
This TEXT is normal. 1 + 2 = ~v • • •
This TEXT is red. 1 + 2 = ~v • • •
This TEXT is green. 1 + 2 = ~v • • •
This TEXT is blue. 1 + 2 = ~v • • •
This TEXT is yellow. 1 + 2 = ~v • • •
This TEXT is darkred. 1 + 2 = ~v • • •
This TEXT is darkgreen. 1 + 2 = ~v • • •
This TEXT is darkblue. 1 + 2 = ~v • • •
This TEXT is darkyellow. 1 + 2 = ~v • • •
This TEXT is purple. 1 + 2 = ~v • • •
This TEXT is white. 1 + 2 = ~v • • •
This TEXT is grey. 1 + 2 = ~v • • •
This TEXT is black. 1 + 2 = ~v • • •
This TEXT is normal. 1 + 2 = ~v • • •

Foreword

These are slides presented by Ste�en Jost at ESOP/ETAPS'06

on Monday, 27 March 2006, Vienna, Austria

(Yellow slides were not shown but added later...)

I recommend interested people to read our ESOP'06 paper:

Type-based amortised heap-space analysis

(for an object-oriented language)

Further information can be found at my homepage

http://www.dcs.st-and.ac.uk/~jost

Feel free to contact me via email: jost@dcs.st-andrews.ac.uk

Type-based amortised analysis

Martin Hofmann and Ste�en Jost

LMU Munich (Bavaria) / St Andrews (Scotland)

Vienna, 27 March 2006

The Idea:

Amortised Analysis

Well-known technique used for Complexity Theory analysis

Linear Programming

Well-known e�cient technique of solving linear constraints

Functional Programming

Well-known technique of e�cient programming

of (sometimes ine�cient) programs

Combination:

E�cient compile-time resource analysis for functional code

as shown in our earlier work (POPL'03)

TODAY: Application to object-oriented programming style

(ESOP'06)

The Result:

E�cient compile-time resource analysis for (simpli�ed) JAVA,

successfully treating:

• inheritance

• downcast (and upcast)

• imperative �eld update

• aliasing (and circular data structures)

We have neglected:

• multiple ancestors

• exception handling

• static classes

• full inference of enriched types

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)

Always push onto A and pop from B

© ©
� � �

⊕⊕ ⊕ ⊕
�

�
⊗

�
⊗

� ©
A B A B A B A B

Φ 3 0 4 0 4 0 0 0

op
−−−−−−→
push(©)

−−−−−−−→
pop() =

⊗ −−−−−−−→
pop() = �

cost 1 1 5
∆Φ 1 0 −4
Σ 2 1 1

Amortised costs are constant as opposed to actual cost!

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)

Always push onto A and pop from B

© ©
� � �

⊕⊕ ⊕ ⊕
�

�
⊗

�
⊗

� ©
A B A B A B A B

Φ 3 0 4 0 4 0 0 0

op
−−−−−−→
push(©)

−−−−−−−→
pop() =

⊗ −−−−−−−→
pop() = �

cost 1 1 5
∆Φ 1 0 −4
Σ 2 1 1

Amortised costs are constant as opposed to actual cost!

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)

Always push onto A and pop from B

© ©
� � �

⊕⊕ ⊕ ⊕
�

�
⊗

�
⊗

� ©
A B A B A B A B

Φ 3 0 4 0 4 0 0 0

op
−−−−−−→
push(©)

−−−−−−−→
pop() =

⊗ −−−−−−−→
pop() = �

cost 1 1 5
∆Φ 1 0 −4
Σ 2 1 1

Amortised costs are constant as opposed to actual cost!

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)

Always push onto A and pop from B

© ©
� � �

⊕⊕ ⊕ ⊕
�

�
⊗

�
⊗

� ©
A B A B A B A B

Φ 3 0 4 0 4 0 0 0

op
−−−−−−→
push(©)

−−−−−−−→
pop() =

⊗ −−−−−−−→
pop() = �

cost 1 1 5
∆Φ 1 0 −4
Σ 2 1 1

Amortised costs are constant as opposed to actual cost!

Automated Analysis of Functional Code: Idea

• Assign potential to data based on type

Type constructors receive weights (list(int,0), list(int,1), . . .)

Functions receive weights (list(int,4)
8/2−−→ list(int,0), . . .)

• Abstract from actual values (list(int, x), list(int, y), . . .)

• Gather constraints from type derivation with amortised costs

• Feed constraints to LP solver

Successful heap-space analysis of �rst-order functional programs

applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile

currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Idea

• Assign potential to data based on type

Type constructors receive weights (list(int,0), list(int,1), . . .)

Functions receive weights (list(int,4)
8/2−−→ list(int,0), . . .)

• Abstract from actual values (list(int, x), list(int, y), . . .)

• Gather constraints from type derivation with amortised costs

• Feed constraints to LP solver

Successful heap-space analysis of �rst-order functional programs

applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile

currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Idea

• Assign potential to data based on type

Type constructors receive weights (list(int,0), list(int,1), . . .)

Functions receive weights (list(int,4)
8/2−−→ list(int,0), . . .)

• Abstract from actual values (list(int, x), list(int, y), . . .)

• Gather constraints from type derivation with amortised costs

• Feed constraints to LP solver

Successful heap-space analysis of �rst-order functional programs

applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile

currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Idea

• Assign potential to data based on type

Type constructors receive weights (list(int,0), list(int,1), . . .)

Functions receive weights (list(int,4)
8/2−−→ list(int,0), . . .)

• Abstract from actual values (list(int, x), list(int, y), . . .)

• Gather constraints from type derivation with amortised costs

• Feed constraints to LP solver

Successful heap-space analysis of �rst-order functional programs

applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile

currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Result

f : list(list(int,1),2.3)
4/6−−→ list(int,5)

Evaluating f
(
[l1, . . . , lm]

)
• requires at most 4 + 2.3m + 1Σ|li| extra heap units and

• leaves at least 6 + 5|f(l)| unused memory units

Potential of consumed input furnishes upper bound on overall

heap-consumption at runtime � without any runtime mechanics!

Annotations are weight factors � no reference to length/size

as opposed to sized types [Hughes & Pareto '99,'02]

Amortised Analysis of Heap-Usage for OOP

• Types assign each heap con�guration statically a potential

• Any object creation must be paid for,

using the potential of input consumed

• Potential of consumed input furnishes upper bound on overall

heap space consumption of program � no work at runtime!

Object-Oriented Language: RAJA

c ::= class C [extends D] {A1; . . . ;Ak;M1 · · ·Mj}
A ::= C a
M ::= C0 m(C1 x1, . . . , Cj xj){return e; }
e ::= x (Variable)

| null (Constant)
| new C (Construction)
| free(x) (Destruction)
| (C)x (Cast)
| x.ai (Access)
| x.ai<-x (Update)
| x.m(x1, . . . , xj) (Invocation)

| if x instanceof C then e1 else e2 (Conditional)
| let x = e1 in e2 (Let)

≈ Featherweight Java (Igarashi, Pierce, Wadler; OOPSLA'99)
plus imperative �eld update

Memory Model

Similar to Storeless Semantics (Jonkers; Rinetzky,Wilhelm etal)

• captures quantities and aliasing

• no random reanimation of stale pointers

("Alias Types" Morrisett & Walker)

("Bunched Implication Logic" Ishtiaq & O'Hearn)

Free-list based model

• memory units taken from free-list at object creation

• memory units returned to free-list at object destruction

• deallocation in C/C++ style with primitve dispose

• dereferencing dangling pointers leads to abortion

Our goal: infer an upper bound on the size of the free-list

required to successfully evaluate as function of the input

Amortised Typing

We use a typing judgement of the form

Γ m
m′ e : C

meaning that if E, h ` e ; v, h′ then a freelist whose size exceeds

m +
∑

x: dom(Γ)

POTENTIALh(E(x) : Γ(x))

will su�ce for successful evaluation and the freelist size upon

completion will exceed m′ + POTENTIALh′(v : A).

Amortised Typing

We use a typing judgement of the form Γ m
m′ e : C

Intuition:

• m is like cash in your pocket, ready to be spent, wheras

• Γ is like money on the bank that you have to withdraw �rst

Recall:

m +
∑

x: dom(Γ)

POTENTIALh(E(x) : Γ(x))

Typing Rule for Object Creation

∅ p + Size(C)
0

new C : C

In a method call we get access to the annotation of the callee:

this:C, x1:A1, . . . , xn:An
m+p
m′ ef :B

then method f in class C with body ef may be typed as

B, m′ f(A1 x1, . . . , An xn, m)

p must depend on C, its superclasses and its �elds somehow

Reclaiming Potential

Q: Why can potential be spent without destroying objects?

A: Reclaiming potential only at object destruction would not

be su�cient; non-destructively processing a data structure

might need potential (e.g. clone) See example.

Q: Can you `gain' potential without actually calling a method?

A: No. �this� is the only certain non-null pointer. A language

with a separate category of non-null pointers would allow it.

Q: Will multiple calls to a method not mess up the potential?

A: Our sharing rules∗ will ensure that the second time around the

callee has a di�erent type which carries less if any potential.

∗aka contraction

Sketch of RAJA System

RAJA program P consists of a set of views.

For each class C and view r we have an annotated version Cr.

♦(Cr) : Class×View→ Q+

Aget(Cr, a) : Class×View× Field→ View (get-view)

Aset(Cr, a) : Class×View× Field→ View (set-view)

M(Cr, m) : Class×View×Method→
P(Views of Arguments→ E�ect×View of Result)

r1, . . . , rj
p/q−−→ r0

Subtyping of annotated classes is covariant w.r.t.

♦(·) , Aget(· , ·) and result types of methods

and it is contravariant w.r.t.

Aset(· , ·) and argument types of methods

Example: OO-Lists

abstract class List { abstract List clone(); }

class Nil extends List {
List clone() {

return this; }
}

class Cons extends List {
Int elem;
List next;

List clone() {
Cons res = new Cons();
res.elem = this.elem;
res.next = this.next.clone();
return res; }

}

♦(·) rich poor poorest

List 0 0 0
Nil 0 0 0
Cons 1 0 0

rich poor poorest

Aget(Consx, next) rich poor poorest

Aset(Consx, next) rich poor rich

M
(
{Listrich, Consrich, Nilrich}, copy

)
= ()

0/0−−−→ poor

Potential Φσ(v : r) =
∑
~p

φσ
(
(v:r).~p

)
Potential: in�nite sum over all access paths from an object v,

zero almost everywhere (allowing cyclic data structures)

φσ

(
(v:r).~p

)
=

 0 if Jv.~p Kσ = NULL or unde�ned

♦(Ds) otherwise

where D is the dynamic class type of v.~p and s is the view obtained

by chaining r through the various dynamic types encountered

starting from v along ~p using Aget

value v: location or NULL
view r: obtained from static typing of v

access path ~p: �nite word over �eld names

heap σ: maps locations to objects

♦(·) rich poor poorest

List 0 0 0
Nil 0 0 0
Cons 1 0 0

rich poor poorest

Aget(Consx, next) rich poor poorest

Aset(Consx, next) rich poor rich

M
(
{Listrich, Consrich, Nilrich}, copy

)
= ()

0/0−−−→ poor

Example: OO-Lists

v points to chain of 3 Cons objects followed by a Nil object in σ

φσ

(
(v:rich).ε

)
= ♦

(
Consrich

)
= 1

φσ

(
(v:rich).next

)
= 1

φσ

(
(v:rich).next.next

)
= 1

φσ

(
(v:rich).next.next.next

)
= ♦

(
Nilrich

)
= 0

φσ

(
(v:rich).next.next.next.next∗

)
= 0

Therefore:

Φσ(v : rich) = 3 but Φσ(v : poor) = 0

♦(·) rich poor poorest

List 0 0 0
Nil 0 0 0
Cons 1 0 0

rich poor poorest

Aget(Consx, next) rich poor poorest

Aset(Consx, next) rich poor rich

M
(
{Listrich, Consrich, Nilrich}, copy

)
= ()

0/0−−−→ poor

RAJA Typing Rules

• Upon object creation (new) one must pay the actual cost

(size of the object) and also the amortised cost

(e.g. +1 in the case of Consrich)

• In the body of a method one gets access to the annotation

of the callee, however it must be shared with possible uses

of this in the method body, see below.

• In a deallocation (free) one gets access to both the

annotation and the actual size of the object.

• To prevent multiple access to annotations via multiple

method calls, we use a linear typing discipline with an

explicit contraction rule (sharing):

Aliasing
.(s |q1, q2) Γ, y:Dq1, z:Dq2 n

n′
e : Cr

Γ, x:Ds n
n′

e[x/y, x/z] : Cr

.(· |·): coinductively de�ned relation between views and multisets of views.

We do have:

.(poor |{poor,poor,poor, . . . })

.(rich |{rich,poorest,poorest, . . . })

Of course, we do not have:

.(poor |{rich,poor})

.(rich |{rich, rich})

.(rich |{rich,poor})

♦(·) rich poor poorest

List 0 0 0
Nil 0 0 0
Cons 1 0 0

rich poor poorest

Aget(Consx, next) rich poor poorest

Aset(Consx, next) rich poor rich

M
(
{Listrich, Consrich, Nilrich}, copy

)
= ()

0/0−−−→ poor

Update Rule

Aset(Cr, a) = s C.a = D

x:Cr, y:Ds 0
0

x.a<-y : Cr

Field update requires a view which is rich enough to feed all

di�erent paths that might lead into this �eld.

Thus, if x has type Listpoorest then for

x.next<-y;
one must have y:Listrich.

After all, the above code could have been preceded by

x = z;
with z:Listrich, then after the assignment we would still expect

z to be �rich� and fortunately it is!

However, even x.next<-x.next; is now forbidden.

Update Rule

Aset(Cr, a) = s C.a = D

x:Cr, y:Ds 0
0

x.a<-y : Cr

Our rule di�ers from standard Java �eld update:

C.a = D

x:C, y:D ` x.a<-y : D

Java-style update is de�nable:

let u = (x.a<-y) in y

but relies on sharing as it should be!

Soundness Theorem

If Γ n
n′

e : Cr η, σ ` e ; v, τ σ � η : (Γ,∆) then

η, σ n + Φσ(η : Γ) + Φσ(η : ∆)
n′ + Φτ(v : r) + Φτ(η : ∆)

e ; v, τ (1)

τ � η[xres 7→ v] : (∆, xres:C
r) (2)

∆ is an arbitrary context representing other parts of the program

that may share with the currently focused on heap portion.

The statement of the soundness theorem is similar to [HJ 2003].

Proof sketch: Update

Suppose we deal with the update expression x.next <- y

In the worst case we had before Jx.nextKσ = NULL,

i.e. no potential contributed by paths containing x.next

##GGGGGGGGGGGGGGGGGGGG

���W
�W

�W
�W

�W
�W

�W
�W

��
�O
�O
�O
�O
�O
�O
�O

))RRRRRRRRRRRRRRRRRR tt

99ttttttttttt

""FFFFFFFFFFF

//x
nextnnn

nnn

���W
�W

�W
�W

�W
�W

�W
�W

�W

��
�O
�O
�O
�O
�O
�O
�O

y //

;;wwwwwwwwww

))SSSSSSSSSSSSSSSSS

$$HHHHHHHHHHHHHHHHHHHHH;;wwwwwwwwwwwwwwwwwwww

Now each access path arriving at x can continue through next and

any path leading away from y � possibly contributing potential.

We proof that there is no unsound increase in potential!

Proof sketch: Update

Suppose we deal with the update expression x.next <- y

In the worst case we had before Jx.nextKσ = NULL,

i.e. no potential contributed by paths containing x.next

##GGGGGGGGGGGGGGGGGGGG

���W
�W

�W
�W

�W
�W

�W
�W

��
�O
�O
�O
�O
�O
�O
�O

))RRRRRRRRRRRRRRRRRR tt

99ttttttttttt

""FFFFFFFFFFF

//x next______ //______

���W
�W

�W
�W

�W
�W

�W
�W

�W

��
�O
�O
�O
�O
�O
�O
�O

y //

;;wwwwwwwwww

))SSSSSSSSSSSSSSSSS

$$HHHHHHHHHHHHHHHHHHHHH;;wwwwwwwwwwwwwwwwwwww

Now each access path arriving at x can continue through next and

any path leading away from y � possibly contributing potential.

We proof that there is no unsound increase in potential!

Proof sketch: Update

Suppose we deal with the update expression x.next <- y

In the worst case we had before Jx.nextKσ = NULL,

i.e. no potential contributed by paths containing x.next

##GGGGGGGGGGGGGGGGGGGG

���W
�W

�W
�W

�W
�W

�W
�W

��
�O
�O
�O
�O
�O
�O
�O

))RRRRRRRRRRRRRRRRRR tt

99ttttttttttt

""FFFFFFFFFFF

//x next______ //______

���W
�W

�W
�W

�W
�W

�W
�W

�W

��
�O
�O
�O
�O
�O
�O
�O

y //

;;wwwwwwwwww

))SSSSSSSSSSSSSSSSS

$$HHHHHHHHHHHHHHHHHHHHHbb;;wwwwwwwwwwwwwwwwwwww

Now each access path arriving at x can continue through next and

any path leading away from y � possibly contributing potential.

We proof that there is no unsound increase in potential!

More examples

• Doubly-linked lists: even in rich version the back-pointers are

poorest so that only access paths of the form next∗ con-

tribute.

• Iterators on doubly linked lists: as soon as you move the

iterator backwards it changes view so no more potential can

be extracted.

Planned examples: visitor, subject-observer, union-�nd.

Conclusion

• Our type-based analysis encompasses:

FObjects FInheritance FDowncast

FImperative Update FAliasing FCircular Data

• Type inference nontrivial task. Tree automata?

• More examples and implementation are being worked on.

• Applicable to other quantitative properties:

number of calls to methods other than �new�, e.g. �fopen�,

or stack-size, execution time, . . .

