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Domain Specific Continuous Queries Implemented using Database Management Sys-
tems

ANTON LINDGREN

Department of Computer Science and Engineering

Chalmers University of Technology

Abstract

We present an alternative to Continuous Queries, these are queries that deliver
streams of data to clients as opposed to common queries which only respond with
a single response. We define Domain Specific Continuous Queries as a query that,
apart from an initial response with the matching set of records, streams all updates
affecting the query. We implement this definition of a Continuous Query for a specific
domain where an existing solution and problem definition already exists. The new
implementation uses classic query-response database systems to supply the initial
response. A persistent data structure containing the full state of the data is kept in
memory, which allows our prototype to deduce which queries an incoming update
affects. The new implementation is on par with the existing solution’s feature set
and greatly outperforms it for our metrics. Especially for initial response latency.

Keywords: databases, stream processing, event sourcing, persistent data structures






Acknowledgements

First and foremost I would like to give a huge thank you to Yolean for providing
me with an interesting and practical problem definition. Especially I would like to
thank my industrial supervisor Staffan Olsson for all the help I've gotten both prior
to and during this project. I would also want to thank my academic supervisor
Andreas Abel for taking his time to help me find an academic approach to Yolean’s
problem and for showing great interest in the experiments performed. The same
thanks goes out to my examiner Graham Kemp for taking his time to help and
guide me all throughout the project.

Anton Lindgren, Gothenburg, September 2016

vii






Contents

List of Figures

1 Introduction
1.1 Yolean Visual Planning Domain . . . . . . . . . ... ... ... ...
1.2 Yolean Visual Planning Use Cases . . . . . . . . ... ... ... ...
1.3 Yolean’s current Live Server . . . . . . . . . .. ... ... .. ...
1.4 Problems with the current solution . . . . . . . . . ... . ... ...
1.5 Solution Overview . . . . . . . . . . . . . .
1.6 Thesis Overview . . . . . . . . . . . . .

2 Background
2.1 Stream Processing and Event Logs . . . . . .. ... ... ... ...
2.2 Persistent Data Structures . . . . . . ... ... oL
2.3 B-Trees . . . . . .

2.4 Inverted Indexes . . . . . . . . .

3 Method

3.1 Live Server Implementation Overview . . . . . . . .. ... ... ...
3.1.1 Live Protocol . . . .. .. ... ... ... .. ... ... .
3.1.1.1  Successful Communication . . . . . .. .. ... ...

3.1.1.2 Invalid Updates . . . . . ... .. ... ... .....

3.1.1.3 Invalid Queries . . . . .. .. .. ... ... ... ..

3.1.2  Protocol Implementation . . . . . . . ... ...
3.1.2.1 State Predicate Index Configuration . . . ... ...

3.1.2.2 Initialization Overview . . . . . . . . . .. ... ...

3.1.2.3 Query Overview . . . . .. .. ... .. ... ...,

3.1.2.4 Update Overview . . . . . . ... ... ... .....

3.1.3 Index Clients . . . . .. ... .. ... ... ... .......
3.1.3.1 Predicate Function . . . . . ... ... ... ... ..

3.1.3.2 Relational Database — PostgreSQL . . . . . . . . ..

3.1.3.3 Inverse Index — Elasticsearch . . . . . ... ... ..

3.1.4 State Manager . . . .. .. ... ...

4 Results
4.1 Environment Specification . . . . .. .. ...
4.2 Dataset Generation . . . . . . . . ...
4.3 Experiments . . . . . . ...

xi

10
10
11

13
13
13
13
14
15
16
16
17
19
20
22
22
23
23
24

25
26
26
27

ix



Contents

4.3.1 Experiment 1 — Service Initialization . . . . . .. ... .. ..
4.3.2 Experiment 2 — Query Benchmark . . . . . .. ... ... ...
4.3.3 Experiment 3 — Update Benchmark . . . . .. ... ... ...

5 Discussion

5.1 Reducing Initialization Time via Data Snapshots . . . . . .. . . ..
5.2 Removing the In-Memory Dependency . . . . .. ... .. ... ...

5.3 Internalizing all Indexes
6 Conclusion

Bibliography

35
35
36
36

37

39



1.1

1.2

3.1

3.2

3.3

3.4

3.5
3.6

3.7
3.8

4.1

4.2

List of Figures

Screenshot of Yolean’s Visual Planning application. It visualizes plan-
ning data with users on the Y-axis and time (here days, but there are
different resolutions to choose from) on the X-axis. The colored blocks
in the figure are what the VP application refers to as tasks which con-
tain information on some job that a group of people has agreed upon.

....................................... 2
Entity-Relationship Diagram for Yolean’s Visual Planning Domain. . 3
A successful run where a client connects to the server, sends an up-
date, receives an update and updates the query itself with new pa-
rameters. Finally the connection is closed by the client. . . . . . .. 14

The client sends an update which gets rejected by the server as it has
become out-dated. The client is now expected to restart the protocol. 15
A client sends an invalid continuous query (or the index client inside
the Live Server is currently unavailable). . . . .. ... ... ... .. 15
The Live Server configured with only the naive filter predicate index
client. The figure encapsulates the steps needed for the server to
respond with an initial set of records to an incoming query. . . . . . 17
The Live Server initialization phase. . . . . . . ... ... ... ... 18
Example Continuous Query in the Yolean Visual Planning domain.
The query would, using the PostgreSQL Index Client, return all tasks
for Project A scheduled between the dates 2016-01-01 and 2016-02-
01. The Live Server is able to deduce information like return only

task-type records from the name of the query. . . . . .. . ... ... 19
The data flow when querying the Live Server. . . . . . . .. ... .. 20
The data flow when sending an update to the Live Server. . . . . . . 21

Records-per-Project Distribution. The distribution of number of records
per project with the source dataset represented by the brown line,

and all generated datasets {10000, 15000, 20000, ..., 100000} in light

grey lines. As we can see the distribution is very similar between all
datasets. Most projects contain only a few records: roughly, 80% of

the project together own only 20% of the project-associated records. 27

The setup of an experiment, where the client outputs its results into
Elasticsearch so that it can be queried and visualized in a later stage. 28

X1



List of Figures

xii

4.3

4.4

4.5

4.6

4.7

Service Initialization Time. Each line describes a configuration of
enabled Index Clients for the service. state-predicate performs no
indexing, elasticsearch indexes the dataset to Elasticsearch, postgres
indexes the dataset to PostgreSQL and all indexes the dataset to
both Elasticsearch and PostgreSQL. . . . . .. ... ... ... ...
Query Response Time over a growing dataset. Each line describes
which Index Client was queried. The other Index Clients were dis-
abled (received no updates or queries). . . . . ... ... ... ...
Query Throughput over a growing dataset. Each line describes which
Index Client was queried. The other Index Clients were disabled
(received no updates or queries). . . . . ... ...
Update Delay over a growing dataset. Dotted lines represent configu-
rations where updates are not written to any Index Client’s backend,
while filled lines represent configurations where they are. . . . . . . .
Update Throughput. Dotted lines represent configurations where up-
dates are not written to any Index Client’s backend, while filled lines
represent configurations where they are. . . . . . .. ... ... ...



1

Introduction

Web Applications that require user collaboration with short feedback-loops between
users are becoming more and more common. Google Docs has for long set a high
standard on user collaboration in modern text editors, and Trello is one of the lead-
ing applications when it comes to project planning on the web. Consequently, a
lot of Open Source solutions have sprung up that let developers implement such
collaborative web applications more easily. For example there is TogetherJS* for
distributing user information such as the location of the mouse-pointer, Substan-
celO? for text collaboration and SocketIO? which provides a reliable real-time API
on top of HTTP and Web Sockets. This enables companies to quickly implement
such real-time collaboration services with minimal resources.

The company Yolean AB develops applications that digitize management methods.
Their products stem from years of research within fields of Product and Production
Development. Yolean’s most mature product is the Visual Planning (VP) applica-
tion, see Figure 1.1. The VP application has a few common use-cases with Trello as
they are both planning applications. Within both applications, users can create and
discuss a common plan or schedule for either projects or daily routines within an
organization or group of people. However, what sets the VP application apart from
Trello is that it is aimed towards organizations with a higher requirement on their
planning process and thus an interest in the Visual Planning method. It differs from
Trello’s Kanban model (which is common in many Scrum- or agile-based methods)
in that it has a time line on the X-axis and thus also resembles a storyline.

https://togetherjs.com/
’http://substance.io/
3http://socket.io/
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Figure 1.1: Screenshot of Yolean’s Visual Planning application. It visualizes plan-
ning data with users on the Y-axis and time (here days, but there are different
resolutions to choose from) on the X-axis. The colored blocks in the figure are what
the VP application refers to as tasks which contain information on some job that a
group of people has agreed upon.

This thesis develops and evaluates a new prototype for one of Yolean’s existing
backend services called the Live Server. We will start by introducing the Yolean
VP application domain and describe the existing implementation of the Live Server.
We will propose a method to speed up query-response times significantly while still
keeping the same functionality in the Live Server by querying different database
solutions as a kind of index for the service. Finally, the pros and cons of the new
solution will be discussed while comparing benchmarks between the current and new
method.
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1.1 Yolean Visual Planning Domain

User Project

isRequiredFor

0

0

@
\ Task
createdBy

isSubTaskFor

008

Figure 1.2: Entity-Relationship Diagram for Yolean’s Visual Planning Domain.

The VP application domain can be simplified into a handful of entities. These
entities and their relations are formalized by the Entity-Relation (ER) Diagram in
Figure 1.2. Below follows a short description of each entity:

o Tasks, which are visualized as post-it notes in different colors. Preferably,
they should deliver some work to a project. Tasks can also be split into sub-
tasks, which gives them a recursive relation between a parent task and its

child-tasks.

o Users, which occupy a single row in most views of the application. Users also
create (or modify) and own tasks.

e Groups and Projects, which for our purpose can be simplified as different
ways of querying for tasks.
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1.2 Yolean Visual Planning Use Cases

The VP application visualizes queries of tasks (i.e. a grid such as the one seen in
Figure 1.1). We refer to these views as boards. Each board displays a subset of all
tasks within one of their customer’s database. The subset is defined by querying
the database through a collaboration service that Yolean has developed, called the
Live Server. The characteristics of a query varies with the type of the board itself.
Three common board types are: project boards, which queries for all tasks within
a project; group boards, which queries for all tasks for a set of users; and personal
boards, which queries for all tasks that are owned by the user.

A project board often contains a lot of tasks per week, grouped by several users
(where each user has its own row). A project board is often used for several years
in production, accumulating a lot of tasks in total. Therefore, in order to provide a
smooth experience for the user, the client application relies on being able to request
only tasks that are planned inside the user’s current time interval. As in most
applications with a time line, the user is able to navigate to different date ranges
and choose time resolution (like how calendar applications let you choose between
daily, weekly or monthly views). This means that each client connected to a project
board may require different subsets of the project’s tasks.

The main focus for the VP application is user collaboration. To Yolean, user collab-
oration requires that whenever an object that matches a client’s query is modified,
the user must receive this new modification. An intriguing example of this is when
user A moves a task X into user B’s viewport. Note that user B’s client does not
have any data for this task prior to the modification. Thus, the Live Server must
understand this and send the full object to user B’s client (as opposed to when the
client already has the most recent state and only requires the modification). A sec-
ond example, where user A assigns task X to user B from a project board, further
requires this change not only to be sent to any of user B’s clients connected to this
project board, but also to user B’s personal board.

To sum up: Many of Yolean’s use cases for the Visual Planning application can be
realized through the queries that the ER-Diagram in Figure 1.2 supports. The list
below contains the most apparent ones:

o Select all tasks for a project/group/user, scheduled within a date range

o Select all tasks that are part of a given task, recursively

o Select all tasks that a given task is part of, recursively

o Select all delayed tasks (where the planned done date has already passed)

These queries are all of the sort that a Relational Database, a Document Store or
for the recursive queries even a Graph Database would be suitable as a backend.

4
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However, Yolean’s application also expects a stream of all future changes affecting
this query!

1.3 Yolean’s current Live Server

Yolean’s way of supporting collaboration within an organization differs from many
other popular tools in that their data is meant to be visualized as different views
for different scenarios. So the same set of tasks can be viewed and filtered in many
different ways depending on the current use-case, and the applications expect to be
notified of any changes to this data. For Yolean, this has lead to a backend solution
developed in-house on top of the SocketIO library.

The main focus for the VP application is collaboration on the task objects. Tasks
are modeled as flat Javascript Object Notation (JSON)? records, meaning that they
consist of multiple key-value attributes. Each task contains a unique id attribute
so they are all easily distinguishable from each other. To keep the problem more
general we can imagine tasks as records from now on.

The collaboration service Yolean has developed, the Live Server, is responsible for
distributing subsets of the set of all records to their clients. A subset S contains the
records from the set of all records which passes its predicate P, where P is defined by
the client’s query. Clients of this service are able to modify existing records and add
new records. Modifications trigger update events to connected clients. An update
event can be one of three types:

e The addition of a new record to the subset.
o A modification of an existing record.
o The deletion of an existing record from the subset.

An existing implementation based on the Javascript library Backbone exists today.
Hence, it runs on the NodeJS platform. This implementation was built during the
summer of 2015, in order to be able to pilot the concept Interconnected Boards,
a concept which triggered the Visual Planning collaboration scenarios explained
earlier in Section 1.2.

1.4 Problems with the current solution

The fact that the existing implementation is based on legacy code causes it to come
with a few limitations. These limitations mainly stem from how it stores data

“http://www.json.org/
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by using an open-source issue tracker called Trac, whose query response times are
already a bottle-neck in the system today.

The current implementation responds with the initial result set for a client by naively
matching each record against its predicate function. So for n records each client
requires O(n) setup time. Yolean has not yet investigated at which combination of
n records and m users the service will start to cause problem in production. They
wish to do this, but for a new implementation that is not bound by legacy. Such an
approach suits a master thesis very well as it allows the student to experiment more
freely even though it might require a lot of initial work.

1.5 Solution Overview

Arasu et al. [1] has designed a system called STREAM, a Data Stream Management
System (DSMS)® built around a concept they call Continuous Queries. They use
this definition for describing queries which are run over a set of data over time, as
in opposition to an ordinary request-response query. This definition is also used by
Babu and Widom [2] to describe something very similar. Thus, we will distinguish
the types of queries that the Live Server handles as continuous queries from now on.
However, Arasu et al. [1] and Babu and Widom [2] both focus on designing a query
language similar to SQL for which they analyze how to process queries efficiently.
To keep the implementation for this project simple and extensible, we decided on a
minimal query language based on JSON.

A Continuous Query is defined by providing the name of the query along with its
parameters. The parameters are simply key-value mappings that will be translated
into a meaningful query by the server. Thus, parameter values can be of any type
allowed within the JSON format.

{
name: '"name",
params: {
}

}

We will use this concept of continuous queries to describe the combination of classical
request-response queries and the update events that Yolean’s applications demand.

We propose a solution for resolving continuous queries where common query-response
database systems such as Relational Database Management Systems (RDBMS) and
Search Engines are used as Indexes in combination with an in-memory state, imple-
mented as a Persistent Data Structure 5. The indexes will resolve the initial set of

Shttps://en.wikipedia.org/wiki/Data_stream_management_system
Shttps://en.wikipedia.org/wiki/Persistent_data_structure
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records for the response and the in-memory state will be used to match updates to
queries. In order to implement this and avoid problems such as the Dual Write prob-
lem [8], a method from Stream Processing”, namely event-sourcing will be applied
to construct indexes and the in-memory state.

In short, the thesis uses Apache Kafka® as an event log and thus the new collabora-
tion service’s only persistent storage. The event log will be read individually by a
few different Index Clients from within the Live Server. The server component will
then route incoming continuous queries to its appropriate index client. The index
clients then become responsible for responding to these queries, just as a regular
request-response backend service would do. Each index client will accomplish this
by mapping named queries into something that its backend (for example a Post-
greSQL database) would understand. In addition to the initial response, each index
client will stream updates for its registered queries. This will be accomplished by
maintaining a minimal set of in-memory states of the dataset using the persistent
data structure.

1.6 Thesis Overview

This section provides a short overview of the rest of this thesis. In Chapter 2
the underlying concepts used to implemenent our solution is described. Chapter 3
continues by introducing the Live Server prototype focusing on its protocol and the
flow of data within the service. Our Live Server prototype was benchmarked during a
set of experiments that we present in Chapter 4. The results from these experiments
are discussed in Chapter 5, where we highlight some limitations for the prototype as
well as try to predict the impact it would have for Yolean. Finally, Chapter 6 wraps
up the thesis by concluding that the prototype is going to be adopted by Yolean
thanks to promising results, but that for a more general adoption more work might
be needed.

"https://en.wikipedia.org/wiki/Stream_processing
8http://kafka.apache.org/
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Background

This chapter describes four different areas within the field: Stream Processing, Per-
sistent Data Structures, B-Trees and Inverted Indexes. The first two are related
to the project as they help build a simple implementation for distributing updates
within the system. The other two relates the database solutions used throughout
this project by explaining why they were expected to provide a performance boost
for queries to the new Live Server prototype.

2.1 Stream Processing and Event Logs

The overall structure of the project is inspired by Kleppmann and his thoughts on
Stream Processing and modern database solutions [8]. Kleppmann describes a way
to consume event logs into a set of different index, cache and database systems that
can operate autonomously and in parallel of each other. In Chapter 3 we will see
how the prototype was implemented for this project and how streaming data from a
Kafka topic into different data stores helps us both implement and evaluate different
databases within Yolean’s domain.

While a more classical solution with a single RDBMS could have sufficed to respond
with the set of initial records for continuous queries, these stream processing tech-
niques allow for future development to more easily extend and alter the database
solutions used within the system. However, we should keep in mind that this solution
will add a bit of overhead in order to support this. Kafka, which can be simplified
as a write-ahead log for our purposes, will stream updates into PostgreSQL which
in turn will also update its own write-ahead log! before it writes any changes into
the actual database table. Thus, in order to reduce the complexity in our own ap-
plication code for the Live Server by leveraging several layers of third-party software
originally used for persistence, we are sacrificing a bit of processing power.

Kholghi and Keyvanpour [6] summarize a couple of methods for indexing data
streams. One indexing technique is implementing a sliding window where indexes
only consider events within a certain time frame for indexing. Common for all in-

"https://en.wikipedia.org/wiki/Write-ahead_logging
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dexing methods they mention is that they are designed to analyze temporal data
like sensor readings. However, while this is very suitable for temporal data which
can be disregarded later on, this does not fit Yolean’s domain where all history of
the data must be available in order to resolve the current state. Instead, Yolean’s
domain maps quite well to relational databases, which commits to storing your data
until it is explicitly removed.

2.2 Persistent Data Structures

Indexing our event stream is not enough to be able to distribute update events to
affected clients. Therefore, a partially Persistent Data Structure? is implemented
by using the Map data structure from the library ImmutableJS?, which, just as
the name implies, is built for immutable operations on some common data struc-
tures. The in-memory representation of Yolean’s data is constructed using hash-
array mapped tries (HAMT), a variation of the more commonly known Hash Map,
but with better worst-case complexities [3]. The in-memory representation of the
data is then used to resolve which updates affect which queries by comparing the
old and new states after the update is applied. Keeping a full state in memory is of
course nothing one should do without hesitation. Hence, all benchmarks have been
conducted on the whole system as opposed to just querying the databases. This way
we try to incoroporate as many practical consequences as possible of the in-memory
representation.

2.3 B-Trees

This project has evaluated how PostgreSQL can be used to answer queries on the
data within Yolean’s domain. The table we used to store our data was set up with
separate secondary indexes for the few columns that we query against during our
experiments. Chapter 4 describes these experiments in detail so we will instead
focus on how PostgreSQL indexes were expected to help speed up queries within
our prototype. PostgreSQL indexes are implemented as B-Trees (or Balanced Trees)
and they have a search complexity of O(log n)[9].* Recalling the naive method used
by Yolean today, which simply filters all records using a predicate function, we can
expect a much greater performance when using PostgreSQL to answer our queries.

’https://en.wikipedia.org/wiki/Persistent_data_structure
3https://facebook.github.io/immutable-js/
“https://en.wikipedia.org/wiki/B-tree
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2.4 Inverted Indexes

To evaluate a second tool utilizing a second data structure to help answer queries
within the domain, we chose the search-engine Elasticsearch®. Elasticsearch is based
on Lucene indexes which implement the inverted index data structure common in
full-text search software [5]. While Inverted Indexes is able to perform full-text
search (including not only exact matches on strings) we have not utilized this feature
for our experiments. Instead we chose this search engine for comparison against
PostgreSQL to get a wider view of how Yolean’s domain can be queried. Using the
Vector Space Model ® Lucene Indexes should be able to outperform any naive search
thanks to efficient algebraic calculations. However, one should note that these type
of index structures are expensive to update[5]. Thus, Chapter 4 also includes update
comparisons between PostgreSQL and Elasticsearch.

Shttps://www.elastic.co/
Shttps://en.wikipedia.org/wiki/Vector_space_model
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Method

In broad strokes, we have implemented a new prototype for the Live Server that
Yolean uses in their Visual Planning application. This chapter provides an overview
of the Live Server implementation by describing its protocol as well as the defining
components and design choices.

3.1 Live Server Implementation Overview

The Live Server’s two main tasks are responding to continuous queries and distribut-
ing record changes for these queries. After a continuous query has successfully been
registered, its client may send updates to the server. The Live Server persists all
updates as events in Apache Kafka. This event log is then read in parallel by a
number of independent index clients, which, backed by an already optimized and
well-tested generic database solution can quickly respond to queries.

Sections 3.1.1 and 3.1.2 provide an overview of the protocol and its implementation
respectively. Then, Section 3.1.3 describes the Index Client in detail and in Section
3.1.4 we will see how a persistent data structure lets us keep several different versions
of the state in memory with a minimal memory impact.

3.1.1 Live Protocol

The implementation consists of a server component, the Live Server, and a client
component, the Live Client. Clients can communicate with the Live Server through
a simple live protocol. Figures 3.1, 3.2 and 3.3 display three different scenarios which
together capture the different communication flows in this protocol.

3.1.1.1 Successful Communication

A successful run of the protocol is displayed in Figure 3.1. The client connects to
the server with a continuous query (CQ). It receives the initial sets of records along

13
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with the query id. It is with this id that the client is later allowed to modify the
back to the Visual Planning use-
case mentioned in Section 1.2 where clients need to be able to quickly update the
application’s subset of tasks to display different dates. Until the client closes the
server, and it will receive updates

parameters of the query. This relates directly

connection it is allowed to send updates to the
affecting its query to the server.

Client Server

krecords, id

| update__

i
4/ack

i
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records, id” |

F—close(id)—»
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Figure 3.1: A successful run where a client
update, receives an update and updates the q

4

connects to the server, sends an
uery itself with new parameters.

Finally the connection is closed by the client.

3.1.1.2 Invalid Updates

As visualized in Figure 3.2, when a client send
update is deemed invalid, an error is sent back
query id it was assigned on connection.

14

s an update, the server will verify
that the update is valid before storing it and distributing it to other clients. If the
to the client, which is expected to
reset its state by re-sending the initial query and its parameters, along with the
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Figure 3.2: The client sends an update which gets rejected by the server as it has
become out-dated. The client is now expected to restart the protocol.

3.1.1.3 Invalid Queries

Figure 3.3 displays a client which connects with an invalid query. This might happen
for various reasons, for example upon programmer errors or when an index backend
becomes unavailable. In this scenario, the protocol is immediately terminated with
the error sent back to the client. The application running the client is expected to

notify the user of this error.

Client

Server

CQ—
Drror/

A

4

Figure 3.3: A client sends an invalid continuous query (or the index client inside
the Live Server is currently unavailable).
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3.1.2 Protocol Implementation

The protocol described in Section 3.1.1 is implemented in the Live Server through a
few components that will be used in this section to describe the flow of data inside
the service.

The most important component of this project is the Index Client, which is respon-
sible for a single namespace of filters (“postgres/” or “elasticsearch/” for example)
and will respond to queries and distribute updates to all Live Clients connected to
it. Filters will be explained further along with Index Clients in 3.1.3. The second
component is the State Manager, which supports the Index Clients by providing an
in-memory representation of each state that is generated after merging an update
event. For this to be feasible the State Manager implements a persistent data struc-
ture to keep the memory usage to a minimum. This section provides an overview of
the internal components of the Live Server and then Sections 3.1.3 and 3.1.4 describe
the Index Client and State Manager more in detail.

3.1.2.1 State Predicate Index Configuration

Figure 3.4 shows a Live Server with an index client named filter predicate that im-
plements the naive solution where each continuous query is resolved by running the
state through a predicate function. This is on par with the current implementation
at Yolean. The figure displays the following steps:

1. State Predicate index client reads the initial state.
2. State Predicate index client sets up its own stream of update events.
3. Live Server listens to incoming requests, and receives a continuous query.

4. State Predicate stores the query so that it can be matched against future
updates.

5. State Predicate asks the State Manager for the in-memory state and matches
each record against the query.

6. Matching records are sent back to the Live Client.
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Figure 3.4: The Live Server configured with only the naive filter predicate index
client. The figure encapsulates the steps needed for the server to respond with an
initial set of records to an incoming query.

Incoming updates are handled in a like-wise manner, where the State Predicate
index client matches incoming updates against the registered queries and updates
the State Manager according to the record changes from the update. We will see a
more detailed description of this later in Section 3.1.2.4. For now we are satisfied
by concluding that by defining a few components within the Live Server we are able
to satisfy Yolean’s requirements on continuous queries.

In the following sections we will see how the State Predicate solution can be gen-
eralized into several index clients that can respond to queries with an initial set of
records by using an index backend.

3.1.2.2 Initialization Overview

The Live Server process is initialized during an initialization phase as shown in
Figure 3.5. The initialization phase consists of the following steps:

1. Existing update events are parsed and stored as an initial state in the State
Manager.
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2. Each Index Client reads the initial state.

3. Each Index Client resets its backend.

4. Each Index Client indexes the initial state.

5. Each Index Client sets up its own stream of update events.

6. The Live Server starts accepting incoming requests.

®

v

Live Server J

Backends

Y

® Index Client ®

X —3
@

-
Index Client 8
—

Kafka

event-log

Figure 3.5: The Live Server initialization phase.
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3.1.2.3 Query Overview

name: postgres/vpInterval,
params: {
project: Project A,
start: 2016-01-01,
end: 2016-02-01

Figure 3.6: Example Continuous Query in the Yolean Visual Planning domain.
The query would, using the PostgreSQL Index Client, return all tasks for Project A
scheduled between the dates 2016-01-01 and 2016-02-01. The Live Server is able to

deduce information like return only task-type records from the name of the query.

Once the initialization phase has been completed and the Live Server is listening
for incoming requests, Live Clients can register Continuous Queries (as exemplified
by Figure 3.6) to the Live Server. Figure 3.7 visualizes the steps performed when
registering a new continuous query.

1. Live Client registers a Continuous Query which is passed to the responsible
Index Client.

2. The Index Client stores the query so that it can be matched against future
updates.

3. The Index Client transforms the query name and parameters into a query for
its backend and sends a request to its backend.

4. The Index Clients backend responds with the matching set of ids for the query.

5. The Index Client asks the State Manager for its in-memory state to resolve
the set of ids into their corresponding records.

6. The records are sent back to the Live Client.
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Figure 3.7: The data flow when querying the Live Server.

3.1.2.4 Update Overview

All connected Live Clients are able to send updates to the Live Server, which are
distributed to all clients with a registered query that is affected by this update. This
process is visualized in Figure 3.8 which contains these steps:

1. A Live Client sends an update to the Live Server.

2. The Live Server validates the update and writes it to the Kafka log (invalid
updates are rejected with an error sent back).

3. Each Index Client reads the update through its Kafka stream.

4. Each Index Client decides whether the update affects its index and when
needed the update is written to the Index Client’s backend.

5. Each Index Client gets its current state (prior to the update) from the State
Manager and uses this to resolve which queries are affected by the update.

6. Each Index Client commits to having read the update to the State Manager.
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7. The update is distributed to all affected queries.
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Figure 3.8: The data flow when sending an update to the Live Server.

Step 4 contains an important gotcha that we need to explain a bit further. Each
Index Client is responsible for maintaining a state where no race conditions can result
in a scenario where it has responded to a query assuming a different state than it
last commited to the State Manager. For this proof of concept implementation a
great simplification was made to all Index Clients, namely that updates are queued
in the Live Server in such a way that there is only one outgoing request at a time to
their backends. This way, we can safely know that the state that was commited last
by the Index Client is also the state that its backend has been notified of. In order
to combat this simplification we can instead simply implement these Index Client
such that they ignore updates that don’t affect their indexing. This works for our
case as many attributes within Yolean’s domain that change often are not needed
when querying the data.
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3.1.3 Index Clients

To formalize the relation between the Live Server and its indexes, we define a concept
of Index Clients. Each Index Client can define several parametrized named filters,
each of which is implemented to respond to a rather narrow set of continuous queries.

All filters expose a common API: a predicate function matches(record) which
returns true iff the record should be included in the query; and query() which
queries the index for all matching records by transforming the parameters to a
query for its backend. It is then up to the developer of these filters to make sure that
these two methods consistently match the same records. Thus matches(record) <
record € query() should always hold.

The prototype uses the result of each registered query’s matches(model) call to
define whether changes should be distributed to the client or not. It does so by
calling the function once with the old record (if any) and once with the new record
(if any, as it might have been removed). Thus it is able to resolve individually for
each registered query, whether the change was in fact an add, a change, or a remove
event for each query individually.

We describe the implementation of each Index Client by looking at the Continuous
Query example mentioned in Section 3.1.2.3 again:

{
name: postgres/vpInterval,
params: {
project: Project A,
start: 2016-01-01,
end: 2016-02-01
i
+

We will go through the three Index Clients implemented for this project and describe
how they relate to their respective backends. We will also motivate why they are
suitable candidates for resolving queries for Yolean’s Visual Planning domain as
formalized by Figure 1.2.

3.1.3.1 Predicate Function

In order to be able to evaluate the new index solutions against the legacy method
of matching each record against the query’s predicate function, the persistent data
structure’s state is used straight away without any backend supporting it. This
Index Client responds to each query by running all records of the state through
the filter’s matches function. We see that this Index Client can be formalized as
query() = {record | matches(record)}.
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Due to NodeJS being single threaded, results against this index should be evaluated
while bearing in mind the fact that each call to the query method will occupy
the whole Live Server process during this time. There are of course workarounds
for this issue, but in order to be able to evaluate a solution close to the legacy
implementation of this service, no workarounds were implemented for this problem.
Instead, as described in more detail in section 4.3, all metrics are collected by clients
as opposed to on the server.

3.1.3.2 Relational Database — PostgreSQL

The postgres database was chosen as it is one of the most popular open-source
relational databases.

The Index Client sets up a single table in postgres where it stores only a few columns,
namely: plandone with type date, project with type varchar(50), owner with
type varchar(30) and a primary key id of type uuid. Together these columns
suffice to answer the queries that we evaluated during the experiments described in
Chapter 4.

In an attempt to optimize the table for reads and thus queries, internal PostgreSQL
secondary indexes were created for all columns. As mentioned in Section 2.3 these
secondary indexes should result in quicker queries against records in the table.

3.1.3.3 Inverse Index — Elasticsearch

Butcher et al. [5] promotes the Lucene search-engine as one of the most useful
implementations of an inverse index. Apache Elasticsearch sits on top of the Lucene
engine and provides a mature search API for its Javascript client. Thus it was chosen
as the Inverse Index implementation for this project.

As Elasticsearch is built to support few large indexes rather than several small
indexes!, this Index Client creates a single Elasticsearch index that is updated with
the fields plandone, project, owner and id for all records.

Elasticsearch can perform both string matching (strl == str2) as well as full-text
search (which is more geared towards user defined search strings than what this
thesis wishes to support). This Index Client configures the Elasticsearch index to
perform the first string comparison.

"https://www.elastic.co/blog/index-vs-type

23


https://www.elastic.co/blog/index-vs-type

3. Method

3.1.4 State Manager

As Index Clients may temporarily become out of sync with each other, we need to
keep track of which states that are still needed by an Index Client, and discard states
when no Index Clients refers to it after an update. For each update that is consumed
by the Index Clients, the State Manager will receive a commitUpdate (indexName,
offset, update) call. This means that momentarily the Live Server will have to
keep two states in memory until all Index Clients have caught up and written the
update to their backend. This builds up towards a worst case where we might end
up with different state references for each Index Client.

In order to keep the memory usage down while Index Clients are skewed between
different states, the State Manager implements a partially persistent data structure
using an immutable hash array mapped trie [3] from the ImmutableJS library. This
lets all states diverge while only allocating memory for the difference between the
states. Once the Index Clients have all caught up, the same state is shared between
the Index Clients and all the rest are discarded.
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Results

This chapter describes the three different experiments we have used to benchmark
the Live Server prototype we describe in Chapter 3. The experiments focus on
service initialization, query performance and update performance. Each experiment
described below will define its own metrics, but so that we know what to expect
they are:

e Service initialization time

o Query-response time

Query throughput

Update delay

Update throughput

All three experiments share a common setup and common data input. Section 4.2
describes how the datasets are generated from a real-world set of data from Yolean’s
domain and Section 4.3 will give a general description of the experiment setup. But
to start with we take a look at the hardware and platform we ran the experiments
on.
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4.1 Environment Specification

All experiments were run on 0S X E1 Capitan 10.11.1 using a Macbook Pro
Retina Laptop with the following specification:

MacBook Pro
Model Identifier: MacBookProi10,1
Processor Name: Intel Core i7
Processor Speed: 2,6 GHz
Number of Processors: 1
Total Number of Cores: 4
L2 Cache (per Core): 256 KB
L3 Cache: 6 MB
Memory: 16 GB

The test framework was implemented by utilizing a containerization tool called
Docker.! One of Docker’s main features is called Docker Compose, which helps
you set up and run multiple applications that depend on each other. This proce-
dure also helps when you need reproducible results, as you can simply restart a set
of Docker containers through Docker Compose and expect the same result. This
reproducibility makes Docker a good platform for our test framework.

The docker version used for these benchmarks was Docker for Mac Version 1.12.1-beta25.
Docker was allowed to use a maximum of 4 CPUs and 8GB RAM.

4.2 Dataset Generation

All experiments were run over the same set of initial datasets. We wanted to evaluate
the prototype over a growing set of records, so the datasets were generated with the

different target sizes n = {10000, 15000, 20000, ..., 100000}.

The datasets were meant to simulate real-world usage from Yolean’s domain. Thus,
they were generated from an anonymized set of data from one of Yolean’s customers.
We will refer to this set of data as the source from now on. The source contained
~ 30,000 unique records spread over ~ 130 different projects. We wanted to ana-
lyze how our implementation of the Live Server behaved over a growing number of
records, so we generated datasets for all values of n by picking randomly n records
out of the 30,000. Each sampled record was assigned a new unique id attribute to
avoid record duplicates within the generated set. Further, we wanted to maintain
the original distribution of records per project within the generated datasets. This

was accomplished by scaling the number of projects by a factor of maz (1, z5%5)-

https://www.docker.com/
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As we can see in Figure 4.1 our sampling method lets us scale the number of records
and projects while keeping the same distribution of number of records per project.
Only about 55% of all records actually belong to a project. The remaining 45% are
assigned only to a person and not to a project. We still include them in our dataset
to model our experiments closer to practice, but they will never be queried for in
the experiments.

100 Cumulative distribution of number of records over projects

90
80
70
60
50
40
30
20
10

% of all records in the dataset

0 10 20 30 40 50 60 70 80 90 100

% of all projects in the dataset

Figure 4.1: Records-per-Project Distribution. The distribution of number of
records per project with the source dataset represented by the brown line, and
all generated datasets {10000, 15000, 20000, ..., 100000} in light grey lines. As we
can see the distribution is very similar between all datasets. Most projects con-
tain only a few records: roughly, 80% of the project together own only 20% of the
project-associated records.

Note that our datasets are modelling only snapshots of an evolving database. We
did not harvest any modification or deletion actions from real-world examples.

4.3 Experiments

In this section we describe the common setup for all three of our experiments.
After that, each experiment is described in detail in Section 4.3.1, Section 4.3.2 and
Section 4.3.3 respectively. In order to reduce the number of anomalies in our data,
each experiment was repeated three times. Thus, all metrics shown in the graphs in
this chapter are averages from these three samples.
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Index configuration
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Live Client Live Server

Metrics
v

Figure 4.2: The setup of an experiment, where the client outputs its results into
Elasticsearch so that it can be queried and visualized in a later stage.

Each experiment consists of a Live Client and a Live Server as can be seen in
Figure 4.2. The Live Server is configured to read an initial dataset into the service.
The Live Client performs a set of queries and updates depending on the experiment.
All results are logged by the client, which means that network latency and message-
parsing will also be included in the observed results. However, all experiments were
run locally with the client on the same machine as the server. Therefore, network-
and message-parsing latencies are considered constant and small.

In Section 3.1.3 we defined the concept of a filter as a structured way for Index
Clients to map domain specific continuous queries into a database query (for pro-
viding the initial response) and a predicate function (for resolving whether an update
affects the query or not). For our experiments a filter named “vplnterval” was im-
plemented for all Index Clients. The filter accepts the parameters “project” and
interval- “start” and “end”. Throughout all experiments the client thus registers
queries against either “postgres/vplnterval”, “elasticsearch/vplnterval” or “state-
predicate/vplnterval” (which is the legacy method described in Section 3.1.3.1).

4.3.1 Experiment 1 — Service Initialization

The service initialization phase was described in Section 3.1.2.2. As we can recall
from there, all events that have been accumulated over time will be streamed once
from the event log in Kafka to build an initial state of the data, which in turn is
indexed by all configured Index Clients. This experiment will compare how different
configurations of Index Clients and number of records in the initial dataset affects
the service initialization time. The service initialization time metric is measured
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from the time it takes for the Live Server process to start until it starts listening to
incoming requests.

Startup time for different index configurations

80 [ | postgres M clasticsearch Il state-predicate all

70
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Latency [s]
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10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of records in thousands

Figure 4.3: Service Initialization Time. Each line describes a configuration of
enabled Index Clients for the service. state-predicate performs no indexing, elastic-
search indexes the dataset to Elasticsearch, postgres indexes the dataset to Post-
greSQL and all indexes the dataset to both Elasticsearch and PostgreSQL.

From Figure 4.3 we can see that all configurations adhere to a linear increase in
initialization time. The configuration called “state-predicate” does not perform any
indexing (as was described in Section 3.1.2.1), and it is therefore apparent that
it requires the least initialization time for all datasets. We can also see that the
configuration called “all”; which writes to both Elasticsearch and PostgreSQL, takes
a bit more time to complete than the configurations that write to only one of these
databases.

Let teonfiguration denote the lines from Figure 4.3. Then, when comparing these
Conﬁgurations we would eXPeCt tall = telasticsearch + tpostgres - tstate—predicate to hold
assymptotically. Roughly, at n = 100, 000 the right-hand side of this equation equals
65 + 55 — 50 = 70 seconds, which is quite close to the actual result of the left-hand
side. Further, we note that for 20,000 < n < 35,000 we have t.usticsearch > tails
which is unexpected. This can probably be explained by the fact that initializing
the Elasticsearch service takes a lot of time, and for the Live Server to discover it
can often require several connect retries.

We note here that the datasets were generated as a sequence of updates containing
only add operations. Thus, in real-world usage, the initialization time might be
higher than what we see here, as a real-world usage would also generate a lot of
updates that modify existing records. As the state-predicate configuration (which
does not perform any indexing) still takes quite some time to initialize we assume
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that reading the event log and constructing the initial state takes up a lot of the
initialization time for all configurations.

4.3.2 Experiment 2 — Query Benchmark

The primary concern with the current implementation of the Live Server at Yolean is
how performant it is at resolving initial responses as the number of records increases.
Improving or at least analyzing query-response time and also query-throughput was
thus one of the highest priorities for this project. Thus, these two metrics were
benchmarked during the second experiment.

Query-response times were measured as the time it took between registering the
query and receiving the set of records. The average was then calculated for 100
queries registered from the same client.

Query throughput was measured as the number of queries the service could respond
to per second. This was accomplished by registering 100 queries in sequence on a
single client and then measuring the time passed until all queries had received a
response.

These metrics were benchmarked over which Index Client that was included in the
configuration as well as how many records there were in the initial dataset.

The parameter values (project, interval-start and interval-end) for each continuous
query were sampled with a normal distribution from the dataset, which means that
projects containing a large number of records would have been queried more often.

Average response time for 100 queries

[ | postgres/vplnterval [ | elasticsearch/vplinterval [ | state-predicate/vplnterval

Latency [s]

—
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10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of records in thousands

Figure 4.4: Query Response Time over a growing dataset. Each line describes
which Index Client was queried. The other Index Clients were disabled (received no
updates or queries).
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The goal of this project was to implement a new prototype of the Live Server which
would still adhere to Yolean’s requirements on Continuous Queries, but allow for
optimizations on the initial responses. Figure 4.4 shows a clear improvement when
third party software is used to help with these initial responses. The legacy im-
plementation state-predicate which naively filters all records in the dataset for each
query has, as expected, a linear relation between response time and the size of the
dataset, whereas both postgres and elasticsearch have an almost constant response
time in comparison. We should keep in mind however that the data volumes for
these benchmarks and also Yolean’s domain are still very small in comparison to
what modern databases are built to handle. As we can recall from Chapter 2, these
databases use indexes implemented as B-Trees and Inverted Indexes, which means
these lines would likely resemble logarithmic curves for larger values on n.

Throughput [queries/s] for 100 queries
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Figure 4.5: Query Throughput over a growing dataset. Each line describes which
Index Client was queried. The other Index Clients were disabled (received no up-
dates or queries).

Looking at Figure 4.5, we expect the line for “state-predicate” to match a hyper-
bolic curve (+), which is not far from the actual outcome here. Further, for both
“postgres” and “elasticsearch” we would expect them to be almost constant, which

apart from some noise, they are.

In this experiment we notice anomalies for n = {45000, 55000, 70000, 90000}. They
are represented by spikes in Figure 4.4 and dips in Figure 4.5. All configurations
of the service were run independent of each other, which might explain why we see
anomalies for different configurations at different values of n. To be certain that
these anomalies are not actually due to some problems with the implementation,
further experiments would need to be conducted. For example, repeating the ex-
periment more times in a more stable and controlled environment would allow us
to compute standard deviations and confidence intervals for our results. However,
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for this thesis we settle with being able to show the difference in query performance
between the naive configuration and the database-supported configurations.

Figure 4.4 and Figure 4.5 tell us that PostgreSQL outperforms Elasticsearch for this
query. If we consider the type of queries described for Yolean’s domain in Section 1.1
we see that they closely map to the SQL queries that PostgreSQL is implemented
for. We also note that Elasticsearch, which is first and foremost a Search Engine,
supports complex full text search queries, which is not at all utilized by the queries
in these benchmarks.

4.3.3 Experiment 3 — Update Benchmark

As was described in Section 3.1.2.4, upon receiving a new update from the event log,
our implementation of the Live Server waits for the Index Client to write the changes
from the update to its backend before it sends updates to affected queries. It does so
in order to be able to guarantee that the Index Client can keep its backend in sync
with the in-memory state it has committed to. This limits each Index Client to only
handle one update at once. With that in mind, we wish to benchmark the update
delay and update throughput. The parameters that we vary for this experiment are:

o The total number of records in the dataset
e The Index Client used by the configuration
e Whether the updates were indexed by the Index Client or not

Update delay was measured as the time it took for an update sent from one client
to all affected queries’ clients.

Throughput was measured as the number of operations the service could distribute
per second. Much like the query throughput benchmarks, this was achieved by
registering a set of queries, and after receiving the initial data for all queries, a
set of operations was sent to the service in sequence and we waited for all affected
queries to receive all updates.
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Figure 4.6: Update Delay over a growing dataset. Dotted lines represent config-
urations where updates are not written to any Index Client’s backend, while filled
lines represent configurations where they are.

The Live Server prototype proposed in this thesis is biased towards read efficiency,
rather than write efficiency (as we can conclude from the Update Overview in Sec-
tion 3.1.2.4). This becomes apparent when looking at Figure 4.6 and Figure 4.7
where we can see how the Elasticsearch Index Client becomes slower when it has to
write updates into its Elasticsearch backend before distributing incoming updates.
We note however that dataset size does not notably affect either update delay or
update throughput. This is of course both an expected and desired behaviour of
any database solution.

A final note on the results, especially apparent in Figure 4.6, is that even at a dataset
containing only 10, 000 records, all configurations for the Live Server take about two
full seconds before they have distributed all update events. So we should keep in
mind that these benchmarks represent spike load on the service, and all metrics
include computation times of a single client that registers 100 queries. Thus, when
looking at these graphs, we are mostly interested in the comparison between the
different Index Client implementations over a growing number of records in the
dataset.

Looking at Figure 4.6 and Figure 4.7 we see that writing to PostgreSQL has much
smaller impact on performance compared to when writing to Elasticsearch. This
result can be explained by reflecting over how Elasticsearch is built for seldom and
bulk writes and when we force it to update its internal index with many small
updates it is forced to update its index after every write. PostgreSQL on the other
hand can, even when configured to use secondary indexes for our columns, choose
to defer updating the index, and answer queries using its table instead.
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Throughput [updates/s] for 5000 updates
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Figure 4.7: Update Throughput. Dotted lines represent configurations where
updates are not written to any Index Client’s backend, while filled lines represent
configurations where they are.
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Discussion

In this chapter we discuss the results presented in Chapter 4. We will sum up the
results and relate them to the expectations and requirements of Yolean as well as
highlight some limitations on the current implementation and how they could be
improved by future work.

The results presented clearly show that this new implementation outperforms Yolean’s
naive solution which is in production today. It does so by using a simple method of
querying well-tested database solutions like PostgreSQL on a subset of all attributes
within Yolean’s domain, while keeping the full dataset in memory. With this in-
memory representation the prototype is then able to distribute the minimal set of
updates that affect each registered query.

Currently, Yolean’s largest dataset in production contains 30,000 records which
means that Yolean could decrease the query time down to about 14% of today’s
query response times when the site is under heavy load. Even more interesting
and reassuring for Yolean is the low decrease in performance over a growing set of
records, with one exeption perhaps: the initialization time.

5.1 Reducing Initialization Time via Data Snap-
shots

The initialization process was implemented in order to allow bulk writes to both
PostgreSQL and Elasticsearch which for many database solutions is more efficient
than writing each record separately. With the results shown in Figure 4.3 we may
conclude that a major part of the initialization process is reading all the update
events from the Kafka log and constructing the initial state for the data. Reducing
the initialization time could be accomplished by snapshotting the data at regular
intervals, thus reducing the number of events that have to be parsed when the service
starts [7].
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5.2 Removing the In-Memory Dependency

The most unconventional design choice with the proposed solution is the depen-
dency on keeping the full state in memory. While the idea is motivated by the
fact that Yolean’s domain does not work with huge data volumes and that RAM
is considered cheap these days, this design decision imposes limitations on the sys-
tem. The persistent data-structure described in Section 3.1.4 is implemented using
only synchronous calls and performs efficient lookups for all records in O(1) time
using the ImmutableJS library. While this method was shown to work for a dataset
about 10 times larger than Yolean’s current situation, it does so by sequencing all
writes to each Index Client in order to be able to handle keeping all possible states
in memory. Instead, an exernal immutable object store such as Interplanetary File
System (IPFS) could be used to remove the in-memory layer in the Live Server pro-
totype. IPFS implements a data structure that allows for efficient lookup but most
importantly it does so on immutable data [4]. Hence, it could be used to resolve the
state of a record at a certain version in our system. For convenience and to improve
performance on common usage something simple as a Least Recently Used-Cache
could be implemented to keep the most sought-for records in memory.

5.3 Internalizing all Indexes

In contrast to Section 5.2, under the assumption that RAM will continue to be
a cheap resource, we could remove the usage of external database solutions for
indexing the records. Instead B-Trees and Inverted Indexes could be used internally
by the Live Server. This would reduce the overhead with running external services
in several ways (less CPU and RAM overhead, reduced latency from communicating
with HTTP between services). Downsides that would speak for going in another
direction is however that you would risk building a larger and more monolithic
solution, with fewer swappable components.
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Conclusion

We have implemented a proof of concept prototype for a service which resolves
what we defined as Domain Specific Continuous Queries in Chapter 1. A Continu-
ous Query is a query that along with the initial response of matching records, also
provides a stream of all updates affecting the query’s response. The implementation
makes a few simplifications such as keeping an in-memory representation of the full
dataset and sequencing database writes. The prototype was benchmarked against
a growing set of records and metrics for querying and updating the dataset were
measured. The naive state-predicate method matching all records against a predi-
cate function was greatly outperformed by the implementation we proposed which
uses relational DBMS and Search Engine solutions to respond with the initial set
of records. The prototype is useful within the domain of Yolean’s VP application
and during our experiments we observed query times 7 times faster than the original
approach. Yolean is thus on their way to adopt the solution in production. However,
for datasets with millions of records the in-memory representation would likely have
to be removed or at least support asynchronous writes.
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