈ Tmτ , R ∈ {<Tm
σ,τ ,≤Tm

σ,τ}

Definition 5 (Derivation of structural ordering). By the rules in Table 5
we introduce the judgement

∆ ` s R t R ∈ {<Tm,≤Tm}

Read “under the dependencies ∆ we know that s is less (or equal) than t”.

The right hand rules work on the judgements we want to derive, whereas the
left hand side rules work on the dependencies, which—in backward reading—
are only introduced by the treatment of case statements (rules (RcaseR) and
(srcase)—see next section). Therefore the dependencies can be restricted to the
form y RTm t, where y is the fresh variable introduced for one clause in the case
statement. Typically t, the term that is analyzed by the case expression, will be
of the form unfold(t′), hence of the left-rules (<TmunfL) will be the one mostly
used in practice. To see the system “in action”, we give derivations of the proof
obligations for add (omitting the superindex Tm):

≤Tmrefl
n < y ` y ≤ y

<TmtransL
n < y ` n < y

≤TmunfL
n ≤ unfold(y) ` n < y

≤Tmrefl
f < y ` y ≤ y

<TmtransL
f < y ` f < y

≤TmunfL
f ≤ unfold(y) ` f < y

<TmappR
f ≤ unfold(y) ` f z < y

The rule (<TmcaseL) is needed for nested case statements, as for instance in
the following curious implementation of the “half”-function:

fun halfNat→Nat(nNat)= case(unfold(case(unfold(n),
1. n,
nNat

1 . n1)),
1.O,
nNat

2 .S(half(n2)))

The obligation n2 <
Tm n is proven as follows:

. . .

≤ unfold(n), n2 < n ` n2 < n

. . .

n1 ≤ unfold(n), n2 < n1 ` n2 < n
<TmcaseL

n2 < case(unfold(n), .n, n1.n1) ` n2 < n
≤TmunfL

n2 ≤ unfold(case(unfold(n), .n, n1.n1)) ` n2 < n

3.2 Lexicographic Extension

To handle functions like the Ackermann function, we need extend our calculus
to lexicographic orderings. This requires just two additional rules.



Declaration 2 (Lexicographic ordering). Given closed types σ = σ1, . . . , σn
and a permutation π ∈ Sn we define the relation

(s1, ..., sn) ≺Tm
π,σ t where s1 ∈ Tmσ1, . . . , sn ∈ Tmσn, t ∈ TmΠσ

To enhance readability we will usually omit the second index σ.

By this definition we mean that term (s) is lexicographically smaller than
term t w.r.t. a permutation π of the components. Note that the left hand side
must be a tuple syntactically, whereas the right hand side may be any term of
product type.

Definition 6 (Derivation of lexicographic ordering). By the following rules
we introduce an auxiliary judgement

∆ `k (s) ≺Tm
π t 1 ≤ k ≤ n = |s|

In case of k = 1 we just write

∆ ` (s) ≺Tm
π t

Read “under the dependencies ∆ we know that (s) is lexicographically smaller
than t w.r.t. the permutation π”.

(lex<Tm)
∆ ` sπ(k) <

Tm piπ(k)(t)

∆ `k (s) ≺Tm
π t

(lex≤Tm)
∆ ` sπ(k) ≤Tm piπ(k)(t) ∆ `k+1 (s) ≺Tm

π t

∆ `k (s) ≺Tm
π t

This encodes the standard lexicographic ordering. We start in comparing the first
component (k = 1) of tuple (s) with tuple t. If it is only non-strictly smaller, we
have to consider the next component (k ; k+ 1). The terms “first” and “next”
have to be seen relatively to the permuation π.

3.3 Structural Recursiveness

As a frame for the derivation system for size relations on terms, we now define
the judgement “sr” that we introduced in Sect. 2. Roughly described, a function
g will be structurally recursive in a term t, if it is so in all subterms of t and
is called recursively only with smaller arguments (see rule (srapprec)). This is
were a reference to the judgement “≺Tm” is made.

Definition 7 (Derivation of structural recursiveness). We introduce the
judgement

∆ ` g(x) srπ t where g ∈ TmVarσ→τ, x ∈ TmVarσ, t ∈ Tmτ,



read “under the dependencies ∆ the function g with parameter x is structurally
recursive in t w.r.t. the permutation π”, by the following rules.

(srvar)
y 6= g

∆ ` g(x) srπ y
(srweak)

∆ ` g(x) srπ t[Γ ]

∆ ` g(x) srπ t[Γ, x]
(srin)

∆ ` g(x) srπ t

∆ ` g(x) srπ inj(t)

(srcase)
∆ ` g(x) srπ s ∆, xi ≤Tm s ` g(x) srπ ti for i=1, ..., |t|

∆ ` g(x) srπ case(s,x.t)

(srtup)
∆ ` g(x) srπ ti for i=1, ..., |t|

∆ ` g(x) srπ (t)
(srpi)

∆ ` g(x) srπ t

∆ ` g(x) srπ pij(t)

(srlam)
∆ ` g(x) srπ t y 6∈ {g, x}

∆ ` g(x) srπ λy. t
(srapp)

∆ ` g(x) srπ t ∆ ` g(x) srπ s

∆ ` g(x) srπ t s

(srapprec)
∆ ` g(x) srπ (a) ∆ ` (a) ≺Tm

π x

∆ ` g(x) srπ g(a)

(srfold)
∆ ` g(x) srπ t

∆ ` g(x) srπ fold(t)
(srunfold)

∆ ` g(x) srπ t

∆ ` g(x) srπ unfold(t)

Note that g, x and π remain fixed in all rules. Furthermore, since there is no rule
for recursive terms and since “sr” is used in the term definition, in our system a
nested definition of functions, and thus mutual recursion, is not possible.

Definition 8 (Syntactically structurally recursive). We define a recursive
term fun g(x)= t to be syntactically structurally recursive,

∆ ` g(x) sr t

if there is a permutation π s.th. ∆ ` g(x) srπ t.

As an example we show that add is a definable term in the foetus system.
Expanding the syntactic sugar and the abbreviations and omitting some type
annotations the term becomes

λx. fun add(ȳΠ(Ord))=case(unfold(pi1(ȳ)),
. x,
n. fold(in2(add(n))),
f. fold(in3(λz. add(f z))))

To prove add ∈ TmOrd→Π(Ord)→Ord we have to show that

` add(ȳ) srπ case(. . . )

where π is the identical permutation on S1. We infer our goal by (srcase), ob-
taining four subgoals:



– Head term:
ȳ 6= add

srvar
` add(ȳ) srπ ȳ

srpi
` add(ȳ) srπ pi1(ȳ)

srunfold
` add(ȳ) srπ unfold(pi1(ȳ))

– Side term 1:
x 6= add

srvar
≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ x

– Side terms 2 and 3: We prove them by reusing the derivations for structural
ordering in Sect. 3.1, substituting pi1(ȳ) for y in all occurrences.

n ≤Tm unfold(pi1(ȳ)) ` n <Tm pi1(ȳ)
lex<Tm

n ≤Tm unfold(pi1(ȳ)) ` (n) ≺Tm
π ȳ

srapprec
n ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ add(n)

srin
n ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ in2(add(n))

srfold
n ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ fold(in2(add(n)))

f ≤Tm unfold(pi1(ȳ)) ` f z <Tm pi1(ȳ)
lex<Tm

f ≤Tm unfold(pi1(ȳ)) ` (f z) ≺Tm
π ȳ

srapprec
z 6∈ {add, ȳ} f ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ add(f z)

srlam
f ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ λz. add(f z)

srin
f ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ in3(λz. add(f z))

srfold
f ≤Tm unfold(pi1(ȳ)) ` add(ȳ) srπ fold(in3(λz. add(f z)))

4 Soundness of the Structural Ordering

In this section we show that the ordering on values corresponds to the structural
ordering on terms. We accomplish this by proving that evaluation preserves the
structural ordering. To this end, we give an interpretation of the judgement
∆ ` s RTm t:

Definition 9 (Weak and strong interpretation of the structural order-
ing). We define the propositions “environment e satisfies (weakly) the relation
s RTm t for the terms s and t” and “e satisfies the dependencies ∆”:

e �wk s RTm t :⇐⇒ ∀v, w. 〈s; e〉 ⇓ v → 〈t; e〉 ⇓ w → v R w
e � s RTm t :⇐⇒ ∃v, w. 〈s; e〉 ⇓ v & 〈t; e〉 ⇓ w & v R w
e � ∆ :⇐⇒ ∀p ∈ ∆. e � p



Strong satisfaction of an atom p of the form s RTm t carries evidence that s
and t are strongly evaluating, whereas weak satisfaction needs proof of this.
We will interpret atoms in the dependencies (left hand side) strongly and the
concluded atom (right hand side) weakly. The reason for this assymetry lies in
the architecture the sr-judgement. Interpreting terms t for which the judgment
∆ ` g(x) sr t holds as strongly terminating—which we will do in Sect. 5—we
can read off the definition of sr that only strongly evaluating terms enter the
dependencies.

Lemma 1 (Weakening). Extending the environment does not destroy satis-
faction of dependencies.

e �wk p

e, x = v � p

e � ∆

e, x = v � ∆

Proof. Since by the definition of contexts and environments x must be a new
variable, it does not appear in e and thus not in any of the terms in p or ∆.

Theorem 1. The structural ordering on terms and its lexicographic extension
are preserved by the operational semantics.

∆ ` p

∀e � ∆. e �wk p

Proof. By induction on ∆ ` p.
Right hand side rules (R ∈ {<Tm,≤Tm}):

(RcaseR) We have to show

∀i, e′�(∆,xi ≤Tm s). e′ �wk siR
Tm t e �∆ 〈case(s,x.s); e〉 ⇓ v 〈t; e〉 ⇓ w

v R w

The assumption 〈case(s,x.s); e〉 ⇓ entails by (opcase−1) 〈s; e〉 ↓
inj(v′), and since s is a subterm of case(s,x.s), by definition 3 also
inj(v′) ∈ VAL. By an instance of the induction hypothesis using j
and e′ ≡ (e, xj = v′) (which is of course a good environment) we
obtain e′ �wk sj R

Tm t (*) leaving us four subgoals.
1. e′ � ∆: by weakening (lemma 1)
2. 〈xj ; e′〉 ⇓ v′: by (opvar)
3. 〈s; e′〉 ⇓ inj(v′): by (opweak)
4. v′ ≤ inj(v′): by (≤in)
Since by (opcase−1) also 〈sj ; e′〉 ⇓ v and by (opweak) 〈t; e′〉 ⇓ w we
can infer our goal v R w from (*).

(RpiR) Our goal is

〈s; e〉 ⇓ (v)→ 〈t; e〉 ⇓ w → (v) R w 〈pij(s); e〉 ⇓ vj 〈t; e〉 ⇓ w

vj R w



Since (oppi−1) entails 〈s; e〉 ⇓ (v) because s is a subterm of pij(s),
we can use the ind.hyp. and achieve our goal using (Rtup’).

(RappR) Here we show

〈s; e〉 ⇓ f → 〈t; e〉 ⇓ w → f R w 〈sa; e〉 ⇓ v 〈t; e〉 ⇓ w

v R w

By (opapp−1) and the subterm property 〈s; e〉 ⇓ f , 〈a; e〉 ⇓ u and
f@u ⇓ v. Hence we complete using the ind.hyp. and the rule (Rarr’).

(RunfR) analogously using (opunfold−1) and (Rfold’)

Left hand side rules (R ∈ {<Tm,≤Tm}): All the goals we have to show are of
the form

∀e′ � (∆, q′,∆′). e′ �wk p

∀e � (∆, q,∆′). e �wk p

Hence by weakening it suffices to show e′ � q′ from e � q for each case, where e′

is e or an extension of e.

(RcaseL) Assume e � y R case(t,x.t), which expands to the three propositions
〈y; e〉 ⇓ v (1), 〈case(t,x.t); e〉 ⇓ w (2) and v R w (3). The rule
(opcase−1) plus subterm property entails 〈t; e〉 ⇓ inj(v′) (2a) and
〈tj ; e, xj = v′〉 ⇓ w (2b). Our two goals are:
1. e, xj = v′ � xj ≤Tm t: We prove this by 〈xj ; e, xj = v′〉 ⇓ v′

(opvar), by (2a) and by v′ ≤ inj(v′) (≤in).
2. e, xj = v′ � y R tj : By (1), (2b) and (3) using weakening.

(RpiL) We expand our goal to

〈y; e〉 ⇓ v 〈pij(t); e〉 ⇓ wj v R wj

〈y; e〉 ⇓ v 〈t; e〉 ⇓ (w) v R (w)

It follows from (oppi−1), subterm property and (Rtup).
(RappL) The expanded goal is

〈y; e〉 ⇓ v 〈s a; e〉 ⇓ w v R w

〈y; e〉 ⇓ v 〈s; e〉 ⇓ f v R f

By (opapp−1) and subterm property 〈s; e〉 ⇓ f , 〈a; e〉 ⇓ u and f@u ⇓
w. Thus v R f follows by (Rarr).

(RunfL) analogously using (opunfold−1) and (Rfold)

Reflexivity and transitivity:

(≤Tmrefl) e �wk t ≤Tm t follows from (≤refl).
(<TmtransL) We have to show (R ∈ {<,≤})

e �wk s RTm t e � y <Tm s 〈y; e〉 ⇓ u 〈t; e〉 ⇓ w

u < w

From e � y <Tm s we obtain 〈s; e〉 ⇓ v and u < v and thus by
the first premise v R w. Transitivity of the structural ordering
on values implies u < w.



(<TmtransR) analogously
(≤Tmtrans) analogously

Lexicographic extension:

(lex<Tm) We have the simplified goal

e �wk sπ(k) <
Tm piπ(k)(t) 〈(s); e〉 ⇓ (v) 〈t; e〉 ⇓ (w)

(v) ≺kπ (w)

By (optup−1) 〈sπ(k); e〉 ⇓ vπ(k) and by (oppi) 〈piπ(k)(t); e〉 ⇓ wπ(k)

hence vπ(k) < wπ(k), and the goal (v) ≺kπ (w) follows form (lex<).
(lex≤Tm) Our simplified goal is

e �wk sπ(k) ≤Tm piπ(k)(t) (v) ≺k+1
π (w) 〈(s); e〉 ⇓ (v) 〈t; e〉 ⇓ (w)

(v) ≺kπ (w)

It follows analogously to (lex<Tm) using (lex≤). ut

5 Soundness of Structural Recursion

We transfer the syntactic property of being structurally recursive to our seman-
tics. Then we show that every structurally recursive term is good.

Definition 10 (Semantically structurally recursive). We say a function
value f ∈ Valσ→τ is semantically structurally recursive f ∈ SRσ→τ if it termi-
nates on all inputs v under the condition that it terminates on all lexicographi-
cally smaller inputs w ≺ v:

f ∈ SRσ→τ :⇐⇒ ∃π∀v ∈ VALσ. (∀w ∈ VALσ. w ≺π v → f@w ⇓)→ f@v ⇓

Proposition 1. SRσ→τ = VALσ→τ

Proof. The domain VALσ of all function values of type σ → τ is wellfounded
w.r.t. the lexicographic ordering, what we have shown in detail in [Abe99] and
[AA02]. Thus the wellfounded induction principle establishes the equality be-
tween semantically structurally recursive and good functions. ut

Theorem 2. Every recursive term of type σ → τ and context Γ is good in a
good initial environment e0 ∈ VAL(Γ ).

〈fun g(x)= t0; e0〉 ∈ VALσ→τ

Proof. By definition there exists a permutation π s.th. ` g(x) srπ t0. Using the
abbreviation

f0 ≡ 〈fun g(x)= t0; e0〉



and proposition 1 our goal becomes (∀w ∈ VALσ. w ≺ v0 → f0@w ⇓)→ f0@v0 ⇓.
If we can prove the following lemma under the global assumption

∀w ≺ v0. f0@w ⇓ (1)

we can finish using this lemma with empty ∆, t ≡ t0 and e ≡ (e0, g=f0, x=v0).

Lemma 2.
∆ ` g(x) srπ t e � ∆ 〈g; e〉 ↓ f0 〈x; e〉 ⇓ v0

〈t; e〉 ⇓

Proof. By induction on ∆ ` g(x) srπ t.

(srvar) 〈y; e〉 ⇓ since e is good except for g, but y 6= g by assumption.
(srcase) We have to show

∆ ` g(x) srπ s ∀i. ∆, xi ≤Tm s ` g(x) srπ ti e � ∆ 〈g; e〉 ↓ f0 〈x; e〉 ⇓ v0

〈case(s,x.t); e〉 ⇓

The first ind.hyp. entails 〈s; e〉 ⇓ inj(v′). By (opcase) our goal follows
from the second ind.hyp. using environment e′ ≡ e, xj=v′, if we show
the three premises of the ind.hyp.:

1. e′ � ∆,xj ≤Tm s: This follows from weakening and the three
facts 〈xj ; e′〉 ⇓ v′, 〈s; e′〉 ⇓ inj(v′) and v′ ≤ inj(v′).

2. 〈g; e′〉 ↓ f0: by (opweak)

3. 〈x; e′〉 ⇓ v0: by (opweak)

(srlam) We have to show

∆ ` g(x) srπ t e � ∆ 〈g; e〉 ↓ f0 〈x; e〉 ⇓ v0

〈λy.t; e〉 ⇓

Immediately by (oplam) we get 〈λy.t; e〉 ↓, thus it remains to show
〈λy. t; e〉 ∈ VAL. For this we assume u ∈ VAL and show 〈λy.t; e〉@u ⇓.
The latter follows from (opappvl) and the ind.hyp. 〈t; e′〉 ⇓ for e′ ≡
(e, y=u), since e′ � ∆ by weakening and 〈g; e′〉 ↓ f0 and 〈x; e′〉 ⇓ v0

by (opweak).



(srapprec) Using the ind.hyp. our goal becomes

〈(a); e〉 ⇓ w ∆ ` (a) ≺Tm
π x e � ∆ 〈g; e〉 ↓ f0 〈x; e〉 ⇓ v0 w ≺π v0

〈g(a); e〉 ⇓

By (opapp) and (opappvr) this is true, if f0@w ⇓. That, however,
was our global assumption (1) for w ≺π v0, which we obtain if we
apply theorem 1 on the premise ∆ ` (a) ≺Tm

π x.

All other cases follow directly by ind.hyp. using the operational semantics. ut

Corollary 1. All terms t terminate in a good environment e.

∀tσ[Γ ], e ∈ ENV[Γ ]. ∃v ∈ VALσ. 〈t; e〉 ⇓ v

Proof. By straightforward induction on t, using the operational semantics. For
the critical case t ≡ fun g(x)=s use theorem 2. The proof has been carried out
in [Abe99] and [AA02].

Corollary 2. All closed terms terminate.

From this corollary we can extract an interpreter for the foetus language that
always terminates. This is no surprise since the interpreter just applies the op-
erational semantics on the input term. Additionally, it computes a witness for
the goodness of the result value (v ∈ VAL), which could be eliminated, using a
refined program extraction (cf. [BS93]).

6 Conclusions and Further Work

We have formally defined a syntactical check “sr” for structurally recursive func-
tions that serves as a frame for the derivation system for size relations between
terms given in [AA02]. We have shown that these two parts of the termination
checker are sound w.r.t. our operational semantics.

I expect that my approach can be extended to mutual recursion (see below)
and dependent types, since they only put more restrictions on the acceptable
terms. By this I mean that every term typable in a lambda calculus with induc-
tive and dependent types (λΠ) should be typable in foetus. Hence we could just
strip the dependency and run the foetus termination checker. My standpoint is
confirmed by the fact that implementations of a termination checker for λΠ do
not make use of the typing information (cf. [PP00]).

So far the termination checking of foetus is very limited, e.g., “quicksort”
cannot be proven total with our method. To capture the Walther recursive func-
tions [MA96] like quicksort one has to define two more judgements stating that
a function is reducing resp. preserving. E.g., for quicksort the filtering step has
to be preserving. Implementation of this so-called reduction checking should be
straightforward for the simple structural ordering on terms. However, lexico-
graphic orderings will require a number of modifications since they are not “first



class citizens” in my system so far. They may appear only on right hand sides,
not within the dependencies.

In [Abe98] and [AA02] Altenkirch and myself have informally described a
termination checker also for mutual recursive functions. The main extension is
the construction of a call graph for the mutual recursive functions, which has to
satisfy a “goodness” condition. This enables the construction of a wellfounded
ordering on the function symbols which, in addition to the lexicographic ordering
on the arguments, serves as a component of the termination ordering required
to run through the soundness proof. Work on the details is in progress.

In contrast to the full approach with call graphs a light weight version of
mutual recursion with descent in every call would be a straightforward extension
of the proof in the present article.
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