This TEXT
This TEXT
This TEXT
This TEXT
This TEXT
This TEXT
This TEXT
This TEXT
This TEXT
This TEXT

This TEXT
This TEXT
This TEXT

iIsnormal. 1+2 =17 eee
isred. 1+2 =7 oeo0e
isgreen. 14+2 =17 ee0e
iSsblue. 14+2 =7 oeo0e
isyellow. 14+2 =7 eee

is darkred. 14+2 =7 e o e
is darkgreen. 1 4+2 =7 e e e
is darkblue. 14+2 =7 e o e
is darkyellow. 14+2 =7 e e e
IS purple. 14+2 ="V o0 e

isgrey. 14+2 =17 o00e@
isblack. 1+2 =7 eee
iIsnormal. 1+2 =17 eee

Foreword

These are slides presented by Steffen Jost at ESOP/ETAPS'06
on Monday, 27 March 2006, Vienna, Austria

I recommend interested people to read our ESOP’'06 paper:
Type-based amortised heap-space analysis
(for an object-oriented language)

Further information can be found at my homepage
http://www.dcs.st-and.ac.uk/"jost

Feel free to contact me via email: jost@dcs.st-andrews.ac.uk

ype-based amortised analysis

Martin Hofmann and Steffen Jost

LMU Munich (Bavaria) / St Andrews (Scotland)

Vienna, 27 March 2006

The Idea:

Amortised Analysis
Well-known technique used for Complexity Theory analysis

Linear Programming
Well-known efficient technique of solving linear constraints

Functional Programming
Well-known technique of efficient programming
of (sometimes inefficient) programs

Combination:
Efficient compile-time resource analysis for functional code
as shown in our earlier work (POPL'03)

TODAY: Application to object-oriented programming style
(ESOP'06)

T he Result:

Efficient compile-time resource analysis for (simplified) JAVA,
successfully treating:

e inheritance

e downcast (and upcast)

e imperative field update

e aliasing (and circular data structures)
We have neglected:

e Multiple ancestors

e exception handling

e static classes
e full inference of enriched types

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)
Always push onto A and pop from B

O

> 0h X
>060 XO

D¢
D
O
A

WO X B

%Y
B

op push(O) pop) =® pop() = O

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)
Always push onto A and pop from B

O

>0 X
> 06 XO

D¢
D
O
A

WO X B

%Y
B

op push(O) pop() =® pop() = O
cost 1 1 5

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)
Always push onto A and pop from B

w>OP KX
~>OP XO
~>OP XO
o WO X6

Y %Y
B B B A
0 0 0 0

op push(O) pop() =® pop() = O
cost 1 1 5

Amortised Analysis
Example: Simulating queue (FIFO) by two stacks (LIFO)
Always push onto A and pop from B

w>OP KX
~>OP XO
~>OP XO
o WO X6

oY ®
B B B A
b 0 0 0 0

op push(O)> pop() = ® pop() = O
1

cost 1 5
AD 1 0 —4
> 2 1 1

Amortised costs are constant as opposed to actual cost!

Automated Analysis of Functional Code: Idea

e Assign potential to data based on type
Type constructors receive weights (list(int, 0), list(int, 1),...)

8/2
Functions receive weights (list(int, 4) 8/2 list(int,0),...)
e Abstract from actual values (list(int, x), list(int,y),...)

e Gather constraints from type derivation with amortised costs

e Feed constraints to LP solver

Successful heap-space analysis of first-order functional programs
applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile
currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Idea

e Assign potential to data based on type
Type constructors receive weights (list(int, 0), list(int, 1),...)

8/2
Functions receive weights (list(int, 4) 8/2 list(int,0),...)
e Abstract from actual values (list(int, x), list(int,y),...)

e Gather constraints from type derivation with amortised costs

e Feed constraints to LP solver

Successful heap-space analysis of first-order functional programs
applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile
currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Idea

e Assign potential to data based on type
Type constructors receive weights (list(int, 0), list(int, 1),...)

8/2
Functions receive weights (list(int, 4) 8/2 list(int,0),...)
e Abstract from actual values (list(int, x), list(int,y),...)

e Gather constraints from type derivation with amortised costs

e Feed constraints to LP solver

Successful heap-space analysis of first-order functional programs
applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile
currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Idea

e Assign potential to data based on type
Type constructors receive weights (list(int, 0), list(int, 1),...)

8/2
Functions receive weights (list(int, 4) 8/2 list(int,0),...)
e Abstract from actual values (list(int, x), list(int,y),...)

e Gather constraints from type derivation with amortised costs

e Feed constraints to LP solver

Successful heap-space analysis of first-order functional programs
applied in EU FET-IST project Mobile Resource Guarantees

Extended to higher-order functional programs meanwhile
currently applied in EU FET-IST project EmBounded

Automated Analysis of Functional Code: Result

4/6
f : list(list(int, 1),2.3) /8, list(int, 5)

Evaluating f([ll,...,lm])
e requires at most 4 4 2.3m + 1x|l;| extra heap units and

e leaves at least 6+ 5|£(1)| unused memory units

Potential of consumed input furnishes upper bound on overall
heap-consumption at runtime — without any runtime mechanics!

Annotations are weight factors — no reference to length/size
as opposed to sized types [Hughes & Pareto '99,'02]

Amortised Analysis of Heap-Usage for OOP

e Types assign each heap configuration statically a potential

e Any object creation must be paid for,
using the potential of input consumed

e Potential of consumed input furnishes upper bound on overall
heap space consumption of program — no work at runtime!

Object-Oriented Language: RAJA

c::= class C [extends D] {A1;...; A, My ---M,}
A= Ca
M ::= Co m(Cy z1,...,C; zj){return e; }
e.l= x (Variable)
null (Constant)
new C (Construction)
free(x) (Destruction)
(C)x (Cast)
x.a; (Access)
X.a;<-T (Update)
r.m(z1,...,2;) (Invocation)
if x instanceof C then e else eo (Conditional)
let x = e in e (Let)

~ Featherweight Java (Igarashi, Pierce, Wadler; OOPSLA'99)
plus imperative field update

Memory Model

Similar to Storeless Semantics (Jonkers; Rinetzky, Wilhelm etal)
e captures quantities and aliasing

e NO random reanimation of stale pointers
("Alias Types" Morrisett & Walker)
("Bunched Implication Logic" Ishtiag & O’'Hearn)

Free-list based model
e memory units taken from free-list at object creation
e Mmemory units returned to free-list at object destruction
e deallocation in C/C++ style with primitve dispose
e dereferencing dangling pointers leads to abortion

Our goal: infer an upper bound on the size of the free-list
required to successfully evaluate as function of the input

Amortised Typing
We use a typing judgement of the form
m .
B W e.C
meaning that if £, h e~ v, k' then a freelist whose size exceeds

m+) POTENTIALL(E(z) : T (z))
x.dom(IM)

will suffice for successful evaluation and the freelist size upon
completion will exceed m’ + POTENTIAL/(v : A).

Amortised Typing
We use a typing judgement of the form I % e: C

Intuition:
e m iS like cash in your pocket, ready to be spent, wheras

e [is like money on the bank that you have to withdraw first

Recall:

m+ > POTENTIALL(E(z) : T(z))
x:dom(IM)

Typing Rule for Object Creation

%) |p+S(i)2e(C) new C': C

In a method call we get access to the annotation of the callee:
this:C, x1:A1, ..., xn Anp |m7_|7p er:B
then method f in class C with body ey may be typed as

B,m' f(A{ z1,...,An Tn,m)

p must depend on C, its superclasses and its fields somehow

Reclaiming Potential
Q: Why can potential be spent without destroying objects?

A: Reclaiming potential only at object destruction would not
be sufficient; non-destructively processing a data structure
might need potential (e.g. clone) See example.

Q: Can you ‘gain’ potential without actually calling a method?
A

: No. “this” is the only certain non-null pointer. A language
with a separate category of non-null pointers would allow it.

Q: Will multiple calls to a method not mess up the potential?

A: Our sharing rules™ will ensure that the second time around the
callee has a different type which carries less if any potential.

*aka contraction

Sketch of RAJA System

RAJA program P consists of a set of views.
For each class C' and view » we have an annotated version C".

O(CT) @ Class x View — QT
A9°t(C"a) : Class x View x Field — View (get-view)
ASCL(C"q) : Class x View x Field — View (set-view)
M(C",m) : Class x View x Method —
P(Views of Arguments — Effect x View of Result)

p/q
Tl,...,Tj—>?“O

Subtyping of annotated classes is covariant w.r.t.
O(), A€ (.) and result types of methods
and it is contravariant w.r.t.
ASCt(. .) and argument types of methods

Example: OO-Lists

abstract class List { abstract List clone(); }

class Nil extends List {
List clone() {
return this; }

}

class Cons extends List {
Int elem;
List next;

List clone() {
Cons res = new Cons();
res.elem = this.elem;
res.next = this.next.clone();
return res; }

+

<>.(-) rich poor poorest poor poorest
List O O O get T

. A9t (Cons”, next) poor poorest
Nil 0 0 0 AS*t(Cons”, next) poor rich
Cons 1 0 0 ’

: : : 0/0
M({Listr'Ch,Consr'Ch,Nil”Ch}, copy) = () AN poor

Potential b (v:r)= 2¢0((vr)ﬁ)
p

Potential: infinite sum over all access paths from an object v,
zero almost everywhere (allowing cyclic data structures)

0 if [v.p], =NULL or undefined

%((U:T)'ﬁ): O(D?®) otherwise

where D is the dynamic class type of v.p and s is the view obtained
by chaining r through the various dynamic types encountered

starting from v along 7 using A9¢et

value v: location or NULL

view r: obtained from static typing of v
access path p: finite word over field names

heap o: maps locations to objects

O() | rich poor poorest | rich poor poorest
List | O 0 0 A9t (Cons”,next) | rich poor poorest
Nil 0 0 0 AS*t(Cons” 7next) rich poor rich
Cons | 1 0 0 ’

: : : 0/0
M({Listr'Ch,Consr'Ch,Nil”Ch}, copy) = () AN poor

Example: OO-Lists
v points to chain of 3 Cons objects followed by a Nil object in o

Do (v:rich).e) = O(ConsriCh) =1

do (v:l’iCh).next) =1

Do (’U:rich).next.next) =1

Do (v:rich).next.next.next) = O(NilriCh) =0
Do (v:l’iCh).next.next.next.next*) =0

Therefore:
P (v :rich) =3 but P (v :poor) =0

O() | rich poor poorest | rich poor poorest
List | O 0 0 A9t (Cons”,next) | rich poor poorest
Nil 0 0 0 AS*t(Cons” 7next) rich poor rich
Cons | 1 0 0 ’

: : : 0/0
M({Listr'Ch,Consr'Ch,Nil”Ch}, copy) = () AN poor

RAJA Typing Rules

e Upon object creation (new) one must pay the actual cost
(size of the object) and also the amortised cost
(e.g. +1 in the case of Cons"ch)

e In the body of a method one gets access to the annotation
of the callee, however it must be shared with possible uses
of this in the method body, see below.

e In a deallocation (free) one gets access to both the
annotation and the actual size of the object.

e TO prevent multiple access to annotations via multiple
method calls, we use a linear typing discipline with an
explicit contraction rule (sharing):

Aliasing
Y(slq1,q2) My:DI,2:D? |5 e C7

I, x:D? % elx/y,x/z] : C"

Y(-|-): coinductively defined relation between views and multisets of views.

We do have:

Y(poor [{poor, poor, poor,...})
Y(rich [{rich, poorest, poorest,...})

Of course, we do not have:
Y(poor [{rich,poor})
Y(rich [{rich,rich})
Y(rich [{rich, poor})

<>.(.) rich poor poorest rich poor poorest
L%St 0 0 0 A9t (Cons”,next) | rich poor poorest
Nil 0 0 0 AS*t(Cons” ’next) rich poor rich
Cons 1 0 0 ’

: : : 0/0
M({Listr'Ch,Consr'Ch,Nil”Ch}, copy) = () AN poor

Update Rule
ASCY(CTq) = s C.a=D
x.C", y.D? |% x.a<-y . C"

Field update requires a view which is rich enough to feed all
different paths that might lead into this field.

Thus, if £ has type ListP2°est then for
x.next<-y, .
one must have y:List"cN.

After all, the above code could have been preceded by

X =12z,
with z:List" " then after the assignment we would still expect
z to be “rich” and fortunately it is!

However, even x.next<-x.next; iS now forbidden.

Update Rule
ASCL(CTa) = s C.a=D
x:C",y.D? |% x.a<-y . C"

Our rule differs from standard Java field update:

C.a=D
x.C,y:D - x.a<-y . D

Java-style update is definable:

let v = (z.a<-y) in y

but relies on sharing as it should bel

Soundness T heorem

If I_%e:CT nokte~uv,7 oEn:(IN,A) then

nmtPn:NH+P(n:A)
9 '+ o (vir)+ D (n:A) e~ uT (1)
T ': 7’][337“63 > ’U] . (A, xres:cr) (2)

A 1S an arbitrary context representing other parts of the program
that may share with the currently focused on heap portion.

The statement of the soundness theorem is similar to [HJ 2003].

Proof sketch: Update
Suppose we deal with the update expression x.next<-y

In the worst case we had before [x.next] = NULL,
I.e. no potential contributed by paths containing x.next

11
1
1
11
1

>
\
\

B

®

o

N

\
\

L

<~
~

AN

Proof sketch: Update
Suppose we deal with the update expression x.next<-y

In the worst case we had before [x.next] = NULL,
I.e. no potential contributed by paths containing x.next

Now each access path arriving at x can continue through next and
any path leading away from y — possibly contributing potential.

Proof sketch: Update
Suppose we deal with the update expression x.next<-y

In the worst case we had before [x.next] = NULL,
I.e. no potential contributed by paths containing x.next

Now each access path arriving at x can continue through next and
any path leading away from y — possibly contributing potential.

We proof that there is no unsound increase in potentiall!

More examples

e Doubly-linked lists: even in rich version the back-pointers are
poorest so that only access paths of the form next* con-
tribute.

e Iterators on doubly linked lists: as soon as you move the
iterator backwards it changes view so no more potential can
be extracted.

Planned examples: visitor, subject-observer, union-find.

Conclusion

e Our type-based analysis encompasses:

xObjects Inheritance Downcast
wImperative Update Y Aliasing w Circular Data

e Type inference nontrivial task. Tree automata?
e More examples and implementation are being worked on.

e Applicable to other quantitative properties:
number of calls to methods other than “new’”, e.g. ‘“fopen”
or stack-size, execution time, ...

