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IntroductionThe �eld of automated deduction has reached a state of maturity and seriousness,in which the hope for �nding a proof method which is simple, uniform, andsuccessful in general has been rightly given up. On the other hand, a wealthof isolated techniques has been developed so far, which, when combined in anappropriate non-trivial manner, may give rise to such successful proof methods. Ina situation like this there are three essential tasks. First, the existing mechanisms,which are typically formulated in di�erent frameworks, need to be compared andclassi�ed, in order to make the similarities and di�erences transparent. Also, thisway a lot of redundant work in related formalisms can be avoided. Secondly,the techniques need to be evaluated with respect to two properties particularlyrelevant for automated deduction, namely, their inferential and reductive power.Finally, promising ways of combining and integrating the selected mechanismsneed to be identi�ed.In this work contributions are made to all three of the mentioned tasks. Thus,as opposed to many other investigations in automated deduction, we compare andput forward mechanisms in di�erent frameworks in parallel. Furthermore, we de-velop conceptual tools for classifying inference rules and inference systems in arigorous and computationally reliable manner. For the evaluation of the mecha-nisms we are using the well-established notion of polynomial simulation. Finally,we illustrate that by means of integrating methods from di�erent frameworks newpromising proof systems for automated deduction can be obtained.The work is organized in four chapters. In the following we shall give a detailedoverview on the main contents of the chapters and their interdependencies.In the �rst chapter, which is of a preparatory nature, we discuss basic repre-sentation techniques and modi�cation operations on logical expressions. After acomplete presentation of the syntax and semantics of �rst-order logic, which wehave included in order to render the work self-contained, we concentrate on morecompact representation formats for logical expressions than the ordinary stringor tree notation. The standard motivation for employing such representations isthat they are needed to make the uni�cation operation perform in polynomialtime. We show that the failure of achieving polynomial uni�cation with the ordi-nary data structures is just one symptom of their weakness, the more elementaryreason being that an iterative application of substitutions may lead to an expo-nential behaviour. We present two types of compact data structures. One are



vi Introductionthe well-known directed acyclic graphs, which are well-suited for a direct trans-mission to the computer, but unconvenient for a textual handling. Therefore, weadditionally develop a string notation, the language of de�nitional expressions,which permits equally compact formulations as graphs but is better suited forthe human use. After introducing the modi�cation operations of matching anduni�cation for ordinary expressions, we describe their polynomial variants usingthe compact representation formats. We conclude the preparatory chapter withreviewing the most widely used sublanguages and normal forms of the �rst-orderlanguage.The wealth of logical systems currently developed increases the interest inconceptual frameworks for classifying and comparing di�erent systems. The sec-ond chapter of this work is devoted to the development of notions which arefundamental for analyzing the structural and computational properties of logiccalculi. After an explication of the general concepts of logical relations and logi-cal problems, we stress the importance of distinguishing between the declarativeand the operational or transitional aspects of logical systems. Then we presenta general framework for measuring the computational complexities of arbitrarytransition relations and deductions, which are treated as particular transitionrelations. In order to be able to compare complexities on a level which is asabstract as possible, we subscribe to abstractions modulo polynomials, as usualin complexity theory. The central notions emerging this way are the propertiesof polynomial transparency and weak polynomial transparency. The polynomialtransparency of a transition relation guarantees that the number of rewrite stepsin any transition sequence represents an adequate measure for the actual com-putational complexity of the sequence. Weak polynomial transparency is theadequate concept for evaluating the indeterministic powers of special transitionrelations, called proof relations, by restricting attention to shortest proofs only.The bene�t of the framework is twofold, not only does it facilitate the abstractclassi�cation of deduction systems, it also may give advice how to improve thesystems. This is illustrated most signi�cantly in the fourth chapter, when thedeveloped notions are used on the resolution calculus.Since the basic design decisions for �rst-order calculi are settled on the propo-sitional level, we follow the common practice of �rst considering in an extrachapter the propositional or ground versions of the calculi developed later on.Also, propositional logic is important in its one right, since it plays a central rolein complexity theory, due to the NP-completeness of the satis�ability problem.Although the traditional generative types of logic calculi, Frege/Hilbert systems,natural deduction and sequent calculi , are relatively strong with respect to in-deterministic power, i.e., permit the formulation of relatively short proofs, thesystems are not suited to a direct automation. This is because the calculi containtoo much indeterminism and are lacking in goal-orientedness, which renders italmost impossible to actually �nd short proofs using those systems.



Introduction viiWe study in detail two families of logic calculi which are particularly ap-propriate for the purposes of automated deduction. The �rst family consistsof resolution systems and semantic tree procedures, which have in common thatthey use a condensed variant of the cut rule from sequent systems. The closerelationship between both types of calculi becomes apparent when consideringtheir declarative proof objects, which are identical for certain subsystems. Sinceresolution applies the cut rule in a forward, i.e., generative, manner, just like se-quent systems, resolution is not suited as a basis for deciding the logical status ofpropositional formulae. The semantic tree format, which applies the cut rule in abackward manner, has proven as the optimal framework for solving propositionalformulae in practice. This is because in propositional logic, where the number ofinterpretations is �xed, the backward cut rule can be viewed as a mechanism ofenumerating sets of interpretations in a particularly e�cient way.The other family investigated in this work consists of tableau systems andconnection calculi, which, by their very nature, are cut-free proof systems. Sincein �rst-order logic the backward application of the cut rule is problematic, thesystems are excellently suited as bases for developing successful �rst-order calculi.By a straightforward amalgamation of the central ideas in both types of calculi,we obtain the connection tableau framework, which generalizes the model elim-ination calculus. The main characteristic of connection tableau calculi is theirmissing proof-con
uence, that is, not every proof attempt of a provable formulacan be completed successfully. This possibility of making irreversible decisionsin the calculus demands a di�erent organization of the proof process as in res-olution or systematic tableau procedures, namely, as a deduction enumerationinstead of a formula enumeration procedure. Since in connection tableau proce-dures, in general, all deductions need to be enumerated, we consider a numberof structural re�nements which extremely reduce the numbers of deductions witha certain resource. We also show that those re�nements may weaken the inde-terministic powers of the calculi. Due to their cut-freeness, connection tableaucalculi are signi�cantly weaker concerning indeterministic power than semantictrees or resolution systems. In order to remedy this weakness, we develop a newcontrolled variant of the cut rule, the folding up operation, which can be appliedwithout introducing to much additional indeterminism. This technique, whichis properly more powerful than the factorization rule in connection calculi, ispresented as an e�cient way of integrating lemmata into the connection tableaucalculus. The folding up operation also gives rise to an additional structural re-�nement of tableaux, which produces a new promising calculus for automateddeduction.In the fourth chapter we discuss �rst-order calculi and proof procedures forautomated deduction belonging to three classes. First, we consider Herbrand pro-cedures; then fundamental properties of resolution calculi are studied; �nally, wedevelop advanced connection tableau calculi and proof procedures. The presen-tation follows the historical course of scienti�c development in the �eld, since the



viii Introductionsixties. Accordingly, we start with a review of the Herbrand compactness prop-erty, which directly suggests a two-step methodology of proving Skolemized �rst-order formulae, so-called Herbrand procedures. While the na��ve approach worksby really enumerating sets of ground instances, which afterwards are decided bypropositional means, a signi�cant improvement can be achieved by enumeratingso-called multiplicities of the input, which then are decided by checking whetherthere exist uni�able spanning matings. Although the second approach is superiorto the na��ve one, it still su�ers from the two-step methodology, by employingtwo relatively independent subprocedures. The consideration of sets of Herbrandinstances also motivates the introduction of the notion of Herbrand complexity asan important complexity measure for the classi�cation of �rst-order calculi. TheHerbrand complexity of a set of formulae S is the minimal size of an unsatis�ableset of ground instances of the formulae in S. This measure gives rise to a naturalgeneralization of the notion of Herbrand procedures to so-called Herbrand calculi,which is the class of all calculi for which Herbrand complexity is a lower boundto the sizes of proofs.Subsequently, in concordance with the historical development, we move over tothe �rst-order resolution calculus, which from the mid-sixties on for �fteen yearsalmost completely absorbed the e�orts in automated deduction. The relativesuccess of resolution in automated deduction is due to a particularly prosper-ous combination of two inference mechanism, namely the forward cut rule andthe uni�cation operation, which achieves optimal variable instantiations. Thisalso illustrates that automated deduction in propositional logic and automateddeduction in �rst-order logic have completely di�erent emphases, with respectto the problems considered as relevant for the respective domain. Thus, in�rst-order logic, normally, nondenumerably many interpretations exist, so thatinterpretation-oriented methods like semantic tree procedures cannot be applied.A �rst-order variant of semantic trees, in which the backward cut rule is gener-alized appropriately, seems not to exist either. Since resolution re�nements andresolution proof procedures have been thoroughly investigated in the literature,we restrict ourselves to the presentation of two closely related fundamental resultson resolution. First, we demonstrate that resolution is not polynomially boundedby Herbrand complexity, so that there may exist signi�cantly shorter proofs thanin Herbrand calculi. On the other hand, however, �rst-order resolution lackspolynomial transparency, even in the weak sense. Consequently, the number ofinferences in a resolution proof does not give a representative measure of theactual complexity of the proof, even if only shortest proofs are considered. Wepresent a class of formulae which have resolution proofs with a polynomial num-ber of inference steps, but for which the size of any proof is exponential. Both thesuperiority of resolution over Herbrand calculi and the intransparency of resolu-tion are due to the possibility of renaming the variables in derived clauses, whichis a fundamental deduction mechanism. This result motivates the developmentof new data structures for the representation of formulae.



Introduction ixSince the beginning of the eighties, with the connection method and modelelimination, non-resolution frameworks for automated deduction in �rst-orderlogic have been reconsidered. The motivation for the development of alternativesto resolution is the fact that not the cut rule is the main reason for the relativesuccess of resolution but the uni�cation operation. Consequently, other proposi-tional inference systems than resolution can be made into successful �rst-ordercalculi by integrating uni�cation. In fact, the �rst-order versions of the connec-tion tableau calculi, on which we concentrate, can even more easily be lifted to the�rst-order case, since only uni�cation is needed for �rst-order completeness andno additional mechanism, like the factoring rule in resolution. We develop newpowerful pruning mechanisms, which can be implemented in a very e�cient way,and illustrate the superiority of the tableau format over frameworks like modelelimination, by demonstrating the reductive potential of using free selection func-tions. The folding up operation can be integrated smoothly into the �rst-orderversion of connection tableaux. We conclude our work with the discussion of twoimportant aspects of connection tableau proof procedures. On the one hand, weshow that due to the permutability of tableaux, pure uninformed enumerationprocedures contain a source of redundancy, which can be removed if informationabout the matings corresponding to the tableaux is used. On the other hand, wepoint to a further fundamental redundancy, which results from the very nature ofany logic calculi working by decomposing problems into subproblems and solvingthe subproblems separately. In order to avoid this redundancy it is necessary toapply global deletion methods which compare alternative deductions. This ob-servation motivates the future development of global pruning methods employinginformation from the proof search itself.
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Chapter 1First-Order LogicThis chapter presents the basic components of �rst-order logic. After some com-putational preliminaries in the �rst section, in Section 2 the syntax and semanticsof ordinary �rst-order logic is introduced. The automatic processing of logic hasrevealed that the standard representation of logical expressions is not optimallysuited to an e�cient computational treatment. For this reason, more compactrepresentational formats are discussed. Section 3 presents the well-known graphi-cal encoding of logical expressions by use of directed acyclic graphs. Since graph-ical representations are very hard to handle textually, in Section 4 a string vari-ant of the graphical encoding is developed, the de�nitional �rst-order language.Subsequently, we discuss the basic modi�cation mechanisms used in automateddeduction, namely, the instantiation operations of matching and uni�cation. InSection 5 these operations are introduced for ordinary logical expressions, and inSection 6 matching and uni�cation are generalized to the handling of de�nitionalexpressions. Section 7 concludes this chapter with the discussion of importantsublanguages and normal forms of the �rst-order language.1.1 Computational PreliminariesThis work is concerned with giving complexity measures on the space neededfor encoding various mathematical objects on a computer and on the space andtime needed for manipulating the represented objects. For this purpose uniformand realistic representation models are necessary for describing space and timeconsumption.1.1.1 Basic Abstract Machine ModelsIn order to make the complexity measures independent of actually existing hard-ware, which is diverse and rapidly changing, it is reasonable to base the consider-ations on abstract machine models, mathematical idealizations of real computers.There are a number of basic abstract computation and machine models like Tur-



2 First-Order Logicing machines [Aho et al., 1974]|the standard mathematical model for string-oriented computation|or random access machines [Cook and Reckhow, 1973]|the idealized von Neumann computer. All these models have in common thatone can distinguish between a �nite program|formulated with a �nite numberof elementary symbols|which is to operate on machine states or con�gurations.The program determines for any machine state a set of possible subsequent ma-chine states, hence, mathematically, the program de�nes a transition relationbetween machine states. A computation on a machine can then be de�ned asa sequence of successive machine states. While Turing machines, random accessmachines, and other generally accepted basic machine models di�er in their spaceand time measures, there seems to be the general assumption that all \realistic"frameworks can simulate each other within a constant factor overhead in spaceand a polynomially bounded overhead in time (as formulated, for instance, in[van Emde Boas, 1990] which provides an introduction to this subject). In fact,this assumption can be used to de�ne realistic machines if, for example, Turingmachines are taken as realistic.1.1.2 Sequences and StringsIn this work, we subscribe to a string-oriented computation model, which is themost natural representation framework for the objects we are dealing with. Inorder to introduce strings formally some basic de�nitions are needed.De�nition 1.1.1 (Partial sequence and sequence) Any mapping1 with its do-main being a subset of the positive integers N , while its range may be any setof objects, is called a partial sequence. The length of a sequence S, writtenlength(S), is its cardinality, card(S). A partial sequence S is called connected iffor arbitrary integers i < j < k: whenever i 2 domain(S) and k 2 domain(S),then j 2 domain(S). A connected partial sequence S is named a sequence if1 2 domain(S). A partial connected sequence S is said to be a subsequence of apartial connected sequence S 0 if S � S 0. If a subsequence S 0 of a sequence S isitself a sequence, then S 0 is termed a pre�x of S.Notation 1.1.1 We denote the values S(i) of partial sequences with Si.Connected partial sequences fhi; Sii; hi+1; Si+1i; hi+2; Si+2i; : : :g are writteni(Si; Si+1; Si+2; : : :) where the left index i is omitted for sequences, i.e., for i = 1.Example 1.1.1 Given a sequence of letters S = (`s',`t',`a',`r',`t',`i',`n',`g').The sequence (`s',`t',`a',`r',`t') is a pre�x of S, the partial connected sequenceS 0 = 3(`a',`r',`t') is a subsequence of S, and the partial sequence S 00 =fh1; `s0i; h2; `t0i; h4; `r0i; h6; `i0i; h7; `n0i; h8; `g0ig, which is a subset of S, is no subse-quence of S.1As usual, we view relations and mappings as sets of ordered pairs.



1.1 Computational Preliminaries 3De�nition 1.1.2 (Occurrence) For any partial sequence S a partial functionnthS: N �! range(S) can be de�ned that maps any positive integer i � card(S)to that value Sj for which there are i elements hk; Ski in S with k � j. Themapping nthS is a sequence and is named the sequence normalization of thepartial sequence S. If S 00 is the sequence normalization of a subsequence S 0 ofa sequence S, then S 0 is called an occurrence of S 00 in S. Also, all objects inthe range of a partial sequence S are said to occur in S. We call an occurrenceS 0 of a sequence S 00 (an occurrence i(o) of an object o) in a sequence S the k-thoccurrence of S 00 (of the object o) in S if there are k�1 occurrences of S 00 (of theobject o) in S such that their least domain numbers are smaller than the leastdomain number of S 0 (of i(o)).Referring to the sequences given in Example 1.1.1, the sequence(`s',`t',`r',`i',`n',`g') is the sequence normalization of the partial sequence S 00, andthe subsequence 3(`a',`r',`t') of S is an occurrence of its sequence normalization(`a',`r',`t') in S.De�nition 1.1.3 (Alphabet) An alphabet is a countable set of objects, calledsymbols.De�nition 1.1.4 (String) A string or word over an alphabet is a �nite sequenceof symbols from the alphabet. A symbol string is a string of length 1. Anysubsequence S of a string S 0 is called a substring of the string S 0, and if S is asymbol string, it is said to be a subsymbol of S 0.Notation 1.1.2 Normally, we abbreviate any string (s1; : : : ; sn) by just writingits symbols side by side as s1 � � � sn. For the case of a symbol s, this induces theambiguity that we do not know whether by writing `s' the symbol or the unarystring of this symbol is meant. We shall systematically exploit this ambiguity inthat we shall normally not distinguish between a symbol and its symbol string.The context will clear up possible uncertainties.De�nition 1.1.5 (Concatenation of strings) If W1;W2; : : : ;Wn are strings withlengths l1; l2; : : : ; ln, respectively, then we call the string de�ned byW (i) = 8>>><>>>: W1(i) for 1 � i � l1W2(i� l1) for l1 < i � l1 + l2� � �Wn(i� l1 � � � � � ln�1) for l1 + � � �+ ln�1 < i � l1 + � � �+ lnthe concatenation of W1;W2; : : : ;Wn, which is written W1W2 � � �Wn.



4 First-Order Logic1.1.3 Space and Time Complexity MeasuresThe space complexity of the objects treated in this work is measured in terms ofencodings of the objects as strings over some alphabet. The idea of such encodingsis that any unstructured object o is represented as a string over the alphabet, andany �nite structure of objects o1; : : : ; on is encoded as a string composed of theobject representations plus an appropriate encoding of the structure.Note By unstructured objects we mean objects such that, for any two of them,it can merely be determined whether they are di�erent or identical. Accordingly,the only information expressed in a set S of unstructured objects is the cardinalityof the set.We use a number of space complexity measures. Only one of them is real-istic with respect to actual physical devices, the others are all unrealistic butconvenient. A realistic size of any object o, written #(o), is the length of anappropriate, i.e., structure-preserving, string representation of the object over agiven �nite alphabet. All realistic sizes of an object di�er only by a constantfactor, thus re
ecting the assumed correspondence in space complexity betweenthe generally accepted basic machine models mentioned above. Besides the real-istic measure, we use various more abstract space complexity measures, writtensize(o). The simplest of these unrealistic measures takes the length of an ap-propriate string representation of the object over an in�nite alphabet as its size.This measure is extremely convenient, because it permits that any unstructuredobject can be encoded as a symbol string, and hence has the size 1. Since anyrepresentation of an object using an in�nite alphabet can be encoded as a stringof a length of the order O(n logn) over a �nite alphabet, a realistic size of anobject can be easily computed from the mentioned unrealistic size. Occasionally,we shall go further and use situation-dependent space complexity measures whichare even more convenient. Unrealistic measures are computationally adequate forthose abstract considerations where the trade-o� between the realistic and theemployed unrealistic measure does not matter. Whenever the representativenessof an unrealistic model is doubtful, we shall relate it to the realistic model|thiswill be the case in Section 2.3.The complexity of a computation will be measured in terms of its time com-plexity, since the space complexity of a computation, as the maximal size of itsstates, gives only a very rough complexity measure2. The time complexity is�ner and also has implications on the space complexity. A useful time com-plexity measure for any computation in a basic machine model is the number oftransition steps, i.e., the length of the sequence of con�gurations minus 1. Inorder to make this uniform time measure a realistic measure, it is necessary thatthe hidden factor, namely, the time spent for a single transition operation, be2Note, however, the strong in
uence of the increase in size on the time complexity, which iselaborated in Section 2.3.



1.2 Syntax and Semantics of First-Order Logic 5bounded in a certain way. Here, Turing machines provide a realistic model bypermitting the manipulation of only one symbol in each step|manipulations ofarbitrarily large structures in one transition, like in the case of a random accessmachine, demand di�erent measures, like logarithmic time, to render them real-istic. Under this assumption, all variants of Turing machines and the logarithmictime versions of random access machines are polynomially related (again consult[van Emde Boas, 1990]).The mentioned realistic measures are de�ned in terms of the machine resourcesonly, they do not consider the input of a computation as a complexity parameter.Accordingly, a natural abstraction from the realistic time measures is to quantifymachine resources with respect to the input sizes of computations. This unrealis-tic measure is very useful for the computational assessment of a given procedure,since one is often not so much interested in the actual computing time of the pro-cedure but in the relation between the input size and the computing time. Also,from this unrealistic measure the actual computing time can be easily obtained.Consequently, this measure, with the abstraction modulo polynomials, will bethe standard time complexity measure in our investigations. In Section 2.3, weshall use the input size and the number of steps of a computation as the twoingredients to de�ne a generalized class of basic machine models, related throughthe property of polynomial transparency.1.2 Syntax and Semantics of First-Order LogicThe language of �rst-order logic has a structure which is a very convenient andpowerful formal abstraction from expressions and concepts occurring in naturallanguage, and, most signi�cantly, in mathematical discourse. The expressions of a�rst-order language are particular strings over an in�nite alphabet of elementarysymbols.1.2.1 First-Order SignaturesDe�nition 1.2.1 (First-order signature) A �rst-order signature3 is de�ned as apair � = hA; ai consisting of a denumerably in�nite alphabet A and a partialmapping a: A �! N0 , associating natural numbers with certain symbols in A,called their arities, such that A can be partitioned into the following six pairwisedisjoint sets of symbols.1. An in�nite set V of variables, without arities.2. An in�nite set of function symbols, all with arities such that there are in-�nitely many function symbols of every arity. Nullary function symbols arecalled constants.3In this work solely untyped signatures will be used.



6 First-Order Logic3. An in�nite set of predicate symbols, all with arities such that there arein�nitely many predicate symbols of every arity.4. A set of connectives consisting of �ve distinct symbols :, ^, _, !, and$, the �rst one with arity 1 and all others binary. We call : the negationsymbol, ^ is the conjunction symbol, _ is the disjunction symbol, ! is thematerial implication symbol, and $ is the material equivalence symbol,5. A set of quanti�ers consisting of two distinct symbols 8, called the universalquanti�er, and 9, called the existential quanti�er, both with arity 2.6. A set of punctuation symbols consisting of distinct symbols (, ), and ; ,without arities.Notation 1.2.1 Normally, variables and function symbols will be denoted withlower-case letters and predicate symbols with upper-case letters. Preferably, weuse for variables letters from `u' onwards; for constants the letters `a', `b', `c', `d',and `e'; for function symbols with arity � 1 the letters `f ', `g' and `h'; and forpredicate symbols the letters `P ', `Q' and `R'; nullary predicate symbols shalloccasionally be denoted with lower-case letters. Optionally, subscripts will beused. With the same letters the corresponding symbol strings will be denoted,too. We shall extend the terminology in such a way that unary strings containingvariables, function, or predicate symbols are also called variables, function, orpredicate symbols, respectively|the context will clear up possible ambiguities.We will always talk about symbols of �rst-order languages and never give examplesof concrete expressions within a speci�c object language.1.2.2 First-Order ExpressionsGiven a �rst-order signature �, the corresponding �rst-order language is de�nedinductively4 as a set of speci�c strings over the alphabet of the signature. In thefollowing, let � = hA; ai be a �xed �rst-order signature.De�nition 1.2.2 (Atomic term) Every (symbol string of a) constant or variablein A is said to be an atomic term over �.De�nition 1.2.3 (Term) (inductive)1. Every atomic term over � is a term over �.2. If f is (the symbol string of) an n-ary function symbol in A with an arityn � 1 and t1; : : : ; tn are terms over �, then the concatenation f(t1; : : : ; tn)is a term over �.4In inductive de�nitions we shall, conveniently, omit the explicit formulation of the necessitycondition.



1.2 Syntax and Semantics of First-Order Logic 7De�nition 1.2.4 (Atomic formula) (inductive)1. Every (symbol string of a) nullary predicate symbol in A is an atomicformula, or just atom, over �.2. If P is (the symbol string of) an n-ary predicate symbol in A with an arityn � 1 and t1; : : : ; tn are terms over �, then the concatenation P (t1; : : : ; tn)is an atomic formula, or atom, over �.De�nition 1.2.5 (Formula) (inductive)1. Every atom over � is a formula over �.2. If F and G are formulae over � and x is (the symbol string of) a variablein A, then the following concatenations are also formulae over �::F , called the negation of F ,(F ^G), called the conjunction of F and G,(F _G), called the disjunction of F and G,(F ! G), called the material implication of G by F ,(F $ G), called the material equivalence of F and G,8xF , called the universal quanti�cation of F in x, and9xF , called the existential quanti�cation of F in x.De�nition 1.2.6 ((Well-formed) expression) All terms and formulae over � arecalled (well-formed) expressions over �.De�nition 1.2.7 (First-order-language) The set of all (well-formed) expressionsover � is called the �rst-order language over �, which we write L�.De�nition 1.2.8 (Complement) If a �rst-order formula F has the structure :G,then G is the complement of F , otherwise, i.e., in case F is not a negated formula,then the complement of F is :F .Notation 1.2.2 The complement of a formula F is denoted with �F .De�nition 1.2.9 (Subexpression) If an expression � is the concatenation ofstrings W1; : : : ;Wn, in concordance with the De�nitions 1.2.2 to 1.2.5, then anyexpression among these strings is called an immediate subexpression of �. Thesequence obtained by deleting out all strings from W1; : : : ;Wn which are not ex-pressions is called the immediate subexpression sequence of �. Among the stringsW1; : : : ;Wn there is a unique symbol string W whose symbol is a connective, aquanti�er, a function symbol, or a predicate symbol; W and its symbol are calledthe dominating string and the dominating symbol of �, respectively. An expres-sion � 0 is said to be a subexpression of an expression � if the pair h� 0;�i is inthe transitive closure of the immediate subexpression relation. Analogously, thenotions of (immediate) subterms and (immediate) subformulae are de�ned.



8 First-Order LogicExample 1.2.1 Presupposing our conventions of denoting symbols and sym-bol strings, a formula P (x; f(a; y); x) has the immediate subexpression sequence(x; f(a; y); x); the immediate subexpressions x and f(a; y); the subexpressions x,f(a; y), a, and y; and, lastly, P as dominating symbol (string).De�nition 1.2.10 (Scope of a quanti�er occurrence) Let S = i(Q) be a sub-symbol of an expression � where Q is a quanti�er. Due to the fact that � is anexpression, there must exist an occurrence S 0 = i(Q; x; : : :) of a quanti�cation in�. The substring S 0 is called the scope of S in �. Any substring of S 0 is said tobe in the scope of S.Example 1.2.2 In a formula 8x9y(P (x; y) _ 8x:P (x; y)), i.e., in the string(8; x; 9; y; (; P; (; x; ; ; y; );_; 8; x;:; P; (; x; ; ; y; ); ); ), the scope of the �rst quanti-�er occurrence (8) is the whole formula, whereas the scope of 13(8) is the substring13(8; x;:; P; (; x; ; ; y; ); ). The subsymbol 18(x) is both in the scope of (8) and inthe scope of 13(8).De�nition 1.2.11 (Bound and free variable occurrence) If an occurrence i(x) ofa variable x in an expression � is in the scope S of a quanti�er subsymbol j(Q)which is immediately followed by an occurrence of the same variable x, and ifi(x) is not in the scope of some quanti�er occurrence k(Q 0) immediately followedby an occurrence of x in a proper substring of S, then i(x) is said to be boundby j(Q). A variable occurrence i(x) is called free in an expression � if i(x) is notbound by some quanti�er subsymbol of �.Referring to Example 1.2.2, the subsymbol 18(x) is bound by 13(8), but notby (8) or 3(9). Clearly, every occurrence of a variable in a well-formed expressionis bound by at most one quanti�er subsymbol of the expression.De�nition 1.2.12 (Closed formula) Any formula which does not contain freevariable occurrences is called a closed formula.De�nition 1.2.13 (Closure of a formula) Let F be a formula F with fx1; : : : ; xngbeing the set of free variables occurring in F , then the formula 8x1 � � � 8xnFis called a universal closure of F , and the formula 9x1 � � � 9xnF is called anexistential closure of F .1.2.3 Semantics of First-Order LogicA logic can be viewed as a pair hL;Ri consisting of a logical language L|in ourcase a �rst-order language|and a relation R on the expressions in L. Amongthe relations on logical expressions, the binary relations of logical consequence aremost important. Any logical consequence relation attempts to formalize an intu-itively given paradigm of correct reasoning. Historically the �rst de�nitions of log-ical consequence relations were formulated in purely syntactic terms, by specifying



1.2 Syntax and Semantics of First-Order Logic 9systems of structural rules for deducing logical expressions from logical expres-sions [Frege, 1879, Hilbert and Ackermann, 1928,  Lukasiewicz and Tarski, 1930,Gentzen, 1935]. The sensibility of one thus de�ned system can be motivated bymaking plausible that every rule in the system corresponds to an accepted rulein an intuitively given paradigm of correct reasoning. This way, di�erent systemswere developed and indeed turned out to de�ne the same consequence relations,thus providing a completely formal motivation for the signi�cance of the speci�edconsequence relations.5 Among the consequence relations, the relation of classicallogical consequence, written `, plays a central role.Initiated by the work of Tarski [Tarski, 1936], an alternative way of character-izing logics became customary. Tarski showed that it is possible to give declarativemeaning to the expressions of a logic language, in analogy to the situation in nat-ural language where certain expressions can be interpreted as denoting objects inthe real world. The standard way of giving semantics to a formal language is byspecifying mappings, called interpretations, from the signature and the expres-sions of the language to mathematical objects.De�nition 1.2.14 (Universe) Any non-empty set of objects is called a universe.Notation 1.2.3 For every universe U , we denote with UF the collection of map-pings Sn2N0 Un �! U , and with UP the collection of relations Sn2N0 pow(Un)where pow(S) denotes the power set of a set S. Note that any nullary mappingin UF is from the singleton set f;g to U , and hence, subsequently, will be iden-ti�ed with the single element in its image. Any nullary relation in UP is justan element of the two-element set f;; f;gg (= f0; 1g, according to the Zermelo-Fraenkel de�nition of natural numbers). We call the sets ; and f;g truth values,and abbreviate them with ? and >, respectively.In the following, we denote with L a �rst-order language, with V, F , and P thesets of variables, function symbols, and predicate symbols in the signature of L,respectively, and with T and W the sets of terms and formulae in L, respectively.De�nition 1.2.15 (L-structure, interpretation) An L-structure is a pair hL;Uiconsisting of a �rst-order language L and a universe U . An interpretation for anL-structure hL;Ui is a mapping I: F [ P �! UF [ UP such that1. I maps every n-ary function symbol in F to an n-ary function in UF , and2. I maps every n-ary predicate symbol in P to an n-ary relation in UP .De�nition 1.2.16 (Variable assignment) A variable assignment from a �rst-order language L to a universe U is a mapping A: V �! U .5Just like the equivalence of di�erent formalizations of computability furnishes a completelyformal support for Church's Thesis.



10 First-Order LogicDe�nition 1.2.17 (Term assignment) (inductive)Let I be an interpretation for an L-structure hL;Ui, and let A be a variableassignment from L to U . The term assignment of I and A is the mapping IA:T �! UF de�ned as follows.1. For every variable x in V: IA(x) = A(x).2. For every constant c in F : IA(c) = I(c).3. If f is a function symbol of arity n > 0 and t1; : : : ; tn are terms, thenIA(f(t1; : : : ; tn)) = I(f)(IA(t1); : : : ; IA(tn)):De�nition 1.2.18 (Formula assignment) (by simultaneous induction)Let I be an interpretation for an L-structure, and let A be a variable assignmentfrom L to U . The formula assignment of I and A is the mapping IA: W �! UPde�ned as follows. Let F and G denote arbitrary formulae of L.1. For any nullary predicate symbol p in the signature of L: IA(p) = I(p).2. If P is a predicate symbol of arity n > 0 and t1; : : : ; tn are terms, thenIA(P (t1; : : : ; tn)) = ( > if hIA(t1); : : : ; IA(tn)i 2 I(P )? otherwise.3. IA((F _G)) = ( > if IA(F ) = > or IA(G) = >? otherwise.4. IA(:F ) = ( > if IA(F ) = ?? otherwise.5. IA((F ^G)) = IA(:(:F _ :G)):6. IA((F ! G)) = IA((:F _G)):7. IA((F $ G)) = IA(((F ! G) ^ (G! F ))):8. Let Ax be the collection of variable assignments from L to U di�ering fromA in the value of x only.IA(8xF ) = ( > if IA0(F ) = > for all elements A 0 of Ax? otherwise.9. IA(9xF ) = IA(:8x:F ):



1.2 Syntax and Semantics of First-Order Logic 11Note The induction in De�nition 1.2.18 runs over the noetherian ordering on theexpressions in L de�ned as follows: every expression in the de�niens is smallerthan the expression in the de�niendum. Moreover, every formula in L occurs atthe de�niendum position in this ordering. Therefore, for any interpretation I foran L-structure and any variable assignment from L to U , the respective formulaassignment is a total mapping on the language L.We are particularly interested in interpretations for closed formulae. Fromthe de�nition of interpretations (item 8) it follows that, for any closed formulaand any interpretation I, the respective formula assignments are all identical,and hence do not depend on the variable assignments. Consequently, for closedformulae, we shall speak of the formula assigment of an interpretation I, andwrite it I.To comprehend the manner in which formula assignments give meaning toexpressions, see Example 1.2.3. The example illustrates how formulae are in-terpreted in which a variable is associated with di�erent quanti�er occurrences.Loosely speaking, De�nition 1.2.18 guarantees that variable assignments obey\dynamic binding" rules (in terms of programming), in the sense that a vari-able assignment to a variable x for an expression � is overwritten by a variableassignment to the same variable x in a subexpression of �.Example 1.2.3 Consider two closed formulae � = 8x(9xF (x) ^ G(x)) and	 = 8x9x(F (x) ^ G(x)). Given a universe U = fu1; u2g, and an interpretationI(F ) = I(G) = fu1g, then I(�) = ? and I(	) = >.De�nition 1.2.19 (Model) Let � be any set of formulae of a �rst-order languageL. An interpretation I for an L-structure hL;Ui is called a model for � if, foreach variable assignment A from L to U , IA(�) = > for each formula � 2 �. If� is a singleton set f�g, we also shall say that I is a model for the formula �.De�nition 1.2.20 (Satis�ability, validity) Suppose � is any set of formulae of a�rst-order language L. We call � satis�able if there exists a model for �. If �is not satis�able, it is named unsatis�able. We say that � is valid if, for everyuniverse U , every interpretation for hL;Ui is a model for �. If � is not valid, itis termed invalid.De�nition 1.2.21 ((Logical) implication, equivalence) Let � and � be two setsof formulae of a �rst-order language L. We say that � is (logically) implied by�, written � j= �, if every model for � is a model for �. If � and � imply eachother, they are named (logically) equivalent, written � � �. Again, if one orboth sets are singletons, we use the same terminology for their elements.According to this de�nition, any �rst-order formula is logically equivalent toany-one of its universal closures.



12 First-Order LogicNote The logical implication relation j= on the set S of formulae of a �rst-order language is identical to the classical logical consequence relation ` on S,which is de�ned purely syntactically (this will be shown in Chapter 4 of thiswork). Accordingly, declarative semantics provides an alternative non-proceduralcharacterization of logical consequence. As such, declarative semantics can bevery helpful for many purposes. For instance, it is often much easier to provethe equivalence of two logical rule systems by relating them via the declarativesemantics.The following important equivalences between �rst-order formulae can bedemonstrated easily.Proposition 1.2.1 Let F , G, and H be arbitrary �rst-order formulae.(a) F � ::F .(b) (F ^ F ) � F . (^-idempotency)(c) (F _ F ) � F . (_-idempotency)(d) (F ^G) � (G ^ F ). (^-commutativity)(e) (F _G) � (G _ F ). (_-commutativity)(f) (F $ G) � (G$ F ). ($-commutativity)(g) ((F ^G) ^H) � (F ^ (G ^H)). (^-associativity)(h) ((F _G) _H) � (F _ (G _H)). (_-associativity)(i) ((F $ G) $ H) � (F $ (G$ H)). ($-associativity)(j) :(F ^G) � (:F _ :G). (De Morgan law for ^)(k) :(F _G) � (:F ^ :G). (De Morgan law for _)(l) F _ (G ^H) � (F _G) ^ (F _H). (_-distributivity)(m) F ^ (G _H) � (F ^G) _ (F ^H). (^-distributivity)(n) F ! G � :G! :F . (Contraposition)(o) :9xF � 8x:F . (98-conversion)(p) :8xF � 9x:F . (89-conversion)(q) 8x(F ^G) � (8xF ^ 8xG). (8^-permutability)(r) 9x(F _G) � (9xF _ 9xG). (9_-permutability)Notation 1.2.4 In order to gain readability, we shall normally spare brackets.As usual, we permit to omit outermost brackets. Furthermore, for arbitrarybinary connectives �1; �2, any formula of the structure F �1 (G �2 H) may beabbreviated by writing just F �1 G �2 H (right bracketing).



1.3 Graphical Representation of Logical Expressions 13Logical formulae possess the fundamental property that under certain condi-tions subformulae can be substituted by equivalent subformulae without changingthe meaning of the formulae.Lemma 1.2.2 (Replacement Lemma) Given a formula � of a �rst-order lan-guage L and any subformula F of �. If G is any formula which is logicallyequivalent to F where F and G possess the same sets of free variables, and 	 is aformula obtained from � by replacing some occurrences of F in � with G, then� and 	 are logically equivalent.Proof Straightforward from the de�nition of formula assignments. �The concepts of material (object-level) implication and logical (meta-level)implication of �rst-order logic are connected in the following simple manner.Theorem 1.2.3 (Implication Theorem) Given two closed �rst-order formulae �and 	. � j= 	 if and only if the formula � ! 	 is logically valid.Proof For the \if"-part, assume � ! 	 is logically valid. Let I be an arbitrarymodel for �. Then, I(�) = >. By assumption and De�nition 1.2.18, I(�) = ?or I(	) = >. Consequently, I(	) = >, and I is a model for 	. For the \only-if"-part, suppose � j= 	. Let I be an arbitrary interpretation for � ! 	. Either,I(�) = ?; then, by De�nition 1.2.18, I(� ! 	) = >. Or, I(�) = >; in thiscase, by assumption, I(	) = >, too; hence, by De�nition 1.2.18, I(� ! 	) = >.Therefore, in either case I is a model for � ! 	. �1.3 Graphical Representation of Logical Ex-pressionsThe ordinary string representation of logical expressions su�ers from two weak-nesses. On the one hand, the representation does not easily reveal the internalcompositional structure of an expression. On the other hand, a certain subex-pression may occur multiply within an expression, so that the ordinary stringrepresentation is not the most compact format for encoding logical expressions.1.3.1 Directed Acyclic GraphsAn alternative two-dimensional framework for representing logical expressions iso�ered by certain graphs.De�nition 1.3.1 (Directed graph) A directed graph is a triple hV;E; fi where Vand E are disjoint sets of objects called vertices (or nodes) and edges, respectively,and f is a total mapping from E into V � V . If f(e) = hv1; v2i, then the edge eis said to go out of or begin in the vertex v1 and to go into or end in the vertex



14 First-Order Logicv2; furthermore, the vertex v1 is called a predecessor of the vertex v2 and v2 is asuccessor of v1 in the graph. Any vertex without successors is called a leaf , andany vertex without predecessors is called a root . A path in or through a directedgraph is any sequence S of edges (e1; e2; e3; : : :) taken from E such that if ei endsin a vertex vj, then ei+1 begins in vj, for every i > 0. A branch in a dag is a pathS = (e1; e2; e3; : : :) beginning in a root and satisfying, for every ei in S, wheneverei ends in a non-leaf vertex, then S contains also an edge ei+1. A directed graphis called rooted if it contains exactly one vertex without a predecessor. A directedgraph is said to be acyclic if no path in the graph contains the same vertex twice.De�nition 1.3.2 (Isomorphy of directed graphs) Two directed graphs t1 =hV1; E1; f1i and t2 = hV2; E2; f2i are said to be isomorphic if there are two totaland injective mappings �V from V1 onto V2 and �E from E1 onto E2 such that,for any edge e 2 E1 with f1(e) = hv1; v2i: f2(�E(e)) = h�V (v1); �V (v2)i.Notation 1.3.1 (Dag) A dag is a directed graph which is rooted and acyclic.De�nition 1.3.3 (Dag consistency) A set S of dags is said to be consistent iffor any two dags t1 = hV1; E1; f1i and t2 = hV2; E2; f2i in S:1. for every edge e 2 E1 \ E2: f1(e) = f2(e), and2. for every vertex v 2 V1 \ V2: each edge going out of v in t1 is an outgoingedge of v in t2.De�nition 1.3.4 (Subdag) Let t = hV;E; fi be a dag. A dag hV 0; E 0; f 0i iscalled a subdag of t if V 0 � V , E 0 � E, f 0 � f , and ft; t 0g is consistent.In Figure 1.1 three dags t0, t1, and t2 are displayed. Nodes are representedby circles and edges by arrows. The entire graph, the dag t0, is consistent witht1, and t1 is consistent with t2, whereas t0 and t2 are not consistent, because theroot of t2 has merely three outgoing edges. Accordingly, t1 is a subdag of t0, butt2 is not.De�nition 1.3.5 (Ordered dag) An ordered dag is a pair ht; Oi consisting of adag t and a mapping O associating with every vertex a strict linear ordering onits outgoing edges. We say that an edge which is the i-th element in such anordering is the i-th edge of the respective source vertex. A set of ordered dags issaid to be consistent if the contained dags are consistent and the outgoing edgesof any node are ordered in the same way in every dag of the set.In general, the vertices and edges of dags are only used as index sets and willbe labelled with certain objects.De�nition 1.3.6 (Labelled (ordered) dag) A labelled (ordered) dag is a pair ht; �iconsisting of an (ordered) dag and a (possibly partial) labelling function � on itsvertices and edges. A set S of labelled (ordered) dags is said to be consistent ifthe contained (ordered) dags are consistent and every labelled vertex and edge islabelled with the same object in every element of S.
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t2t1Figure 1.1: Three rooted directed acyclic graphs.Convention We will graphically represent labelled dags by drawing arrows forthe edges and by marking them with (names of) their labels, if existing. Inlabelled dags the nodes are normally not explicitly depicted, instead we display(names of) their labels. If ordered dags are displayed, we shall assume the orderto be from left to right.1.3.2 Symbol DagsLogical expressions can be represented with dags by labelling their vertices withsymbols.De�nition 1.3.7 (Symbol dag) (inductive)1. Any labelled ordered dag T = ht; �i where t consists just of one vertex vlabelled with the symbol of a symbol string s is a symbol dag of s.2. Suppose � is an expression with the immediate subexpression sequence�1; : : : ;�n and the dominating symbol s, and let T1; : : : ; Tn be consistentsymbol dags of the expressions �1; : : : ;�n, respectively. Any labelled or-dered dag obtained by forming the union of the dags t1; : : : ; tn, adding anew root vertex r, labelled with s, and adding n new edges e1; : : : ; en con-necting r with the roots of the t1; : : : ; tn, in the respective order, is a symboldag of the expression �.



16 First-Order LogicOne and the same logical expression may have symbol dags of di�erent struc-tures, i.e., non-isomorphic underlying dags, as illustrated in Figure 1.2.
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Figure 1.2: Symbol dags of a term f(f(f(a; a); f(a; a)); f(f(a; a); f(a; a))).De�nition 1.3.8 ((Edge) size of a symbol dag) The (edge) size of a symbol dagt, size(t), is the number of its edges.As will be shown in the next section, any symbol dag T can be appropriatelyrepresented as a string over a �nite alphabet such that the realistic size #(T ) isof the order O(n logn) with respect to size(T ), where n is the number of edgesof T . Consequently, it is natural to take the number of edges as a representa-tive size measure of a symbol dag; note that the number of nodes may not berepresentative.De�nition 1.3.9 (Minimal symbol dag) A symbol dag T of an expression � iscalled minimal if no symbol dag T 0 of � has a smaller edge size than T . A symboldag T of an expression � is called strongly minimal if it is minimal and no symboldag T 0 of � has a smaller number of nodes than T .In strongly minimal symbol dags of an expression every subexpression is rep-resented only once, and in minimal symbol dags every complex, i.e., non-atomic,subexpression is represented only once. Note, however, that no edge size reduc-tion can be achieved by representing atomic expressions only once.Proposition 1.3.1 Any two strongly minimal symbol dags for an expressionhave isomorphic underlying dags.Proof Let T1 = hhhV1; E1; f1i; O1i; �1i and T2 = hhhV2; E2; f2i; O2i; �2i bestrongly minimal symbol dags of a �rst-order expression �. Then, card(E1) =card(E2), and card(V1) = card(V2). Furthermore, due to the strong minimality,no two distinct symbol subdags of T1 are symbol dags of one and the same ex-pression, and also for T2. We de�ne two mappings �V and �E, as follows. First,



1.3 Graphical Representation of Logical Expressions 17given any vertex vi 2 V1 being the root of a symbol dag Ti of a subexpression �iof �, we set �V (vi) = v 0i where v 0i is the vertex in V2 being the root of the symboldag T 0i of �i. Clearly, �V : V1 �! V2 is total, injective, and surjective. Secondly,for any vertex vi 2 V1, let V = (e1; : : : ; ek) be the sequence of edges beginning invi, in the order induced by O1, and suppose V 0 = (e 01; : : : ; e 0l) to be the sequenceof edges beginning in �V (vi), in the order induced by O2. Since the symbol dagswith roots vi and v 0i represent the same expression, by the de�nition of symboldags, k = l. Set �E(ej) = e 0j, for any 1 � j � k. Clearly, �E: E1 �! E2is total, injective, and surjective, too; furthermore, for any edge e 2 E1 withf1(e) = hv1; v2i: f2(�E(e)) = h�V (v1); �V (v2)i. �Accordingly, we can speak of the strongly minimal symbol dag of an expres-sion, which can be seen as a normal form. In Figure 1.2, the rightmost symboldag is the strongly minimal symbol dag of the respective expression.Note Given any symbol dag t of an expression �, it can be normalized, i.e.,transformed into the strongly minimal symbol dag of �, with linear cost withrespect to the size of t; the transformation works in a bottom-up manner levelby level (starting at the leaves) by identifying lists of edges pointing to the samevertices. Consequently, in principle, one could always work with strongly minimalsymbol dags (but consider the remarks at the end of the next section).As a very useful specialization of rooted dags we introduce the concept oftrees.De�nition 1.3.10 (Tree) A tree is a rooted dag in which no vertex has morethan one predecessor. The depth of a vertex in a tree is the number of nodesdominating N .Convention Subtrees are de�ned in analogy to subdags. Trees will normally bedisplayed with roots upward, and since the direction of edges in trees is alwaysassumed downward, we shall often omit the arrow heads.De�nition 1.3.11 (Symbol tree) If the symbol dag of an expression � consistsof a tree, then it is called a symbol tree of �.As in the dag notation, in the tree representation there is no need for punctu-ation symbols. But in contrast to symbol dags, all symbol trees of an expressionare isomorphic|they may di�er in their index sets only. Therefore, we will speakof the symbol tree of an expression. In Figure 1.3 the symbol tree of the expres-sion from Figure 1.2 is displayed. From the viewpoint of space complexity it isimportant that the string and the tree representation of logical expressions arepolynomially related representation schemes.Proposition 1.3.2 There are constants c1; c2 such that for the symbol tree t ofany expression �: size(t) < c1(length(�)) and length(�) < c2(size(t)).
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a a a aa a a aFigure 1.3: Symbol tree of a term f(f(f(a; a); f(a; a)); f(f(a; a); f(a; a))).Apparently, the second of these two facts does not hold for the dag represen-tation of logical expressions, even if we replace `constant' by `polynomial'.Proposition 1.3.3 For every polynomial p there is a symbol dag t of an expres-sion � such that length(�) > p (size(t)).Proof Immediate from Figures 1.2 and 1.3. �Consequently, the dag format permits a more compact representation of logicalexpressions, and hence a considerable extension of the power and applicability oflogic.Note Unfortunately, there are two reasons for the fact that the dag representa-tion of logical expressions is not really used in logical practice. The �rst reason isa conceptual one. It is based on the misunderstanding that the question of howlogical expressions are to be represented ought not concern the designer of logicallanguages and calculi, but belong to the task of implementing logical systems inan optimal way. Since implementations contain many irrelevant details, such aposition impedes the study of essential complexities of logical systems. The otherreason for the fact that the dag notation is not used by logicians is simply that itis very uncomfortable and complicated to draw graphs and to communicate andprocess graphical information textually6, so that the graph representation is notsu�ciently supported.1.4 The Language of De�nitional ExpressionsIn general, there are two di�erent principal approaches of solving the represen-tation problem of logical expressions. On the one hand, one can leave logicalexpressions suboptimal with respect to compactness, and put an additional layeron top of logical expressions, where more compact representations like graphs are6Although directed graphs can be implemented very e�ciently on a computer.



1.4 The Language of De�nitional Expressions 19at hand. The advantage is that di�erent representations for one and the samelogical expression are handled on the meta-level, so that equality of logical ex-pressions on the object level remains string identity. But this may not help inpractice, for complexity assessments will then be made for the representations andnot for the object level, thus making the object level super
uous. Consequently,we shall pursue the other possibility and generalize the object level itself.1.4.1 De�nitional ExpressionsSince something as powerful as the dag representation seems necessary, but two-dimensional information is too hard to handle textually, the natural approachis to look for a compact one-dimensional (i.e., string) encoding of dags which isconvenient for the logician. Customary encodings of graphs on computers areadjacency matrices or adjacency lists (see [van Leeuven, 1990]), which should beused when it comes to representing symbol dags on a computer. Unfortunately,both representations are also two-dimensional, and their string variants are toooverloaded to be appealing to the human. Instead we shall design a string variantof the dag notation which facilitates to formulate logical expressions in both acompact and a convenient manner. The basic idea is that the power of symboldags comes from their ability to abbreviate expressions. This can also be achievedon the string level by extending the ordinary logical language with the possibilityof using abbreviations or de�nitional expressions.First, the alphabet of the logical language is extended.De�nition 1.4.1 (De�nitional alphabet and signature) Suppose � = hA; ai is a�rst-order signature. Let DT and DF be two countably in�nite sets of symbols,called term de�nition symbols and formula de�nition symbols, respectively, suchthat all three sets are pairwise disjoint. D = A[DT [DF is called a de�nitional(�rst-order) alphabet, and �D = hD; ai is said to be a de�nitional (�rst-order)signature.Notation We shall use lower-case gothic letters for denoting de�nition symbols.Let, in the sequel, �D be a de�nitional �rst-order signature.De�nition 1.4.2 (Potential de�nitional expression) (by simultaneous induction)1. Every (ordinary) logical term, formula, and expression according to theDe�nitions 1.2.2 to 1.2.6 is a potential de�nitional term, formula, and ex-pression, respectively.2. If D is a potential de�nitional term or formula and d is a term or formulade�nition symbol, respectively, then the concatenation dD|we prefer towrite it by left-indexing dD|is a potential de�nitional term or formula,respectively. The string dD is called a term or formula de�nition, respec-tively; d is named its de�niendum and D its de�niens.



20 First-Order Logic3. If D is a potential de�nitional expression and D 0 is a subterm7 or subformulaof D, then any string obtained by replacing an occurrence of D 0 in D with aterm de�nition or term de�nition symbol string or with a formula de�nitionor formula de�nition symbol string, respectively, is a potential de�nitionalexpression.De�nition 1.4.3 (De�niens of a de�nition symbol) Let D be a potential de�ni-tional expression. If a de�nition symbol d is the de�niendum of a de�nition dD 0occurring in D, then we call D 0 a de�niens of d in D; we shall also say that d isde�ned by D 0.De�nition 1.4.4 (De�nition dependency) Let D be a potential de�nitional ex-pression. A de�nition symbol d2 is said to immediately depend on a de�nitionsymbol d1 in D, d1 �d d2, if d1 occurs in a de�niens of d2 in D. The de�nition de-pendency relation on D is the transitive closure �+d of the immediate dependencyrelation �d on the de�nition symbols in D.De�nition 1.4.5 (Well-de�ned or de�nitional expression) A potential de�nitionalexpression D is called well-de�ned or a de�nitional expression in case1. any de�nition symbol d in D is de�ned exactly once in D, i.e., d occursexactly once as a de�niendum in D, and2. the de�nition dependency relation �+d on D is well-founded8.Proposition 1.4.1 (Well-de�nedness of an expression) For any potential de�ni-tional expression S, it can be checked with linear cost with respect to the inputsize whether S is well-de�ned.Proof The linear complexity of checking the �rst condition is apparent. Thesecond condition can be examined in the same way as the cycle-freeness of adirected graph, which can be done in linear time. �De�nition 1.4.6 (De�nitional language) The de�nitional (�rst-order) languageL� over � is the set of de�nitional expressions over �.Example 1.4.1 (De�nitional term) The following string denotes a de�nitionalterm: f(f1f(f2f(aa; a); f2); f1)7Subexpressions of potential de�nitional expressions are de�ned in analogy to the mannerordinary subexpressions were introduced in Subsection 1.2.2, with the only extension thatcertain complex expressions|the de�nitions|do not possess dominating symbols.8A binary relation � is well-founded if every nonempty subsetM of the �eld of � contains aminimal element with respect to �, i.e., there is an element m 2M such that for no m 0 2M :m 0 � m (see, for instance, [Krivine, 1971]).



1.4 The Language of De�nitional Expressions 21The ordinary expression represented by a de�nitional expression can be de-�ned as the expansion of the de�nitional expression.De�nition 1.4.7 (Expansion) (inductive)1. The expansion of any (ordinary) expression D is D.2. If D is a de�nitional expression but no (ordinary) expression, and if D 0 isa de�nitional expression obtained from D by replacing a single de�nitiondD 00 occurring in D and every other occurrence of d in D by its de�niensD 00, then any expansion of D 0 is an expansion of D.Evidently, expansions are properly de�ned and all expansions of a de�nitionalexpression are identical and an (ordinary) logical expression. The expansion ofExample 1.4.1 is the term denoted by the symbol dags of Figures 1.2 and 1.3.Convention As the declarative meaning of a de�nitional expression we takesimply the meaning of the expansion of the expression.Just as in the case of symbol dags, di�erent de�nitional expressions mayhave one and the same expansion, which can be viewed as their normal form.The signi�cant advantage of the de�nitional language is that it provides a com-pact logical notation for expressions without having to rely on two-dimensionalnotation. It should be mentioned that de�nitional expressions di�er from or-dinary logical expressions in certain respects. First, the well-formedness of ade�nitional expression D is no longer a local condition which is automaticallyinherited from the subexpressions of D, like for ordinary expressions; instead, thewell-formedness can only be determined globally. This renders the compositionand decomposition of de�nitional expressions more di�cult, though tractable.Furthermore, the equality of de�nitional expressions does not remain string iden-tity but becomes string identity of the expansions of the de�nitional expressions,as discussed below.Note The presented format of de�nitional expressions is but one possibility ofmodelling dag structures with strings. An alternative related framework would beto work with pairs hD;Di consisting of a potential de�nitional expression D, inthe sense above but without de�nitions, and a collection of de�nitions D, this waykeeping the de�nitions alongside the expressions. Although, conceptually, suchan approach may be more elegant, it has the big disadvantage that the expressionpart D might degenerate to a single de�nition symbol, with the consequence thatthe entire structure information would have to be expressed in the de�nition part.Therefore, from the point of view of readability, de�nitional expressions seem tobe more convenient.



22 First-Order Logic1.4.2 De�nitional Expressions vs Symbol DagsIt is interesting to investigate the correspondence between symbol dags and de�ni-tional expressions. A transformation from symbol dags to de�nitional expressionsmight work as follows.Procedure 1.4.1 [(From symbol dags to de�nitional expressions) Let t be a symboldag of an expression D. Annotate every vertex vi of the dag with a distinctde�nition symbol di of the appropriate type. Let d1 be the annotation of the rootvertex v1. Starting with the unary string (d1), iteratively perform the followingoperation.Select a de�nition subsymbol o = i(d) where d is not yet de�ned in thestring and annotates a vertex v labelled with a symbol s. If v is a leafvertex, replace the subsymbol o with the de�nition ds. If v is no leaf vertex,suppose (d1; : : : ; dn) is the sequence of de�nition symbols annotating thevertices succeeding v, in the order and multiplicity of the edges starting atv; let D 0 be the potential de�nitional expression which is the concatenationdetermined by the symbol that labels v as dominating symbol and theimmediate subexpression sequence (d1; : : : ; dn); replace the subsymbol owith the de�nition dD 0.The resulting string is a de�nitional expression and represents the expres-sion D. It is evident that the length of the output string of this procedure ispolynomially (i.e., linearly) related with the size of the input dag t.De�nition 1.4.8 (Strict dag expression) Any string obtained from a symbol dagby Procedure 1.4.1 is called a strict dag expression.Because of this correspondence between symbol dags and de�nitional expres-sions, any manipulations on symbol dags can be directly performed on the stringlevel of the corresponding de�nitional expressions.9 But the correspondence be-tween symbol dags and de�nitional expressions is not one to one, not even if thedi�erence in de�nition symbols is disregarded and only non-isomorphy with re-spect to consistent renaming of de�nition symbols is considered. This is becausethe de�nitional framework is slightly more general and permits the formulation ofstrings which are not strict dag expressions. On the one hand, a de�nitional ex-pression may contain non-atomic substrings composed only of de�nition symbols,and on the other hand, not every non-de�nition subexpression D in a de�nitionalexpression need be abbreviated, i.e., D need not be the de�niendum of a def-inition. This is the case for Example 1.4.1 where the expression itself is notabbreviated. Both phenomena cannot occur in strict dag expressions.9In fact, in this framework also general directed graphs can be encoded, namely, by drop-ping the well-foundedness condition in De�nition 1.4.5. Such a generalization would per-mit to express what on the level of non-logical expressions are called in�nite terms (see[Colmerauer, 1982] or [Courcelle, 1983]), which is not our concern in this work.



1.4 The Language of De�nitional Expressions 23Yet, one can simply associate a symbol dag with any de�nitional expressionby transforming it into a strict dag expression. To be most general, we presentthis operation for potential de�nitional expressions.De�nition 1.4.9 (Potential strict dag expression) Any string D 0 obtainable froma potential de�nitional expression D by Procedure 1.4.2 is called a potential strictdag expression. D 0 is said to correspond to D.Procedure 1.4.2 (From potential de�nitional expressions to potential strict dagexpressions) Let D be a potential de�nitional expression. Abbreviate any non-abbreviated occurrence of any subexpression in D which is neither a de�nitionnor a de�nition symbol with a new distinct de�nition symbol of the appropriatetype. Afterwards, iteratively, replace any non-atomic substring i(d1; : : : ; dn�1; dn)of de�nition symbols with its rightmost de�nition symbol dn, and substitute anyother occurrences of the other de�nition symbols d1; : : : ; dn�1 in the string by dn,too.The output of this procedure is a potential de�nitional expression. Appar-ently, if D is a de�nitional expression, then its corresponding potential strictdag expression is a strict dag expression. Furthermore, the input and the out-put have the same expansions, and the input length is polynomially related withthe output length. With this intermediate operation, the de�nitional expressionfrom Example 1.4.1 can be viewed as corresponding to the rightmost (i.e., theminimal) dag depicted in Figure 1.2. Granted this transformation, the leftmostand the middle dag of Figure 1.2 can be seen as encoded, for example, by thede�nitional expressions f(f(f1f(a; a); f1); f(f1; f1)) and f(f1f(f(a; a); f(a; a)); f1),respectively.A slight generalization of strict dag expressions turns out to be a centralnotion for technical purposes.De�nition 1.4.10 ((Potential) dag expression) A (potential) de�nitional expres-sions D is called a (potential) dag expression if each occurrence of a subexpressionthat is not a de�nition is abbreviated, i.e., immediately preceded by a de�nitionsymbol.Apparently, any (potential) strict dag expression is a (potential) dag expres-sion, while the converse does not hold, since in (potential) dag expressions non-atomic substrings of de�nition symbols may occur. We have introduced thisweaker notion because it is the optimal framework for all kinds of modi�cationoperations, like identi�cation, matching, or uni�cation. Yet, from the point ofview of readability, it is more convenient not to abbreviate every subexpressionin a string that is no de�nition, but only those which correspond to subdags withmore than one ingoing edge. Consequently, we shall work with arbitrary de�ni-tional expressions, and whenever a modi�cation has to be performed, we shalltransform them into (strict) dag expressions.



24 First-Order LogicDe�nition 1.4.11 (Minimal de�nitional expression) A de�nitional expression Dis called minimal if for any de�nitional expression D 0 with the same expansion:length(D 0) � length(D):It is apparent that minimal de�nitional expressions satisfy the following prop-erties.Proposition 1.4.2 (Structure of minimal de�nitional expressions)Let D be a minimal de�nitional expression and D 0 an arbitrary subexpressionof D.(a) If length(D 0) > 1, then there is exactly one occurrence of D 0 in D.(b) If length(D 0) = 1 (D 0 is atomic), then D does not contain D 0 as ade�niens.Note that the dag expression f1f(f2f(f3f(aa; a); f3); f2) encoding the minimalsymbol dag on the righthand side of Figure 1.2 is not a minimal de�nitionalexpression, because there is a shorter one, namely, f(f1f(f2f(a; a); f2); f1), whichdoes neither abbreviate the constant a nor the entire expression. But apparently,any minimal de�nitional expression encodes a minimal symbol dag via Proce-dure 1.4.2, and any minimal de�nitional expression is only linearly shorter thanone of its corresponding (strict) dag expressions.In order to illustrate the di�erences between the variants of de�nitional ex-pressions, in the following chart, for any type a signi�cant example is displayed.All strings have the same expansion, namely, the ordinary expression given in the�rst line.Chart 1.4.1 (Types of de�nitional expressions)ordinary expression g(f(g(a; g(f(b); a))); g(a; g(f(b); a)))arbitrary de�nitional expression g(f(g(a1a2a; gg(f(b); a2))); g(a2; g; a)))minimal de�nitional expression g(f(gg(a; g(f(b); a))); g)dag expression g0g(f0f(g3g2g1g(a; g4g(f1f(bb); aa))); g1)(minimal) strict dag expression g0g(f0f(g1g(a; g2g(f1f(bb); aa))); g1)1.4.3 Identi�cation of De�nitional ExpressionsSince de�nitional expressions with the same expansion are intended to be iden-ti�ed by viewing them just as di�erent representations of their expansion, theinteresting question arises how expensive it is to determine whether two de�ni-tional expressions have the same expansion. Fortunately, this problem can dedecided in time polynomially bounded by the sizes of the de�nitional expressionsand does not depend on the sizes of the respective expansions.It is not necessary that the strings to be identi�ed be de�nitional expressions,in the general case it is su�cient that both are potential de�nitional expressionswith respect to a certain context. A useful notion to express this formally is thefollowing.



1.4 The Language of De�nitional Expressions 25De�nition 1.4.12 (Well-de�ned sequence) A sequence S = (D1; : : : ; Dn) of po-tential de�nitional expressions is well-de�ned, if each de�nition symbol occurringin some member of S is de�ned exactly once in exactly one element Di, 1 � i � n,of S, and if the transitive closure of the union of the de�nition dependency rela-tions on the members of S is well-founded.According to this de�nition, if a potential de�nitional expression Di, 1 � i �n, is contained more than once in a well-de�ned sequence S = (D1; : : : ; Dn), i.e.,if for each 1 � j � n: j 6= i entails Dj 6= Di, then no de�nition can occur in Di.Given a well-de�ned sequence of potential de�nitional expressions, we can makeany of its members Di a de�nitional expression, as follows. We call this operationmaking Di independent of its context S.Procedure 1.4.3 (Context independency operation) If S = (D1; : : : ; Dn) is a well-de�ned sequence of potential de�nitional expressions and Di is a member of S,then, starting with the string Di, iteratively, perform the following operation.As long as the current string is no de�nitional expression, select any occur-rence of a de�nition symbol which is unde�ned in the string, and replace itwith its de�nition in some member of S.Lemma 1.4.3 (Context independency) Suppose S = (D1; : : : ; Dn) is a well-de�ned sequence of potential de�nitional expressions and Di is a member of S. IfD 0i is the result obtained by making Di independent of S, thenlength(D 0i) � nXj=1 length(Dj):Proof Immediate from the de�nition of a well-de�ned sequence. �An algorithm for identifying well-de�ned sequences of potential de�ni-tional expressions is presented in Procedure 1.4.4. We use an informalfunctionally-oriented10 language for specifying algorithms. The meaning of itsinstructions is self-explanatory to anyone familiar with languages like LISP[McCarthy et al., 1962]. The main characteristics of this language are the follow-ing ones. It permits the use of both local program variables and global structures,the latter destructively assignable (:=). The output of any sequence of instruc-tions is the value of the last function call, just like in LISP, or, in case of indeter-minism, one of the possible outputs. Global structures and prede�ned programcomponents are set in bold (sans serif) font. For convenience, we also make useof the meta-function apply, which permits to compose function calls from func-tion names and the respective argument lists; thus, apply(`function'; a1; : : : ; an) isequivalent to the function call function(a1; : : : ; an).1110Occasionally, we shall permit indeterminism to occur in operations, so that, strictly speak-ing, we have a relational framework.11For this semi-formal language, we do not introduce the full terminology of the �-calculus.



26 First-Order LogicProcedure 1.4.4 (Identi�cation Algorithm)f de�ne identi�cation(D1; D2)input two strings D1; D2 such that (D1; D2) is a well-de�ned sequenceoutput booleaninitialization of a global structure:a partial mapping id: DT [ DF �! DT [ DF , initially de�ned byid(d):=( d for any de�nition symbol in D1 or D2unde�ned otherwiseidentify(D1; D2) gf de�ne identify(D01; D02)input two potential de�nitional expressions D01; D02output booleanlet hD1; D2i = unfold(D01; D02), (1)if D1 is a symbol (string) : D1 = D2 (2)else if D2 is a symbol (string) : false (3)else let S1; S2 be the immediate subexpression sequences (4)of D1; D2 and o1; o2 their dominating symbols, resp., (5)if o1 = o2 : sequences(`identify'; S1; S2) (6)else false g (7)Procedure 1.4.5 (Unfolding Algorithm)f de�ne unfold(D1; D2)input two potential de�nitional expressionsoutput a pair of potential de�nitional expressionsif D1 is a de�nition d1D 01 or a de�nition symbol (string) d1 : (1)if D2 is a de�nition d2D 02 or a de�nition symbol (string) d2 : (2)if id(d1) = id(d2): hd1; d1i (3)else id(d2) := id(d1) : unfold(de�niens(d1); D2)) (4)else unfold(de�niens(d1); D2) (5)else if D2 is a de�nition d2D 02 or a de�nition symbol (string) d2 : (6)unfold(D1; de�niens(d2)) (7)else hD1; D2i g (8)Procedure 1.4.6 (Sequence Meta-Algorithm)f de�ne sequences(Function name; S1; S2)input a function name and two �nite sequences of stringsoutput booleanif S1 = ; and S2 = ; : true (1)else if apply(Function name,�rst(S1),�rst(S2)) : (2)sequences(Function name,rest(S1),rest(S2)) (3)else false g (4)



1.4 The Language of De�nitional Expressions 27Description of the Identi�cation Algorithm (Procedure 1.4.4)The input to the algorithm are two strings which form a well-de�ned sequence.First, a global mapping id is de�ned associating with every de�nition symbol oc-curring in the input strings a representative of the set of de�nition symbols whichhave already been identi�ed to abbreviate the same expansions. As a matter offact, initially, every de�nition symbol d is the representative of the singleton setfdg.12 The algorithm employs three functions: identify and sequences, which calleach other mutually recursively, and unfold, which is a subroutine of identify.The function identify takes two potential de�nitional expressions and calls theauxiliary unfold procedure, which unfolds the expressions with respect to the def-initions formulated in the input (lines (4),(5), and (7)), until neither of them arede�nitions or de�nition symbols; except the respective de�nition symbols havealready been identi�ed (line (3)), in which case no unfolding is done, instead apair of identical de�nition symbols is returned. In case both expressions haveto be unfolded, during the unfolding procedure it is noted that the respectivede�nition symbols must have the same expansions, by modifying the mapping idand making equal the id-values of both de�nition symbols (line (4)). The outputstrings of unfold are processed further by identify. The procedure checks whetherat least one of them is a symbol string; in this case the value of their syntacticcomparison is returned (lines (2) and (3)). If both strings are non-atomic andhave the same dominating symbol, the procedure sequences is called with a nameof the identify function and the immediate subexpression sequences as arguments(line (6)); otherwise false is returned (line (7)). The procedure sequences eitherreturns true, in case both sequences are empty (line (1)); or splits apart the �rstpair of expressions from the input sequences and calls identify (line (2)); if theresult is true, sequences proceeds recursively with the rest of both sequences (line(3)), otherwise the procedure returns false (line (4)).The working of the procedure on a concrete input is illustrated in Exam-ple 1.4.2.Example 1.4.2 (Identi�cation process) Given two de�nitional expressions D1 =g(f1f(a; a); f(a; a); f1), and D2 = g(f2; f3; f2f3f(a; a)), the following sequence ofoperations and function calls will be executed.identi�cation(D1; D2)qid := fhf1; f1i; hf2; f2i; hf3; f3igidentify(D1; D2)qunfold(D1; D2)phD1; D2i12Although, in a successful sequence of identi�cation operations, it is not necessary to initializethe id mapping at the beginning of each identi�cation operation, one can correctly work withthe same id mapping throughout the sequence, which allows for a further increase in e�ciency.This is possible for matching and uni�cation, too.



28 First-Order Logicqsequences(`identify',(f1f(a; a); f(a; a); f1); (f2; f3; f2f3f(a; a)))qidentify(f1f(a; a); f2) [if true: sequences(`identify',(f(a; a); f1); (f3; f2f3f(a; a)))]qunfold(f1f(a; a); f2)qid(f2) := f1unfold(f(a; a); f3f(a; a))qunfold(f(a; a); f(a; a))ppphf(a; a); f(a; a)iqsequences(`identify',(a; a); (a; a))qidentify(a; a) [if true: sequences(`identify',(a); (a))]ptrueqsequences(`identify',(a); (a))qidentify(a; a) [if true: sequences(`identify',(); ())]ptrueqsequences(`identify',(); ())pppptrueqsequences(`identify',(f(a; a); f1); (f3; f2f3f(a; a)))qidentify(f(a; a); f3) [if true: sequences(`identify',(f1); (f2f3f(a; a)))]qunfold(f(a; a); f1)phf(a; a); f(a; a)iqsequences(`identify',(a; a); (a; a)) � � � (see above)  pptrueqsequences(`identify',(f1); (f2f3f(a; a)))qidentify(f1; f2f3f(a; a)) [if true: sequences(`identify',(); ())]ptrue (since id(f1) = id(f2))qsequences(`identify',(); ())ppppptrueThe termination and the total correctness of the Identi�cation Algorithm canbe veri�ed easily. The only non-trivial point is that identi�cation of the id-valuesis performed before the respective strings have been proved to have the sameexpansion. Due to the fact that an iterated unfolding of a de�nition symbol dcan never produce the same de�nition symbol|this follows from the acyclicityguaranteed by the well-foundedness of the de�nition dependency relation (De�ni-tion 1.4.5)|line (4) may not give rise to possible incorrectness. More interestingis the question of the computational cost of the identi�cation algorithm in theworst case.Proposition 1.4.4 (Polynomial identi�cation of dag expressions) There is a poly-nomial p (of order O(n2)) such that for any two potential dag expressions D1; D2which form a well-de�ned sequence (D1; D2): if the procedure identi�cation iscalled with both strings as input, then it terminates within p (length(D1) +length(D2)) steps.Proof Let D1; D2 be as assumed. First of all, the cost for initialization is linearlybounded. We shall prove that there are at most quadratically many function calls.



1.4 The Language of De�nitional Expressions 29To begin with, note that, clearly, the identi�cation of two ordinary expressionsis linearly bounded by the input. The case of de�nitional expressions is morecomplex. Whenever two distinct de�nitions or de�nition symbols are comparedby identify, then their values under id are identi�ed by unfold, before identify pro-ceeds with their de�nientia. Therefore, whenever D1; D2 are compared again, apair of identical de�nition symbols is returned (line (3) in unfold), which leads toan immediate success in line (2) of identify, and hence induces no further functioncalls. Because of the strict dag format, exactly those occurrences of subexpres-sions in D1 and D2 which are neither occurrences of de�nitions nor occurrences ofde�nition symbols are abbreviated. Consequently, if d is the number of distinctde�nition symbols in D1 and D2, the number of non-recursive exits from unfoldwhich are no pairs of identical de�nition symbols (i.e., exits via line (8)), mustbe < d2. This entails that the number of calls of sequences from within identify(line (6)) must be bounded by d2. While in the case of ordinary expressions eachoccurrence of a subexpression sequence in the input is processed only once by theprocedure sequences, in the de�nitional case, each pair of occurrences of subex-pression sequences need to be processed at most once. Therefore, the number ofcalls of sequences is quadratically bounded by the input. The number of calls ofidentify is at most one more (the initial call) than the number of calls of sequences,and the maximal depth of recursive calls of unfold is bounded by the value 2, dueto the strict dag format. It remains to be noted that the arising low-level cost,like examining and identi�cation of id-values or performing de�nition unfolding,is computationally innocuous. �Since any potential de�nitional expression can be transformed into the strictdag format with linear cost, we get the following corollary.Corollary 1.4.5 Any pair of potential de�nitional expressions which form awell-de�ned sequence can be identi�ed with cost quadratically bounded by the input.Note From the complexity point of view, the gist of the identi�cationalgorithm|which guarantees its polynomial run time|is that the procedure re-members whenever pairs of expressions have been identi�ed before, lines (3) and(4) of the procedure unfold. It should be noted that all polynomial uni�cationalgorithms make use of this simple technique, which therefore is nothing intrinsicto uni�cation itself but completely independent of the uni�cation problem.It is important to emphasize that the (strict) dag format is necessary formaking the procedure polynomial.13 In Example 1.4.3 two classes of de�nitionalexpressions are given, which are not dag expressions, i.e., in which not every oc-currence of a subexpression is abbreviated that is no occurrence of a de�nition ora de�nition symbol. For those classes of de�nitional expressions, the identi�cationprocedure needs exponential time.13In fact, the dag format is su�cient, for strict dag expressions the quadratic bound can beobtained.



30 First-Order Logic

�
�
�

-
-

-

@@@R���	 ���	 ���	
@@@R@@@R@@@R ���	���	 @@@R ���	 ���	@@@R@@@R@@@R@@@R ���	���	 ���	 @@@R

@@@R@@@R ���	���	 ���	 @@@R���	 ���	@@@R@@@R??

??

hn
h2
h1

gn
g2
g1 ff f

f
ff

... ...ff f f fff ff f ff aa

ff

Figure 1.4: Symbol dags of the term classes from Example 1.3.2.Example 1.4.3 (Critical expressions for identi�cation) Consider two classes of def-initional expressions with the structuresf(f(g1f(f(g2f(� � �f(gnf(aa); gn); f(gn; gn) � � �); g2; f(g2; g2)); g1); f(g1; g1)) andf(h1f(f(h2f(f(� � �hnf(f(aa; a); f(a; a)); hn� � �); f(� � �hn; hn� � �)); h2); f(h2; h2)); h1).The dags corresponding to these expressions are depicted in Figure 1.4. Thedashed arrows label the vertices in the dags which correspond to the abbreviatedcomplex subexpressions.It can be veri�ed easily that when identifying the de�nitional expressions fromExample 1.4.3, then the id-values always remain unchanged. This has as a con-sequence that the identi�cation procedure implicitly expands both de�nitionalexpressions completely, so that the cost arising is not smaller than the cost forcomparing the expansions themselves. The expansions, however, have an expo-nential size with respect to the input; therefore also their identi�cation needsexponential time.Note One might ask why we do not avoid the problem of dealing with dif-ferent de�nitional expressions with one and the same expansion in an e�cientway by exclusively working with an (up to de�nition renaming) unique normal



1.5 Instantiations of Logical Expressions 31form, like minimal strict dag expressions, for which less sophisticated methodsmay su�ce. Any de�nitional expression could implicitly be transformed into thisnormal form. The reasons for dealing with general de�nitional expressions arethe following two. On the one hand, it is interesting in itself to know that aminimal representation is not necessary to obtain polynomial run times for theidenti�cation (matching, and uni�cation) procedures. On the other hand, thepossibility of working polynomially with non-minimal dag expressions is very im-portant for highly e�cient uni�cation methods using Warren machine technology[Warren, 1983], like [Letz et al., 1992], because the memorizing can be restrictedto the full uni�cation routine.1.5 Instantiations of Logical ExpressionsIn the following, we shall introduce the concepts needed for describing instantia-tions of logical expressions, which is the most important operation performed onlogical expressions. The developed notions culminate in the presentation of uni-�cation as instantiation operation. Uni�cation marks one of the most successfuladvances of automated deduction, because it allows to make instantiation optimalwith respect to generality. In this section, we shall work with logical expressionsonly, and extend the methods to the handling of de�nitional expressions in thesubsequent section.1.5.1 Substitutions and MatchingLet in the following denote T the set of terms and V the set of variables of a�rst-order language.De�nition 1.5.1 ((Variable) substitution) Let V be any �nite subset of V. A(variable) substitution is any mapping � : V �! T , satisfying that for everyx 2 domain(�) : x 6= �(x).14De�nition 1.5.2 (Binding) Any element hx; ti of a substitution, abbreviatedx=t, is called a binding . We say that a binding x=t is proper if the variable x doesnot occur in the term t.De�nition 1.5.3 (Instance, matching) If F is any (�nite set of) expression(s)and � is a substitution, then the �-instance of F , written F�, is the (set of)expression(s) obtained from F by simultaneously replacing every occurrence ofeach variable x 2 domain(�) in F by the term �(x). If F and G are (�nite sets of)expressions, then F is called an instance of G in case there is some substitution �14Alternatively, variable substitutions can be introduced as total mappings from V to T withalmost all variables mapped to themselves. The advantage of that approach is that compositionof substitutions becomes just functional composition, the disadvantage is that substitutions donot di�er in their cardinality.



32 First-Order Logicwith F = G�. We also say that G can be matched with F , and call � a matchingsubstitution from G onto F .It is interesting to investigate the size increase caused by applying a substi-tution to a string. First, we need a representative size measure for substitutions.Apparently, the following will do.De�nition 1.5.4 (Size of a substitution) As the size of a substitution � =fx1=t1; : : : ; xn=tng we take nXi=1 length(ti):Proposition 1.5.1 If E is an expression and � is a substitution, thenlength(E�) � length(E)� size(�):Note This quadratic increase rate is the weak point of the standard manner ofapplying a variable substitution to an expression, and hence will be improved inthe next section.A standard algorithm for determining whether an expression can be matchedwith another is presented in Procedure 1.5.1.Procedure 1.5.1 (Matching Algorithm)f de�ne matching(E1; E2)input two expressions E1; E2output a matching substitution from E1 onto E2 or falseinitialization of a global structure:a partial mapping �: V �! T , initially emptyif match(E1; E2) :let � be the substitution obtained from � by removing all pairs hx; xi,�else false gf de�ne match(E1; E2)input two expressions E1; E2output booleanif E1 is a variable (string) x and E2 is a term :if �(x) is unde�ned : �(x) := E2, trueelse �(x) = E2else if E1 is a symbol (string) : E1 = E2else if E2 is a symbol (string) : falseelse let S1; S2 be the immediate subexpression sequences ofE1; E2 and o1; o2 their dominating symbols, respectively,if o1 = o2 : sequences(`match'; S1; S2)else false g



1.5 Instantiations of Logical Expressions 33Description of the Matching Algorithm (Procedure 1.5.1)Given two input expressions E1 and E2, the algorithm proceeds by incrementallygenerating a matching substitution, starting with the empty mapping. Wheneverthe procedure comes across a variable x at the �rst argument position, it checkswhether x has already been given an instantiation, in which case it returns thetruth value of the syntactic comparison of this instantiation with the other ar-gument t; otherwise, if the variable is yet unde�ned, �(x) is de�ned as t, andtrue is returned. The auxiliary procedure sequences (Procedure 1.4.6 on p. 26) isemployed in the standard way.The termination and the total correctness of the matching algorithm are ob-vious. Also it is evident that the complexity of this algorithm is linearly boundedby the input and that the procedure is deterministic, hence generates a uniquematching substitution in the positive case. Furthermore, the computed substitu-tion ful�lls a certain minimality condition.Proposition 1.5.2 If � is a matching substitution computed by the MatchingAlgorithm (Procedure 1.5.1) on two input expressions E1; E2, then � is a subsetof any matching substitution from E1 onto E2.Let us study the size15 of the substitution resulting from a matching operation.Proposition 1.5.3 If � is a substitution resulting from the successful matchingof an expression E1 with an expression E2 according to the Matching Algorithm(Procedure 1.5.1), then size(�) � length(E2):De�nition 1.5.5 (Composition of substitutions) Assume � and � to be substi-tutions. Let � 0 be the substitution obtained from the set fhx; t�i j x=t 2 �g byremoving all pairs for which x = t� , and let � 0 be that subset of � which containsno binding x=t with x 2 domain(�). The substitution � 0 [ � 0, denoted by �� , iscalled the composition of � and � .Proposition 1.5.4 Let �, � and � be substitutions.(i) �; = ;� = �, for the empty substitution ;.(ii) If for all (�nite sets of) expressions F : F� = F� , then � = � .(iii) (F�)� = F (��), for all (�nite sets of) expressions F .(iv) (��)� = �(��).15Recall that the size of a substitution is de�ned as the sum of the lengths of the terms inthe range of the substitution.



34 First-Order LogicProof (i) is immediate.For (ii) assume, by contraposition, that � 6= � . Then, without restriction ofgenerality, there is a binding x=t 2 � such that x=t =2 � . To demonstrate theexistence of a (�nite set of) expression(s) F for which F� 6= F� , set F = x.For the proof of (iii) let x be a variable in F . There are three cases. If x =2domain(�) [ domain(�), then (x�)� = x = x(��). If x 2 domain(�), then(x�)� = x(��). If, lastly, x =2 domain(�) but x 2 domain(�), then (x�)� = x� =x(��). Since x was arbitrary and only variables are replaced in F , we have theresult for F .For (iv) let F be any (�nite set of) expression(s). Then a repeated application of(iii) yields that F ((��)�) = (F (��))� = ((F�)�)� = (F�)(��) = F (�(��)), and,by using (ii), the proof is accomplished. �Summarizing these results, we have that ; acts as a left and right identity forcomposition, (ii) expresses that a di�erence in substitutions involves a di�erencefor some instances, by (iii) substitution application and composition permute, and(iv), the associativity of substitution composition, permits to omit parentheseswhen writing a composition of substitutions.De�nition 1.5.6 (Renaming substitution) Let F be a (�nite set of) expression(s)and let VF denote the set of variables occurring in F . A substitution � is calleda renaming substitution for F in case1. � is injective,2. range(�) � V, and3. (VF n domain(�)) \ range(�) = ;.De�nition 1.5.7 (Variant) Let F and G be (�nite sets of) expressions. F andG are called variants of each other if there are substitutions � and � satisfyingthat G = F� and F = G� .Proposition 1.5.5 Let F and G be (�nite sets of) expressions which are vari-ants of each other. Then there are renaming substitutions � for F and � for Gwith G = F� and F = G� .Proof By assumption, there exist substitutions � 0 and � 0 with G = F� 0 andF = G� 0. Let VF and VG be the sets of variables occurring in F and in Grespectively. Then set � = � 0 � VF and � = � 0 � VG.16 We will show that � and� are such renaming substitutions. First, apparently, G = F� and F = G� .Since F = F�� and G = G��, both range(�) and range(�) must be subsets of V.Consider any x; y 2 domain(�) with x 6= y. Then x�� = x 6= y = y�� . Since � isa mapping we have that x� 6= y�, which settles the injectivity of �. By analogy, �can be proved injective. Let, lastly, x 2 VF n domain(�) and z 2 range(�). Then16With f �S we denote the restriction of a mapping f to a set S, i.e., fhe1; e2i 2 f j e1 2 Sg.



1.5 Instantiations of Logical Expressions 35there exists y 2 domain(�) with z = y� and z 6= y. Since y�� = y, we get z 6= z� .On the other hand, x =2 domain(�), which yields x 6= y and x = x�. Noting thatx = x�� yields x = x� . Therefore, x 6= z. Analogously, VG n domain(�) andrange(�) can be shown disjoint, which completes the proof. �For any given pair of substitutions, it is of fundamental importance whetherone can be obtained from the other by composition.De�nition 1.5.8 (More general substitution) If � and � are substitutions andthere is a substitutions � such that � = ��, then we say that � is more generalthan � .1.5.2 Uni�cationWe are mainly interested in substitutions which, when applied to a certain �niteset of expressions, render all these expressions equal.De�nition 1.5.9 (Uni�er) If S is a �nite set of expressions and � is a substitu-tion such that S� is a singleton set, then � is a uni�er for S. If a uni�er existsfor a �nite set of expressions S, then S is called uni�able.The general notion of a uni�er can be subclassi�ed in certain useful ways.De�nition 1.5.10 (Restricted uni�er) A uni�er � for a �nite set of expressionsS is called restricted to S if every variable in domain(�) occurs in S. If � is auni�er for a �nite set of expressions S and VS is the set of variables occurring inS, then � �VS is called the restriction of � to S.De�nition 1.5.11 (Most general uni�er) A uni�er for a �nite set of expressionsS is called a most general uni�er , mgu, if � is more general than any uni�er forthe set S.Most general uni�ers have the nice property that any uni�er for a set ofexpressions can be generated from a most general uni�er by further composition.This quali�es mgu's as a useful instantiation vehicle in many inference systems.De�nition 1.5.12 (Minimal uni�er) If a uni�er � for a �nite set of expressionsS has the property that for every uni�er � for S: card(�) � card(�), then we saythat � is a minimal uni�er for S.For a minimal uni�er the number of substituted variables is minimal. It isapparent that for any �nite uni�able set of expressions a minimal uni�er alwaysexists and that any minimal uni�er for a �nite set of expressions S is restricted toS, as opposed to most general uni�ers, whose existence is not so obvious and whichare not restricted to S. Also, any �nite set of expressions has only �nitely manyminimal uni�ers, again in contrast to most general uni�ers. Another immediateconsequence of the Uni�cation Theorem (Theorem 1.5.12) demonstrated below isthe following proposition.



36 First-Order LogicProposition 1.5.6 Every minimal uni�er is a most general uni�er.For this reason, not most general uni�ers but the more restrictive notion ofminimal uni�ers is the optimal tool for proof-theoretic and practical purposes,which has not been su�ciently recognized so far. The crucial question is, how,given a �nite set of expressions, a minimal uni�er can be obtained. To these ends,some additional terminology is needed.De�nition 1.5.13 (Address) The address of a node or subtree in an ordered treeis a sequence of positive integers de�ned inductively as follows.1. The address of the root node (the tree itself) is the empty sequence () = ;.2. The address of the i-th successor node (subtree) of a node (subtree) withaddress (k1; : : : ; kn), n � 0, is (k1; : : : ; kn; i).De�nition 1.5.14 (Disagreement set) Let S be a �nite non-empty set of ex-pressions E1; : : : ; En, and T1; : : : ; Tn their symbol trees, respectively. If S is asingleton set, i.e., n = 1, then the only disagreement set of S is the empty set.If S is no singleton set, then there exists an address (k1; : : : ; km), m � 0, suchthat among the nodes N1; : : : ; Nn with this address in the symbol trees T1; : : : ; Tnsome are labelled with di�erent symbols, and all i-th ancestors, 0 � i < m, ofthe nodes in all symbol trees are labelled with the same symbols Ei, respectively.Any set S 0 of expressions E 01; : : : ; E 0n represented by the symbol subtrees withsuch an address is a disagreement set of S.Example 1.5.1A set of atoms of the structure fP (f(x); y); P (f(g(a)); x); P (f(y); g(z))g hasthe two disagreement sets fx; g(a); yg and fy; x; g(z)g.Proposition 1.5.7 Let � be a uni�er for a �nite set of expressions S, and DSa disagreement set of S.(i) � uni�es DS.(ii) Each member of DS is a term.(iii) If DS is non-empty, then it contains a variable x with x 6= x�.(iv) DS contains no pair of a variable x and a distinct term t such that x occursin t.Proof (i) and (ii) are obvious. For (iii), note that whenever DS is non-empty,its cardinality must be > 1. Furthermore, DS must contain variables, sinceotherwise, due to (i) and (ii)), all terms contained in DS would have the sametop-level function symbol, which would contradict the cardinality assumption orthe de�nition of disagreement sets. Then, by (i) and the cardinality condition,one of the variables must be in the domain of �, which proves (iii). Finally, it is



1.5 Instantiations of Logical Expressions 37clear that the existence of a non-proper binding x=t contradicts (i), hence (iv).�Operationally, the examination whether a binding is proper is called theoccurs-check. An extremely useful property for theoretical purposes is the fol-lowing lemma.Lemma 1.5.8 (Decomposition Lemma) Let � be a uni�er for a �nite set ofexpressions S with card(S) > 1, and let x=t be any binding composed from adisagreement set of S such that x 6= x� (which exists by Proposition 1.5.7(iv)).Let � = � n fx=x�g. Then fx=tg� = �.Proof First, since � uni�es any disagreement set of S, x� = t�. By Propo-sition 1.5.7(iv), x does not occur in t, which gives us t� = t� . Consequently,x� = t� and x 6= t� . Furthermore, x =2 domain(�), and by the composition ofsubstitutions, fx=tg� = fx=t�g [ � . Putting all this together yields the chainfx=tg� = fx=t�g [ � = fx=x�g [ � = �. �Now we shall introduce a concept which re
ects the elementary operationperformed when making a set of expressions equal by instantiation. It works byeliminating exactly one variable x from all expressions of the set and by replacingthis variable with another term t from a disagreement set containing x and t,provided that x does not occur in t.De�nition 1.5.15 (Variable elimination and introduction) If S is a �nite set ofexpressions such that from the elements of one of its disagreement sets a properbinding x=t can be formed, then Sfx=tg is said to be obtained from S by a variableelimination wrt x=t. Conversely, we say that S can be obtained from Sfx=tg bya variable introduction wrt x=t.Proposition 1.5.9 Let S be any �nite set of expressions and let VS be the setof variables occurring in S.(i) If S is uni�able, so are all sets obtainable from S by a variable introductionor a variable elimination.(ii) Only �nitely many sets can be obtained from S by a variable elimination.(iii) If S 0 has been obtained from S by a variable elimination wrt a binding fx=tgand VS0 is the set of variables occurring in S 0, then card(S 0) � card(S) andVS0 = VS n fxg.(iv) The transitive closure of the relationfhS 0; Si j S 0 can be obtained from S by a variable elimination stepgis well-founded, where S and S 0 are arbitrary �nite sets of expressions, i.e.,there are no in�nite sequences of successive variable elimination steps.



38 First-Order LogicProof For the proof of (i), note that the result for variable introductions followsimmediately from their de�nition; for the case of variable eliminations, let S 0 =Sfx=tg be obtained from S by a variable elimination wrt to the binding x=tcomposed from a disagreement set of S, and suppose � uni�es S. Since � uni�esevery disagreement set of S, it follows that x� = t�. Let � = � n fx=x�g. Bythe Decomposition Lemma (Lemma 1.5.8), we have fx=tg� = �. Therefore,S(fx=tg�) = (Sfx=tg)� = S 0� . Hence, � uni�es S 0.For (ii) note that, since there are only �nitely many disagreement sets of S andeach of them is �nite, only �nitely many proper bindings are induced, and hence,only �nitely many sets can be obtained by a variable elimination.To recognize (iii), let S 0 = Sfx=tg be any set obtained from S by a variableelimination. Then S 0 is the result of replacing any occurrence of x in S by theterm t. Therefore, card(S 0) � card(S), and, since x=t is proper and t alreadyoccurs in S, we get VS 0 = VS n fxg.Lastly, (iv) is an obvious consequence of (iii). �Now we turn to the computationally interesting notion of a computed uni�erfor a �nite set of expressions, which is de�ned by simultaneous induction on thecollections of all restricted uni�ers and all �nite sets of expressions, whereby theinduction runs over the cardinality of the uni�er.De�nition 1.5.16 (Computed uni�er) (by simultaneous induction)1. ; is a computed uni�er for any singleton set of expressions.2. If a substitution � of cardinality n is a computed uni�er for a �nite setof expressions S 0 and S is a variable introduction of S 0 by some bindingx=t, then the substitution � = fx=tg� , which is of cardinality n+1, is acomputed uni�er for S.Note That the notion of a computed uni�er is indeed properly de�ned canbe recognized as follows. By Proposition 1.5.9 (iii), the variable x does neitheroccur in the term t nor in the set S 0 nor in the expressions contained in thesubstitution � , since by assumption � is restricted to S 0. Consequently, by thede�nition of substitution composition, � = fx=tg� = fx=t�g [ � . Therefore,card(�) = card(�) + 1 and � is restricted to S.While the concepts of minimal and most general uni�ers are mathematicallycomfortable, computed uni�ers are computationally useful. On the one hand, ifwe read the inductive de�nition in a forward manner, it allows for the generationof pairs hS; �i such that � is a uni�er for S. On the other hand, if we employ thede�nition in a backward manner, it speci�es an algorithm for really computinga uni�er for a given set of expressions. In Procedure 1.5.2 this algorithm isintroduced in a more procedurally oriented fashion, which is a generalization ofthe procedure given by Robinson in [Robinson, 1965a].1717Historically, the �rst uni�cation procedure was given by Herbrand in [Herbrand, 1930].



1.5 Instantiations of Logical Expressions 39Procedure 1.5.2 (Set Uni�cation Algorithm)f de�ne uni�cation(S)input a �nite set of expressions Soutput a uni�er for S or falseinitialization of a global structure : a substitution �, initially emptyif unify(S) : �else false gf de�ne unify(S)input a �nite set of expressions Soutput booleanif S is a singleton set : trueelse select a disagreement set D of Sif D contains a proper binding : choose one, say x=t,� := �fx=tg, unify(S�)else false gNote that the uni�cation algorithm presented in Procedure 1.5.2 is a nonde-terministic procedure. This is because there may be several di�erent choices fora disagreement set and a binding. Apparently, the uni�cation procedure can bedirectly read o� from the de�nition of a computed uni�er: it just successivelyperforms variable elimination operations, until either there are no variable elim-ination steps possible, or the resulting set is a singleton set. Conversely, thenotion of a computed uni�er is an adequate declarative speci�cation of the uni-�cation algorithm. It follows immediately from Proposition 1.5.9 (i) and (iv)that each computed uni�er is indeed a uni�er and that the procedure terminates,respectively.Another important property of computed uni�ers is the following one.Lemma 1.5.10 If � is a computed uni�er for a �nite set of expressions S, thenno variable in domain(�) occurs in the terms of range(�).Proof The proof is by induction on the cardinalities of the computed uni�ers.The induction base is evident: the computed uni�er ; of any singleton set ofexpressions meets the disjointness property. For the induction step, assume thedemanded property to hold for any computed uni�er of cardinality n. Let � be anycomputed uni�er of cardinality n+1 (n � 0) for a �nite set of expressions S. Byde�nition, S can be obtained from a set S 0 = Sfx=tg by a variable introductionwrt a proper binding fx=tg, and � = fx=tg� where � is a computed uni�er for S 0with card(�) = n. As already noted, � = fx=tg� = fx=t�g [ � and the variablex does neither occur in � nor in t. Since, by the induction assumption, � ful�llsthe disjointness property, the property is passed on to �. �By the de�nition of the composition of substitutions, from this lemma we getas an immediate corollary the idempotence of computed uni�ers.



40 First-Order LogicCorollary 1.5.11 If � is a computed uni�er for a �nite set of expressions S,then � = ��.We shall demonstrate now that the notions of a minimal and a computeduni�er coincide, and that both of them are most general uni�ers.Theorem 1.5.12 (Uni�cation Theorem) Let S be any uni�able �nite set of ex-pressions.(i) If � is a minimal uni�er for S, then � is a computed uni�er for S.(ii) If � is a computed uni�er for S, then � is a minimal uni�er for S.(iii) If � is a computed uni�er for S, then � is an mgu for S.Proof We will prove (i) to (iii) by induction on the cardinalities of the respec-tive uni�ers. First, note that ; is the only minimal and computed uni�er for anysingleton set of expressions, and that ; is an mgu. Assume the result to holdfor any set of expressions with minimal and computed uni�ers of cardinalities� n. For the induction step, suppose S has only minimal or computed uni�ersof cardinality > n (n � 0). Let � be an arbitrary uni�er for S and x=t anyproper binding from a disagreement set of S with x 6= x� (which exists by Propo-sition 1.5.7(iv)). Let S 0 = Sfx=tg and set � = � n fx=x�g, which is a uni�er forS 0, by the Decomposition Lemma (Lemma 1.5.8).For the proof of (i), let � be a minimal uni�er for S. We �rst show that � is min-imal for S 0. If � 0 is any minimal uni�er for S 0, then � = fx=tg� 0 is a uni�er forS. Since � 0 is restricted to S 0, the Decomposition Lemma can be applied yieldingthat � 0 = � n fx=x�g. And, from the chain card(� 0) = card(�)� 1 � card(�)� 1= card(�) it follows that � is a minimal uni�er for S 0. Since card(�) � n, bythe induction assumption, � is a computed uni�er for S 0. Hence, by de�nition,� = fx=tg� is a computed uni�er for S.For (ii) and (iii), let � be a computed uni�er for S. Then, by de�nition, � is acomputed uni�er for S 0. Let � be an arbitrary uni�er for S. Since x is in somedisagreement set of S, either x 2 domain(�) or there is a variable y and y=x 2 �.De�ne � = ( � if x 2 domain(�)�fx=yg otherwise.Since x 2 domain(�), the Decomposition Lemma yields that if � 0 = � n fx=x�g,then fx=tg� 0 = �, and � 0 is a uni�er for S 0. The minimality of � can be recognizedas follows. By the induction assumption, � is minimal for S 0. Then, consider thechain card(�) = card(�) = card(� 0) + 1 � card(�) + 1 = card(�):For (iii), note that � is an mgu for S 0, by the induction assumption, i.e., there isa substitution 
: � 0 = �
. On the other hand, � = �fx=ygfy=xg, hence there isa substitution �: � = ��. This gives us the chainS� = S�� = Sfx=tg� 0� = Sfx=tg�
� = S�
�



1.5 Instantiations of Logical Expressions 41demonstrating that � is an mgu for S. This completes the proof of the Uni�cationTheorem. �Corollary 1.5.13 Minimal uni�ers are idempotent and ful�l the variable-disjointness condition formulated in Lemma 1.5.10.Note Concerning terminology, notions are treated di�erently in the literature(see [Lassez et al., 1988] for a comparison). In [Robinson, 1965a], J. A. Robinsonused a deterministic uni�cation algorithm, by selecting one substitution from thecomputed uni�ers for a �nite set of expressions which he called the most generaluni�er. We have subscribed to the generalized versions, which relax the determin-istic selection and, henceforth, the uniqueness of an mgu, as, e.g., in [Lloyd, 1984]and [Chang and Lee, 1973]. We even permit alternative disagreement sets, be-cause this gives more 
exibility for selecting among mgu's (this is exploited inthe proof of Proposition 4.3.1 on page 170). Furthermore, we have introducedhere the notion of a minimal uni�er, which turned out to be very helpful. Notethat our Uni�cation Theorem also states that each minimal uni�er indeed canbe computed. Finally, the introduction of the declarative concept of a computeduni�er|in contrast to working with the Uni�cation Algorithm itself, how it isnormally done|makes the proof of the Uni�cation Theorem more elegant.Just because of its mathematical perspicuity, as a direct implementation of thevariable elimination reduction ordering, the Uni�cation Algorithm presented inProcedure 1.5.2 contains a lot of obvious redundancies: in each variable elimina-tion operation the procedure must run through the entire expressions by instan-tiating the substituted variable and by afterwards computing a new disagreementset. Therefore, nobody would program this algorithm exactly the way it is pre-sented. Instead one would rather incrementally perform both the instantiationoperation and the recomputation of a disagreement set. We shall give an op-timized version of the Uni�cation Algorithm which is doing exactly this. Also,we shall exploit in this algorithm the fact that each uni�cation operation can bedecomposed into binary uni�cation operations, which successively always com-pare two-element sets of expressions. In order to establish the adequacy of sucha decomposition approach, we prove the following lemma.Lemma 1.5.14 (Uni�cation decomposition) If � is any uni�er for a set of ex-pressions S = S1 [ S2, � an mgu for S1, and � an mgu for S� , then �� is moregeneral than �.Proof On the one hand, since � uni�es S1 and � is an mgu for S1, there is asubstitution 
: � = �
. On the other hand, by assumption, � is an mgu for S� ,hence there is a substitution �: 
 = ��. Therefore � = ���. �An iterative application of Lemma 1.5.14 justi�es that the solution of a setuni�cation problem can be broken down into any possible combination of uni�ca-tion subproblems induced by the input set, and that any uni�er for the complete



42 First-Order Logicset can be obtained by composing the most general uni�ers resulting from solvingthe uni�cation subproblems.18In particular, any set uni�cation problem can be solved by an iterative uni�-cation of two-element sets. An incremental binary uni�cation algorithm, whichis very close to an implementation, is presented in Procedure 1.5.3.Procedure 1.5.3 (Binary Uni�cation Algorithm)f de�ne binary-uni�cation(E1; E2)input two expressions E1 and E2output a uni�er for fE1; E2g or falseinitialization of a global structure : a substitution �, initially emptyif binary-unify(E1; E2) : �else false gf de�ne binary-unify(E1; E2)input two expressions E1 and E2output booleanif E1 is a variable (string) x1 and E2 is a term :if �(x1) is unde�ned :if E2 is a variable (string) x2 and �(x2) is unde�ned :if x1 = x2 : trueelse either � := �fx1=x2g or � := �fx2=x1g , trueelse if x1 does occur in E2� : falseelse � := �fx1=E2�g , trueelse binary-unify(x1�,E2)else if E2 is a variable (string) x2 and E1 is a term :if �(x2) is unde�ned and x2 does not occur in E1� :� := �fx2=E1�g , trueelse binary-unify(E1; x2�)else if E1 is a symbol (string) : E1 = E2else if E2 is a symbol (string) : falseelse let S1; S2 be the immediate subexpression sequences ofE1; E2 and o1; o2 their dominating symbols, respectively,if o1 = o2 : sequences(`binary-unify'; S1; S2)else false gDescription of the Binary Uni�cation Algorithm (Procedure 1.5.3)Given two input expressions E1 and E2, the algorithm proceeds by incrementallygenerating a uni�er, starting with the empty mapping. Whenever the procedure18A related topic, the problem of �nding a simultaneous uni�er for �nitely many sets ofsets of expressions is treated in [Eder, 1985a]. Using the lattice property of the collection ofidempotent substitutions, it is shown there that one can proceed by, �rst, determining mgu'sfor each single set of expressions and compute a simultaneous uni�er by building the supremumof the mgu's in this lattice afterwards.



1.5 Instantiations of Logical Expressions 43comes across two distinct variables which have not yet been instantiated by �,one of the variables is instantiated to the other, and the already generated sub-stitution is composed with this binding. This is the only point of indeterminismin the whole procedure. If only one of the arguments is an unbound variable,the so-called occurs-check is performed|this corresponds to the test whether aproper binding exists in the Uni�cation Algorithm for sets of expressions (Proce-dure 1.5.2); the occurs-check must fail in order to permit the continuation of theuni�cation process.Note In an actual implementation one even might go one step further. Insteadof updating the complete uni�er during the uni�cation procedure one could onlyaccumulate a set of local bindings in the process which themselves would notrepresent the uni�er but from which the uni�er could be constructed as the �x-point of a transitive closure operation of variable instantiations. In detail, assumeduring the uni�cation process an unbound variable x has to be uni�ed with anexpression E, then one could just augment the current set of bindings b by set-ting b := b [ fx=Eg. This modi�cation would not a�ect the total correctness ofthe uni�cation procedure provided that the following two adjustments be made.First, the occurs-check needs to be changed slightly in that one would have tolook for occurrences of a variable in an expression modulo the recursive instanti-ations induced by the current set of bindings. Secondly, after a total success ofthe uni�cation procedure, from the resulting set of local bindings fb1; : : : ; bng theuni�er would have to be computed as the substitution composition b1 � � � bn. Suchan approach is particularly interesting in case an entire sequence of uni�cationsteps has to be performed|as it is the standard case in automated deductioncalculi. Then, the intermediate uni�ers need not be computed, instead every newuni�cation step could be started with the already generated set of local bindingsas input and the total uni�er could be computed only once at the end of thesequence of inference steps.1.5.3 The Complexity of Uni�cationUni�cation is the central ingredient applied in each inference step of the advancedproof systems for �rst-order logic. As a consequence, the complexity of uni�ca-tion is a lower bound for the complexity of each advanced calculus. While thecardinality of a most general uni�er � for a set of expressions S is always boundedby the number of variables in S, the range of the uni�er may contain terms witha size exponential with respect to the size of the initial expressions. Of course,this would also involve that S� contains expressions with an exponential size.The following class of examples demonstrates this fact.Example 1.5.2 If P is an (n+1)-ary predicate symbol and f a binary functionsymbol, then, for every n 2 N , de�ne Sn as the set containing the atomic formulae



44 First-Order LogicP (x1; x2; : : : ; xn; xn); andP (f(x0; x0); f(x1; x1); : : : ; f(xn�1; xn�1); xn).Obviously, any uni�er for an Sn must contain a binding xn=t such that thenumber of symbol occurrences in t is greater than 2n. As a consequence, we havethe problem of exponential space and, therefore, also of exponential time, whenworking with such structures.Di�erent solutions have been proposed for doing uni�cation polynomially.Venturini-Zilli [Venturini-Zilli, 1975] could reduce the complexity to quadratictime. A number of \almost" linear algorithms have been developed in[Huet, 1976], [Martelli and Montanari, 1976, Martelli and Montanari, 1982], andin [Paterson and Wegman, 1978], whose algorithm is really linear (see also[Ja�ar, 1984]). Similar to Herbrand's early approach in [Herbrand, 1930], allof the mentioned e�cient algorithms reduce the uni�cation problem to the prob-lem of solving a set of equations. Since all those procedures need sophisticatedadditional data structures (sets of multi-equations) and operations (merging ofsets of multi-equations) and deviate from the basic idea of Robinson's uni�ca-tion algorithm (the binary version speci�ed in Procedure 1.5.3 on p. 42), Corbinand Bidoit rehabilitated Robinson's algorithm by improving it with little addi-tional data structures up to a quadratic complexity [Corbin and Bidoit, 1983].Although this algorithm has a higher worst-case complexity than the linear onesit turns out to be more e�cient in most practically occurring cases. Corbin andBidoit used minimal dags as data structures for representing logical terms.By employing the framework of de�nitional expressions, in the next section,we shall present a generalization of their algorithm which facilitates the workingwith arbitrary, i.e., not necessarily minimal, de�nitional expressions.1.6 Instantiations of De�nitional ExpressionsIn this section the matching and uni�cation operations are generalized to the han-dling of de�nitional expressions. Also, the application of a variable substitutionto an expression will be improved.The necessity for both modi�cations can be explained with the matching op-eration. The matching of ordinary logical expressions always produces a uniquematching substitution, if one exists. Furthermore, if there is a matching substitu-tion � from an expression E1 onto an expression E2, then E1� = E2. In the caseof de�nitional expressions|or potential de�nitional expressions that form a well-de�ned sequence, to be more general|matters change slightly. Let us illustratewith an example how things behave here.Example 1.6.1 Consider the task of matching a de�nitional expression D1 =f(x; x) with a de�nitional expression D2 = f(ff(a; a); f). Apparently, (the ex-pansion of) D1 can be matched with the expansion of D2, but there is no variablesubstitution � with D1� = D2.



1.6 Instantiations of De�nitional Expressions 45Example 1.6.1 demonstrates that for de�nitional expressions the matching op-eration needs to be revised. The only condition which de�nitely must be ful�lledif a string D1 is to be matched with a string D2 by a matching substitution �is that the expansions of D1� and D2 be identical. The open question is howD1� should look like. Referring to Example 1.6.1, there are two possibilies forD1 = f(x; x). Either D1� = f(f; f) or D1� = f(f(a; a); f(a; a)). It is clear that, inorder to obtain compact representations, one should vote for the �rst alternative.Both alternatives leave the standard manner of applying a variable substitu-tion to an expression untouched. But once de�nitional expressions are at hand,the interesting question occurs whether the application of variable substitutionsto expressions may be improved, too. The following trivial example proves thatan improvement is really necessary.Example 1.6.2 Consider a variable x and a substitution � = fx=f(x; x)g. Ifthe application of substitutions is taken literally, then the term x� � � �� has a sizewhich is exponential with respect to the number of substitution applications.Accordingly, the iterative application of substitutions may result in an expo-nential behaviour. Since the application of substitutions is contained as a subrou-tine in the matching algorithm, the iterative performance of matching operationsmay lead to an exponential behaviour, too.In order to remedy this weakness, the application of a variable substitutionto an expression needs to be changed.1.6.1 De�nitional SubstitutionsLet, in the sequel, TD be the collection of de�nitional terms of a de�nitional�rst-order language.De�nition 1.6.1 (De�nitional (variable) substitution) Let S = (D1; : : : ; Dm)be a well-de�ned sequence of potential de�nitional expressions. A de�nitional(variable) substitution in context S is any �nite mapping �: V �! TD withdomain(�) = fx1; : : : ; xng such that:1. the sequence S 0 = (�(x1); : : : ; �(xn); D1; : : : ; Dm) is well-de�ned, and2. for every variable x 2 domain(�): x 6= expansion(�(x)), where the expan-sion is with respect to the sequence S 0.Any member hx; ti of a de�nitional substitution is called a de�nitional binding,and is written x=t.The notion of de�nitional substitutions is a natural generalization of ordinarysubstitutions, so that every ordinary substitution is a de�nitional substitution.However, a crucial di�erence can be made between the ordinary application andthe de�nitional application of a substitution.



46 First-Order LogicDe�nition 1.6.2 (De�nitional application of a de�nitional substitution) Let � bea de�nitional substitution in context S = (D;D1; : : : ; Dm). The de�nitionalapplication of � to D produces the following string, which we write D�.19 Letdx1; : : : ; dxm be a list of distinct new term de�nition symbols, one for each variablein domain(�). Simultaneously do, for every variable x in domain(�):1. if �(x) is a de�nition symbol d or a de�nition with de�niendum d, thenreplace every occurrence of x in D with d.2. if �(x) is neither a de�nition nor a de�nition symbol and either �(x) is asymbol (string) or x occurs only once in D, then replace all occurrences(the single occurrence) of x in D with �(x).3. if �(x) is a complex string D 0, no de�nition, and x occurs more than oncein D, then replace the leftmost occurrence of x in D with the new de�nitiondxD 0, and substitute all other occurrences of x in D by the de�nition symboldx.Example 1.6.3 Given a de�nitional substitution � = fx=f; y=g(a; a); z=g(a; a)gin context S = (ff(a; a)), and a term t = h(z; y; g(x; z)), the de�nitional appli-cation of � to t, is a de�nitional term of the structure h(gg(a; a); g(a; a); g(f; g)),which depends on the context S.Proposition 1.6.1 If S = (D;D1; : : : ; Dm) is a well-de�ned sequence and � isa de�nitional substitution in context S, then (D�;D1; : : : ; Dm) is a well-de�nedsequence.Note The third case of the de�nition above marks the crucial di�erence with theordinary application of substitutions. Evidently, this entails that whenever a de�-nitional substitution contains no complex terms in its range, then the de�nitionaland the ordinary manner of applying a substitution coincide.The length increase caused by applying a de�nitional substitution to a stringcan be estimated as follows.Proposition 1.6.2 If D is a potential de�nitional expression and � is a de�ni-tional substitution20, then length(D�) � length(D) + size(�)� card(�).Proof Each complex term x� in range(�) is inserted only once into D, either bycompletely removing the respective occurrence of the old variable x in D or, inCase 3 of De�nition 1.6.2, by replacing the occurrence of x with a new de�nitionsymbol dx of the same size; all other replacements are size-preserving. �19We use the same notation used for denoting the result of the ordinary application of asubstitution. Whether the ordinary or the de�nitional form is meant either will be said explicitlyor it will be apparent from the context.20The size of a substitution is the sum of the lengths of the terms in the range of thesubstitution.



1.6 Instantiations of De�nitional Expressions 47Note This linear increase rate signi�cantly di�ers from the value for the ordinaryapplication of a substitution, which is of quadratic order.The de�nitional composition of de�nitional substitutions is de�ned in analogyto the composition of ordinary substitutions, as follows.De�nition 1.6.3 (De�nitional composition of de�nitional substitutions) Assume� and � to be de�nitional substitutions. Let � 0 be the de�nitional substitutionobtained from the set fhx; t�i j x=t 2 �g (where t� is the de�nitional applicationof � to t) by removing all pairs for which x = expansion(t�), and let � 0 be thatsubset of � which contains no binding x=t with x 2 domain(�). The de�nitionalsubstitution � 0 [ � 0, which we abbreviate21 with �� , is called the de�nitionalcomposition of � and � .Referring to Example 1.6.2, with � = fx=f(x; x)g, under the de�nitionalapplication of substitutions, the term x � � � ��| {z }n�times has the structuref(fn�1f(� � � f2f(f1f(x; x); f1); f2 � � �); fn�1)which is linear with respect to n and the sizes of x and �.Now, we are well-equipped to turn to the de�nitional versions of the matchingand uni�cation operations. Recall that DT and DF denote the sets of term andformula de�nition symbols, respectively, of the underlying de�nitional language.1.6.2 Matching of De�nitional ExpressionsProcedure 1.6.1 (De�nitional Matching Algorithm)f de�ne de�nitional-matching(D1; D2)input two strings D1; D2 such that (D1; D2) is a well-de�ned sequenceoutput a de�nitional substitution in context (D1; D2) or falseinitialization of two global structures :a partial mapping �: V �! TD, initially empty, anda partial mapping id: DT [ DF �! DT [ DF , initially de�ned byid(d):=( d for any de�nition symbol in D1 or D2unde�ned otherwiseif de�nitional-match(D1; D2) :let � be the de�nitional substitution obtained from � by removingall pairs hx; ti with x = expansion(t),�else false g21Again, we use the standard terminology. Possible ambiguities will be cleared up explicitlyor by the context.



48 First-Order Logicf de�ne de�nitional-match(D 01; D 02)input two potential de�nitional expressions D 01; D 02output booleanlet hD1; D2i = unfold(D 01; D 02), (1)if D1 is a variable x and D2 is a de�nitional term : (2)if �(x) is unde�ned : (3)if D 02 is a de�nition with de�niendum d2 : �(x) := d2 , true (4)else �(x) := D 02, true (5)else identify(�(x); D 02) (6)else if D1 is a symbol (string) : D1 = D2 (7)else if D2 is a symbol (string) : false (8)else let S1; S2 be the immediate subexpression sequences of (9)D1; D2 and o1; o2 their dominating symbols, respectively (10)if o1 = o2 : sequences(`de�nitional-match'; S1; S2) (11)else false g (12)Description of the Matching Algorithm for de�nitional expressions(Procedure 1.6.1)Given two strings D1 and D2 such that (D1; D2) is a well-de�ned set, the algo-rithm proceeds by incrementally generating a de�nitional matching substitution,starting with the empty mapping, as in the Matching Algorithm for ordinaryexpressions (Procedure 1.5.1 on p. 32). The only di�erence from there is thathere a second global structure is carried along and the de�nition unfolding mech-anism unfold (Procedure 1.4.5 on p. 26), also used in the Identi�cation Algo-rithm (Procedure 1.4.4 on p. 26), is inserted at the beginning of the procedurede�nitional-match (line (1)). All other parts are analogous to the ordinary Match-ing Algorithm, with only two exceptions. First, if an unbound variable has to beinstantiated to a de�nition, we do not take the de�nition itself, but its de�nien-dum (this is in order to avoid double occurrences of de�nitions). On the otherhand, instead of demanding that the instantiation of a variable at the �rst ar-gument be syntactically equal to the second argument, here the equality of theexpansions is tested, by calling the procedure identify as a subroutine (line (6)).Evidently, the Matching Algorithm for de�nitional expressions is just a naturalcombination of the Matching Algorithm for ordinary logical expressions with theIdenti�cation Algorithm for de�nitional expressions.The termination and total correctness of this algorithm are evident. Its com-plexity behaviour can be estimated as follows.Proposition 1.6.3 There is a polynomial p (of order O(n2)) such that for anytwo potential strict dag expressions D1; D2 which form a well-de�ned sequence(D1; D2): if the procedure de�nitional-matching is called with both strings as input,then the procedure terminates within p (length(D1) + length(D2)) steps.



1.6 Instantiations of De�nitional Expressions 49Proof Let the input D1; D2 be as assumed. First of all, the cost for initializationis linearly bounded. We proceed by demonstrating that the run time of theprocedure is constantly related with the run time of a very similar identi�cationproblem. For this, note that the De�nitional Matching Algorithm can be obtainedfrom the Identi�cation Algorithm (Procedure 1.4.4 on p. 26) by pushing the lines(2) to (6) of the De�nitional Matching Algorithm in between the lines (1) and(2) of the Identi�cation Algorithm and by replacing the if in line (2) of theIdenti�cation Algorithm with an else if. This demonstrates that the De�nitionalMatching Algorithm behaves exactly as the Identi�cation Algorithm, except whena variable x is the de�niens of the string at the �rst argument position. Due to thestrict dag format, every occurrence of any subexpression in D2 which is neither ade�nition nor a de�nition symbol is abbreviated. Therefore, in case the variablex is unbound, the mapping � is augmented with a pair hx; dxi, where dx is ade�nition symbol. Since the number of these instantiation steps and their cost islinearly bounded by the input, we may safely ignore them. In case the variable isbound, the instantiation of the variable is fetched and identi�ed with the string atthe second argument position. Let � be the mapping generated at the sucessfulor unsuccessful end of the procedure, and let D 01 be the string obtained fromD1 by substituting each occurrence of every variable x by the de�nition symboldx = �(x). Now, the problematic part of the matching process, i.e., that part inwhich cases of unbound variables at the �rst argument position do not occur, canbe viewed as simulating the Identi�cation Algorithm applied to the strings D 01and D2. We only have to add, for each simulation of an identi�cation operationidentify(dx; D) with a de�nition symbol dx at the �rst argument position whichreplaces an occurrence of a variable x in the original input string D1, the cost foran additional unfold(dx; D) plus the cost for fetching the value of x in �, whichare computationally innocuous, due to the strict dag format; also, the id valuesare properly identi�ed. Since, by assumption, the input strings are potentialstrict dag expressions, the string D 01 is a potential strict dag expression, too. ByProposition 1.4.4 on p. 28, the cost for Identi�cation of D 01 and D2 is quadraticallybounded by length(D 01) + length(D2), and also by length(D1) + length(D2), sincethe structure of � guarantees that length(D 01) = length(D1). As demonstratedabove, the simulation cost is constantly related with that cost. Therefore, thecost for de�nitional matching is quadratically bounded by the input. It remainsto be noted that, for the �nal removal of pairs with identical expansions from theresulting mapping, the expansions itself need not be computed. �Since any pair of de�nitional expressions can be transformed into strict dagformat at linear cost, we get the corollary.Corollary 1.6.4 For any pair of potential de�nitional expressions which form awell-de�ned sequence it can be decided whether one can be matched with the otherwith cost quadratically bounded by the input.



50 First-Order LogicAn important consequence for the iterative execution of de�nitional matchingoperations|for instance, in an inference system|is the subsequent proposition.Proposition 1.6.5 Suppose � is the output of the Procedure 1.6.1 matching apotential strict dag expression D1 successfully with a potential strict dag expres-sion D2, where S = (D1; D2) is a well-de�ned sequence. If D 01 is the result of mak-ingD1� independent of its context S, then length(D 01) � length(D1)+length(D2):Proof Due to the dag format, the range of � contains only de�nition sym-bols. Therefore, by Proposition 1.6.2 on p. 46, length(D1�) = length(D1). Since(D1�;D2) is a well-de�ned sequence, an application of Lemma 1.4.3 on p. 25completes the proof. �1.6.3 Uni�cation of De�nitional ExpressionsNow we present an e�cient procedure for unifying de�nitional expressions, whichis a generalization of the algorithm in [Corbin and Bidoit, 1983]. This algorithmis constructed by a straightforward composition of Robinson's binary uni�cationalgorithm (Procedure 1.5.3 on p. 42) with the Identi�cation Algorithm (Proce-dure 1.4.4 on p. 26), in a very similar manner the De�nitional Matching Algorithmis generated.Procedure 1.6.2 (De�nitional Uni�cation Algorithm)f de�ne de�nitional-uni�cation(D1; D2)input two strings D1; D2 such that (D1; D2) is a well-de�ned sequenceoutput a de�nitional uni�er for D1 and D2 or falseinitialization of two global structures :a de�nitional substitution � in context (D1; D2), initially empty, anda partial mapping id: DT [ DF �! DT [ DF , initially de�ned byid(d):=( d for any de�nition symbol in D1 or D2unde�ned otherwiseif de�nitional-unify(D1; D2) : �else false gf de�ne de�nitional-unify(D 01; D 02)input two potential de�nitional expressions D 01; D 02output booleanlet hD1; D2i = unfold(D 01; D 02), (1)if D1 is a de�nition with de�niendum d1 : let D 001 = d1 (2)else let D 001 = D1, (3)if D2 is a de�nition with de�niendum d2 : let D 002 = d2 (4)else let D 002 = D2 (5)if D1 is a variable x1 and D2 is a de�nitional term : (6)



1.6 Instantiations of De�nitional Expressions 51if �(x1) is unde�ned : (7)if D2 is a variable x2 and �(x2) is unde�ned : (8)if x1 = x2 : true (9)else either � := �fx1=D 002�g or � := �fx2=D 001�g , true (10)else if occurring(x1,D2�) : false (11)else � := �fx1=D 002�g , true (12)else de�nitional-unify(x1�,D 02) (13)else if D2 is a variable x2 and D1 is a de�nitional term : (14)if �(x2) is unde�ned : (15)if occurring(x2,D1�) : false (16)else � := �fx2=D 001�g , true (17)else de�nitional-unify(D 01; x2�) (18)else if D1 is a symbol : D1 = D2else if D2 is a symbol : falseelse let S1; S2 be the immediate subexpression sequences ofD1; D2 and o1; o2 their dominating symbols, respectively,if o1 = o2 : sequences(`de�nitional-unify'; S1; S2)else false gDescription of the Uni�cation Algorithm for de�nitional expressions(Procedure 1.6.2)Given two strings D1 and D2 such that (D1; D2) is a well-de�ned sequence, the al-gorithm proceeds by incrementally generating a de�nitional uni�er, starting withthe empty mapping, as in the Uni�cation Algorithm for ordinary expressions(Procedure 1.5.3). Again, the di�erence from there is that here a second globalstructure is carried along and the de�nition unfolding mechanism is inserted, asin the De�nitional Matching Algorithm. The local parameters D 001 and D 002 are in-troduced to take care that no de�nition is taken as the instantiation of a variable.Furthermore, the occurs-check has been adapted to the handling of de�nitionalexpressions, as presented in Procedure 1.6.3. The gist of the occurs-check, whichis responsible for its polynomial run time, is that any �rst time a de�nition sym-bol d is checked, it is marked as visited, so that any further time d is checked,no de�nition unfolding is performed and the procedure immediately returns false.All other parts of the occurs-check are standard and self-explanatory.Procedure 1.6.3 (Occurs-check)f de�ne occurring(x;D)input a variable x and a potential de�nitional expression Doutput booleaninitialization of a global structure : a mapping visited, initially emptyif occurs(x;D) : trueelse false gf de�ne occurs(x;D)input a variable x and a potential de�nitional expression D



52 First-Order Logicoutput booleanif D is a de�nition dD 0 or a de�nition symbol d :if visited(d) = true : falseelse visited(d) := true : occurs(x;D 0)else if D is a symbol : x = Delse let S be the immediate subexpression sequenceof D and o its dominating symbol, respectively,occurs sequence(x; S) gf de�ne occurs sequence(x; S)input a variable and a �nite sequence of stringsoutput booleanif S = ; : falseelse if occurs(x,�rst(S)) : trueelse occurs sequence(x,rest(S)) gThe termination and the total correctness of the De�nitional Uni�cation Al-gorithm can be realized easily. For its complexity behaviour, we can formulatethe following estimate.Proposition 1.6.6 There is a polynomial p (of order O(n2)) such that forany two potential strict dag expressions D1; D2 which form a well-de�ned se-quence (D1; D2): if the procedure de�nitional-uni�cation is called with both stringsas input, then any deterministic execution of the procedure terminates withinp (length(D1) + length(D2)) steps.Proof Let the input be as assumed. First of all, the cost for initialization is lin-early bounded. We employ the same technique used in the proof of the polynomialrun time of the De�nitional Matching Algorithm. First, note that the De�nitionalUni�cation Procedure (1.6.2) can be obtained from the Identi�cation Algorithm(Procedure 1.4.4 on p. 26) by pushing the lines (2) to (18) of the De�nitional Uni-�cation Procedure in between the lines (1) and (2) of the Identi�cation Algorithmand by replacing the if in line (2) of the Identi�cation Algorithm with an else elseif. Consequently, the De�nitional Uni�cation Procedure behaves exactly as theIdenti�cation Algorithm, except when a variable x is the de�niens of one of thearguments. Due to the strict dag format, every occurrence of any subexpressionin D2 which is neither a de�nition nor a de�nition symbol is abbreviated. There-fore, in case the variable x is unbound, the de�nitional substitution � is composedwith a de�nitional binding x=dx, where dx is a de�nition symbol, as in the caseof matching. Also, the run time of each occurs-check is quadratically bounded byevery input, even if it is not in dag format. Therefore, all operations on unboundvariables can be safely ignored. Consider an arbitrary deterministic execution ofthe uni�cation procedure, and let � be the �nally generated substitution withcardinality n. We demonstrate that the selected deterministic execution of the



1.6 Instantiations of De�nitional Expressions 53De�nitional Uni�cation Procedure simulates an Identi�cation Procedure with in-put D1� and D2�. In any problematic case, i.e., a case in which an unboundvariable x is at one of the argument positions, and a string D at the other whichis no unbound variable, the procedure simulates an identi�cation operation of thecorresponding substituted de�nition symbol dx and D� with at most the 2n-fold(in the worst case where D is a bound variable) of the following overheads: thefetching of the value of one variable, the performance of the operations from line(2) to (5), and an unfold on a de�nition symbol and another string; the cost ofall those additional operations is linearly bounded by the input, due to the strictdag format, and only linearly many (the number of variables) problematic casesmay occur. Also, the id values are identi�ed properly. Since the structure of �guarantees that length(D1�) = length(D2�), the run time of the Identi�cationAlgorithm must be quadratically bounded by the input. �Since any pair of de�nitional expressions can be transformed into dag formatat linear cost, we get the corollary.Corollary 1.6.7 For any pair of potential de�nitional expressions which forma well-de�ned sequence it can be decided whether they are uni�able with costquadratically bounded by the input.The following size estimate can be stated which is essential for the iterativeexecution of uni�cation operations, the standard modi�cation mechanism in in-ference systems.Proposition 1.6.8 Suppose � is the output of the Procedure 1.6.2 unifying apotential dag expression D1 successfully with a potential dag expression D2, whereS = (D1; D2) is a well-de�ned sequence. If D 01 and D 02 are the results of makingD1� and D1� independent of the context S, respectively, then length(D 01) �length(D1) + length(D2), and length(D 02) � length(D1) + length(D2).Proof In analogy to the proof of Proposition 1.6.5. �Note The relative independency of the mechanisms used for de�nitional expres-sions from the uni�cation task illustrates that the necessity for improving the or-dinary data structures of logical expressions is nothing intrinsic to the uni�cationproblem itself, as is often argued. The fact that polynomial uni�cation cannot beachieved with ordinary logical expressions is just one indication of the weaknessof the traditional data structures. The basic symptom, which has not yet beenemphasized su�ciently, is that an iterative ordinary application of substitutionsmay also lead to an exponential behaviour, as illustrated in Example 1.6.2 onp. 45.



54 First-Order Logic1.7 Sublanguages and Normal FormsA logical problem for a �rst-order language consists in the task of determiningwhether a relation holds between certain �rst-order expressions. For an e�cientsolution of a logical problem, it is very important to know whether it is possibleto restrict attention to a proper sublanguage of the �rst-order language. This isbecause certain sublanguages of the �rst-order language permit the application ofmore e�cient solution techniques than available for the full �rst-order format. Inthis section, we shall present the most important sublanguages of the �rst-orderlanguage.1.7.1 Formulae in Prenex and Skolem FormDe�nition 1.7.1 (Prenex form) A �rst-order formulae � is said to be a prenexformula or in prenex form if � is a closed formula and has the structureQ1x1 � � �QnxnF , n � 0, where the Qi, 1 � i � n, are quanti�ers, and F isquanti�er-free. We call F the matrix of �.Proposition 1.7.1 For every �rst-order formula � there is a formula 	 inprenex form which is logically equivalent to �.Proof We give a constructive method to transform any closed formula � intoprenex form. Let Q be any quanti�er, 8 or 9. For any closed formula whichis not in prenex form one of the following two cases holds. Either, � has asubformula of the structure :QxF ; then, by Proposition 1.2.1(o) and (p), andthe Replacement Lemma (Lemma 1.2.2), the formula 	 obtained from � bysubstituting all occurrences of :QxF in � by Q 0x:F is logically equivalent to �where Q 0 = 9 if Q = 8, and Q 0 = 8 if Q = 9. Or, � has a subformula of thestructure (QxF � G) where � is any binary connective; let x 0 be a variable notoccurring in G, and F 0 = Ffx=x 0g; then, clearly (QxF � G) and Qx 0(F 0 � G)are logically equivalent; since both formulae have the same sets of free variables,by the Replacement Lemma, the formula 	 obtained from � by substitutingall occurrences of (QxF � G) in � by Qx 0(F 0 � G) is logically equivalent to �.Consequently, in either case one can let bubble up quanti�ers, and after �nitelymany iterations prenex form is achieved. �Note also that the run time of this procedure is polynomially bounded by theinput, and the resulting prenex formula has the same size as the initial formula.De�nition 1.7.2 (Skolem form) A �rst-order formula � is said to be a Skolemformula or in Skolem form if � is a prenex formula of the form 8x1 � � � 8xnF , andF is quanti�er-free.The possibility of transforming any �rst-order formula into Skolem form isfundamental for the �eld of automated deduction. This is because the removal of



1.7 Sublanguages and Normal Forms 55existential quanti�ers facilitates a particularly e�cient computational treatmentof �rst-order formulae (but see the remarks at the end of this section).De�nition 1.7.3 (Skolemization) Given a prenex formula � of a �rst-order lan-guage L with the structure 8x1 � � � 8xn9yF , n � 0. Suppose f is an n-ary functionsymbol in the signature of L not occurring in F . Then, let F 0 be the formulaobtained from F by replacing every occurrence of y which is bound by the left-most occurrence of the existential quanti�er in � with f in case n = 0, and withthe term f(x1; : : : ; xn) if n > 0. The prenex formula 8x1 � � � 8xnF 0 is named aSkolemization of �.When moving to a Skolemization of a prenex formula, the collection of modelsdoes not increase.Proposition 1.7.2 Given a prenex formula � of a �rst-order language L anda Skolemization 	 of �, then 	 j= �.Proof Suppose � has the structure 8x1 � � � 8xn9yF , n � 0, and 	 has thestructure 8x1 � � � 8xnF 0, with f being an n-ary function symbol not occurringin � and F 0 = Ffy=f(x1; : : : ; xng. Let I with universe U be a model for 	.By assumption, for every variable assignment A from the language L to U , theformula assignment IA(F 0) = >. De�ne the variable assignment A 0 = (A nfhy;A(y)ig) [ fhy; IA(f(x1; : : : ; xn))ig. IA0(F ) = >, and, by the de�nition offormula assignments, A: IA(9yF ) = >. Since A was chosen arbitrarily, thisholds for every variable assignment. Therefore, I is a model for �. �When moving to a Skolemization of a prenex formula the collection of mod-els may decrease. Consequently, for the transformation of prenex formulae intoSkolem form, logical equivalence must be sacri�ced, and merely the preservationof satis�ability can be guaranteed.Proposition 1.7.3 Given a prenex formula � of a �rst-order language L anda Skolemization 	 of �. If � is satis�able, then 	 is satis�able.In order to make the proof of this proposition easier, we introduce the tech-nically useful notion of a partial variable assignment.De�nition 1.7.4 (Partial variable assignment) Let V be the set of variables inthe signature of a �rst-order language L. Any partial mapping A: V �! U iscalled a partial variable assignment from L to U . The collection of all variableassignments from L to U which are functional extensions of A is written Â andnamed the extension of A.Lemma 1.7.4 Let � be a formula of a �rst-order language L with V being theset of free variables in �, and U a universe. Given a partial variable assignmentA from L to U with domain V , an interpretation I for hL;Ui, and any twovariable assignments A1;A2 2 Â.



56 First-Order Logic(a) IA1(�) = IA2(�).(b) If � has the structure 9xF , let Ax1 denote the collection of all objects ufrom U for which the modi�cation of A1 by setting the value of x to uresults in a formula assignment which maps F to >, and analogously Ax2 .Then, Ax1 = Ax2.Proof The proof of (a) is obvious from De�nition 1.2.18 of formula assignments.To recognize (b), let A be any modi�cation of A1 in the value of x only such thatIA(F ) = >. Set A 0 = (A2 n fhx;A2(x)ig) [ fhx;A(x)ig. Then, both A and A 0are contained in the extension B̂ of a partial variable assignment B with domainV [ fxg. Since V [ fxg is the set of free variables in F , by (a), IA0(F ) = >. Bysymmetry, the reverse holds, and we get that Ax1 = Ax2 . �Now, we wish to furnish the missing proof that Skolemization preserves sat-is�ability.Proof of Proposition 1.7.3 Suppose � has the structure 8x1 � � � 8xn9yF , n �0, and 	 has the structure 8x1 � � � 8xnF 0, with f being an n-ary function symbolnot occurring in � and F 0 = Ffy=f(x1; : : : ; xng. Let I with universe U be amodel for �. Then, for every variable assignment A, IA(9yF ) = >. Let �Ube a well-ordering22 on U . Let P denote the collection of all partial variableassignments from L to U with domain fx1; : : : ; xng. Clearly, P is a total anddisjoint partition of the collection of all variable assignments from L to U . ByLemma 1.7.4, for every member Â 2 P , the collection of objects u from U forwhich the modi�cation of any element A 2 Â by setting the value of y to uresults in a formula assignment which maps F to > is unique for all members ofA. By assumption, this collection is non-empty for every member Â of P . Let A�ydenote the smallest element modulo �U in the collection for Â. We de�ne a totaln-ary mapping f 0: Un �! U by putting f 0(u1; : : : ; un) = A�y with Â being theextension of the partial variable assignment A = fhx1; u1i; : : : ; hxn; unig. Now,de�ne the interpretation I	 = (Infhf; I(f)ig)[fhf; f 0ig. Since f does not occurin �, I	 is a model for �. We prove that I	 is a model for 	. For this, let A bean arbitrary variable assignment from L to U . Clearly, IA	(9yF ) = >. Since Pis a total partition of the collection of all variable assignments, A is contained insome element Â of P . If u is the smallest element modulo�U in the collection A�yde�ned as above and A 0 = (A n fhy;A(y)ig)[ fhy; uig, then IA0	 (F ) = >. Sincethe term assignment of I	 and A maps f(x1; : : : ; xn) to u, IA0	 (F 0) = >. Fromthe fact that y does not occur in F 0 it follows that IA	(F 0) = >. As A was chosenarbitrarily, for every variable assignment, the respective formula assignment ofI	 maps F 0 to >. This proves that I	 is a model for 	. �22A total relation � on a collection of objects S is a well-ordering on S if every non-emptysubcollection of objects from S has a smallest element modulo �. Note that supposing theexistence of a well-ordering amounts to assuming the axiom of choice (for further equivalentformulations of the axiom of choice consult [Krivine, 1971]).



1.7 Sublanguages and Normal Forms 57Theorem 1.7.5 (Skolemization Theorem) Given a prenex formula � of a �rst-order language L and a Skolemization 	 of �. � is satis�able if and only if 	is satis�able.Proof Immediate from Propositions 1.7.2 and 1.7.3. �Concerning the space and time complexity involved in a transformation intoSkolem form the following estimate can be formulated.Proposition 1.7.6 Given a prenex formula � of a �rst-order language L anda Skolem formula 	 obtained from � via a sequence of Skolemizations, thenlength(	) < length(�)2, and the run time of the Skolemization procedure is poly-nomially bounded by the size of �.Proof Every variable occurrence in � is bound by exactly one quanti�er occur-rence in �, and every variable occurrence in an inserted Skolem term is boundby a universal quanti�er. This entails that, throughout the sequence of Skolem-ization steps, whenever a variable occurrence is replaced by a Skolem term, thenno variable occurrence within an inserted Skolem term is substituted afterwards.Moreover, the sizes of the inserted Skolem terms are bounded by the size of thequanti�er pre�x of �. Therefore, the output size is quadratically bounded by theinput size. Since in the Skolemization operation merely variable replacementsare performed, any deterministic execution of the Skolemization procedure canbe done in polynomial time. �Note Skolemization only works for classical logic (the classical logical valid-ity), but not for intuitionistic validity or other logical relations. In those casesmore sophisticated methods are needed to encode the quanti�er nesting (con-sult [Prawitz, 1960, Bibel, 1987], and the generalizations of their technique tonon-classical logic [Wallen, 1989] and [Ohlbach, 1991]).1.7.2 Herbrand InterpretationsThe standard theorem proving procedures are based on the following obviousproposition.Proposition 1.7.7 Given a set of closed formulae � and a closed formula F .� j= F if and only if � [ f:Fg is unsatis�able.Accordingly, the problem of determining whether a closed formula is logicallyimplied by a set of closed formulae can be reformulated as an unsatis�abilityproblem. Demonstrating the unsatis�ability of a set of formulae of a �rst-orderlanguage L, however, means to prove for any universe U that no interpretationfor the pair hL;Ui is a model for the set of formulae. A further fundamentalresult for the e�cient computational treatment of �rst-order logic is that, for



58 First-Order Logicformulae in Skolem form, it is su�cient to examine only the interpretations forone particular domain, the Herbrand universe of the set of formulae.Subsequently, let L denote a �rst-order language and aL a �xed constant inthe signature of L.De�nition 1.7.5 (Herbrand universe) (inductive)Let S be a set of Skolem formulae of L. With SC we denote the set of constantsoccurring in formulae of S. The constant base of S is SC if SC is non-empty, andthe singleton set faLg if SC = ;. The function base SF of S is the set of functionsymbols occurring in formulae of S with arities > 0. Then, the Herbrand universeof S is the set of terms de�ned inductively as follows.1. Every element of the constant base of S is in the Herbrand universe of S.2. If t1; : : : ; tn are in the Herbrand universe of S and f is an n-ary functionsymbol in the function base of S, then the term f(t1; : : : ; tn) is in the Her-brand universe of S.If S is a singleton set f�g, the same terminology shall be used for its formula �.De�nition 1.7.6 (Herbrand interpretation) Given a set S of formulae of a �rst-order language L with Herbrand universe U . A Herbrand interpretation for S isan interpretation I for the pair hL;Ui meeting the following properties.1. I maps every constant in SC to itself.2. I maps every function symbol f in SF with arity n > 0 to the n-ary functionthat maps every n-tuple of terms ht1; : : : ; tni 2 Un to the term f(t1; : : : ; tn).If S is a singleton set f�g, the same terminology shall be used for its formula �.Proposition 1.7.8 For any �rst-order formula � in Skolem form, if � has amodel, then it has a Herbrand model.Proof Let I 0 be an interpretation with arbitrary universe U 0 which is a modelfor �, and let U denote the Herbrand universe of �. First, we de�ne a totalmapping h: U �! U 0, as follows.1. For every constant c 2 U : h(c) = I 0(c).2. For every term f(t1; : : : ; tn) 2 U : h(f(t1; : : : ; tn) = I 0(f)(h(t1); : : : ; h(tn)).Next, we de�ne a Herbrand interpretation I for �.3. For every n-ary predicate symbol P , n � 0, and any n-tuple of objectsht1; : : : ; tni 2 Un: ht1; : : : ; tni 2 I(P ) if and only if hh(t1); : : : ; h(tn)i 2I 0(P ).



1.7 Sublanguages and Normal Forms 59Now, letA be an arbitrary variable assignmentA from L to U . WithA 0 we denotethe functional composition of A and h. It can be veri�ed easily by induction onthe construction of formulae that I 0A0(�) = > entails IA(�) = >. The inductionbase is evident from the de�nition of I, item 3 above, and the induction stepfollows from De�nition 1.2.18. Consequently, I is a model for �. �The fact that Herbrand interpretations are su�cient for characterizing mod-elhood can be used for proving the L�owenheim-Skolem theorem.Theorem 1.7.9 (L�owenheim-Skolem theorem) Every satis�able �rst-order for-mula � has a countable model.Proof Given any satis�able �rst-order formula �, let 	 be a �rst-order formulaobtained from � by prenexing and Skolemization. By Propositions 1.7.1 and 1.7.3,	 must be satis�able, too. Then, by Proposition 1.7.8, there exists a Herbrandmodel I for 	, which is countable since every Herbrand model is countable. ByPropositions 1.7.1 and 1.7.2, I is a model for �. �The working with Herbrand interpretation has the advantage that interpre-tations can be represented in a very elegant manner.De�nition 1.7.7 (Herbrand base) Given a set S of formulae of a �rst-order lan-guage L with Herbrand universe U . The predicate base SP of S is the set ofpredicate symbols occurring in formulae of S. The Herbrand base of S, writtenBS, is the set of all atomic formulae P (t1; : : : ; tn), n � 0, with P 2 SP and ti 2 U ,for every 1 � i � n. If S is a singleton set f�g, the same terminology shall beused for its formula �.Notation 1.7.1 Since every Herbrand interpretation I of a set of formulae Scan be represented by the setH = fA 2 BS j I(A) = >g [ f:A j A 2 BS and I(A) = ?gfrom now on the literal set notation will be used for denoting Herbrand interpre-tations.1.7.3 Complete and Compact Sets of ConnectivesFrom the De�nition 1.2.18 of formula assignments it is apparent that, with re-spects to the semantics of �rst-order formulae, certain logical connectives arede�nable by other connectives. This is expressed formally with the followingnotion.



60 First-Order LogicDe�nition 1.7.8 (Complete set of connectives) A subset S of the set of connec-tives f:;^;_;!;$g is called complete23 if for any �rst-order formula � thereexists a �rst-order formula 	 which is logically equivalent to � and in which onlyconnectives from S occur.Proposition 1.7.10 All sets of connectives which are supersets of one of thefollowing sets of connectives are complete: f:;_g, f:;^g, and f:;!g.Proof The case of f:;_g is obvious from the De�nition 1.2.18 of formula as-signments. By Proposition 1.2.1(a) and item 5 of De�nition 1.2.18, (F _ G) �::(::F _ ::G) � :(:F ^ :G), which reduces the completeness of f:;^gto the �rst case. By Proposition 1.2.1(a) and item 6 of De�nition 1.2.18,(F _G) � (::F _ G) � (:F ! G), which reduces the completeness of f:;!gto the �rst case, too. �Note There are connectives (the She�er stroke j and #) which alone form com-plete sets; we do not consider them here. The mentioned two-element sets ofconnectives are the only two-element sets of the considered connectives which arecomplete.Completeness is one requirement on a set of connectives, another desired prop-erty is that a set of connectives is complete and additionally permits compactformulations.De�nition 1.7.9 (Compact set of connectives) A subset S of the set of connec-tives f:;_;^;!;$g is called compact if there is a polynomial p such that for any�rst-order formula � there is an equivalent formula 	 using merely connectivesfrom S and length(�) > p (length(	)).Unfortunately, not every complete set of connectives is compact. Considerthe formula class presented in Example 1.7.1 for which no set of the consideredconnectives without$ can provide an equivalent formulation which is polynomialin size.Example 1.7.1 For every n > 0, de�ne Fn = A1 $ A2 $ � � �An�1 $ An.There are polynomial transformations which are merely satis�ability and un-satis�ability preserving [Reckhow, 1976]. Also, similar to the case of Skolemiza-tion, the transformed formula logically implies the source formula, so that mostproblems of automated deduction|unsatis�ability detection and model genera-tion if possible|can be solved by considering the transformed formula.23Also, using this set of connectives, any n-ary boolean function can be equivalently for-mulated as a propositional formula over n nullary predicate symbols (see [Shannon, 1938] or[Moret, 1982]).



1.7 Sublanguages and Normal Forms 61Proposition 1.7.11 All sets of connectives which are supersets of one of thefollowing sets of connectives are compact: f:;_;$g, f:;^;$g, or f:;!;$g.Proof Apparently, the paraphrasing of any occurrence of a connective from theset f_;^;!g by any pair of connectives f:; �g, � 2 f_;^;!g, gives rise to onlya constant increase in size. The fact that any superset of the mentioned sets ofconnectives is compact is then an immediate consequence of Lemma 2.3.7, provenin Chapter 2. �Every compact set of the considered connectives must contain $. This can beveri�ed by considering Example 1.7.1. As a consequence, no minimal completeset of the considered connectives is compact. One of the superiorities of thede�nitional �rst-order language over the ordinary �rst-order language is expressedin the following fundamental result.Proposition 1.7.12 For the de�nitional �rst-order language, every completeset of connectives is compact.Proof It su�ces to consider the minimal complete sets of connectives f:;_g,f:;^g, and f:;!g, and the manner how the paraphrasing of the material equiv-alence sign can be performed. First, any occurrence of a material equivalence� = (F $ G) can be substituted by the formula 	 = ((fF ! gG) ^ (g ! f))which is only by a constant larger than �. Then, for any target connective� 2 f_;^;!g, the paraphrasing of the other connectives produces a formula inwhich for every replaced connective in 	, ! and/or ^, at most the target connec-tive � plus a constant number of negation signs and brackets are obtained, so thatthe resulting formula is also merely by a constant larger than �. An applicationof Lemma 2.3.7 completes the proof. �Note The important consequence to be drawn from this property of the de�-nitional language is that there are linear and equivalence preserving translationsbetween any two complete sets of connectives. In contrast, compare the consider-able amount of work done by Reckhow in [Reckhow, 1976] to distinguish betweendi�erent forms of translations (so-called direct and indirect translations), whichbecomes obsolete for the de�nitional format. One may object that this is becausethe de�nitional formalism introduces the material equivalence$ in a hidden form.But this is not true. There is a fundamental distinction between permitting theformulation of material equivalences F $ G and the possibility of abbreviatingformulae by de�nitions fG. The di�erence is that logical calculi have to containadditional inference rules for $, and this way introduce additional sources ofredundancy. From the perspective of automated deduction, which deals with theproblem of �nding proofs, additional inference rules may have the e�ect that thecalculus gets worse; this is because the branching rate of the calculus increaseswith additional inference rules, so that the proof search may become more dif-�cult. The working with de�nitional expressions, however, can be organized in



62 First-Order Logicsuch a way that it induces no additional redundancy, just like the availability ofdags for the uni�cation operation does not render uni�cation more indeterminis-tic. This can be obtained by distinguishing in the inference mechanism betweende�nition symbols and ordinary expressions by applying a similar technique usedin the identi�cation, matching, and uni�cation procedures for de�nitional ex-pressions. This way, compactness becomes a matter of representation, and not amatter of logical operators.1.7.4 Formulae in Clausal FormAfter prenexing and Skolemizing a formula, it is a standard technique in auto-mated deduction to transform the resulting formula into a normal form, calledclausal form. In order to be able to de�ne this normal form, it is useful to extendthe �rst-order language.De�nition 1.7.10 (Generalized conjunction and disjunction) Let (F1; : : : ; Fn),n � 0, be a sequence of formulae. The concatenation F1 � � �Fn is called thegeneralized conjunction of (F1; : : : ; Fn); if n = 0, the generalized conjunctionis named the verum and is abbreviated by writing >. The concatenationF1 � � �Fn is called the generalized disjunction of (F1; : : : ; Fn); if n = 0, thegeneralized disjunction is named the falsum and is abbreviated by writing ?.Any �rst-order language L can be extended in an obvious way to a generalized�rst-order language LG by permitting formulae in which generalized disjunctionsand conjunctions may occur recursively as subformulae. The declarative seman-tics of expressions for generalized �rst-order languages is de�ned by extendingthe de�nition of formula assignment (De�nition 1.2.18).De�nition 1.7.11 (Formula assignment for a generalized �rst-order language)Given an interpretation I for a �rst-order language L with universe U , and avariable assignment A from L to U , then the formula assignment for the gen-eralization LG of L is de�ned by simultaneous induction as in De�nition 1.2.18with the addition of the following two lines. Let F1; : : : ; Fn, n � 0, be arbitrarygeneralized formulae.10. IA( F1 � � �Fn ) = ( > if there is an Fi, 0 � i � n, and IA(Fi) = >? otherwise.11. IA( F1 � � �Fn ) = IA(: :F1 � � � :Fn ):Proposition 1.7.13 Any generalized �rst-order formula F1 � � �Fn , n > 0,is logically equivalent to F1 _ � � � _ Fn, and any generalized �rst-order formulaF1 � � �Fn , n > 0, is logically equivalent to F1 ^ � � � ^ Fn.Proof Immediate from De�nition 1.7.11 on p. 62 and Proposition 1.2.1(g) and(h) (the associativity of ^ and _) on p. 12. �



1.7 Sublanguages and Normal Forms 63De�nition 1.7.12 (Literal) A literal is an atomic formula or the negation of anatomic formula.De�nition 1.7.13 (Clause formula) If L1; : : : ; Ln, n � 0, are literals, then thegeneralized disjunction L1 � � �Ln and any of its universal closures are calledclause formulae.De�nition 1.7.14 (Conjunctive, disjunctive normal form) A formula is said to bein conjunctive or clausal form if it is a generalized conjunction of clause formu-lae. A formula is in disjunctive normal form if it is a generalized disjunction ofexistential closures of generalized conjunctions of literals.The following is straightforward from De�nition 1.2.18 and Proposition 1.2.1.Proposition 1.7.14 For any �rst-order formula � in Skolem form there existsa formula 	 in clausal form with � � 	.Proof Let F be the matrix of a �rst-order formula � in Skolem form. We per-form the following four equivalence preserving macro steps. First, by items 6 and7 of the De�nition 1.2.18 of formula assignment, successively, the connectives $and ! are removed and replaced by their de�nientia. Secondly, the negationsigns are pushed immediately before atomic formulae, using recursively Proposi-tion 1.2.1(a) and de Morgan's laws (j) and (k). Thirdly, apply _-distributivityfrom left to right until no conjunction is dominated by a disjunction, Finally, movethe quanti�er pre�x of F directly before the clause formulae (by iteratively ap-plying Proposition 1.2.1(q), and delete redundant quanti�ers and variables fromthe resulting clause formulae.As an immediate consequence of Proposition 1.7.11 we obtain the followingcorollary.Corollary 1.7.15 There is no polynomial p such that for every �rst-order for-mula � in Skolem form there exists an equivalent clausal form formula 	 withlength(�) > length(p (	)).Again, the class of formulae A1 $ � � � $ An from Example 1.7.1 furnishesa counter-example. But there are polynomial transformations if logical equiva-lence is sacri�ced. Similar to Reckhow's transformations, these transformations[Eder, 1985b, Boy de la Tour, 1990] are satis�ability and unsatis�ability preserv-ing, and the transformed formula logically implies the source formula.Note It is an important open question, however, whether the representationaladvantages of de�nitional expressions can be made available to the standardmechanisms working on formulae in clausal form, of the type discussed in Chap-ter 3. The apparent problem is that those mechanisms cannot handle arbitrarily



64 First-Order Logiccomplex formulae, which would be necessary in order to exploit the full powerof de�nitional expressions. The na��ve approach, to simulate the abbreviatingpower of de�nitional expressions with the addition of ordinary clause formulae(see [Tseitin, 1970]), su�ers from the mentioned weakness that it increases thebranching rate of the calculus tremendously.A speci�c sublanguage of clausal formulae which is fundamental for the �eldof logic programming is the Horn clause language.De�nition 1.7.15 (Horn clause formula) If (L1; : : : ; Ln), n � 0, is a sequenceof literals with an atom at at most one position, then any universal closure ofthe generalized disjunction L1 � � �Ln is called a Horn clause formula. A Hornclause formula is called de�nite if it derives from a sequence of literals with anatom at exactly one position.De�nition 1.7.16 (Horn clause form) A formula is said to be in Horn clauseform if it is generalized conjunction of Horn clause formulae.In general, there is no equivalence-preserving transformation from Skolemformulae to formulae in clausal form, even if polynomiality is sacri�ced. Merelysatis�ability and unsatis�ability can be preserved. Furthermore, the transformedformula does not logically imply the source formula.Proposition 1.7.16 For any �rst-order formula � in Skolem form there existsa formula 	 in Horn clausal form such that � is satis�able if and only if 	 issatis�able.There exist translation procedures which even have a polynomial run time[Letz, 1988]. Since these methods are typically not model-theoretic and requireproof-theoretic techniques, we shall not discuss them here.1.7.5 Ground and Propositional FormulaeApart from the restriction of a �rst-order language by disallowing the use ofcertain connectives or quanti�ers, one can consider formulae without variables orfunction symbols.De�nition 1.7.17 (Data-logic formulae) A �rst-order formula is said to be adata-logic formula if it is a Skolem formula in which no function symbols of arity> 0 occur.De�nition 1.7.18 (Ground formulae) A �rst-order formula is ground if no vari-ables occur in the formula.De�nition 1.7.19 (Propositional formula) A �rst-order formula is a propositionalformula if no variables, quanti�ers or function symbols occur in the formula.For all three sublanguages the satis�ability problem of a formula or a �nite setof formulae is decidable. Since the class of propositional formulae is fundamentalfor complexity theory, it will be studied extensively in Chapter 3 of this work.



Chapter 2Complexity Measures for LogicCalculiThis chapter developes the basic concepts needed for determining the complex-ities of logic calculi. In Section 1, we introduce the notions of logic structuresand logics, and identify the di�erent principal types of logical problems. In thesecond section, logic calculi are introduced, as the general mechanisms for solvinglogical problems; since, computationally, logic calculi can be viewed as transitionrelations, afterwards, the basic properties of transition relations are introduced.For a quantitative competitive assessment of di�erent calculi the lengths of proofsare of crucial importance; in Section 3, three di�erent formats are presented formeasuring proof lengths, which are of increasing degree of abstraction, and it isinvestigated under which conditions the higher abstraction levels adequately rep-resent the lowest level, by introducing the notions of polynomial size-transparencyand polynomial step-transparency. In the automation of reasoning it is not su�-cient to design powerful calculi which are (weakly) complete, the ultimate goal isto develop strongly complete calculi or proof procedures; in Section 4 proof pro-cedures are introduced and it is investigated in which way one can come fromcomplete calculi to proof procedures.2.1 Logics and Logical Problems2.1.1 Logic StructuresWith the use of logical expressions a wealth of domains can be modelled andmany problems in these domains can be described. Yet it has proven convenientnot to be restricted to isolated logical expressions as representing elements butto have at one's disposal compositions of logical expressions.1 This leads to theconcept of what we shall call logic structures.1In fact, one has never been satis�ed with logical expressions alone, additionally, structurescomposed of logical expressions were used, typically, sets of logical expressions.



66 Complexity Measures for Logic CalculiDe�nition 2.1.1 (General logic structure) A general logic structure S on a �rst-order language2 L is any set-theoretic object composed of expressions from L.This de�nition is very broad and does not impose any restrictions on thenature and the size of the involved objects. For example, an interpretation of alogical formula|which in general is in�nite|or even the collection of all interpre-tations of a formula|which for the �rst-order case normally is non-denumerable|are general logic structures. In principle, logic structures have the same statusas logical expressions, since logical expressions themselves are strings over analphabet, and strings are just ordinary set-theoretic constructs. To work withstructures composed of logical expressions just means that logical expressionsconstitute a useful class of basic units from which further interesting structurescan be achieved by composition.With respect to mechanization, the condition of �niteness is an indispensiblefeature. This condition characterizes proper logic structures, in which we areparticularly interested in this work.De�nition 2.1.2 ((Proper) logic structure) A proper logic structure or just logicstructure S on a �rst-order language L is any �nite3 object composed of logicalexpressions from L.Logic calculi can cope with proper logic structures only. Proper logic struc-tures impose principal representational restrictions on general logic structures.Indeed, it is impossible to represent all general logic structures as proper logicstructures, as exempli�ed by the above example, namely, the collection of allinterpretations for a formula of �rst-order logic.2.1.2 Logical Relations and LogicsWhile logical expressions are the basic components of logic structures and henceat the microscopic end of the spectrum, there are particularly useful and uniformmathematical objects that are best-suited to represent the top elements in thehierarchy of logic structures. These are relations of logic structures.De�nition 2.1.3 (General logical relation) A general logical relation on a collec-tion of logic structures S is any n-ary relation such that every tuple hS1; : : : ; Sni 2R consists of general logic structures from S.As a matter of fact, general logical relations are just general logic structures.The advantage o�ered by the format of logical relations is that it is both uniform2Although in our work only the �rst-order language (or sublanguages of it) are considered,the concepts developed in this chapter are not speci�c to �rst-order languages but apply tomore expressive logical languages too.3With �nite objects we mean such objects which can be explicitly described by �nitisticmethods, for instance, injectively mapped to strings over a �nite alphabet.



2.1 Logics and Logical Problems 67and general enough to represent many domains in a natural way. As will becomeapparent in a moment, relations on logic structures also play the key role in theformulation of logical problems.Examples of relations on logic structures The classical example of a relationon logic structures is the binary relation of logical consequence, which containstuples h�;�i of sets of logical formulae such that � is a logical consequence of�. In the recent time, the abduction relation is gaining interest. Abduction maybe viewed as a ternary logical relation consisting of triples h�;�;�i of (sets of)logical formulae such that �[� is consistent and � follows from �[� but neitherfrom � nor from �. As a third important example, the theory revision or updaterelation, as typically used in information systems, could be de�ned as a collectionof triples h�;�;�i of sets of logical formulae such that (� and � are inconsistentand) � is some minimal subset of the theory � satisfying that � n � and theupdate � are consistent.Of particular importance is the study of those relations which are based uponproper logic structures.De�nition 2.1.4 (Proper logical relation) A general logical relation is said tobe a proper logical relation or just a logical relation if its tuples are composed ofproper logic structures.It is important to note that proper logical relations need not be proper logicstructures. While the elements of the relations, the tuples, have to be �nitestructures, the relations themselves may be|and typically are|in�nite.Proposition 2.1.1 Every proper logic structure is countable.Proof By de�nition, every proper logic structure can be injectively mapped to astring over some given �nite alphabet. Since the set of strings over any alphabetis countable, any proper logical relation must be countable, too. �Lastly, we can come to the formal de�nition of what we will understand by alogic, both in the general and in the proper sense.De�nition 2.1.5 (General and proper logic) A general logic is a pair L = hS;Riwhere S is a collection of general logic structures and R is a logical relation ofarbitrary arity on S. Whenever S is a collection of proper logic structures, thenL is called a proper logic or just a logic.



68 Complexity Measures for Logic Calculi2.1.3 Logical ProblemsGiven a logic hS;Ri, then some fundamental types of logical problems can beformulated. The simplest logical problem is the veri�cation problem. It consistsin �nding a universal and mechanical procedure which for any tuple t 2 R canverify that t 2 R. The other basic types of logical problems need some de�nitionsfor both a general and precise formulation.De�nition 2.1.6 (Projection) A projection function � from a positive integern to a non-negative integer k (k � n) is a bijective mapping from a subset ofthe positive integers f1; : : : ; ng onto the set of positive integers � k which ismonotonic with respect to <, i.e., for all i; j in the domain of �: i < j implies�(i) < �(j). A projection function is called proper in case n > k. If � is aprojection function from n to k and R is a logical relation of arity n, then the�-projection induced by � on R, written �R, is a mapping with domain R andde�ned by �R(ht1; : : : ; tni) = ( ht��1(1); : : : ; t��1(k)i if k > 0; if k = 0.To present an example, suppose a projection function � is the mappingfh1; 1i; h3; 2i; h4; 3ig, then its �-projection on a relation R of arity 4 maps anyquadruple ha; b; c; d i 2 R to the triple ha; c; d i. In case a projection function �is from n to 0, then the corresponding �-projection �R on any n-ary relation Rmaps its members constantly to ;.De�nition 2.1.7 (Complement projection, complement tuple) If � is a projectionfunction from n to k, then its complement projection, written �, is the projectionfunction from n to n�k which has as its domain the complement of the domainof � in the set f1; : : : ; ng. Suppose �R is a �-projection induced by a projectionfunction � and a relation R. For arbitrary tuples t; t 0, if �R(t) = �R(t 0), then wecall �R(t 0) a complement tuple of �R(t) under � and R.Note While any projection function � has a unique complement projection �, atuple �R(t) on a relation R may have more than one complement tuples.The notion of complement tuples serves as the basis for the formulation oflogical computation relations. Beforehand, we need the concept of logical projec-tions.De�nition 2.1.8 (Logical projection) A logical projection is a triple hS;R; �iwhere R is an n-ary logical relation on a collection of logic structures S and� is any projection function from n to some natural number k � n. A logicalprojection is called proper if k < n.



2.1 Logics and Logical Problems 69De�nition 2.1.9 (Computation relation) Given a logical projection hS;R; �i,the binary relation C consisting of the set of pairs fh�R(t); �R(t 0)i j �R(t) =�R(t 0)g, i.e., the set of all pairs of tuples and their complement tuples, is calledthe computation relation of the logical projection. For any member hi; oi in acomputation relation C we say that i is an input of o in C and that o is an outputof i in C. Furthermore, we call the sets fi j i has an output in Cg and fo j o hasan input in Cg the input set and the output set of C, respectively. A computationrelation is called proper if it derives from a proper logical projection.Example 2.1.1 Assume S is the set of formulae of a �rst-order language, andlet R � S � S be the binary relationfh�;	i j � � 	 and there is no � 2 S with � � � and size(�) < size(	)g:The computation relation C of the logical projection hS;R; fh1; 1igi associateswith every input formula a logically equivalent formula which is minimal in size,i.e., for this logical projection, the computation relation C is R itself.Clearly, the output set of any improper computation relation either is empty,in case the relation itself is empty, or contains only the empty tuple. The sameholds for the input set if the projection function is from n to 0.Any speci�c logical problem can be expressed as a logical computation relationC. Its solution consists of computing for any member i in the input set of Coutputs of i in C. Due to the fact that for any n-ary logical relation up to2n di�erent computation relations may be formulated, corresponding to the 2nexisting logical projections, logical computation relations o�er a 
exible tool forexpressing various logical problems for a given logical relation.Two fundamental types of computation problems may be distinguished. Onthe one hand, there is the task of �nding for any element i in the input set of C atleast one output of i in C, which we will call an existential computation problem.On the other hand, one can pose the problem of computing for any element i inthe input set of C all outputs of i in C; in this case we will speak of a universalcomputation problem or an enumeration problem. In the general case, in whichthere are in�nitely many output values for i, an enumeration problem can onlybe solved by a perpetual process which never terminates.In the terminology of computation problems, a veri�cation problem for alogical relation R turns out to be the special case of an improper computationproblem, i.e., �R = R and �R contains at most the empty set. Since in thiscase the computation relation is a (constant) function, existential and universalcomputation problems coincide.The notions of logical computation relations and computation problems pro-vide both a rich and elegant terminology for describing logical problems. Let usillustrate this at some concrete computation problems that can be formulated fortypical logical relations.



70 Complexity Measures for Logic CalculiExamples of computation problems The veri�cation problem for the binaryrelation of logical consequence is the classical task of automated deduction. Theproblem of enumerating the logical consequences of a formula is a proper universalcomputation task. For problems like constraint satisfaction, model generation, orquery answering in logic programming, one normally is satis�ed if one output iscomputed, so these are typical existential computation problems.In practice, during the solution of one particular problem type any of the threetypes of problems may occur as subproblems. For subproblems which are univer-sal computation problems, due to possible non-termination|in case of in�nitelymany output values|it may then be necessary to use interleaving techniques.Example of a complex computation problem Complex computation prob-lems can be formulated for the ternary abduction relation mentioned above, whichconsists of triples h�;�;�i of sets of logical formulae such that �[� is consistentand � follows from �[� but neither from � nor from �. The typical computationrelation for abduction is the one which takes pairs of the type h�;�i as inputs andcomputes output values, abducibles, of the type �. The problem of computingabducibles contains as subproblems the veri�cation of logical consequence andconsistency.2.1.4 Specializations of LogicsA logic explicitly distinguishes between the underlying collection of logic struc-tures and the logical relation de�ned on these structures. This separation turnsout to be helpful when comparing logics, in particular, in case one logic is a spe-cialization of the other. Apparently, there are two di�erent ways of specializing alogic. On the one hand, there are restrictions on the admissible logic structures,and on the other, there are restrictions on the logical relation.De�nition 2.1.10 ((Structure) restriction) If hS;Ri and hS 0;R0i are logics whereS 0 � S and R0 = ft 2 R j t is a tuple on S 0g, then hS 0;R0i is called a (structure)restriction of hS;Ri.De�nition 2.1.11 (Sublogic) If hS;Ri is a logic and R0 � R, then hS;R0i iscalled a sublogic of hS;Ri.The two di�erent ways of specializing a logic also have implications on theresulting logical problems. While, typically, the structural recognition of whethera logic structure belongs to a given collection of logic structures is decidable withlow cost, proving that a tuple belongs to a logical relation is di�cult in mostcases, often undecidable. The possibility of keeping this separation motivates afurther subclassi�cation of logic structures.



2.2 Logic Calculi and Transition Relations 71De�nition 2.1.12 (Polynomial di�culty) A collection of logic structures S is saidto be of polynomial di�culty if there is a polynomial p and a decision procedure Pfor membership in S such that, for arbitrary logic structures S, the run time of Pon input S is less than p (size(S)) where size(S) is the string size of an appropriatestring encoding of S. A logic hS;Ri is said to be of polynomial structure-di�cultyif S is of polynomial di�culty.Any method for solving a logical problem for a logic hS;Ri automaticallycarries over to any structure restriction hS 0;R0i of the logic if S 0 is of polynomialdi�culty.2.2 Logic Calculi and Transition RelationsOnce a logical problem has been formulated, the question is whether there existe�ective methods for solving arbitrary instances of this problem. The material-izations of such e�ective mechanisms for logical relations are in the form of logiccalculi .2.2.1 Inference Rules and DeductionsViewed from the highest representational level, a logic calculus is given as a�nite set of structural rules which specify deductive or inferential operations.Traditionally, these deduction or inference rules are presented as collections of�gures of the general shape S1 � � � SnSwhere S1; : : : ; Sn and S are schemata describing the permitted structures in theinput tuple and the output of the rule, respectively. The paradigmatic interpre-tation of an inference operation according to such a �gure is meta-level matchingand deduction: given an already generated set S of proper logic structures,1. select a tuple hS 01; : : : ; S 0ni of logic structures from S such that there existsa substitution � for schema variables with hS1�; : : : ; Sn�i = hS 01; : : : ; S 0ni,2. afterwards, select a logic structure S 0 such that there is a substitution � forschema variables with S�� = S 0.S 0 is the output of the deduction step. Sometimes additional conditions need to bemet to admit the performance of the deduction step. Typically, these conditionscannot be expressed using the schematic form, therefore they are formulatedalongside.The following two examples of inference rules which are taken from the ax-iomatic Frege/Hilbert calculi [Frege, 1879, Hilbert and Bernays, 1934] are con-crete instances of such inference rules formulated in modern symbolism, withoutadditional conditions. The gothic letters stand for arbitrary �rst-order formulae.



72 Complexity Measures for Logic CalculiExample 2.2.1 (Detachment or Modus ponens rule)A A! BBExample 2.2.2 (First axiom rule4 of the Frege/Hilbert system)A! (B! A)Note In the modus ponens rule the second substitution � is empty, whereasin the axiom rule the �rst substitution � is empty. In Gentzen's sequent system[Gentzen, 1935] there are inference rules in which both substitutions are non-empty.Inference rules describe the elementary steps for building deductions andproofs, which are special types of deductions. There are di�erent paradigmsfor de�ning deductions. One frequently used de�nition is to view deductionsas �nite sequences (S1; : : : ; Sn) of logic structures where each Si, 1 � i � n,can be deduced by applying an inference rule to structures with an indexstrictly less than i; examples of calculi in which deductions normally are un-derstood this way are the Frege/Hilbert systems mentioned above and the res-olution calculi [Robinson, 1965a]. Another popular interpretation is to de�nedeductions as trees labelled with logic structures where each parent node isobtained by applying an inference rule to its successor nodes; sequent deduc-tions were originally presented this way. In Section 3.3, tableau deductions[Beth, 1955, Beth, 1959, Smullyan, 1968] will be de�ned as trees which satisfycertain graph properties.There is no limitation to further ways of de�ning deductions. However, alldeductions seem to share one essential property in order to be accepted as such,namely, the cost for deciding whether a given logic structure is a deduction of acertain type must be adequately represented in the size of the logic structure. Areasonable weak formalization of the term `adequately' is to read it as `polyno-mially'. In other words, any collection of logic structures de�ning deductions ofa certain type must be of polynomial di�culty.52.2.2 Deduction ProcessesFor investigations into the computational complexity of logic calculi, it is impor-tant to realize that one can distinguish between the deduction as a declarative4In the literature, often a distinction is being made between inference rules of the moduspones type and so-called axiom schemata presented in this example. An axiom schema issometimes not read as an inference rule, but as specifying the set of all instances of logicstructures (in the example just formulae) which are instances of the schema. Computationally,such a distinction does not make sense. We treat axiom schemata simply as inference ruleswithout any structural conditions on the input set.5It is for this reason, that complementary spanning matings (De�nition 3.3.12 on p. 121)cannot be accepted as deductions.



2.2 Logic Calculi and Transition Relations 73object and the deduction process. Deductions as static objects of the type men-tioned above tend to be non-operational, in the sense that they do not prescribethe precise methodology according to which they have to be constructed. A de-duction process can be viewed as one particular way of building up a deductionobject.6There is no agreement in the logic community about whether a logical systemmerely has to describe deductions as static objects or whether the system shouldalso determine the operational generation paradigm of deductions. This is animportant subject since di�erent logical systems may produce the same deductionobjects but completely di�er in the recommended methodology how to constructthe deduction objects. From the viewpoint of automated deduction, which isconcerned with the problem of �nding proofs, the deduction process is essential.Also, strictly speaking, the deduction process is the more fundamental notionand the deduction object is just a|even though extremely useful|by-product ofthe deduction process. This evaluation can be justi�ed by recalling under whichconditions a given object is accepted as a deduction of a type S, namely, if thereexists a procedure which decides in polynomial time whether the object has typeS. Consequently, the declarative reading of deductions need to be supplementedwith an additional operational methodology.Since, in its essence, the concept of a logic calculus is an operational concept,there has to be a clear idea of mechanical processing, a notion of moving from onestate of a�airs to another, and the possibility for doing this iteratively. Therefore,a very natural and general speci�cation model is to interpret logic calculi asde�ning binary transition relations between proper logic structures, which playthe role of the states in the transition relations.2.2.3 General Notions of Transition RelationsFirst, we have to review the standard vocabulary for transition or reduction rela-tions, which is taken from the area of rewriting systems. We begin with a seriesof notational abbreviations.Notation 2.2.1 For a given transition relation `, we let denoteì the i-fold composition of `;+̀ the transitive closure of `;�̀ the transitive-re
exive closure of `;a` the symmetric closure of `.De�nition 2.2.1 (Derivation, predecessor, successor, ancestor, descendant, acces-sibility) Given a transition relation `, then any sequence S of objects such thatfor every two successive elements ei; ei+1 in S: ei ` ei+1 is called a derivation in6In the Chapters 3 and 4, we shall frequently make use of the distinction between deductionsas objects and the di�erent processes for generating deductions.



74 Complexity Measures for Logic Calculi`. If e ` e 0, we call e a predecessor of e 0 and e 0 a successor of e in `. If e +̀ e 0,we call e an ancestor of e 0 and e 0 a descendant of e in `. If e �̀ e 0, we say thate 0 is accessible from e.Notation 2.2.2 If two objects e1 and e2 are accessible from a common objectin a transition relation `, we write e1fe2, and if from two objects e1 and e2 acommon object is accessible, we write e1ge2. The set of objects accessible froman object e in `, fe 0 j e �̀ e 0g, is written e �̀.De�nition 2.2.2 (Height) Let ` be a transition relation. The height � of anelement e in ` is de�ned by�(e) = ( max(fi j there is an e 0 with e ì e 0g) if it exists1 otherwise.De�nition 2.2.3 We say that a transition relation ` is1. acyclic if +̀ is irre
exive;2. noetherian if there is no in�nite derivation in `;3. bounded if for all objects e: �(e) 6= 1;4. locally con
uent if for all e1; e2: whenever there exists an e with e ` e1 ande ` e2, then e1ge2.5. (globally) con
uent if for all e1; e2: e1fe2 entails e1ge2.6. locally �nite if for all e: the set of successors of e in ` is �nite;7. (globally) �nite if for all e: e �̀ is �nite.De�nition 2.2.4 (Normal form) An object e from the �eld of a transition rela-tion ` is in normal form or irreducible in ` if it has no successor in `. An objecte 0 is said to be a normal form of e if e 0 is irreducible and e �̀ e 0.De�nition 2.2.5 (Maximal derivation) A derivation is called maximal in a tran-sition relation ` if either it is in�nite or its last member is irreducible in `.Let us state some more or less evident dependencies between the introducednotions (for proofs of the non-obvious results consult, for example, [Huet, 1980]).Proposition 2.2.1(i) Every bounded relation is noetherian, and every noetherian relation isacyclic.(ii) Any locally �nite and noetherian relation is bounded and globally �nite.(iii) Any acyclic and globally �nite relation is bounded.



2.3 Indeterministic Complexities 75(iv) If a relation is con
uent, then for all e1; e2: e1 a �̀ e2 if and only if e1ge2(\Church-Rosser" property).(v) If a relation is con
uent, then the normal form of any element, if it exists,is unique.(vi) If every element from the �eld of a relation has a unique normal form, thenthe relation is con
uent.(vii) Any noetherian and locally con
uent relation is con
uent.A further basic notion is the distance between two elements in a transitionrelation.De�nition 2.2.6 (Distance) Let ` be a transition relation. The distance � ofan element e from an element e 0 in ` is de�ned by�(e; e 0;`) = ( min(fi j e ì e 0g) if it exists1 otherwise.2.3 Indeterministic ComplexitiesGiven a logical computation problem, as de�ned in Section 2.1 (p. 69), and dif-ferent logic calculi which can solve the instances of this problem, the question iswhich is the best among these calculi. Essentially, the competitiveness of a logiccalculus is determined by two complementary factors; on the one hand, there is itsability to provide compact proofs, and on the other, there is the e�ort needed for�nding such proofs, i.e., the search space induced by the indeterminism inherentin the calculus. In this section, we shall systematically address the problem howto measure the �rst of these two capabilities of a calculus, which could be calledits indeterministic power. The indeterministic power of a calculus is determinedby the complexities of the shortest proofs for a given logical computation prob-lem. This raises the fundamental question how the complexities of proofs anddeductions in a calculus should be measured. This subject is general enough tobe investigated on the level of arbitrary transition relations.2.3.1 Three Natural Measures for DerivationsFor evaluating the complexity of a derivation e0; : : : ; en in a transition relation `,three di�erent measures are the obvious alternatives, which correspond to threedi�erent degrees of precision. The �nest measure charges the minimal comput-ing cost needed in a basic machine model to come from the initial state e0 tothe terminal state en via the given intermediate states in the derivation. Thecomputing cost of rewriting a state ei to a state ei+1 may be, for example, theminimal number of con�gurations of a nondeterministic Turing machine (or the



76 Complexity Measures for Logic Calculimachine operations of the indeterministic version of any alternative realistic ma-chine model)7 to transform ei into ei+1. Conceptually, the chosen basic machinemodel can be viewed as another (more elementary) transition relation, written!. Then, the elementary computing cost of the derivation D = e0; : : : ; en can bede�ned as cost(D) = n�1Xi=0 �(ei; ei+1;!)where � denotes the distance between two elements in a transition relation (Def-inition 2.2.6 on p. 75).Taking the elementary computing cost of a derivation as the measure of itscomplexity has certain disadvantages. First, for the standard realistic machinemodels, the measure is too detailed to be interesting as a quantity of comparisonon a higher level of abstraction. Second, its value may vary strongly, depending onthe chosen realistic machine model|even though only up to polynomials. Lastly,it may be very di�cult to actually obtain the realistic computing cost, becausethe mapping down of high-level transition steps into basic machine operations isnormally not carried out explicitly, instead one is satis�ed with knowing aboutthe possibility of such a transformation and its computational invariances.An advance is o�ered by abstracting from the elementary computing cost andrestricting oneself to a higher level of representation, by only considering therealistic (string) size of a derivation D = e0; : : : ; en:#(D) = nXi=0 #(ei):Note We shall introduce all notions and results for the case of realistic stringsizes. A generalization of the concepts and the propositions presented belowto unrealistic string sizes is straigtforward, as long as the unrealistic sizes arepolynomially related with realistic ones.The highest abstraction level even disregards the size of a derivation D =e0; : : : ; en and considers only the number of rewrite steps in the top-level transitionrelation `, in terms of logic calculi, the number of inference steps:steps(D) = n:Eventually, it is this measure that is being striven for. It has been usedsuccessfully for analyzing the indeterministic power of many propositional calculi,for example, in [Reckhow, 1976], [Haken, 1985], and various other papers. Theabstraction performed by these authors is an abstraction modulo polynomials;they make plausible that the elementary computing cost is polynomially boundedby the number of inferences. Such an abstraction is very natural in that it takesinto account the problem area of NP vs coNP , on the one hand, and additionally7See the remarks on realistic machine models in Section 1.1.



2.3 Indeterministic Complexities 77leaves aside uninteresting subpolynomial di�erences which result from the choiceof the realistic machine model, on the other.One of the main objectives of this work is to explore the possibilities of ab-straction modulo polynomials in a systematic manner, and to apply it to theinvestigation of arbitrary logic calculi and transition relations.2.3.2 Polynomial Size- and Step-TransparencyThe following two notions are fundamental for a general theory of the abstractionmodulo polynomials. First, we consider the abstraction step from the elementarycomputing cost to the size of a derivation, and state under which condition suchan abstraction is permissible.De�nition 2.3.1 (Polynomial size-transparency) A transition relation ` is calledpolynomially size-transparent if there is a polynomial p such that for every deriva-tion D = e0; : : : ; en in `: cost(D) < p (#(D)):If a transition relation ` is polynomially size-transparent, then the size of anyderivation gives a representative complexity measure of its elementary computingcost, as long as we are interested in complexities modulo polynomials. Polynomialsize-transparency generalizes a basic concept introduced by Cook and Reckhowin [Cook and Reckhow, 1974]. They de�ne a (complete) proof system as a (sur-jective) in polynomial time computable function from the set of strings to the setof valid formulae. Apparently, any proof system is polynomially size-transparent.In order to de�ne a general criterion which guarantees that we can even ab-stract from the size of a derivation, it is necessary to use polynomials in twoarguments.De�nition 2.3.2 (Polynomial (step-)transparency) A transition relation ` iscalled polynomially step-transparent or just polynomially transparent if there is apolynomial p in two arguments such that for every derivation D = e0; : : : ; en in`: cost(D) < p (#(e0); n):It is apparent that polynomial transparency is a highly desirable property. If atransition relation (logic calculus) is polynomially transparent, then the number ofrewrite steps (inference steps) of any derivation is a representative measure of thecomplexity of the derivation. In a transition relation (logic calculus) which lackspolynomial transparency the number of rewrite steps (inference steps) furnishesno reliable information about the actual complexity of the derivation. For suchsystems, it is impossible to measure complexities on an abstract level. Also, thecomparison with other transition relations (logic calculi) may become extremelydi�cult. The bene�t of stressing the importance of polynomial transparency is



78 Complexity Measures for Logic Calculitwofold, not only does it facilitate the abstract classi�cation of di�erent systems,it also may give advice how to improve the systems, as shown in Section 4.2 for thecase of resolution. There, we shall present the principal solution methodologieswhen faced with the polynomial intransparency of a transition relation.Furthermore, the concept of polynomial transparency leads to a natural gen-eralization of the notion of a realistic machine model. By a generalized realisticmachine model we can understand any computation model which, as a transi-tion relation, is polynomially transparent and has the expressive power of Turingmachines.Note It is clear that indeed a polynomial in two arguments is needed for thede�nition of polynomial transparency. Demanding that cost(D) < p (n) does notresult in a useful notion. As an example, consider a calculus which solely cancheck whether a logical formula has the structure F _ :F . According to theintended reading of inference steps, we wish to say that the calculus can verify itsinput in a single inference step. However, there is no complexity function (andhence no polynomial) which bounds the elementary computing cost for verifyingformulae of arbitrary size that have the shape F _ :F .Proposition 2.3.1 If a transition relation ` is polynomially transparent, then` is polynomially size-transparent.Proof By assumption, there is a polynomial in two arguments p such that forevery derivation D in `: cost(D) < p (#(e0); steps(D)). Apparently, #(D) �#(e0) and #(D) � steps(D), since any state has a size � 1. Hence, cost(D) <p (#(D);#(D)), which can be made into a polynomial with one argument. �Since most transition relations considered here are polynomially size-transparent, the following weaker variant of polynomial transparency proves use-ful.De�nition 2.3.3 (Polynomial transparency wrt size) A transition relation ` iscalled polynomially transparent wrt to (derivation) size if there is a polynomial pin two arguments such that for every derivation D = e0; : : : ; en in `:#(D) < p (#(e0); n):Proposition 2.3.2 If a transition relation ` is polynomially transparent wrt sizeand ` is polynomially size-transparent, then ` is polynomially transparent.The indeterministic power of a transition relation as a problem solving mech-anism is intended to be the minimal cost needed for solving a given computa-tion problem. Accordingly, we have to de�ne when a computation problem hasbeen solved by a transition process in a transition relation. This can be doneby introducing for transition relations the notion of a successful derivation or



2.3 Indeterministic Complexities 79proof. There are di�erent possibilities for de�ning successful derivations, depend-ing on whether existential or a universal computation problems are concerned. Toavoid unnecessary complications, we shall deal with veri�cation problems only,for which existentiality and universality coincide. Then, proofs can be de�nedby associating with a given transition relation ` a distinguished state 
, namedthe success state, which is assumed to be irreducible in `. We shall call suchtransition relations proof relations. Any �nite derivation in a proof relation `with an initial state e and terminal state 
 is said to be a proof of e in `; wealso say that e is provable in `.Now, we can de�ne the properties of soundness and (weak) completeness of aproof relation with respect to a given computation problem.De�nition 2.3.4 (Sound and complete proof relation) Any pair � = h�+;��iconsisting of disjoint sets of states �+ and �� is called an input pair, �+ is termedthe positive part and �� the negative part of �. A proof relation ` is said to besound for an input pair � if no element of its negative part is provable in `. Aproof relation is called (weakly) complete for an input pair � if every element ofits positive part is provable in `.De�nition 2.3.5 ((Indeterministic) polynomial boundedness) A proof relation `is called (indeterministically) polynomially bounded for an input pair � if there isa polynomial p such that for any element e in the positive part of � there existsa proof D of e in ` with: cost(D) < p (#(e)):It is more convenient, to measure the indeterministic power of a transitionrelation in more abstract terms.De�nition 2.3.6 (Polynomial size-boundedness) A proof relation ` is called poly-nomially size-bounded for an input pair � if there is a polynomial p such that forany element e in the positive part of � there exists a proof D of e in ` with:#(e) < p (#(D)):De�nition 2.3.7 (Polynomial step-boundedness) A proof relation ` is called poly-nomially step-bounded for an input pair � if there is a polynomial p such that forany element e in the positive part of � there exists a proof D of e in ` with:#(e) > p (#(e); steps(D)):The polynomial size- or step-transparency of a proof relation permit to eval-uate its indeterministic power as a problem solving mechanism for a veri�cationproblem in terms of the sizes of proofs or the sizes of inputs and proof steps,respectively. This is expressed in the following obvious propositions.



80 Complexity Measures for Logic CalculiProposition 2.3.3 Given a proof relation ` which is polynomially size-transparent. If ` is polynomially size-bounded for an input pair �, then ` ispolynomially bounded for �.Proposition 2.3.4 Given a proof relation ` which is polynomially transparent.If ` is polynomially step-bounded for an input pair �, then ` is polynomiallybounded for �.2.3.3 Su�cient Conditions for Polynomial TransparencyAfter the importance of polynomial transparency has su�ciently been empha-sized, the question emerges how it can be determined whether a given transitionrelation has this property. Polynomial transparency is a characteristic de�ned onderivations of arbitrary lengths. It would be comfortable if the polynomial trans-parency of a transition relation could be derived from more elementary propertiesof the transition relation. We shall present a very useful su�cient condition forpolynomial transparency which only takes into account the step-behaviour of atransition relation. For this purpose, we have to consider di�erent forms of step-reliability.De�nition 2.3.8 (Polynomial time step-reliability) A transition relation ` iscalled polynomial time step-reliable if there is a polynomial p such that for anyone-step derivation D = (e; e 0) in `:cost(D) < p (#(e)):Proposition 2.3.5 If a transition relation ` is polynomial time step-reliable,then ` is polynomially size-transparent.Note The development of data structures and algorithms for polynomial uni�ca-tion can be viewed as the attempt to achieve the polynomial time step-reliabilityof deduction systems using uni�cation.De�nition 2.3.9 (Polynomial size step-reliability) A transition relation ` is calledpolynomial size step-reliable if there is a polynomial p such that for any pairhe; e 0i 2 `: #(e 0) < p (#(e)):The following obvious proposition demonstrates that transition relationswhich are locally in�nite|and most of the traditional logic calculi are locallyin�nite according to the na��ve reading|are very problematic from a computa-tional point of view.Proposition 2.3.6 If a transition relation ` is not locally �nite, then, for anycomplexity function f , there exists a pair of states he; e 0i 2 ` with#(e 0) > f(#(e)):



2.3 Indeterministic Complexities 81Note It is clear that locally in�nite transition relations can never be polynomiallytransparent.Unfortunately, polynomial time and polynomial size step-reliability of a transi-tion relation do not guarantee its polynomial transparency. As a counter-exampleconsider the transition relation ` de�ned in Example 2.3.1.Example 2.3.1 Let ` = fhF; (F ^ F )i j F 2 Lg where L is the language ofpropositional logic.Obviously, ` is polynomial time and polynomial size step-bounded, but it isnot polynomially transparent, since after n successive rewrite steps a formula ofexponential size is generated. This example is in perfect analogy to Example 1.6.2(p. 45) where the ordinary n-fold application of a substitution � = fx=f(x; x)gto a variable x generated a term x� � � ��, exponential in size with respect to nand the input. While (here and there) polynomial time step-reliability poses noproblems, the condition of polynomial size step-reliability must be tightened.8 Asu�cient general condition is provided with the following notion.De�nition 2.3.10 (Logarithmic polynomial size step-reliability) A transition re-lation ` is called logarithmic polynomial size step-reliable, or just logp size step-reliable, if there is an integer b > 1 and a polynomial p such that for every pairhe; e 0i 2 `: #(e 0) < (logb p (#(e))) + #(e):The following lemma is fundamental for the theory of abstraction modulopolynomials.Lemma 2.3.7 If a transition relation ` is polynomial time step-reliable andlogp size step-reliable, then ` is polynomially transparent.Proof Let ` be as assumed, and suppose the value of the polynomial p for anargument � be p (�) = sXr=1 kr�hr :Consider an arbitrary derivation D = e0; : : : ; en in `. The following upper boundcan be obtained for the size of each ei, 1 � i � n. First, by simply replacing each#(ej), 1 � j � i, with its upper bound in terms of #(ej�1), we get that#(ei) < 0@i�1Xj=1 logb p (#(ej))1A+ logb #(e0) + #(e0):8In the case of substitution application, this led us to the development of the de�nitionalapplication of a substitution.



82 Complexity Measures for Logic CalculiThen, for any state ej, the following upper bound can be obtained:#(ej) < #(ej�1) + logb sXr=1 kr#(ej�1)hr � #(ej�1) + sXr=1 logb(kr#(ej�1)hr) =#(ej�1) + sXr=1 logbkr + sXr=1(hrlogb#(ej�1)) < c#(ej�1)for some constant c. Consequently, for any member logb p (#(ej)) of the big sumabove, the following estimate holds:logb p (#(ej)) < logb �c j�1#(e0)� = �logb c j�1�+ logb #(e0) == logc c j�1logc b + logb #(e0) = j�1logc b + logb #(e0):For the entire big sum, this yields the bound:i�1Xj=1 p (logb #(ej)) < i(i�1)2 logc b + (i�1) logb #(e0):Therefore, for any member ei in the derivation D:#(ei) < 12 logc bi2 + (i + 1)#(e0):Finally, for the whole derivation D, we get that#(D) < nXi=0 12 logc bi2 + (i + 1)#(e0)!which is a polynomial in #(e0) and n, and hence demonstrates that ` is poly-nomially transparent wrt size. Since, by assumption, ` is polynomial time step-reliable, and therefore polynomially size-transparent, by Proposition 2.3.2 (p. 78)the transition relation ` is polynomially transparent. �Note The logp size step-reliability condition generalizes various special instances.The simplest one is the constant size increase condition #(e 0) < c+ #(e), whichis that special instance of logp size where p is a constant polynomial of the formbc. Since the generalization of the above lemma to unrealistic but polynomiallyrelated size measures proves useful in practice, we shall carry out this generaliza-tion explicitly.Corollary 2.3.8 If a transition relation ` is polynomial time step-reliable andlogp size step-reliable where the size measure is polynomially related with a real-istic size measure, then ` is polynomially transparent.



2.3 Indeterministic Complexities 83Proof Let ` be a transition relation such that the chosen size measure is poly-nomially related with a realistic size measure # for all members in the �eld of `,that is, there are polynomials p1; p2 such that for any object e in the �eld of `:#(e) < p1(size(e)) and size(e) < p2(#(e)):In analogy to the proof of Lemma 2.3.7, there exists a polynomial p such that forany derivation D = e0; : : : ; en in `:size(D) < p (size(e0); n):Since #(D) < p1(size(D)) < p (size(e0); n) < p (p2(#(e0)); n);` is logp size step-reliable for the realistic size measure #. Then, by Lemma 2.3.7,` is polynomially transparent. �2.3.4 Weaker Forms of Size- and Step-TransparencyThere are transition relations for which polynomial size- or step-transparencycannot be guaranteed for arbitrary derivations, so that not in any case the sizeor the input size and the steps of a derivation give a representative measure of itscomplexity. But, one may argue, whenever a transition relation is applied as amechanism of solving a computation problem, its indeterministic power is solelydetermined by those derivations which are shortest proofs of the inputs in thecomputation relation. Accordingly, one can weaken the notions of polynomialsize- and step-transparency in such a way that only those derivations are beingtaken into account which are shortest proofs. The question is how to de�ne `short',in terms of elementary computing cost, in terms of derivation size, or numberof steps. Also, the shortest proof, in anyone of these models, may violate theconditions of polynomial size- or step-transparency, but the second shortest may�t. In order to facilitate the formulation of reasonably tolerant generalizations ofpolynomial size- and step-transparency, we de�ne minimal proofs with respect topolynomials.De�nition 2.3.11 [ p-(size,step-)minimal proof) Given a proof relation ` and apolynomial p.(a) A proof D of a state e in ` is said to be minimal with respect to p, or justp-minimal, in ` if for any proof D 0 of e in `:cost(D) < p (cost(D 0)):(b) A proof D of a state e in ` is said to be size-minimal with respect to p, orjust p-size-minimal, in ` if for any proof D 0 of e in `:#(D) < p (#(D 0)):



84 Complexity Measures for Logic Calculi(c) A proof D of a state e in ` is said to be step-minimal with respect to p, orjust p-step-minimal, in ` if for any proof D 0 of e in `:steps(D) < p (#(e); steps(D 0)):Now, polynomial di�erence in complexity poses no problems, not the abso-lutely shortest proof must be taken, any proof will do which p-simulates theshortest one. Using p-size- and p-step-minimal proofs the notions of polynomialsize- and step-transparency can be weakened as follows.De�nition 2.3.12 (Weak polynomial size-transparency) A proof relation ` iscalled weakly polynomially size-transparent for an input pair � if there are poly-nomials p and p 0 such that for every element e in the positive part of � thereexists a p-size-minimal proof D of e in ` withcost(D) < p 0(#(D)):De�nition 2.3.13 (Weak polynomial (step-)transparency) A proof relation ` iscalled weakly polynomially (step-)transparent or just weakly polynomially trans-parent if there are polynomials p and p 0 such that for every element e in thepositive part of � there exists a p-step-minimal proof D of e in ` withcost(D) < p 0(#(e0); steps(D)):Note One could even be more liberal and only demand the existence of p-minimal proofs in both de�nitions above. We think that the resulting notionswould become too weak, for the following reason. With the notions of weakpolynomial size- and step-transparency we intend to express that the respectivechosen abstraction level indeed provides a representative complexity measure forthe indeterministic power of a transition relation, even though not for the abso-lutely shortest proofs, so at least for one of the short proofs. But the class ofshort proofs should be de�ned in terms of the respective abstraction level, thisway demonstrating the usefulness of the abstraction level.2.4 Proof ProceduresWhile proof relations which are (weakly) complete only ensure the existence ofproofs for any state in the positive part �+ of a given input pair � = h�+;��i(see De�nition 2.3.4 on p. 79), in automated deduction, one is interested in really�nding a proof. For such purposes one needs proof relations which meet thestronger requirement of strong completeness.



2.4 Proof Procedures 852.4.1 Strong CompletenessDe�nition 2.4.1 (Strong completeness) A proof relation ` is called stronglycomplete for an input pair � if, for any element e in the positive part of �, everymaximal derivation in ` with initial state e is �nite and terminates in the successstate 
.De�nition 2.4.2 (Proof procedure) A proof relation ` which is sound andstrongly complete for an input pair � is named a proof procedure for �.Note Most theorem proving programs are implementations of deterministic proofprocedures or deterministic implementations of proof procedures. In general,proof procedures need not be deterministic, and indeed, most of them are nonde-terministic. It is an important research topic in the �eld of automated deductionto extract from a given nondeterministic proof procedure an optimally behavingdeterministic subsystem.The property of strong completeness puts very strict requirements on proofrelations. Thus, every proof procedure must be acyclic and, consequently, asym-metric and irre
exive. For the design of proof procedures it is instructive thatthe property of strong completeness can be broken up into the two notions ofproof-con
uence and semi-noetherianness.De�nition 2.4.3 (Semi-con
uence, proof-con
uence) Given a proof relation `and an input pair �. Let � �̀ denote the set of all states from the �eld of ` whichare accessible from objects in the positive part of �. If the �eld restriction9 of` to � �̀ is con
uent, then ` is called semi-con
uent for �. A proof relation `is said to be proof-con
uent for an input pair � if any state which is accessiblefrom an element in the positive part of � is provable in `.Proposition 2.4.1 A proof relation ` is proof-con
uent for an input pair � ifand only if ` is complete and semi-con
uent for �.Proof The `only if'-part is trivial. For the proof of the `if'-part, assume ` tobe complete and semi-con
uent for an input pair �. Let e be an arbitrary stateaccessible from some element e 0 in the positive part of �. By the completenessassumption, e 0 �̀
, and by the semi-con
uence assumption, eg
. According tothe de�nition of proof relations, the success state 
 must be irreducible, thereforee �̀ 
. �De�nition 2.4.4 (Semi-noetherianness) A proof relation ` is semi-noetherianfor an input pair � if there are no in�nite derivations starting from states in thepositive part of �.9The �eld restriction of a relation R to a set S is the collection of tuples from R withelements in S.



86 Complexity Measures for Logic CalculiProposition 2.4.2 A proof relation ` is strongly complete for an input pair �if and only if ` is proof-con
uent and semi-noetherian for �.Proof The `only if'-part is trivial. For the proof of the `if'-part, let D beany maximal derivation from an element in the positive part of �. By semi-noetherianness, D is �nite and has a last element e. By the property of proof-con
uence, e �̀ 
. From the maximality of D follows that e is irreducible,therefore e must be the success state 
. �De�nition 2.4.5 (Noetherianness) A proof relation ` is noetherian for an inputpair � if there are no in�nite derivations starting from states in the positive ornegative part of �.De�nition 2.4.6 (Decision procedure) A proof relation ` which is sound, noethe-rian, and strongly complete for an input pair � is a decision procedure for �.2.4.2 From Completeness to Strong CompletenessAlthough the ultimate goal in the automation of reasoning is the design of proofprocedures, it is often very di�cult to construct a proof procedure all at once.Instead, it is reasonable to start o� from a sound and complete proof relationand, in a second step, to modify the relation and its internal data structures insuch a way that strong completeness is obtained. Normally, this is achieved byputting an additional control structure on top of the relation. One can distinguishtwo principle methodologies for this approach, the object-level and the meta-levelapproach. The object-level approach works by state saturation whereas the meta-level approach works by state enumeration.State Saturation The state saturation methodology presupposes a proof rela-tion to be sound, complete, and proof-con
uent, and achieves strong completenessby making the relation semi-noetherian. There is no standard technique for ob-taining semi-noetherianness, it strongly depends on the structure of the states ofthe proof relation.The methodology of state saturation can be illustrated at best with logiccalculi of a generative nature, in which the states of the proof relation are setsof logical formulae which principally are accumulated (as in resolution systems).Typically, in such proof relations, one can directly step to the success state ifa formula of a \success" type (in resolution: the empty clause) is contained inthe current state. For this particular type of proof relations, semi-noetheriannesscan be achieved in two steps. First, construct a saturation relation `S from theinitial proof relation `, by modifying ` in such a way that, for every formula e inthe positive part of the input pair �, every formula in e �̀ (i.e., the set of statesaccessible from e) is contained in a state of every maximal derivation in `S withinitial state e. Due to the completeness of `, this fairness condition guarantees



2.4 Proof Procedures 87that in every such maximal derivation a state occurs which contains a formula ofthe success type. The second step simply consists in replacing every pair he; e 0i 2`S where e contains a success formula with the pair he;
i. Apparently, theresulting proof relation is semi-noetherian.A general method for obtaining semi-noetherianness for proof relations whichare sound, complete, and proof-con
uent, is to minimize the distances from thesuccess state.Proposition 2.4.3 Given a proof relation ` which is sound, complete, andproof-con
uent for an input pair �. If, for every state e accessible from thepositive part of �, there exists a number k 2 N such that for every state e 0 withe ì e 0, i � k: �(e 0;
;`) < �(e;
;`), then ` is semi-noetherian for �.State Enumeration The state enumeration methodology merely presupposesthe soundness and completeness of a proof relation ` for an input pair h�+;��i,and hence has more cases of application. Using this approach, strong complete-ness is obtained on the meta-level by enumerating all possible states accessiblefrom a given state. This can be done in two steps. First, construct an enumera-tion relation `E which has the property that, for every state e 2 �+: every stateaccessible from e except the success state occurs in every maximal derivation in`E with initial state e. The second step simply consists in replacing every pairhe; e 0i 2 `E where e ` 
 with the pair he;
i. Apparently, the resulting proofrelation is strongly complete.
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Chapter 3Propositional CalculiSince �rst-order calculi are to a large extent determined by their propositional orground fragments, we devote a whole chapter to the presentation of logic calculifor propositional and ground formulae. The �rst section contains some generalremarks on the central role of propositional logic in complexity theory; also weshortly argue why the traditional calculi of the generative type are not suitedfor the purposes of automated deduction. In the second section, resolution andsemantic tree systems are introduced, which both utilize a condensed variant ofthe cut rule from sequent systems, resolution in a forward, and semantic trees ina backward manner. In Section 3, tableau and connection calculi are introduced,which in their pure versions are cut-free systems. A straightforward combinationof both systems leads to the so-called connection tableaux, which are treated inthe fourth section. Due to their lack of proof-con
uence, connection tableauxare not optimally suited for the propositional case, but they o�er an excellentframework for the development of successful �rst-order calculi. In Section 5, wepresent a method to overcome the weakness of connection tableaux concerningindeterministic power by adding the folding-up rule, which is a controlled incor-poration of lemmata and the cut rule, and an improvement of factorization usedin connection calculi.
3.1 The Importance of Propositional LogicDeciding the logical validity of a formula of propositional logic is one of thecentral problems in time complexity theory. This is, on the one hand, becausevery many other important problems are in essence of the same di�culty. On theother hand, propositional logic is contained as a central sublanguage in almostall logic-based languages and systems and, therefore, gives a lower complexitybound on the handling of those more expressive logical formalisms.



90 Propositional Calculi3.1.1 Propositional Logic and Complexity TheoryIn 1971, Cook de�ned the NP-class, as the collection of all languages acceptedby a non-deterministic algorithm in time polynomially bounded by the size ofthe input. He also showed the language of the satis�able propositional formulaeto be an adequate representative of this class, by proving that the recognitionproblem of any language in the NP-class can be reduced to the propositionalsatis�ability problem, at polynomial cost [Cook, 1971]. This manifests the so-called NP-completeness of the satis�ability problem, a property it shares withhundreds of other well-known problems1.The complement problem of proving the satis�ability is to demonstrate theunsatis�ability of a propositional formula, which is equivalent to showing thevalidity of the negation of the formula. This problem belongs to the most di�cultproblems in the coNP-class, which is de�ned to contain exactly the complementsof the languages in the NP-class.The whole area of time complexity is full of open questions. First, it is notknown whether the NP-class or the coNP-class di�er from the P-class, which isthe collection of all languages accepted by a deterministic algorithm in polynomialtime. Secondly, it is unknown whether NP and coNP are di�erent|since P isclosed under complements, such a result would entail that P 6= NP and P 6=coNP. The satis�ability of a propositional formula can be \solved" in polynomialtime by a non-deterministic algorithm2. One merely has to guess the right truthvaluation, which then can be checked in polynomial time with respect to the sizeof the input. For the complement problem, that is, proving the unsatis�abilityof a propositional formula, it is not known whether there exist non-deterministicalgorithms which have a polynomial run time. Or, in terms of logic calculi,which constitute the most natural formulations of non-deterministic algorithms,it is not known whether there exists a sound logic calculus such that every validpropositional formula has a proof in the system which is polynomially boundedby the size of the formula. Therefore, according to our intuitions, the recognitionof satis�ability seems to be \easier" than the recognition of unsatis�ability orvalidity, which means that one is rather inclined to believe that the NP-class iscontained in the coNP-class than the converse. The strange thing about thisintuition is that it leads to what might be called the paradox of time complexity.Proposition 3.1.1 (The paradox of time complexity)NP � coNP if and only if coNP � NP.Proof Suppose NP � coNP. Let L be any language in coNP. By de�nition,its complement language, written L�1, is in NP and, by assumption, L�1 is in1For a nice survey, see the book of Garey and Johnson [Garey and Johnson, 1979].2We have put the term `solved' in quotation marks, because a non-deterministic algorithmis a mathematical notion and there may not exist a corresponding actual computing devise,as opposed to deterministic algorithms. It is for this reason that the term `non-deterministicalgorithm' can be very misleading.



3.1 The Importance of Propositional Logic 91coNP. Therefore, by the de�nition of complement, L�1�1 = L is in NP. The otherdirection holds by analogy. �So, either NP = coNP or none of them is properly contained in the other.33.1.2 Generative CalculiHistorically the �rst formalized logical rule system was developed by Frege in[Frege, 1879], which was modi�ed and elaborated in [Hilbert and Bernays, 1934].Since, traditionally, the Frege/Hilbert systems are subclassi�ed into axiomschemata and proper inference rules, these rule systems are called axiomaticcalculi4. Another very in
uential work in logic is Gentzen's dissertation[Gentzen, 1935] where consecutively two alternative characterizations of logicalconsequence were developed, the natural deduction system and the sequent sys-tem. The natural deduction system is an attempt to formalize the mathematicalway of presenting arguments, by making assumptions, drawing conclusions fromassumptions, and discharging assumptions. The elegance of natural deduction isthe way logical symbols are treated, by having both introduction and elimina-tion rules for the symbols, which is not the case in Frege/Hilbert systems. Thesequent system is a proof system combining two interesting properties. On theone hand, unlike natural deduction, the system is logicistic, that is, all derivedformulae are logically valid by themselves and do not depend on assumption for-mulae; on the other hand, the sequent system adopts from natural deduction thesymmetric classi�cation of inference rules into introduction and elimination rulesfor the logical symbols.The na��ve transitional interpretations of all three systems, by which, start-ing from the empty set of formulae, successively new formulae are generated,su�er from two fundamental weaknesses which render the procedures unsuitableas bases for solving logical computation problems. The �rst weakness|in fact,this is the crucial one|derives from the manner the systems tackle a veri�ca-tion problem. The veri�cation problem is transformed into a proper computationproblem, the computation problem is solved by guessing an output, and �nally,it is veri�ed whether the output is indeed the desired one. Since the structureof the formula to be proven or refuted is solely used as an exit information, theprocedures lack goal-orientedness.5 The second weakness is due to the fact thatall systems contain rules which induce an in�nite branching rate of the respective3The consequence to be drawn from this observation is that as a heuristic conceptual guideline for our problem solving intuitions, the notion of a non-deterministic algorithm alone seemsnot to be su�cient, because it presents a distorted picture of this area of complexity theory.Additionally, one should develop a complementary positive characterization of the coNP-class,or even device completely new concepts which better illuminate our intuitions.4From a computational point of view this distinction is not very instructive (see the remarksin Footnote 4 of Chapter 2).5To call upon an analogy from the domain of sort algorithms, the procedures have thee�ciency status of permutation sort.



92 Propositional Calculicalculus, i.e., the corresponding transition relations are not locally �nite. Conse-quently, for any positive integer n, there are in�nitely many deductions with ninference steps, and, by Proposition 2.3.6 on p. 80, any deduction may arbitrarilyincrease in size within a single inference step. Both disadvantages render theconstruction of proof procedures from the calculi very di�cult.63.2 Resolution Systems and Semantic TreesMost e�orts in automated deduction concentrate on demonstrating the unsatis-�ability of formulae in clause normal form. The restriction to this normal formpermits the application of particularly e�cient proof techniques. In this section,two families of calculi are presented, resolution systems and semantic tree pro-cedures. Both families operate with a single inference rule, namely, a condensedvariant of the cut rule from the sequent system. The di�erence between bothfamilies is that resolution systems work by a forward application of the cut rulewhereas semantic tree procedures use the cut rule in a backward manner.3.2.1 ResolutionResolution was introduced by J. A. Robinson in [Robinson, 1965a] as a calcu-lus for �rst-order formulae in clause normal form. Resolution systems are typ-ically de�ned as manipulating sets of literals. The associativity, commutativityand idempotency of the logical disjunction operator with respect to the denota-tions assigned by an interpretation admits a particularly simple representationof a clause formula c = 8x1 � � � 8xn( L1; : : : ; Ln ), namely, by the set of literalsfL1; : : : ; Lng occurring as disjuncts in the matrix of c.De�nition 3.2.1 (Clause) A clause is a �nite set of literals. A clause is tau-tological if it contains a literal and its complement.7 A unit clause is a clausecontaining exactly one literal.The semantic assignment function on logical formulae can be extended to alsogive meaning to clauses.De�nition 3.2.2 (Clause assignment) Given an interpretation I for a �rst-order language L with universe U , then the following line is added to the def-inition of formula assignment (De�nitions 1.2.18 and 1.7.11). For any clausec = fL1; : : : ; Lng, n � 0, with x1; : : : ; xn being the variables occurring in theliterals of c:6Note, however, that the second disadvantage can be completely overcome, at least for thepropositional case, by using truth value variables, which permit to reduce the branching rateof any critical rule from 1 to 1 (see [Letz, 1993a]).7Our de�nition of a clause slightly di�ers from the ones given in [Robinson, 1965a] or[Davis and Putnam, 1960], which demand that clauses be non-tautological.



3.2 Resolution Systems and Semantic Trees 9311. I(c) = I(8x1 � � � 8xn L1; : : : ; Ln ):Since every interpretation assigns > to every tautological clause, we have thefollowing proposition.Proposition 3.2.1 (Tautology deletion) If a set of clauses S contains a tauto-logical clause c, then S � (S n fcg).Resolution can be formulated very naturally as consisting of a unique inferencerule. Here we present the propositional or ground fragment of resolution.8De�nition 3.2.3 (Ground resolution rule) Let L be a literal and c1 and c2 clauseswith L =2 c1 and �L =2 c2. The ground resolution rule has the shape:fLg [ c1 f�Lg [ c2c1 [ c2 :The clause c1 [ c2 is called a ground resolvent of fLg [ c1 and f�Lg [ c2 over L,and fLg[c1 and f�Lg[c2 are termed parent clauses of the resolvent. Since everypair c1; c2 of ground clauses has at most one non-tautological ground resolvent,this resolvent, if it exists, will be called the ground resolvent of c1 and c2, andwritten R(c1; c2).We �rst introduce the static deduction objects generated by using the resolu-tion rule.De�nition 3.2.4 (Ground resolution proof) A ground resolution deduction orproof of a clause cn from a set of clauses S is a �nite sequence D = (c1; : : : ; cn)of clauses such that each clause ck, 1 � k � n, is the (non-tautological) groundresolvent of two parent clauses where for each parent clause c: either c 2 S orc = ci and i < k. A ground resolution proof of the empty clause from a set S iscalled a ground resolution refutation of S. A ground resolution proof of a clausecn from a set S of ground clauses is compact if D has no proper subset whosesequence normalization is a ground resolution proof of cn from S.Example 3.2.1 Given a set of ground clausesS = ffp; qg; fp;:qg; f:p; qg; f:p;:qgg:The sequence of clauses (fpg; fqg; f:pg; ;)is a compact ground resolution refutation of S.8Propositional resolution is the dual of Quine's consensus [van Orman Quine, 1955].



94 Propositional CalculiDe�nition 3.2.5 (Ground resolution dag) A ground resolution dag is a pair T =ht; �i consisting of a directed acyclic graph t which is rooted, �nite, and binarybranching, and a function � labelling its nodes with clauses and its edges withliterals in such a way that1. the clause c1 [ c2 at each non-leaf node N is the (non-tautological) groundresolvent of the clauses fLg [ c1 and f�Lg [ c2 at its successor nodes N1and N2,2. and the edges e1 and e2 leading from N to N1 and N2 are labelled with theliterals �L and L, respectively.The clause at the root of a ground resolution dag T is called the bottom clauseof T . Let S be the set of clauses at the leaves of a ground resolution dag T . Wesay that T is a ground resolution dag for S. A ground resolution dag for S withempty bottom clause is called a ground resolution refutation dag for S. If thedag t of a ground resolution dag T is a tree, T is named a ground resolution tree.
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Figure 3.1: Resolution dag for ffp; qg; fp;:qg; f:p; qg; f:p;:qgg.Convention In order to express the forward-oriented working methodology ofresolution calculi, we shall display resolution dags as ordinary upward trees.



3.2 Resolution Systems and Semantic Trees 95An example of a ground resolution refutation dag is depicted in Figure 3.1.The relation between resolution proofs and resolution dags is apparent. To everyground resolution proof (c1; : : : ; cn) from a set of clauses S there can be con-structed a ground resolution dag for S with bottom clause cn according to thefollowing indeterministic procedure.Procedure 3.2.1 (Transformation from resolution proofs to resolution dags) Givena ground resolution proof D = (c1; : : : ; cn) from a set S of ground clauses. Startingwith a one-node dag labelled with cn, iterate the following procedure. As long asthe current dag has clauses at leaf nodes which are not in S, choose such a leafnode with clause ck, 1 � k � n, attach two new successor nodes, label them withtwo parent clauses of ck where for each parent clause c: either c 2 S or c = ciand i < k, and mark the edges with the respective complementary literals.Conversely, from any resolution dag a corresponding resolution proof can beconstructed.De�nition 3.2.6 (Resolution inference steps) The number of resolution inferencesteps of a resolution proof D, written steps(D), is length(D), and the number ofresolution inference steps of a resolution dag T , written steps(T ), is the numberof non-leaf nodes of T .Proposition 3.2.2 Given a ground resolution proof D and a ground resolutiondag T obtained from D by a deterministic execution of Procedure 3.2.1, thensteps(T ) � steps(D); and if D is compact, then steps(T ) = steps(D).Proposition 3.2.3 To every compact ground resolution refutation there ex-ists exactly one ground resolution dag which can be obtained by applying Pro-cedure 3.2.1.Hence, for compact resolution proofs, Procedure 3.2.1 is a mapping, but thismapping is not injective in the general case. Consequently, the dag representationis more indeterministic than the sequence representation. The resolution dag ofFigure 3.1 is the result of applying the transformation procedure to the resolutionproof given in Example 3.2.1.Proposition 3.2.4 (Soundness of the ground resolution rule) Any ground resol-vent is logically implied by the set of its parent clauses.Proof LetH be a Herbrand model9 for a set of parent clauses ffLg[c1; f�Lg[c2gof a ground resolvent c, i.e., there are literals L1 2 fLg [ c1 and L2 2 f�Lg [ c2with L1 2 H and L2 2 H. This entails that L1 6= �L2. Consequently, eitherL1 6= L or L2 6= �L, so that either L1 or L2 is contained in the resolvent c.Therefore, the formula assignment of H maps c to >. �9Recall that we use the literal set notation for denoting Herbrand interpretations (Nota-tion 1.7.1).



96 Propositional CalculiCorollary 3.2.5 (Soundness of ground resolution) If there is a ground resolutionproof of a clause c from a set of clauses S, then S j= c.Proof Immediate from Proposition 3.2.4 and the transitivity of j=. �Resolution is a refutational proof method. It proceeds by demonstrating thatfrom a given initial unsatis�able set of clauses the empty clause can be a deduced,which is false under every interpretation and hence explicitly testi�es the unsat-is�ability of the input set. This approach is su�cient for proving theoremhood,because any veri�cation problem of logical validity or logical implication is re-ducible to an unsatis�ability problem. Ground resolution is refutation-completefor ground clause formulae, i.e., for every unsatis�able set S of ground clauses,there exists a ground resolution refutation of S. Interestingly, resolution is notdeduction-complete, i.e., not every clause logically implied by a set of clauses canbe deduced by resolution.10 From the viewpoint of automation, however, thisweakness can be seen as an advantage, because this way the number of possibleproofs may be strongly restricted. We wish to postpone the completeness proofof ground resolution to Subsection 3.2.5. There we shall demonstrate that evena re�nement of ground resolution|i.e., a system in which not every resolutionstep is permitted|has this property, namely, the Davis/Putnam calculus.3.2.2 Resolution Deductions vs Resolution ProceduresThe sequence representation of resolution proof objects induces a particularlynatural operational reading. The ground resolution calculus proceeds by reason-ing in a forward manner just like a sequent calculus or an axiomatic calculus ofthe Frege/Hilbert style.De�nition 3.2.7 (Ground resolution calculus) The ground resolution calculus canbe de�ned as the following transition relationR = fhS; S [ fcgi j c = R(c1; c2) for some c1; c2 2 Sgwhere S ranges over �nite sets of ground clauses.Resolution presents a striking example for illustrating the distinction betweenthe declarative and the procedural interpretation of a deduction. While a deduc-tion of the former type is simply a sequence D of clauses where each element ofD is derived from clauses in the input set or earlier elements of D, the deductionprocess consists of a sequence of increasing clause sets. If the deduction processis based on unrestricted resolution|which is free of reduction rules like subsump-tion deletion considered below|, then any state of the deduction process can be10Only the following holds. For any ground clause c logically implied by a set of groundclauses S, there exists a ground resolution proof of a clause c 0 from S with c 0 j= c.



3.2 Resolution Systems and Semantic Trees 97made into a deduction of the declarative type. This property holds for all calculiwhich are accumulative. In general, however, the states of a deduction processneed not represent declarative deduction objects, even if no reduction rules areapplied. The comparison also exhibits a certain weakness of measuring the sizeof a deduction as the sum of the sizes of the states in the deduction process,since untouched parts of the states are counted multiply, so that the static de-duction object and the sum of the states in the deduction process may di�er insize, though only up to a polynomial (viz., quadratic) di�erence. A �ner modelwould count solely the touched parts of the non-initial states. It is importantto emphasize, however, that in the transition relational framework it is almostimpossible to make a computationally reliable distinction between touched anduntouched parts of a state, since, for instance, sets cannot be directly representedon a computer. Questions of this type demand a more implementation-orientedmodel like the proof module framework. We shall not concentrate on such �nedi�erences in this work. On the contrary, we shall exploit the polynomial relat-edness of the deduction models and move back and forth between the models,depending on which one is the best-suited for a certain purpose.3.2.3 The Indeterministic Power of Ground ResolutionAs is the case for deductions in the traditional calculi mentioned in the previ-ous section, ground resolution proofs (or dags) are of polynomial di�culty (seeDe�nition 2.1.12 on p. 71), that is, for any given structure S, it can be decidedwhether S is a ground resolution proof with cost polynomially bounded by thesize of S. Or, in terms of properties of transition relations, the ground resolutioncalculus is polynomially size-transparent. But ground resolution has the advan-tage over the traditional calculi that the cost for verifying a ground resolutionproof (dag) from a set of clauses S is bounded by a polynomial of the size of Sand the resolution inference steps of the proof (dag).Proposition 3.2.6 The ground resolution calculus R (De�nition 3.2.7) is poly-nomially transparent.Proof Apparently, the transition relation R is polynomial time step-reliable.Since, for every given input S, the maximal length of clauses deducible by groundresolution from S is bounded by size(S), R is logp size step-reliable. Therefore,by Lemma 2.3.7, R is polynomially transparent. �Concerning indeterministic power, however, propositional resolution is strictlyweaker than the propositional fragments of the traditional systems, which are allin the same equivalence class of polynomial simulation. This is formally expressedin the following two Propositions 3.2.7 and 3.2.9. We use the static deductionmodel which is better suited for comparing the indeterministic powers of thesystems.



98 Propositional CalculiProposition 3.2.7 There is no polynomial p such that for any validity proof Tof a propositional formula F in the propositional Frege/Hilbert, natural deduction,or sequent system there exists a ground resolution refutation D of a set of clausesS which is an appropriate11 translation of �F such that size(D) < p (size(T )).The proof of this proposition is too di�cult to be carried out here fromscratch. We establish it by combining two results by Haken and Urquhart. In[Haken, 1985] the following proposition was demonstrated.Proposition 3.2.8 (Intractability of resolution) The ground resolution calculusis not polynomially bounded for sets of unsatis�able ground clauses.Haken proved that there is an in�nite class of unsatis�able clause sets, theso-called pigeon-hole class which are speci�ed in Example 3.2.2, and the smallestground resolution refutation for any element of this class is of exponential size. In[Urquhart, 1987] it was demonstrated that there is a polynomial p such that, forany element S of this class, if �F is an appropriate translation of S, then thereexists a sequent proof T with end sequent ��� F with size(T ) < p (size(F )). Bothresults together imply Proposition 3.2.7.Example 3.2.2 The pigeon-hole principle asserts that n pigeons do not �t inton � 1 holes, or, more formally, there is no total and injective mapping p witha domain of n and a range of n � 1 elements. For any natural number n > 1,this principle can be formulated as an unsatis�able clause set Sn consisting ofthe union of the following sets of propositional clauses where pki denotes a nullaryatom which asserts that p maps pigeon k to hole i:[f:pki ;:plig 1 � i < n; 1 � k < l � n (injectivity of p )[fpk1; : : : ; pkn�1g 1 � k � n (totality of p )The traditional proof systems, however, can polynomially simulate resolution.We consider a slightly more general proposition.Proposition 3.2.9 There is a polynomial p such that for any propositional res-olution refutation of a set of clauses S there exists a validity proof T of a formula�F in the propositional Frege/Hilbert, natural deduction, or sequent system withF being an appropriate translation of S such that size(T ) < p (size(D)).A proof can be found in [Reckhow, 1976] (see also [Letz, 1993b] for a polyno-mial simulation of resolution in the intuitionistic tree sequent system). Anotherimportant di�erence of resolution from the traditional proof systems is the fol-lowing.11The notion of appropriateness is investigated in Reckhow's dissertation [Reckhow, 1976].Brie
y, the translation procedure should have a polynomial run time and preserve satis�abilityand unsatis�ability. An example of an adequate translation is the so-called de�nitional clausenormal form transformation mentioned in Chapter 1.



3.2 Resolution Systems and Semantic Trees 99Proposition 3.2.10 For unsatis�able sets of ground clauses, tree ground reso-lution cannot polynomially simulate ground resolution.The result can be easily proven by using a de�nitional form transformationSn of formulae of the structure Fn ^ :Fn where Fn is a formula of the shapeFn = A1 $ A2 $ � � �An�1 $ An presented in Example 1.7.1. The Sn havepolynomial resolution refutation dags but only exponential resolution refutationtrees (see [Reckhow, 1976]).Note The reason why dags may help to improve the e�ciency of resolution isbecause they facilitate the multiple use of derived clauses as parent clauses, in arecursive manner, whereas in the tree format for every use of a clause as a parentclause, its entire derivation must be repeated.3.2.4 The Resolution Proof RelationThe ground resolution calculus can be made into a strongly complete proof re-lation for verifying the unsatis�ability of �nite sets of ground clauses by thefollowing simple modi�cation of the transition relation R from De�nition 3.2.7.De�nition 3.2.8 (Ground resolution proof relation) The ground resolution proofrelation is the following transition relation R 0 =fhS; S [ fcgi j c = R(c1; c2) for some c1; c2 2 S and c =2 Sg [ fhS;
i j ; 2 Sgwhere S ranges over �nite sets of ground clauses and 
 is the success state of R 0.Proposition 3.2.11 Let �+ be the set of all �nite sets of unsatis�able groundclauses, and �� the set of all �nite sets of satis�able ground clauses. The groundresolution proof relation R 0 is a decision procedure for the input pair h�+;��i.Proof We have to prove soundness, noetherianness, and strong completeness ofR 0 for the given input pair. The soundness of R 0 follows from Proposition 3.2.5.Since from any �nite number of ground literals only �nitely many ground clausescan be composed, from a given �nite set of ground clauses only �nitely manystates are accessible in R 0. Now R 0 is accumulative and irre
exive, hence acyclic.Then, Proposition 2.2.1 (iii) yields the boundedness, and (i) the noetheriannessof R 0. Finally, The strong completeness of R 0 can be recognized as follows. Fromthe accumulativity of R 0 follows its semi-con
uence and from Corollary 3.2.16below its completeness, which together, by Proposition 2.4.2, entail the strongcompleteness of R 0. �Unfortunately, the ground resolution proof relation is not suited as a propo-sitional decision procedure, because a shortest derivation from an input statemay extremely di�er from a longest derivation, and typically most derivationsare much longer than a shortest one. This striking discrepancy is the motivationfor the development of re�nements of the calculus.



100 Propositional Calculi3.2.5 The Davis/Putnam CalculusThe Davis/Putnam calculus is a re�nement and modularization of ground res-olution and consitutes the kernel of the Davis/Putnam procedure which wasintroduced in [Davis and Putnam, 1960] before Robinson's resolution article[Robinson, 1965a] was published. The working with this system has two ad-vantages. First, it admits a particularly elegant completeness proof. Second, thesystem is one of the most successful decision procedures for propositional andground formulae, in contrast to the original ground resolution calculus.Note There is an unpleasant systematic incorrectness in the literature. In mosttextbooks on automated deduction, the name `Davis/Putnam procedure' is as-signed to a proof procedure presented two years later by Davis, Logemann, andLoveland in [Davis et al., 1962]. Although the latter procedure is constructedfrom the original one by a simple modi�cation, this modi�cation concerns thekernel of the Davis/Putnam procedure, so that both procedures signi�cantly dif-fer from each other, even with respect to indeterministic power. Conceptually,the latter procedure is a variant of semantic trees, which are discussed below.The Davis/Putnam calculus works by the replacement of clauses with otherclauses.De�nition 3.2.9 (Clause replacement) Let L be a literal in a clause c of a set ofground clauses S. Assume further c1; : : : ; cn are the clauses in S containing theliteral �L and not the literal L. The set R of all non-tautological resolvents of cand ci over L, 1 � i � n, is called the clause replacement of c by L in S.Lemma 3.2.12 Let L be a literal in a clause c of a set of ground clauses S, andassume R is the clause replacement of c by L in S. If S is unsatis�able, then(S n fcg) [ R is unsatis�able.Proof Let L be a literal in a clause c of an unsatis�able set of ground clausesS. Consider the set of Herbrand interpretations Hc which exclusively falsify theclause c. If Hc is empty, S n fcg must be unsatis�able, and we are done trivially.Otherwise, consider an arbitrary Herbrand interpretation H in Hc. Evidently,the interpretation H 0 = (H n f�Lg) [ fLg is a model for c. Hence H 0 mustfalsify another non-tautological clause d in S. Since H and H 0 di�er only in theelements �L and L respectively, the assumptions that H is a model for d and Hnot entail that d must contain the literal �L. Now, the Herbrand interpretationH falsi�es each of the clauses cnfLg and dnf�Lg, hence also their union, which,being a non-tautological ground resolvent of c and d over L, is an element ofthe clause replacement R of c by L in S. Since H was chosen arbitrary, everyinterpretation in Hc falsi�es an element of R. Therefore, the set (S n fcg) [ Rmust be unsatis�able. �The proof of the strong completeness of the Davis/Putnam calculus is basedon the following obvious fact.



3.2 Resolution Systems and Semantic Trees 101Lemma 3.2.13 Let L be a literal in a clause c in a set of ground clauses S,and R the clause replacement of c by L in S. Then, the number of clauses in(S n fcg) [ R containing the literal L is by one less than the number of clausesin S containing the literal L. �This lemma shows how to get rid of all clauses containing a certain literal.De�nition 3.2.10 (L-clauses replacement) Let S be a set of ground clauses andSL the set of clauses in S containing the literal L. The union of all clausereplacements of any clause in SL by L in S is called the replacement of L-clausesin S.Lemma 3.2.14 (Literal elimination) Let S be a set of ground clauses, SL theset of clauses in S containing the literal L, and RL the replacement of L-clausesin S. If S is unsatis�able, then (S n SL) [RL is unsatis�able.Proof It su�ces to recognize that a literal elimination step with a literal Lproduces the same result as an iterative substitution of L-clauses with their re-spective clause replacements. �Although, in general, the number of occurrences of other literals as well as thesize of the formula may increase, the literal elimination step is the kernel of oneof the most natural resolution-based decision procedures for ground formulae.De�nition 3.2.11 (Davis/Putnam calculus) The Davis/Putnam calculus can bede�ned as the following transition relationR = fhS; (S n SL) [RLi j L is contained in some clause of Sgwhere S ranges over �nite sets of ground clauses, SL is the set of clauses in Scontaining the literal L, RL is the replacement of L-clauses in S, and f;g is thesuccess state of R.Note The original way of presenting a transition step in the Davis/Putnam cal-culus [Davis and Putnam, 1960] is slightly more indirect. First, the given set ofclauses S is transformed into the logically equivalent set S 0 of formulaefA _ L;B _ �Lg [Rwhere A is the conjunction of clause formulae L1; : : : ; Ln not containing Land with a clause fL1; : : : ; Ln; Lg 2 S, B is the conjunction of clause formulaeL1; : : : ; Ln not containing �L and with a clause fL1; : : : ; Ln;�Lg 2 S, andR is the set of clauses from S neither containing L nor �L. Apparently, S 0 isunsatis�able if and only if S 00 = fA _ Bg [ R is unsatis�able. Afterwards, S 00is translated into clausal form by applying the standard transformation given in



102 Propositional Calculithe proof of Proposition 1.7.14 on p. 63.12 The resulting set of clauses is exactlythe subsequent state in the Davis/Putnam calculus given above.Now we have collected the material for an easy proof of the completeness ofground resolution.Proposition 3.2.15 (Decision property of the Davis/Putnam calculus) Let �+be the set of all �nite sets of unsatis�able ground clauses, and �� the set ofall �nite sets of satis�able ground clauses. The Davis/Putnam calculus R is adecision procedure for the input pair h�+;��i.Proof In each iteration the number of distinct literals contained in clauses ofthe formula decreases by 1, while satis�ability and unsatis�ability are preserved.Consequently, after �nitely many transition steps a set S 0 of clauses is reachedwhich is void of literals. If the initial set S was satis�able, due to the soundnessof ground resolution, S 0 = fg. If, on the other hand, S was unsatis�able, by theLiteral Elimination Lemma 3.2.14, S 0 = f;g. �Corollary 3.2.16 (Completeness of ground resolution) For any unsatis�able setS of ground clauses there is a ground resolution refutation of S.Proof Given an input set S, the sequence of resolvents generated in any maximalDavis/Putnam derivation, in the order of their generation, is a ground resolutionrefutation of S. �The transition relation of the Davis/Putnam calculus has some interestingproperties.Proposition 3.2.17 The Davis/Putnam proof relation R is polynomially step-bounded, but not polynomially bounded and not polynomially transparent.Proof If n is the number of distinct literals contained in clauses of an unsatis�ableinput set S, then clearly the success state is reached within n steps from theinitial state S. Since the ground resolution calculus is not polynomially bounded(Proposition 3.2.8), and the indeterministic power of the Davis/Putnam calculusis not greater than that of resolution, R is not polynomially size-bounded, hencenot polynomially bounded. Then, the polynomial intransparency of R followsfrom Proposition 2.3.4. �Note The Davis/Putnam calculus is a good example of a proof relation in whichthe notion of what has to be counted as a single inference step is not acceptable.12Note that the use of a de�nitional transformation procedure is not permitted here, becauseit may introduce new propositional atoms, with the result that the Davis/Putnam proceduremay never terminate.



3.2 Resolution Systems and Semantic Trees 103Apparently, if we would succeed in making the proof relation polynomially trans-parent and preserving the distances between input states and normal forms ofthe transition relation, then we would have solved the P/NP problem.For the presentation of the Davis/Putnam procedure, some additional termi-nology is needed.De�nition 3.2.12 (Literal occurrence) If a literal L is contained in a clause c,then the pair hL; ci, written Lc, is called a literal occurrence of L in S.De�nition 3.2.13 (Ground purity) Let L be a literal in a clause c of a set ofclauses S. The literal occurrence Lc is called1. strongly ground pure in S if the literal �L is not contained in a clause of S,2. ground pure in S if the literal �L is not contained in another clause of S,3. weakly ground pure in S if the clause replacement of c by L in S is empty.Note All three versions of purity have been used in the literature. The standardversion, which has been introduced in [Robinson, 1965a], is the second one.Proposition 3.2.18 (Ground purity deletion) Let L be a literal in a clause c ofan unsatis�able set of clauses S. If Lc is strongly ground pure, ground pure, orweakly ground pure in S, then S n fcg is unsatis�able.Proof It su�ces to prove the latter case, which is an immediate consequence ofthe Clause Replacement Lemma 3.2.12 on p. 100. �It is clear that from the perspective of optimal reduction the third version ofpurity is the best.De�nition 3.2.14 (Ground subsumption) Given two ground clauses c1 and c2.We say that c1 (properly) ground subsumes c2 if c1 is a (proper) subset of c2.Properly subsumed clauses may be deleted, due to the following fact.Proposition 3.2.19 (Ground subsumption deletion) If a clause c is properlyground subsumed by a clause in a set S of ground clauses, then S � (S n fcg).Proof Clearly every model for S is also a model for S n fcg. For the converse,note that, by assumption, there is a clause c 0 2 S with c 0 � c. We show thatc 0 j= c. Let I be an arbitrary model for c 0. Its assignment I maps some literalL 2 c 0 to >. Since L 2 c, I(c) = >, and hence, I is a model for c. �The Davis/Putnam procedure with subsumption can be de�ned as the follow-ing complex transition relation.



104 Propositional CalculiDe�nition 3.2.15 (Davis/Putnam procedure with subsumption) Let S be any �-nite set of ground clauses, SL the set of clauses in S containing L, and RL thereplacement of L-clauses in S. The Davis/Putnam procedure with subsumptionR 0 is the union of the following binary relations:1. fhS; S 0i j S 6= S 0 and S 0 is the subset of clauses in S which are not properlyground subsumed in Sg,2. fhS; S 0i j S 6= S 0 and S 0 is the subset of clauses in S which contain noliteral occurrences which are ground pure in Sg,3. fhS; (S n SL) [ RLi j S contains neither properly subsumed clauses norground pure literal occurrences, and L is any literal in a clause of minimallength in Sg.The success state of the proof relation is f;g.Note In the original Davis/Putnam procedure [Davis and Putnam, 1960] onlythose properly subsumed clauses are deleted with are subsumed by unit clauses.Apparently, there is no reasonable motivation for such a restriction.Proposition 3.2.20 (Decision property of the Davis/Putnam procedure) Let �+be the set of all �nite sets of unsatis�able ground clauses, and �� the set ofall �nite sets of satis�able ground clauses. The Davis/Putnam procedure (withsubsumption) is a decision procedure for the input pair h�+;��i.Proof In analogy to the proof of Proposition 3.2.15 on p. 102. �3.2.6 Other Resolution Re�nementsThere are various other re�nements of resolution. We consider here linear groundresolution and regular ground resolution. Linear resolution was introduced simul-taneously by Loveland [Loveland, 1969] and Luckham [Luckham, 1970].De�nition 3.2.16 (Linear ground resolution proof) A ground resolution proofD = (c1; : : : ; cn) from a set S of ground clauses is called linear if, for each ci; 1 <i � n, one of the parent clauses of ci is ci�1.De�nition 3.2.17 (Linear ground resolution dag) A ground resolution dag iscalled linear if all inner nodes of the dag lie on the same branch.The resolution proof given in Example 3.2.1 on p. 93 and the resolution dagdepicted in Figure 3.1 on p. 94 are both linear. The most natural way of de�ningthe linear ground resolution calculus is by using pairs consisting of the input setand the current linear deduction.



3.2 Resolution Systems and Semantic Trees 105De�nition 3.2.18 (Linear ground resolution calculus) The linear ground resolu-tion calculus can be de�ned as the transition relationfhhS; (c1; : : : ; cm)i; hS; (c1; : : : ; cm; cm+1)ii j for m � 1: cm is a parent of cm+1gwhere the states in the transition relation are pairs hS;Di consisting of a set Sof ground clauses and a ground resolution proof D from S.The linearity re�nement is mainly interesting for �rst-order resolution. Linearground resolution is unsuited as a calculus for ground formulae, because of thefollowing obvious property.Proposition 3.2.21 The linear ground resolution calculus is not proof-con
uentfor input pairs h�+;��i with �+ being the set of all pairs hS; ()i with S being a�nite unsatis�able set of ground formulae.This has as a consequence that strong completeness can only be achievedby means of deduction enumeration. Such an approach turns out to be notoptimal for the propositional case, since here a calculus is typically used as adecision procedure, whereas in the �rst-order case one can only demand semi-noetherianness.Regular resolution [Tseitin, 1970] is at best de�ned using the dag framework.De�nition 3.2.19 (Regular branch) A branch b = (e1; : : : ; en) in a ground reso-lution dag is called regular if no two edges in b are labelled with the same literal.De�nition 3.2.20 (Regular ground resolution dag) A ground resolution dag iscalled regular if every branch is regular, and semi-regular if for every leaf nodeN there exists a regular branch terminating in N .The importance of regular resolution derives from the following fact.Proposition 3.2.22 For unsatis�able sets of ground clauses, regular groundresolution can polynomially simulate the Davis/Putnam calculus and theDavis/Putnam procedure (with subsumption).Proof Given a resolution proof D constructed from a deduction in one of theDavis/Putnam systems, than any resolution dag resulting from applying Proce-dure 3.2.1 to D is regular. �In [Tseitin, 1970] the intractability of regular ground resolution was proven.Moreover, Tseitin showed that ground tree resolution cannot polynomially simu-late regular ground resolution. A recent interesting result concerning the relationbetween regular and unrestricted resolution is the following.



106 Propositional CalculiProposition 3.2.23 For unsatis�able sets of ground clauses, regular groundresolution (and hence any-one of the Davis/Putnam systems) cannot polynomiallysimulate ground resolution.This result was proven by Goerdt in [Goerdt, 1989]. He used a class of formu-lae which are modi�cations of the pigeon-hole class and have polynomial proofsin unrestricted resolution but only exponential proofs in regular resolution.3.2.7 Semantic TreesThe most primitive approach to determining the satis�ability status of a propo-sitional formula is the truth table method. Starting o� from the model theoryof logic, all interpretations for the atoms in the formula are listed as lines in atable, which afterwards are examined, one after the other. If n is the number ofatoms occurring in the formula, an evaluated truth table contains n+1 columnsand 2n lines. The �rst n columns in each line encode the truth assignments forthe atoms in the formula, and the last column contains the truth value of theformula under this assignment. If the truth value > does not occur in the lastcolumn of the evaluated table, the formula is unsatis�able, and vice versa. While,for each interpretation, the truth value of the formula can be computed from thevalue of its atoms in polynomial time, the obvious problem is the number of lines,which is exponential with respect to the number of atoms occurring in the for-mula. Consequently, if the ratio between the lengths of formulae in an in�nitecollection and their numbers of atoms is less than 2n|which is the case for al-most all interesting formula classes|then the truth table method has exponentialcomplexity with respect to the formula sizes in the class. Truth tables are notsuited as a basis for propositional calculi, for two reasons. First, since all truthtables for a formula have equal size, there is no di�erence between worst-caseand best-case behaviour, and hence no potential for heuristic support. Second,since the size and the structure of the formula has no in
uence on the size of thetruth table, the e�ciency of the method cannot be improved by manipulationsand accumulations of the input formula, which are the techniques for renderingproof systems more powerful.A natural improvement of truth tables|and one of the most promising frame-works for propositional calculi|are semantic trees. Semantic trees were appliedin [Robinson, 1968, Kowalski and Hayes, 1969], as a representation tool for an-alyzing �rst-order proof procedures of the resolution type. A binary version ofsemantic trees turns out to be an excellent basis for propositional proof proce-dures. The simple motivation for the method is that a formula can often be givena de�nite truth value on the basis of merely a partial interpretation. In such acase, the truth value of the partial interpretation V of the formula is the sameas the truth value of all total interpretations which are functional extensions ofV . This way, in one inference step, instead of checking single interpretations, en-tire sets of interpretations can be examined. This potential for shortening truth



3.2 Resolution Systems and Semantic Trees 107tables was also noticed by Kleene in [Kleene, 1967], semantic trees generalize hismethod.Semantic trees can be introduced as manipulating ground clauses or groundclause formulae. To keep closest proximity to resolution systems, we choose theversion for clauses. First, we de�ne the deduction objects.De�nition 3.2.21 (Semantic tree) A semantic tree for a set of ground clauses Sis a binary rooted tree with a total labelling of its edges and a (possibly partial)labelling of its leaf vertices, meeting the following conditions.1. Each pair of edges leading out from the same vertex is labelled with anatom p occurring in S and its negation :p, respectively.2. Any leaf node N may be labelled with a clause from S, provided that allliterals in the clause occur complemented on the branch leading from theroot up to N .A semantic tree is called closed for S if every leaf node is labelled with a clausefrom S. ������ @@@@@@������ @@@@@@BBBBBB ������
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f:p;:qgfp; qg f:p; qgfp;:qgFigure 3.2: Closed semantic tree for ffp; qg; fp;:qg; f:p; qg; f:p;:qgg.An example of a closed semantic tree is depicted in Figure 3.2; we displaysemantic trees as downward trees, in order to conform with the constructionmethodology of semantic tree calculi.There is the following close relationship between semantic trees and resolution.Proposition 3.2.24 Every ground resolution tree for a set of clauses S is asemantic tree for S, provided the labellings of the internal nodes are disregarded.Conversely, any closed semantic tree can be made into a resolution refutationwithout increase in size, according to the following procedure.Transformation from semantic trees to resolution trees Let T be a closedsemantic tree for a set of ground clauses S. Construct a ground resolution refu-tation of S, by performing the following procedure on S.



108 Propositional CalculiFirst, select any unlabelled node N of the current tree whose sucessors areboth labelled with ground clauses c1 and c2. If the non-tautological groundresolvent c of c1 and c2 exists, label N with c. Otherwise, prune the tree byconnecting the edge incident to N to one of its successors N1 or N2. Then,iterate the procedure with the resulting tree.It is clear that the procedure generates a ground tree resolution refutation ofS with a size equal or smaller than the initial semantic tree. Consequently, con-cerning indeterministic power, semantic trees and tree resolution are equivalentproof systems.Proposition 3.2.25 For sets of ground clauses, semantic trees and tree resolu-tion polynomially simulate each other.Since ground tree resolution cannot polynomially simulate unrestricted groundresolution (Proposition 3.2.10 on p. 99), we can immediately infer the followingcorollary.Corollary 3.2.26 For sets of ground clauses, semantic trees cannot polynomi-ally simulate ground resolution.De�nition 3.2.22 A semantic tree is called regular if no atom occurs more thanonce on a branch.13Again, the notational relation with resolution is preserved.Proposition 3.2.27 Every regular ground resolution tree is a regular semantictree, provided the leaf vertices are disregarded.The regularity restriction on semantic trees is very reasonable, which is moti-vated by the following obvious proposition.Proposition 3.2.28 Any smallest closed semantic tree for a set of clauses S isregular.Consequently, in contrast to resolution where regularity is a proper restrictionwhen concerning lengths of shortest proofs, imposing regularity on semantic treeshas no disadvantages. Apparently, the resulting calculus is a decision procedurefor sets of ground clauses.Note As recent experiments have shown [Buro and Kleine B�uning, 1992], themost successful logic-based computer programs for deciding the satis�ability sta-tus of ground formulae are variants of regular semantic trees.An interesting simulation possibility concerning linear ground resolution isexpressed in the following proposition.13Normally, the regularity restriction is already included in the semantic tree de�nition. Forsystematic and terminological reasons, we have left the condition outside.



3.2 Resolution Systems and Semantic Trees 109Proposition 3.2.29 For sets of ground clauses, linear resolution can linearlysimulate (regular) tree resolution and (regular) semantic trees.In order to proof this result we make use of the following two lemmata.Notation 3.2.1 If T is a dag with its nodes labelled with clauses, then we shalldenote with ST the set of clauses appearing at the nodes of T , and with LT theset of clauses appearing at the leaf nodes of T .Lemma 3.2.30 A regular ground resolution tree T of the shape speci�ed inFigure 3.3 with K =2 c1 satis�es the following two properties.(i) No complement of a literal in f�Kg [ c1 is contained in a clause of ST .(ii) Some of the clauses in LT contain the literal �K.
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Figure 3.3: Resolution tree T with leaf and neighbouring subtree T0.Proof The �rst fact is due to the regularity of T , the second because T is aresolution tree|and not a general semantic tree. �Lemma 3.2.31 Suppose T to be a regular ground resolution tree of the shapespeci�ed in Figure 3.3 with K =2 c1. Let, furthermore, r+ and r� be clauses suchthat no complement of a literal in r+ [ r� is contained in a clause of ST . Setc 0 = r+ [ ((fKg [ c1) n r�). Then, there is a subset r 0 of r� and a linear groundresolution dag T ? with bottom clause c = r+ [ ((c1 [ c2) n r 0) for the set of groundclauses LT0 [ fc 0g with steps(T ?) � 2� steps(T ).Proof The proof is by induction on the depth of the subtree T0. The inductionbase depth(T0) = 1 is trivial. For the induction step, assume the result to holdfor any regular ground resolution tree with depth(T0) < n, for its subtree T0.Let T be such a tree with depth(T0) = n, and assume r+ and r� as described.By Lemma 3.2.30, there exists a leaf node N in T0 with neighbouring subtree T1such that N is labelled by a clause fLg[ d1 with �K 2 d1 and L 6= �K; also, nocomplement of a literal in fKg[c1 is contained in a clause of ST0 (consult the lefttree in Figure 3.4 as an illustration). Set d 0 = r+[fLg[c1[(d1nf�Kgnr�). Bythe induction assumption, there is a subset r 01 of f�Kg [ r 0 and a linear groundresolution dag T 0 with bottom clause d = r+ [ c1 [ ((d1 [ d2) n r 01) for the setST1[d 0 with steps(T 0) � 2�(steps(T1)+1). If m is the distance in T between the



110 Propositional Calculinode labelled with d1 [ d2 and the node labelled with f�Kg [ c2, then m furtherapplications of the induction assumption yield the existence of a subset r 0m of r 01and a linear ground resolution dag T 00 with bottom clause d 0 = r+[ c1 [ (c2 n r 0m)for the set of clauses (ST0 n ffLg [ d1g) [ d 0 with steps(T 00) � 2 � steps(T0).Modify the leaf of T 00 labelled with d 0 by attaching two parent nodes labelledwith the clauses c 0 = r+ [ fKg [ (c1 n r�) and and fLg [ d1; note that d 0 is theirground resolvent. Two cases need to be distinguished. Either, �K =2 d 0 and weare done. Or, �K 2 d 0; in this case an additional (ancestor) resolution step withd 0 and far parent clause c 0 yields the desired linear resolution dag T ?. In eithercase steps(T ?) � 2� steps(T ). �
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Figure 3.4: Simulation of regular tree resolution by linear resolution.Proof of Proposition 3.2.29 It su�ces to prove that linear ground resolutioncan linearly simulate regular ground resolution trees. Let, therefore, T be aclosed regular ground resolution refutation tree for a set of ground clauses S.From T one can construct a linear ground resolution refutation dag T ? for S asfollows. Choose any clause fKg [ c1 at a leaf node of a branch with length min T as start clause. Then, m successive application of Lemma 3.2.31, alwaysputting r+ = r�, guarantee the existence of the desired linear refutation T ?with steps(T ?) � 2� steps(T ). A single iteration of the process is schematicallydisplayed in Figure 3.4. �



3.3 Tableau and Connection Calculi 1113.3 Tableau and Connection CalculiIn this section two families of logic calculi are discussed, tableau and connectioncalculi. These families are closely related, in the following two respects. First,both methodologies are working in a backward (goal-oriented) manner, like se-mantic tree procedures. Secondly, the basic systems of both families are cut-free.Tableau and connection calculi are not optimally suited as decision procedures forground formulae, their real applicability is on the �rst-order level. Accordingly,some of the notions developed in this section gain their actual importance when�rst-order formulae are considered.3.3.1 The Tableau SystemThe tableau calculus was introduced by Beth in [Beth, 1955, Beth, 1959] and elab-orated by Hintikka in [Hintikka, 1955] and Smullyan in [Smullyan, 1968]. Similarto resolution, the tableau calculus is a refutational system, that is, the methoddemonstrates the validity of a formula F by proving the inconsistency of its nega-tion :F . In contrast to resolution, however, the tableau calculus can be used toshow the inconsistency of ordinary �rst-order formulae. We shall take Smullyan'sanalytic tableaux as standard reference system. The analytic tableau method pro-ceeds by constructing a tree with its nodes labelled by subformulae|in a sensede�ned immediately|occurring in the input formula, therefore the epithet `an-alytic'. The standard tableau calculus is restricted to ordinary logical formulae.Since such a restriction is unnecessary, we introduce a system which is a variantof the standard tableau calculus, extended to the handling of �nite sets of generalformulae, including general conjunctions and disjunctions. A further notationaldi�erence is that in the standard method the root node of the tableau is labelledwith the respective input formula, whereas we prefer to keep the input alongsidethe tableau. This way of designing the calculus has some advantages concerningpresentation and the formulation of complexity issues.Conjunctive Disjunctive� �-subformulae � �-subformulaesequence sequence::F (F )F ^G (F;G) :(F ^G) (:F;:G):(F _G) (:F;:G) F _G (F;G):(F ! G) (F;:G) F ! G (:F;G)F $ G (F ! G;G! F ) :(F $ G) (:(F ! G);:(G! F )):? (>) :> (?)F1; : : : ; Fn (F1; : : : ; Fn) : F1; : : : ; Fn (:F1; : : : ;:Fn): F1; : : : ; Fn (:F1; : : : ;:Fn) F1; : : : ; Fn (F1; : : : ; Fn)Figure 3.5: Syntactic types and �-, �-subformulae of ground formulae.



112 Propositional CalculiThe ground tableau method is based on the fact that all ground formulaewhich are no literals or nullary connectives can be partitioned into two syntactictypes, a conjunctive type, called the �-type, and a disjunctive type, named the�-type; to any formula F of any type (� or �) a certain sequence of formulaedi�erent from F can be assigned, called the �- or �-subformulae sequence of Fdepending on the type of F , as de�ned in Figure 3.5 (with assuming n � 1).Proposition 3.3.1 A formula of the conjunctive type is logically equivalent tothe conjunction of its �-subformulae, whereas a formula of the disjunctive type islogically equivalent to the disjunction of its �-subformulae.Although an �- or �-subformula of a given complex formula F is not always aproper subformulae of F , in the standard sense de�ned in Chapter 1, the kind of\subformula" relation de�ned here shares the following important property withthe standard immediate subformula relation.Proposition 3.3.2 The transitive closure � of the union of the �- and �-subformula relations is well-founded on the collection of ground formulae, i.e.,there are no in�nite decomposition sequences. Moreover, the minimal elementsin the relation � are literals or nullary connectives.We begin with the de�nition of the proof objects generated by the tableaucalculus.De�nition 3.3.1 (Unary formula) A non-literal ground formula is called unaryif its �- or �-subformulae sequence is unary.De�nition 3.3.2 (Tableau) A tableau T for a �nite set S of general groundformulae is a pair ht; �i consisting of an ordered tree t and a labelling function �on its non-root nodes such that for any non-leaf node N :1. if N has exactly one successor node N1 labelled with a formula F1, then� either F1 2 S,� or F1 is an �-subformula or the �-subformula of a unary �-formula Fwhich is contained in S or appearing on the branch from the root ofT up to N ,2. if N has successor nodes N1; : : : ; Nn, n > 1, labelled with formulaeF1; : : : ; Fn, respectively, then (F1; : : : ; Fn) is the �-subformulae sequenceof a formula F which is contained in S or appearing on the branch fromthe root of T up to N .De�nition 3.3.3 (Closed tableau) If on a branch in a tableau appears ? or aformula and its negation, then the branch and its leaf node are called closed ;otherwise the branch and its leaf node are termed open. A tableau is called



3.3 Tableau and Connection Calculi 113closed if every branch is closed; otherwise the tableau is said to be open. If on abranch in a tableau appears ? or an atom and its negation, then the branch iscalled atomically closed; a tableau is called atomically closed if every branch isatomically closed. Two nodes N1 and N2 with labels F1 and F2 in a tableau arecalled complementary or connected if F1 = :F2 or :F1 = F2.In Figure 3.6 a closed tableau for a set of clause formulae is depicted. Likesemantic trees, tableaux are displayed as downward trees; normally, we do notdisplay the label of the root node.
c1 : pc2 : r;:p; qc3 : s;:qc4 : :q;:sc5 : :q;:rc6 : :r; q
Clause formulae Closed tableau ������������ ��������
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pr :p q:r :qq:q :r s:q :sFigure 3.6: Closed tableau for a set of clause formulae.One interpretation of a tableau is to take any branch as the conjunction of theformulae appearing on it, and the tableau itself as the disjunction of its branches.Under this reading, a closed tableau represents the logical falsum. But, unlike anunsatis�able set of ground formulae, a closed tableau represents an explicit formof unsatis�ability, in the sense that it can be veri�ed in polynomial time, by justchecking each branch of the tableau. In other terms, the set of closed tableaux isof polynomial di�culty (according to De�nition 2.1.12).Proposition 3.3.3 (Tableau soundness and completeness) A set S of generalground formulae is unsatis�able if and only if there exists a closed tableau for S.The soundness is immediate from Proposition 3.3.1, for a completeness proofof tableaux for general formulae, we refer to [Smullyan, 1968], the completenessfor clause formulae will be proved below (Theorem 3.4.6).



114 Propositional CalculiSimilar to semantic trees, the regularity condition can be de�ned for tableaux.De�nition 3.3.4 (Regular tableau) A tableau is regular if no two nodes on abranch are labelled with the same formula.3.3.2 The Tableau CalculusLike resolution dags or semantic trees do not prescribe the precise order accordingto which they have to be generated or worked o�, there are di�erent possibilitieshow tableaux can be constructed in sequences of inference steps. The tableaucalculus introduced now describes the standard top-down methodology of buildingup tableaux. In advance, we introduce the notion of marked tableaux.De�nition 3.3.5 (Marked tableau) A marked tableau is a pair hT; �i consistingof a tableau T and a partial labelling function � from the set of leaf nodes of Tinto the set of nodes of the tableau. A (branch with) leaf node N of a markedtableau is called marked if N 2 domain(�). A marked tableau is named markedas closed if all of its leaves are marked.The ground tableau calculus consists of the following two inference rules.Procedure 3.3.1 (Tableau expansion) Given a set S of general formulae as inputand a marked tableau for S, choose a leaf node N which is not marked, and:1. either select a formula F 2 S, expand the tableau at the node N with anew node, and label it with F ,2. or select a formula F from S or appearing on the branch from the root upto N , and� if F is of type �, then expand the tableau at the node N with a newnode, and label it with an �-subformula of F ,� otherwise F is of type � with the �-subformulae sequence (F1; : : : ; Fn),in this case attach n new successor nodes N1; : : : ; Nn to N , and labelthem with F1; : : : ; Fn respectively.Regular tableau expansion is de�ned in the same way except that the expandedtableau need to be regular.Procedure 3.3.2 (Tableau reduction) Given a marked tableau T , choose anunmarked leaf node N with literal L, select a dominating node N 0 with literal�L, and mark N with N 0.With the marking of a leaf node it is noted explicitly that the respectivebranch has been checked o� as being closed and need not be further expanded.



3.3 Tableau and Connection Calculi 115De�nition 3.3.6 (Tableau calculus) The (ground) tableau calculus can be de-�ned as the transition relationfhhS; T i; hS; T 0ii j T 0 is obtained from T by an expansion or reduction stepg[ fhhTCi;
i j TC is a tableau which is marked as closedgwhere S ranges over �nite sets of ground formulae, T and T 0 are marked tableauxfor S, and 
 is the success state of the transition relation. The regular versionresults from replacing expansion with regular expansion.It is apparent that any tableau can be obtained by applying the top-downrules of the tableau calculus, and conversely.Proposition 3.3.4 Given an input pair � = h�+;��i where �+ is the set of�nite sets of unsatis�able ground formulae. The (regular) tableau calculus is(i) �nitely branching,(ii) polynomially transparent, and(iii) proof-con
uent for �.(iv) Additionally, the regular version is a decision procedure for �.Proof While the �nite branching rate (i) is evident, the polynomial trans-parency (ii) follows from the polynomial time and logp size step-reliability ofthe tableau calculus. Proof-con
uence (iii) follows from completeness and fromthe fact that any tableau can be completed to a closed one if the input set is un-satis�able. The decision property (iv) for the regular case follows from (iii), thesoundness, and the noetherianness of the regular tableau calculus; the latter is aconsequence of the regularity condition and the well-foundedness of the transitiveclosure of the �- and �-subformula relations (Proposition 3.3.2). �3.3.3 The Indeterministic Power of TableauxThere is a close relation between tableau and sequent systems. Tableau calculiare often viewed as backward variants of sequent calculi. Like for resolution, thetableau system cannot polynomially simulate the propositional sequent systemwith cut. In fact, the tableau system cannot even polynomially simulate truthtables (and hence, semantic trees).Proposition 3.3.5 There is no polynomial p such that for any given �nite un-satis�able set S = fF1; : : : ; Fng of propositional or ground formula there exists aclosed tableaux T for S with size(T ) < p (n) where n is the number of lines of acomplete truth table for F1 ^ � � � ^ Fn; and conversely.



116 Propositional CalculiProof Consider the class of formula sets given in Example 3.3.1. A truth tablefor the equivalent of an Sn has 2n lines. Any minimal closed tableau for an Sn hasthe tree structure shown in Figure 3.7, for n = 3. Therefore, taking the numberof unclosed nodes in such a tableau Tn as a lower bound of its size, we get thatsize(Tn) > nXi=1 nYj=i j � n!while the size of Sn|we take the number of atom occurrences in a propositionalformula as the size of the formula|is n� 2n. The converse result is trivial. �Example 3.3.1 For any set fA1; : : : ; Ang of distinct propositional atoms, letSn denote the set of all 2n multiple disjunctions of the shape L1; : : : ; Ln whereLi = Ai or Li = :Ai, 1 � i � n.
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Figure 3.7: Tree structure of a minimal closed tableau for Example 3.3.1, n = 3.Tableaux can be made stronger with respect to indeterministic power byadding the backward variant of the cut rule from sequent systems.Procedure 3.3.3 (Tableau cut) Given a marked tableau T , choose an unmarkedleaf node N , select any ground formula F , attach two successor nodes, and labelthem with F and :F , respectively. F is named the cut formula of the cut step.The tableau cut rule is a data-oriented inference rule, in the following sense.The tableau cut rule can be simulated by alternatively admitting the addition ofarbitrary tautologies of the shape F _ :F to the input formula and afterwardsapplying standard tableau expansion. This also proves the soundness of the cutrule.The following proposition guarantees that we can always work with regulartableaux.Proposition 3.3.6 Any minimal closed tableau (with cut) for a set of groundformulae S is regular.



3.3 Tableau and Connection Calculi 117Proof Any irregularity in a closed tableau can be removed by pruning thetableau, as follows. Let T be a closed tableau (with cut). Until all cases ofirregularity are removed, repeat the following procedure.Select a node N in T with an ancestor node N 0 such that both nodes arelabelled with the same formula F . Remove the edges originating in thepredecessor N 00 of N and replace them with the edges originating in N .Clearly, this operation does not a�ect the closedness of the tableau. �Concerning indeterministic power, (regular) tableaux with cut and sequentsystems are equivalent (for a proof see [Letz, 1993a]). But, unfortunately, thenice computational properties of analytic tableaux are lost when the cut rule isadded in a na��ve manner.Proposition 3.3.7 The (regular) tableau calculus with cut is in�nitely branch-ing, and hence, not polynomially transparent.A re�nement of the general cut in tableaux is the analytic cut.Procedure 3.3.4 (Tableau analytic cut) Given a marked tableau T for a set ofground formulae S, choose an unmarked leaf node N , select a ground formula Foccurring as a subformula in some formula of S or on the path from the root upto N , attach two successor nodes, and label them with F and :F , respectively.Proposition 3.3.8 The (regular) tableau calculus with analytic cut is �nitelybranching and polynomially transparent.A de�nitely weaker variant of the general cut in tableaux is the atomic cut,with and without the analyticity condition.Procedure 3.3.5 (Tableau (analytic) atomic cut) Given a marked tableau T fora set of ground formulae S, choose an unmarked leaf node N , select a groundatom A (occurring in a formula of S, for the analytic case), attach two successornodes, and label them with the literals A and :A, respectively.Fortunately, the working with non-analytic atomic cut can be avoided, due tothe following proposition.Proposition 3.3.9 Any minimal closed tableau with atomic cut for a set ofground formulae S is a tableau with analytic cut.



118 Propositional CalculiProof Any application of non-analytic atomic cut in a closed tableau can beremoved by pruning the tableau, as follows. Let T be a closed tableau withcut for S. First, obtain a regular tableau T 0 with cut by deleting all cases ofirregularity from T . Then, as long as applications of non-analytic cut occur,repeat the following procedure.Select a node N in T 0 with two ancestor nodes N1 and N2 labelled withan atom A and its negation :A not occurring in the input set S or on thepath from the root up to N . Remove the edges originating in N and replacethem with the edges originating in N1 (or with the edges originating in N2).Clearly, in each step the tableau size decreases. It remains to be shown that theclosedness is not a�ected. Closedness can only be a�ected if the node N1 (thecase of N2 is treated analogously) is used as an ancestor in a reduction step, whichcan only be from a leaf node N 0 labelled with :A. Since A does not occur in theformula, N 0 must result from a cut step performed at its predecessor, so that N 0would have a brother node labelled with A. But this contradicts the regularityassumption for T 0. �3.3.4 The Clausal Tableau CalculusDe�nition 3.3.7 If a literal L occurs as a disjunct in a clause formula c, thenwe say that c contains L.De�nition 3.3.8 (Proper, compact clause formula) A clause formula c is properif c 6= ?. A clause formula c = L1; : : : ; Ln is said to be compact if each literaloccurs only once as a disjunct in c.Note For classical ground logic, attention can be restricted to compact clauseformulae. The �rst-order case, however, demands the handling of general (possi-bly non-compact) clause formulae. The simple reason is that compact �rst-orderclause formulae may have non-compact substitution instances. In order to beable to generalize the concepts and mechanisms developed for the ground case tothe �rst-order case in a straightforward manner, it is conceptually better to workwith general (possibly non-compact) clause formulae even on the ground level.For sets of proper ground clause formulae, which are all of the disjunctivetype, a much simpler form of tableaux and tableau calculus can be employed.De�nition 3.3.9 (Clausal tableau) A clausal tableau T for a �nite set S ofproper ground clause formulae is a tableau for S in which each successor setof nodes N1; : : : ; Nn is labelled with literals L1; : : : ; Ln such that S contains aclause formula L1; : : : ; Ln . For any successor set of nodes N1; : : : ; Nn in aclausal tableau, the generalized disjunction L1; : : : ; Ln of their labels is calleda tableau clause formula. The tableau clause formula immediately below the rootnode of a clausal tableau is called the top clause formula of the tableau.



3.3 Tableau and Connection Calculi 119The tableau displayed above in Figure 3.6 is a clausal tableau. In the clausaltableau calculus the reduction rule remains the same, whereas the tableau expan-sion rule degenerates in the following way.Procedure 3.3.6 (Clausal tableau expansion) Given a set S of proper groundclause formulae as input and a marked tableau for S, choose a leaf node N andselect a clause formula c = L1; : : : ; Ln from S, attach n new successor nodesN1; : : : ; Nn to N , and label them with L1; : : : ; Ln, respectively.Clausal tableaux (with atomic cut) can polynomially simulate generaltableaux (with atomic cut), provided appropriate (de�nitional) translations arepermitted (see [Reckhow, 1976]). As a matter of fact, the converse holds too.14Clausal tableaux with atomic cut and semantic trees are even more closely related.Proposition 3.3.10 There is a polynomial p such that for any closed clausaltableaux T with atomic cut for a set S of proper ground clause formulae thereexists a closed semantic tree T 0 for the set of clauses corresponding to the clauseformulae in S with size(T 0) < p (size(T )), and conversely. @@@@@@@@@
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Figure 3.8: Simulation of tableau expansion with semantic trees.Proof We prove that every tableau inference step can be polynomially simulatedby semantic trees. The polynomial simulation of expansion and reduction steps isshown in the Figures 3.8 and 3.9, respectively. The simulation of the atomic cutstep is trivial (due to Proposition 3.3.9 we can restrict ourselves to analytic cuts),instead of the nodes simply the edges must be labelled in the semantic tree. Theconverse simulation is as follows. Semantic tree expansion is simulated by tableaucut, and the labelling of a leaf node with a clause fL1; : : : ; Lng contradictingthe partial interpretation of a semantic tree branch is simulated by a tableau14In order to obtain a fair evaluation of indeterministic power, the use of de�nitional transla-tions must also be permitted for general tableaux, even if they accept non-normal form formulae.That is, if a system is more general than another wrt to its rules and its input language, thenthe general system must always polynomially simulate the special one (as opposed to the viewin [Reckhow, 1976]).



120 Propositional Calculi
@@@
@@@@@@
@@@

HHHHHH������ ...
...? Li+1Li�1�Li+1�Li�1...

�Li ... L1�L1
�Ln Lnc...

...
c : LnL1

�Li
� � � � � �� � � � � �Li

Figure 3.9: Simulation of tableau reduction with semantic trees.expansion step using the clause formula L1; : : : ; Ln , followed by n reductionsteps. �3.3.5 The Connection MethodBased on work by Prawitz [Prawitz, 1960, Prawitz, 1969], the connectionmethod was introduced by Bibel in [Bibel, 1981, Bibel, 1987] and Andrews[Andrews, 1981]|we shall use Bibel's terminology as reference point. The con-nection method is not a speci�c calculus or inference system but a general de-duction methodology which emphasizes the importance of connections for auto-mated theorem proving. In the original presentation of the connection method,the logical validity of �rst-order formulae is proven directly, which is the dualof demonstrating the unsatis�ability of the negations of the formulae. In orderto keep proximity to the refutational approach pursued in this work, we presentthe connection method as a framework for proving the unsatis�ability of formu-lae, which makes no di�erence concerning the employed notions and mechanisms.The connection method for ground formulae can handle arbitrary formulae con-structed over the connectives ^, _, and : with the restriction that : is permittedto dominate atomic formulae only. We present the version for sets of properclause formulae here.De�nition 3.3.10 (Literal occurrence in a set of clause formulae) For any clauseformula c = 8x1 � � � 8xm L1; : : : ; Ln in a set of clause formulae S, any triplehLi; i; ci, 1 � i � n, is called a literal occurrence in S.



3.3 Tableau and Connection Calculi 121As opposed to the case of clauses, for clause formulae, triples are needed toindividuate literal occurrences, since, in the case of non-compact clause formulae,one has to distinguish between di�erent occurrences of one and the same literalas a disjunct in a clause formula.De�nition 3.3.11 (Path, connection, mate, complementarity) Given a �nite setof proper clause formulae S of cardinality n. A path in S is a set of n literaloccurrences in S, exactly one from each clause formula in S. Any subset of apath in S is called a subpath in S. A connection in S is a two-element subpathfhK; i; c1i; hL; j; c2ig in S such that K and L are literals with the same predicatesymbol, one literal is negated, and one is not. The literal occurrences in theconnection are called mates of each other, and c1 and c2 are said to be connected.A path or subpath in S is called complementary if it contains a connection assubset in which the connected literals have the same atoms. If all paths in a setS of proper clause formulae are complementary, then S is named complementarytoo.The connection method is based on two fundamental principles. The �rst isthe idea that the unsatis�ability of a proper set of clause formulae can be provedby checking all paths in S for complementarity.Proposition 3.3.11 A set S of proper ground clause formulae is unsatis�ableif and only if S is complementary.Proof Let S = fc1; : : : ; cng. Then, the equivalent conjunction c1^� � �^cn can beequivalently transformed into disjunctive normal form by iteratively applying the^-distributivity (Proposition 1.2.1 (m)). By De�nition 1.7.11, a ground formulain disjunctive normal form in which ? does not occur is unsatis�able if and onlyif each general disjunction contains a literal and its complement as a conjunct.The paths in S represent exactly the conjunctions of literals occurring in thisdisjunctive normal form formula. �There are di�erent methodologies of checking paths for complementarity. Oneof the most na��ve ways is exempli�ed with the cut-free tableau calculus, whichtherefore is belonging to the class of path checking procedures.The second principle of the connection method is to use (sets of) connectionsas control mechanism for path checking, which has no correspondence in thestandard tableau approach.De�nition 3.3.12 (Mating, spanning property) Given a �nite set of proper clauseformulae S. Any set of connections in S is called a mating for S. A mating Mfor S is said to be spanning if each path in S contains a connection in M as asubpath; M is called complementary if each of its connections is complementary.Proposition 3.3.12 A set S of proper ground clause formulae is unsatis�ableif and only if there is a complementary spanning mating for S.



122 Propositional CalculiNote On the ground level, if S has a complementary spanning mating, thenthe set of all complementary connections in S is spanning, too. Consequently,we can always work with the set of all complementary connections. On the�rst-order level, however, the additional condition of uni�ability comes into playwhich makes it necessary to work with proper subsets of the set of all uni�ableconnections. Interestingly, a complementary spanning mating for a set of groundclause formulae S cannot be accepted as a refutation of S, since, apparently, theproblem of verifying the spanning property of a mating is coNP-complete. Hence,with spanning matings nothing is gained with respect to proving unsatis�ability.In a deduction enumeration approach, however, matings can be used to reducethe number of deductions tremendously, as discussed in Subsection 4.4.3.3.4 Connection TableauxOne of the basic ideas of the connection method, to use connections as a controlstructure for path checking, can be formulated as a re�nement of clausal tableaux.De�nition 3.4.1 (Connection tableau) If T is a clausal tableau in which eachinner node N has a complementary leaf node N 0 among its successor nodes, thenT is called connected or a connection tableau.The tableau shown in Figure 3.6 is a connection tableau. The connectiontableau calculus introduced now describes the standard top-down methodologyof building up connection tableaux.3.4.1 The Connection Tableau CalculusIn order to guarantee the connectedness condition, it is reasonable to reorganizethe standard tableau inference rules and to de�ne the connection tableau calculusas consisting of three inference rules, tableau start, tableau extension, and thereduction rule from the standard tablau calculus. Again, we work with markedtableaux.Procedure 3.4.1 (Tableau start) Given a set of proper ground clause formulaeS as input and a one-node tree with root N and label >, a start step is simply atableau expansion step.The tableau extension step is a particular tableau expansion step immediatelyfollowed by a special tableau reduction step.Procedure 3.4.2 (Tableau extension) Given a set of proper ground clause for-mulae S as input and a marked connection tableau T for S, choose a leaf nodeN with literal L which is not marked, select a clause formula L1; : : : ; Ln inS containing �L as a disjunct, and attach n successors to N labelled with theliterals L1; : : : ; Ln, respectively (this is an expansion step); then mark a successorN 0 of N which is labelled with the literal �L with N (this is a reduction step).



3.4 Connection Tableaux 123The transition relational formulation of the connection tableau calculus andits regular version can be de�ned in analogy to tableaux. Apparently, we canformulate the following fundamental di�erence with the general clausal tableaucalculus.Proposition 3.4.1 The (regular) connection tableau calculus is �nitely branch-ing, polynomially transparent, but not proof-con
uent.Proof The �nite branching rate and the polynomial transparency follow from thefact that the connection tableau calculus is basically a re�nement of the tableaucalculus (except that in extension steps two tableau inference steps are countedas one, which is not harmful computationally). To recognize the missing proof-con
uence, assume an input set S contains a clause formula c containing a literalL with �L not contained in a formula of S. Then, there exists no closed tableauwith c as top clause formula. �Hence, if we are going to make use of the connection tableau calculus asa proof or even a decision procedure for sets of proper ground formulae, thenwe are forced to enumerate connection tableaux. This is the main weakness ofconnection tableaux for the ground case, for which a di�erent functionality isdemanded than for the �rst-order case.Also, the connectedness condition results in a weakening of the indeterministicpower of clausal tableaux.Proposition 3.4.2 The connection tableau calculus cannot polynomially simu-late the clausal tableaux calculus.Proof A simple modi�cation of Example 3.3.1 will do, namely, the class pre-sented in Example 3.4.1. The additional tautologies15 can be used to polynomi-ally simulate the atomic cut rule in the clausal tableau calculus, hence permittingshort proofs for this example. But in connection tableaux, except for the startstep, the tautologies do not help, since any extension step at a node N with lit-eral L using the tautology L;�L just lengthens the respective path by a nodelabelled with the same literal L. Therefore, the size of any closed connectiontableau for an input set Sn is greater than 2 � (n � 1)! while the size of Sn isn� (2n + 2). �Example 3.4.1 For any set fA1; : : : ; Ang of distinct propositional atoms, let Sndenote the set of propositional clause formulae given in Example 3.3.1, augmentedwith n tautologies of the shape Ai;:Ai , 1 � i � n.Moreover, the regularity condition turns out to be harmful for the indeter-ministic power of connection tableaux.15That these formula are tautologies is not essential for the argument. We could equally wellreplace every tautology Ai;:Ai with two clause formulae Ai;:Bi and Bi;:Ai with theBi being n new distinct propositional atoms.



124 Propositional CalculiProposition 3.4.3 The regular connection tableau calculus cannot polynomiallysimulate the connection tableau calculus.Proof For this result we use another modi�cation of Example 3.3.1, which isgiven in in Example 3.4.2. The elements of this class have polynomial closedconnection tableaux, since the additional clause formulae permit the polynomialsimulation of the atomic cut rule, as illustrated in Figure 3.10, for the case ofn = 3; to gain readability, Ai is abbreviated with i and :Ai with i in the �gure.These connection proofs are highly irregular. In order to obtain short proofs, itis necessary to attach the intermediating two-literal clause formulae of the shapeAi; A0 and :Ai; A0 again and again. In regular proofs, however, on eachbranch intermediating clause formulae can be used at most once. Therefore, thesize of any closed regular connection tableau for an Sn is greater than 4� (n�2)!while the size of Sn is n� (2n + 7). �Example 3.4.2 For any set fA1; : : : ; Ang of distinct propositional atoms, let Sndenote the set of propositional clause formulae given in Example 3.3.1, augmentedwith1. n tautologies of the shape Ai;:Ai;:A0 , 1 � i � n,2. n clause formulae of the structure Ai; A0 , 1 � i � n, and3. n clause formulae of the structure :Ai; A0 , 1 � i � n,where A0 is a new propositional atom.3.4.2 Tableau Node Selection FunctionsThere is a source of indeterminism in the tableau and the connection tableaucalculi which can be removed without any harm concerning indeterministic power.This indeterminism concerns the selection of the next unmarked node at whichan expansion, extension, reduction, or cut step is to be performed.De�nition 3.4.2 (Selection function) A (node) selection function � is a mappingassigning to every marked tableau T which is not marked as closed an unmarkedleaf node N in T . The node N is called the node selected by �.Proposition 3.4.4 (Strong node selection independency) Any closed (connec-tion) tableau for a set of ground clause formulae can be constructed with anypossible selection function.Note This property is extremely important for tableau proof procedures. Thus,we can always work with a �xed selection function, or switch from one selectionfunction to another if necessary, without losing indeterministic power. This lat-ter property does not hold for resolution procedures like, e.g., linear resolution,
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Figure 3.10: Polynomial closed connection tableau for Example 3.4.2, n = 3.which is only weakly independent of the node selection function, in the sensethat all selection function preserve completeness, but they may produce di�erent(shortest) proofs. In other terms, di�erent resolution selection functions inducedi�erent resolution dags.De�nition 3.4.3 (Standard selection functions) A depth-�rst (depth-last) selec-tion function selects from any tableau T containing unmarked leaf nodes onewith a maximal (minimal) depth. The depth-�rst (depth-last) left-most (right-most) selection function selects that node which is the left-most (right-most)node among the unmarked nodes with maximal (minimal) depth.3.4.3 From Tableaux to Subgoal FormulaeDue to the fact that tableau calculi work by building up tree structures whereasother calculi derive new formulae from old ones, the close relation of tableaux withother systems is not immediately evident. In order to clarify the interdependen-cies it is helpful to reformulate the process of tableau construction in terms offormula generation procedures. There is a natural mapping from tableaux to for-mulae represented by the tableaux, particularly, if only the open parts of tableauxare considered, which we call subgoal trees.De�nition 3.4.4 (Subgoal tree) The subgoal tree of a marked tableau T is theliteral tree obtained from T by deleting out all nodes, together with their ingoingedges, which are on branches with marked leaves only.



126 Propositional CalculiFor proving the unsatis�ability of a set of formulae using the tableau frame-work, it is not necessary to explicitly construct a closed tableau, it is su�cient toknow that the deduction corresponds to a closed tableau. The subgoal tree of atableau contains only the unmarked leaves of a tableau and those nodes whichdominate unmarked leaves. For the continuation of the refutation process, allother parts of the tableau may be disregarded without any harm.16 Most im-plementations of tableau calculi work by manipulating subgoal trees instead oftableaux. From subgoal trees it is but a small step to the corresponding logicalformulae.The logical interpretation of tableaux mentioned above|as the disjunction ofthe conjunctions of the literals on its branches|leads to the de�nition of so-calledconsolvents (see [Eder, 1991]). Here we do not use the consolvent interpretation ofa tableau, because this reading destroys the internal structure of a tableau, whichis very uncomfortable for de�ning re�nements and extensions of the calculus.Instead, we use a mapping which mirrors the tableau structure. Given a subgoaltree of a tableau, the corresponding subgoal formula is de�ned inductively asfollows.De�nition 3.4.5 (Subgoal formula) (inductive)1. The subgoal formula of the empty subgoal tree is ?.2. The subgoal formula of a one-node tree with label F is simply F .3. The subgoal formula of a complex tree with root N and label F , and im-mediate subtrees t1; : : : ; tn, in this order, is the formula F ^ (F1 _ � � � _ Fn)where Fi is the subgoal formula of ti, for every 1 � i � n.Notation 3.4.1 According to our de�nition of tableaux and subgoal formulae,any complex subgoal formula has the shape > ^ F . In order to eliminate thisredundancy, we shall abbreviate any complex subgoal formula > ^ F by writingjust the logically equivalent formula F .In Figure 3.12 three sequences of subgoal formulae are depicted which arecorresponding to three di�erent constructions of the tableau in Figure 3.6 usingthe connection tableau calculus. In order to facilitate the identi�cation of theinferences on subgoal formulae, the original tableau is redisplayed in Figure 3.11with numbers as names of the relevant nodes, which appear as upper indicesat the literals. The subgoal formula sequences di�er with respect to the chosenselection functions, the node selected for the next inference step is marked byframing the indexed literals.The structure of the subgoal tree encoded by a subgoal formula can be reado� easily. For every subformula of the shape L ^ F the node corresponding tothe occurrence of L dominates all nodes represented by the literal occurrences16But note that information about the closed part of a tableau and its structure may benecessary for improving search pruning. This will become relevant for the �rst-order case.
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q3q4:r6Figure 3.11: Connection tableau of Figure 3.6 with node indices.depth-�rst left-most depth-�rst right-most depth-last left-most>0 >0 >0p1 p1 p1p1 ^( r2 _q3) p1 ^(r2_ q3 ) p1^( r2 _q3)p1^((r2^ q4 )_q3) p1^(r2_(q3^ s5 )) p1^((r2^q4)_ q3 )p1^((r2^q4^ :r6 )_q3) p1^(r2_(q3^s5^ :q7 )) p1^((r2^ q4 )_(q3^s5))p1^ q3 p1^ r2 p1^((r2^q4^:r6)_(q3^ s5 ))p1^q3^ s5 p1^r2^ q4 p1^((r2^q4^:r6)_(q3^s5^ :q7 ))p1^q3^s5^ :q7 p1^r2^q4^ :r6 p1^q3^s5^ :q7? ? ?Figure 3.12: Subgoal formula proofs corresponding to the tableau in Figure 3.6.within the occurrence of F ; this involves that the open leaf nodes in the subgoaltree are encoded by literal occurrences not immediately followed by a conjunctionsymbol.3.4.4 Connection MatricesThe connection calculus presented in [Bibel, 1987] Chapter III.6 can be viewedas a version of the connection tableau calculus restricted to depth-�rst selectionfunctions. Here we shall consider a re�nement of this connection calculus, with-out factorization, which is studied below. The favourite notation for displayingconnection proofs is by writing them as matrices, with the columns consisting ofthe literals in the clause formulae. The information about the paths which havebeen examined and those which remain to be checked in a certain state, is ex-pressed with some additional data structures. In the original presentation, someworked-o� parts remain noted in the deduction. We apply the same technique



128 Propositional Calculiused for tableaux|the working with subgoal trees|to the connection calculus,by working with subgoal matrices. The resulting format is particularly appealingfor the presentation of deductions obeying any form of depth-�rst selection, asshown in Figure 3.13. In the matrix proof we have indicated the next inferencewith arrows at the selected subgoal, �. for extension, ,� � � � �� for reduction,and =m= for the path under consideration. Additionally, in any extension step,the clause and the entry literal is given, and in any reduction step the respectivepredecessor node. The relation of subgoal matrix proofs with the more generalsubgoal formula and subgoal tree notation is evident. A subgoal matrix is ba-sically a subgoal tree put on its left side. Notice that the subgoal proof on theright-hand side of Figure 3.12 cannot be performed by the mentioned connectioncalculus and not be represented in the subgoal matrix notation.>p1 �. c2:2p1 =m= q3r2 �. c6:1p1 =m= q3r2 =m= q4 �. c5:1p1 q3r2 ,� q4 =m= :r6p1 =m= q3 �. c3:2p1 =m= q3 =m= s5 �. c4:2p1 =m= q3 ,� s5 =m= :q7?Figure 3.13: Subgoal matrix notation of the left-hand proof in Figure 3.12.3.4.5 Model EliminationThe model elimination calculus was introduced in [Loveland, 1968] and improvedin [Loveland, 1978]. Model elimination can be viewed as a re�nement of theconnection tableau calculus. This approach has various advantages concerninggenerality, elegance, and the possibility for de�ning extensions and re�nements.17Here, we treat a subsystem of the original model elimination calculus withoutfactoring and lemmata, called weak model elimination in [Loveland, 1978], whichis still refutation-complete. The fact that weak model elimination is indeed aspecialized subsystem of the connection tableau calculus becomes apparent whenconsidering the subgoal formula deductions of connection tableaux. The weak17The soundness and completeness results for model elimination, for example, are immediateconsequences of the soundness and completeness proofs of (regular) connection tableaux, whichare very short and simple. Compare these proofs with the extremely involved and lengthyproofs in [Loveland, 1978].



3.4 Connection Tableaux 129model elimination calculus can be viewed as that re�nement of the connectiontableau calculus in which the selection of open nodes is performed in a depth-�rstright-most manner. The strong node selection independence guarantees that weakmodel elimination is a complete re�nement of the connection tableau calculus.Due to the depth-�rst right-most restriction of the node selection function, aone-dimensional \chain" representation of subgoal formulae is possible (as usedin [Loveland, 1968, Loveland, 1978]), in which no logical operators are necessary.The transformation from subgoal formulae with depth-�rst right-most selectionfunction to model elimination chains works as follows.Transformation from subgoal formulae to model elimination chainsTo any subgoal formula generated with a depth-�rst right-most node selectionfunction, apply the following operation. As long as logical operators are containedin the string, replace every conjunction L ^ F with [L]F and every disjunctionL1 _ � � � _ Ln with L1 � � �Ln.In a model elimination chain, the occurrences of bracketed literals denote thenon-leaf nodes and the occurrences of unbracketed literals the leaf nodes of thesubgoal tree corresponding to the input subgoal formula. For every node Ncorresponding to an occurrence of an unbracketed literal L, the bracketed literaloccurrences to the left of L encode the nodes dominating N . From the subgoalformula proofs in Figure 3.12 only the middle one can be represented in modelelimination. The model elimination proof is depicted in Figure 3.14. Additionally,we have given a precise speci�cation of the applied inference rules, using thefollowing abbreviations:S: 0; ci denotes a start step into top clause formula ci,E: j; ci denotes an extension step at node j into the i-th disjunct of ci,R: j; k denotes a reduction step at node j with a dominating node k.p1 S: 0; c1[p1] r2 q3 E: 1; c2:2[p1] r2 [q3] s5 E: 3; c3:2[p1] r2 [q3] [s5]:q7 E: 5; c4:2[p1] r2 R: 7; 3[p1] [r2] q4 E: 2; c6:1[p1] [r2] [q4]:r6 E: 4; c5:1? R: 6; 2Figure 3.14: Model elimination notation of the middle proof in Figure 3.12.Note It is important to emphasize that the node selection function determinesthe branching rate of the search tree of the calculus, i.e., the number of possible



130 Propositional Calculitableaux that can be generated in one inference step from a given tableau, whichis essential for the �rst-order level. Consequently, all forms of restrictions on thenode selection from the side of the calculus may heavily reduce the potential ofsearch pruning in this calculus. This subject will be discussed in the next chapter.3.4.6 Further Structural Restrictions on TableauxConnectedness and regularity are restrictions of the tableaux structure. Suchrestrictions are completely independent of the structure of the underlying set Sof input formulae or of the structures of other tableaux for S. In particular, anystructural restriction on tableaux of some type � meets the following monotonicitycondition. If T is a tableau of type � for an input S, then T is a tableau of type �for any superset of S. Below we shall discuss important other restrictions whichdo not satisfy this monotonicity condition.In [Plaisted, 1990] a re�nement of connection tableaux is discussed in whichthe reduction rule may be omitted either for all subgoals with atoms or for allsubgoals with negated atoms. This re�nement can be formulated as a structuralrestriction on marked tableaux. We demonstrate this for the case of forbiddingreduction steps at nodes labelled with atoms. The corresponding restriction onthe structure of marked tableaux is as follows. If a node N in such a tableauis labelled with an atom, then no successor of N labelled with an atom mustbe marked, and if a node N is labelled with a negated atom, then at most onesuccessor of N labelled with an atom is permitted to be marked. Interestingly,this partial restriction of reduction steps cannot be formulated as a restriction ofpure (i.e., unmarked) tableaux.Moreover, this partial restriction of reduction steps is incompatible with theregularity condition.Proposition 3.4.5 There are unsatis�able sets of ground clause formulae suchthat every proof in the regular connection tableau calculus has to perform reductionsteps both at nodes labelled with atoms and at nodes labelled with negated atoms.Proof We use the set of clause formulae given in Example 3.4.3. As illustrationof the proof consider Figure 3.15. If the �rst clause formula is chosen as topclause formula, then, in any case, reduction steps have to be applied to nodeslabelled with the literals :q and r in the four possible subtrees T dominated bythe p-node on the left-hand side; and similarly to nodes labelled with the literals:q 0 and r 0 in the four possible subtrees T 0 on the right-hand side. Using oneof the other clause formulae as top clause formula does not help, since then theclause :p _ :p 0 must be entered by an extension step, producing either an openleaf literal :p or :p 0. In either case a tree from one of two classes T or T 0 needto be attached then. �Example 3.4.3 Consider a set of clause formulae of the following structures



3.4 Connection Tableaux 131:p;:p 0 ,q; p;:r , q 0; p 0;:r 0 ,q; s , :q 0; s 0 ,s;:; q , :s 0;:q 0 ,r; t , :t; r ,r 0; t 0 , :t 0; r 0 .
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Figure 3.15: Necessity of full reduction for regular connection tableaux.In order to preserve completeness for the restricted use of reduction rules, theregularity condition has to be weakened (see [Plaisted, 1990]). We do not pursuefurther this asymmetric approach.Another re�nement of connection tableaux, which has not been recognizedso far and which is compatible with the regularity restriction, results from asharpening of the connectedness condition.De�nition 3.4.6 (Strong connection) A connection fhL; i; c1i; hK; j; c2ig iscalled strong if L = �K and K is the only literal contained in c2 with a comple-ment in c1. The literal occurrences in a strong connection are named strong matesof each other. Two clause formulae are strongly connected if they are connectedand every connection between them is strong.Example 3.4.4 Two clause formulae of the form P (a);:Q(a); P (b); P (a) and:P (a);:Q(a);:Q(b);:P (a);:Q(b);:P (a) are strongly connected.In terms of clauses, strong connectedness can be expressed as follows. If c 01 andc 02 are the clauses containing the literals contained in two ground clause formulaec1 and c2, respectively, then the strong connectedness of c1 and c2 entails thatthere is exactly one ground resolvent c of c 01 and c 02, and c is not tautological.



132 Propositional CalculiDe�nition 3.4.7 (Strong connection tableau) A clausal tableau T is calledstrongly connected or a strong connection tableau if T is connected and any twotableau clause formulae c1 and c2 with c1 lying immediately above c2 are stronglyconnected.Like connectedness and regularity, strong connectedness is a pure tableaustructure condition, in the sense that marked tableaux are not needed to verifythe condition.3.4.7 The Completeness of Connection TableauxNow, we wish to furnish the completeness proof of regular strong connectiontableaux, which yields as corollaries the completeness of all more general tableauvariants discussed above. In fact, something slightly stronger can be proven,using the following notions.De�nition 3.4.8 (Essentiality, relevance, minimal unsatis�ability) An element Fof a set of formulae S is called essential in S if S is unsatis�able and S n fFgis satis�able. An element F of a set of formulae S is named relevant in S ifthere exists an unsatis�able subset S 0 � S such that F is essential in S 0. Anunsatis�able set of formulae S is said to be minimally unsatis�able if each formulain S is essential in S.Proposition 3.4.6 (Completeness of regular strong connection tableaux) For any�nite unsatis�able set S of proper ground clause formulae and any clause formulac which is relevant in S, there exists a closed regular strong connection tableaufor S with top clause formula c.For the completeness proof we need an additional notion and a basic lemma.De�nition 3.4.9 (Strengthening) The strengthening of a set of clause formulaeS by a set of literals P = fL1; : : : ; Lng, written P . S, is the set of clauseformulae obtained by �rst removing all clause formulae from S containing literalsfrom P and afterwards adding the n clause formulae L1 ; : : : ; Ln .Lemma 3.4.7 (Strong mate lemma) Let S be an unsatis�able set of groundclause formulae. For any literal L contained in any relevant clause formula c inS there exists a clause formula c 0 in S such that(i) c 0 contains �L,(ii) for every literal L 0 6= L in c 0: its complement �L 0 is not contained in c,and(iii) c 0 is relevant in the strengthening fLg . S.



3.4 Connection Tableaux 133Proof From the relevance of c follows that S has a minimally unsatis�ablesubset S0 containing c; every formula in S0 is essential in S0. Hence, there isan interpretation I for S0 with I(S0 n fcg) = > and I(c) = ?, for the formulaassignment I of I; I assigns? to every literal in c. De�ne I 0 := (I nf�Lg)[fLg.Its assignment I 0 maps c to>. The unsatis�ability of S0 guarantees the existenceof a clause formula c 0 in F0 with I 0(c 0) = ?. We prove that c 0 meets the conditions(i) { (iii). First, the clause formula c 0 must contain the literal �L, since otherwiseI(c 0) = ?, which contradicts the selection of I, hence (i). Secondly, for any otherliteral L 0 6= L in c 0: I(L 0) = I 0(L 0) = ?. As a consequence, L 0 must not occurcomplemented in c, which proves (ii). Finally, the essentiality of c 0 in S0 entailsthat there exists an interpretation I 00 with I 00(S0 n fc 0g) = > and I 00(c 0) = ?,for the assignment I 00 of I 00. Since �L is in c 0, I 00(L) = >. Therefore, c 0 isessential in S0 [ fLg, and also in its subset fLg . S0. From this and the factthat fLg . S0 is a subset of fLg . S follows that c 0 is relevant in fLg . S. �Proof of Theorem 3.4.6 Let S be a �nite unsatis�able set of proper groundclause formulae and c any relevant clause formula in S. A closed regular strongconnection tableau T for S with top clause formula c can be constructed fromthe root to its leaves via a sequence of intermediate tableaux, as follows. Startwith a tableau consisting simply of c as top clause formula. Then iterate thefollowing non-deterministic procedure, as long as the intermediate tableau is notyet closed.Choose an arbitrary open leaf node N in the current tableau with literalL. Let c be the tableau clause formula of N and let P = fL1; : : : ; Lm; Lg,m � 0, be the set of literals on the path from the root up to the node N .Then, select any clause formula c 0 which is relevant in P . S, contains�L, is strongly connected to c, and does not contain literals from the pathfL1; : : : ; Lm; Lg; perform an expansion step with c 0 at the node N .First, note that, evidently, the procedure admits solely the construction of regu-lar strong connection tableaux, since in any expansion step the attached clauseformula contains the literal �L, no literals from the path to its parent node (reg-ularity), nor is a literal di�erent from �L in c 0 contained complemented in c.Due to regularity, there can be only branches of �nite length. Consequently,the procedure must terminate, either because every leaf is closed, or because noclause formula c 0 exists for expansion which meets the conditions stated in theprocedure. We prove that the second alternative does never occur, since for anyopen leaf node N with literal L there exists such a clause formula c 0. This willbe demonstrated by induction on the node depth. The induction base, n = 1,is evident, by the Strong Mate Lemma (3.4.7). For the step from n to n + 1,with n � 1, let N be an open leaf node of tableau depth n + 1 with literal L,tableau clause formula c, and with a path set P [ fLg such that c is relevant inP . S, the induction assumption. Let S0 be any minimally unsatis�able subsetof P . S containing c, which exists by the induction assumption. Then, by the



134 Propositional CalculiStrong Mate Lemma, S0 contains a clause c 0 which is strongly connected to cand contains �L. Since no literal in P 0 = P [ fLg is contained in a non-unitclause formula of P 0 . S and because N was assumed to be open, no literal inP 0 is contained in c 0 (regularity). Finally, since S0 is minimally unsatis�able, c 0is essential in S0; therefore, c 0 is relevant in P 0 . S. �3.5 Controlled Integration of the Cut RuleThe regular connection tableau calculus has proven successful in the practice ofautomated deduction [Stickel, 1988, Letz et al., 1992], although, concerning in-deterministic power, the calculus is extremely weak. In this section we introducedi�erent extensions of the calculus which attempt to remedy this weakness with-out introducing to much additional indeterminism. All discussed extensions canbe viewed as controlled integrations of the cut rule.It is apparent that the connectedness condition on tableaux blocks any rea-sonable application of the tableau cut rule, as it is de�ned in Procedure 3.3.3on p. 116. This is because the connectedness enforces that any application ofcut at a node N labelled with a literal L must label the two attached successornodes with the literals L and �L, respectively, with the result that absolutely noadvance is made towards the closing of the tableau. The e�ect of the cut rule onthe shortening of tableau proofs can only be achieved for connection tableaux ifthe tautology rule is used, which is a generalized form of the cut rule.Procedure 3.5.1 (Tautology rule for clausal tableaux) Given a marked tableauT , choose an unmarked leaf node N , select any tautological clause formulaL1; : : : ; Ln , attach n new successor nodes, and label them with L1; : : : ; Ln,respectively.Proposition 3.5.1 (Regular) connection tableaux with the tautology rule canlinearly simulate semantic trees and tableaux with atomic cut.Proof Any cut step with a cut formula A at a node N labelled with a lit-eral L can be simulated by applying the tautology rule using the clause formula�L;A;:A . �Corollary 3.5.2 Connection tableaux cannot polynomially simulate (regular)connection tableaux with the tautology rule.Proof Immediate from Proposition 3.5.1 and Proposition 3.4.2 on p. 123. �It is clear that the tautology rule is an inference rule of a theoretical value only,since the uncontrolled addition of the tautology rule to the connection tableaucalculus completely destroys the good reductive properties of the calculus. Thequestion is whether there exist other forms of additional inference rules which arebetter suited for automated deduction.



3.5 Controlled Integration of the Cut Rule 1353.5.1 FactorizationThe factorization rule was used in model elimination [Loveland, 1978] and inthe connection calculus [Bibel, 1987], Chapter III.6. On the general level of the(connection) tableau calculus, which permits arbitrary node selection functions,the rule can be introduced as follows. Consider a closed tableau containing twonodes N1 and N2 with the same literal as label. Furthermore, suppose that allancestor nodes of N2 are also ancestors of N1. Then, the closed tableau part Tbelow N2 could have been reused as a solution and attached to N1, because allexpansion and reduction steps performed in T under N2 are possible in T underN1, too. This observation motivates the use of factorization as an additionalinference rule. Factorization allows to label a node N1 as solved in case there isanother node N2 labelled with the same literal, provided that the set of ancestorsof N2 is a subset of the set of ancestors of N1. Possible candidates for N2 are allbrothers and sisters of N1, i.e., all nodes with the same predecessor as N1, andthe brothers and sisters of its ancestors. Applied to a set of clause formulaef p; q ; p;:q ; :p; q ; :p;:q gwhich denotes an instance of Example 3.3.1 on p. 116, for n = 2, factorizationyields a shorter proof, as shown in Figure 3.16. Factorization is indicated withan arc. Obviously, in order to preserve soundness this rule must be constrainedto prohibit solution cycles. Thus, in Figure 3.16 factorization of the node N4 onthe right hand side with the node N3 with the same literal on the left hand sideis not allowed after the �rst factorization (node N1 with node N2) has been per-formed, because this would involve a reciprocal, and hence unsound, employmentof one solution within the other. To avoid the cyclic application of factoriza-tion, tableaux have to be supplied with an additional factorization dependencyrelation.
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Figure 3.16: Factorization step in a connection tableau for Example 3.3.1, n = 2.De�nition 3.5.1 (Factorization dependency relation) A factorization dependencyrelation on a tableau T is a strict partial ordering � on the tableau nodes.



136 Propositional CalculiProcedure 3.5.2 (Tableau factorization) Given a marked tableau T and a fac-torization dependency relation � on its nodes. First, select a leaf node N1 withliteral L and another node N2 labelled with the same literal such that1. N1 is dominated by a node N which has the node N2 among its immediatesuccessors, and2. M1 6� N2, where M1 is the brother node of N2 on the branch from the rootto N1, including the latter.18Then, mark N1 with N2 and modify � by �rst adding the pair of nodes hN2;M1i,and then forming the transitive closure of the relation. We say that the node N1has been factorized with the node N2. The tableau construction is started withan empty factorization dependency relation, and all other tableau inference rulesleave the factorization dependency relation unchanged.Applied to the example shown in Figure 3.16, when the node N1 is factorizedwith the node N2, the pair hN2; N3i is added to the previously empty relation�, thus denoting that the solution of the subgoal N3 depends on the solution ofthe subgoal N2. After that, factorization of the node N4 with the node N3 is notpossible any more, and we have to proceed with a tableau extension step at thenode N4.Note It is clear that the factorization dependency relation only relates brothernodes, i.e., nodes which have the same immediate predecessor.Similar to the case of ordinary (connection) tableaux, if the factorization ruleis added, the order in which the tableau rules are applied does not in
uence thestructure of the tableau.Proposition 3.5.3 (Strong node selection independency of factorization) Anyclosed (connection) tableau with factorization for a set of ground clause formulaecan be constructed with any possible selection function.The applications of factorization at a node N1 with a node N2 can be subdi-vided into two cases. Either, the node N2 has been solved already, or the nodeN2 or some of the nodes dominated by N2 are not yet marked. In the secondcase we shall speak of an optimistic application of factorization, since the nodeN1 is marked as solved before it is known whether a solution exists. Conversely,the �rst case will be called a pessimistic application of factorization.Note If we are working with subgoal trees, i.e., completely remove solved partsof a tableau, then for all depth-�rst selection functions solely optimistic applica-tions of factorization can occur. Also, the factorization dependency relation maybe safely ignored, because the depth-�rst procedure and the removal of solvedsubgoals render cyclic factorization attempts impossible. It is for this reason,that the integration approaches of factorization into model elimination or theconnection calculus have not mentioned the factorization dependency relation.18Note that M1 may be N1 itself.
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Figure 3.17: Linear closed connection tableau with factorization for Exam-ple 3.3.1, for the case of n = 3.The addition of the factorization rule increases the indeterministic power of(connection) tableaux signi�cantly. Thus, the critical class for tableaux given inExample 3.3.1, for which no polynomial proof exists (see Figure 3.7 on p. 116), haslinear closed connection tableaux with factorization, as shown in Figure 3.17. Infact, the factorization rule is a certain restricted version of the cut rule. Connec-tion tableaux with factorization, however, cannot polynomially simulate tableauxwith atomic cut or regular connection tableaux with the tautology rule. Both re-sults will be shown in the next subsection.3.5.2 The Folding Up RuleAn inference rule, which is stronger than factorization concerning indeterministicpower, is the so-called folding up rule (in German: \Hochklappen"). Folding upgeneralizes the C-reduction rule introduced for the model elimination format in[Shostak, 1976]. In contrast to factorization, for which pessimistic and optimisticapplication do not di�er concerning deductive power, the increase in indeter-ministic power of the folding up rule results from its pessimistic nature. Thetheoretical basis of the rule is the possibility of extracting lemmata from solvedparts of a tableau, which can be used on other parts of the tableau. Folding uprepresents a particularly e�cient realization of this idea.We explain the rule with an example. Given the situation displayed in Fig-ure 3.18, where the bold arrow points to the node at which the last inference step(a reduction step with the node 3 levels above) has been performed. With thisstep we have solved the dominating subgoals labelled with the literals r and q.
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Figure 3.18: Connection tableau before folding up.In the solutions of those subgoals the predecessor labelled with p has been usedfor a reduction step. Apparently, this amounts to the derivation of two lemmata:r;:p and :q;:p from the underlying formula. The new lemma :q;:pcould be added to the underlying set and subsequently used for extension steps(this has already been described in [Letz et al., 1992]). The disadvantage of suchan approach is that the new lemmata may be non-unit clause formulae, as in theexample, so that extension steps into them would produce new subgoals, togetherwith an unknown additional search space. The redundancy brought in this waycan hardly be controlled.With the folding up rule a di�erent approach is pursued. Instead of addinglemmata of arbitrary lengths, so-called context unit lemmata are stored. In thediscussed example, we may obtain two context unit lemmata::r , valid in the (path) context p, and:q , valid in the context p.Also, the memorization is not done beside the tableau, but within the tableauitself, namely, by \folding up" a solved subgoal to the edge which dominates itssolution context. More precisely, the folding up of a solved subgoal N to an edgeE means labelling E with the negation of the literal at N . Thus, in the exampleabove the edge E incident to the p-node on the left-hand side of the tableau issuccessively labelled with the literals :r and :q, as displayed in Figure 3.19; setsof context-unit lemmata are depicted as framed boxes. Subsequently, the literalsin the boxes at the edges can be used for ordinary reduction steps. So, at the leaf
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Figure 3.19: Connection tableau after three times folding up.node labelled with r a reduction step can be performed with the edge E, whichwas not possible before the folding up. After that, the subgoal s could also befolded up to the edge E, which we have not done in the �gure, since after markingthat subgoal the part below E is completely solved. But now the p-subgoal onthe left is solved, and we can fold it up above the root of the tableau; since thereis no edge above the root, we simply fold up into the root. This folding up stepfacilitates that the p-subgoal on the right can be solved by a reduction step.The gist of the folding up rule is that only unit lemmata are added, so that theadditionally imported indeterminism is not too large. Over and above that, thetechnique gives rise to a new form of pruning mechanism called strong regularity,which is discussed below. Lastly, the folding up operation can be implementedvery e�ciently.In order to be able to introduce the inference rule formally, we have to slightlygeneralize the notion of tableaux.De�nition 3.5.2 (Edge-labelled tableau) An edge-labelled tableau (E-tableau) isjust a tableau as de�ned on p. 112, with the only modi�cations that also theedges are labelled by the labelling function �, namely, with sets of literals, andthat the root is not labelled with > but with sets of literals, too.Procedure 3.5.3 (E-tableau folding up) Given a marked E-tableau T and a non-leaf node N with literal L which dominates marked leaves only. Let M be the set



140 Propositional Calculiof nodes which are markings �(Ni) of the leaf nodes Ni dominated by N . Obtainthe set M 0 from M by removing N and all nodes dominated by N ; note that allnodes in M 0 are on the path from the root to N , excluding the latter. Now, eitherM 0 contains solely the root node, in which case the label of the root is changedby adding the literal �L. Or M 0 contains an inner node N 0 which is dominatedby all other nodes; then the label of the edge leading to N 0 is changed by adding�L.Additionally, the reduction rule has to be extended, as follows.Procedure 3.5.4 (E-tableau reduction) Given a marked E-tableau T , select aleaf node N with literal L, then, either select a dominating node N 0 with literal�L and mark N with N 0, or select a dominating edge or the root E with �L 2�(E) and mark N with the node to which the edge is incident or with the root,respectively.The tableau and the connection tableau calculus with folding up result fromthe ordinary versions by working with edge-labelled tableaux, adding the foldingup rule, substituting the old reduction rule by the new one, starting with a rootlabelled with the empty set, and additionally labelling all newly generated edgeswith the empty set.It is important to emphasize that the folding up rule is properly strongerconcerning indeterministic power than the factorization rule.Proposition 3.5.4 Connection tableaux with factorization cannot polynomiallysimulate connection tableaux with folding up.Example 3.5.1 Consider a set S consisting of clause formulae of the structures:p0 ,p0;:p11; : : : ;:p1m ,p1i ;:p21; : : : ;:p2m , for 1 � i � m,� � �pn�1i ;:pn1 ; : : : ;:pnm , for 1 � i � m,pn1 ,: : :pnm .Proof We use the class de�ned in Example 3.5.1. It can easily be recognized thatany closed connection tableau for S with top clause formula :p0 has Pni=0mileaf nodes. Also, factorization is not possible if we start with the top clauseformula :p0 , since no two subgoals N1; N2 with identical literals occur withN2 being a brother node of an ancestor of N1. Therefore, the example class isintractable for connection tableau with factorization, for this speci�c top clause



3.5 Controlled Integration of the Cut Rule 141:p0 =m=:p11 =m= � � � =m=:pn�21 =m=:pn�11:p12 � � � :pn�22 :pn�12... � � � ... ...(matrix after n steps) :p1m � � � :pn�2m :pn�1mpn�11 :p0 =m=:p11 =m= � � � =m=:pn�21 =m=:p12 � � � :pn�22 :pn�12... � � � ... ...(matrix after n+m+1 steps) :p1m � � � :pn�2m :pn�1mpn�11 ; : : : ; pn�1m ; pn�21 :p0 =m=:p11 =m= � � � =m=:pn�31 =m=:p12 � � � :pn�32 :pn�22... � � � ... ...(matrix after n+m+1+ (m2�1) steps) :p1m � � � :pn�3m :pn�2mpn�11 ; : : : ; pn�1m ; pn�21 ; : : : ; pn�2m ; pn�31 :p0 =m=:p11 =m= � � � =m=:pn�41 =m=:p12 � � � :pn�42 :pn�32... � � � ... ...(matrix after n+m+1+2(m2�1) steps) :p1m � � � :pn�4m :pn�3m(empty matrix ? after n+m+1+ (n�1)(m2�1) steps)Figure 3.20: Linear connection proof with folding up for Example 3.5.1.formula. However, there are linear connection proofs with factorization if one ofthe clause formulae pn�1i ;:pn1 ; : : : ;:pnm ; 1 � i � mis taken as top clause formula. In order to obtain an unsatis�able class which isintractable for any selection of the top clause formula, we can apply the sametrick used in the proof of Proposition 3.4.5 on p. 130. We modify the class givenin Example 3.5.1 by adding a literal :p 00 to the top clause formula :p0 , and byadding renamed copies of the other clause formulae where the new literals are allconsistently renamed and distinct from the old ones. For the resulting formula itdoes not matter with which clause formula we start, since now in any constructionof a closed connection tableaux with factorization inevitably either :p0 or :p 00must occur as a subgoal. And in the proof of this subgoal no factorization stepsare possible, so that the resulting closed subtableau is isomorphic to the large onefor the old formula class. Consequently, the new example class is intractable forconnection tableau with factorization. Both the formula class from Example 3.5.1and the modi�ed class have linear proofs for connection tableau with folding up,as shown in Figure 3.20 for the initial class with :p0 as top clause formula; in



142 Propositional Calculithe �gure, we have used the presentation framework of connection matrices. Thedisplayed proof needs 1+m+n+(n�1)(m2�1) inference steps, while the numberof literal occurrences in the respective clause set is 1+m+1+(n�1)(m+1)m+n =2 + m + n + (n� 1)(m2 + m). �Conversely, the polynomial simulation in the other direction is possible, for acertain class of selection functions.Proposition 3.5.5 For arbitrary depth-�rst selection functions, (connection)tableaux with folding up linearly simulate (connection) tableaux with factorization.
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Figure 3.21: Simulation of factorization by folding up.Proof Given any closed (connection) tableau T with factorization, let � be itsfactorization dependency relation. By the strong node selection independencyof factorization (Proposition 3.5.3 on p. 136), T can be constructed with anyselection function. We consider a construction S = (T0; : : : ; Tm; T ) of T witha depth-�rst selection function � which respects the partial order of the factor-ization dependency relation �, i.e., for any two nodes N1; N2 in the tableau,N1 � N2 involves that N1 is selected before N2; such a selection function existssince � solely relates brother nodes. The deduction process S can be directlysimulated by the (connection) tableau calculus with folding up, as follows. Usingthe same selection function �, any expansion (extension) and reduction step inS is simulated by an expansion (extension) and reduction step. But, whenevera subgoal has been completely solved in the simulation, it is folded up. Since inthe original deduction process, due to the pessimistic application of factorization,the factorization of a node N1 with a node N2 (with literal L) involves that N2has been solved before, in the simulation the literal L must have been folded up



3.5 Controlled Integration of the Cut Rule 143before. Now, any solved subgoal can be folded up at least one step, namely, tothe edge E above its predecessor. Since E dominates N1, the original factoriza-tion step can be simulated by a reduction step. The simulation of factorizationby folding up is graphically shown in Figure 3.21. �Finally, we show that the folding up rule, although strictly more powerfulthan factorization, is still a hidden version of the cut rule.Proposition 3.5.6 Tableaux with atomic cut and regular connection tableauxwith the tautology rule linearly simulate (connection) tableaux with folding up.
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Figure 3.22: Simulation of folding up by cut.Proof We perform the simulation proof for tableaux with cut. Given a tableauderivation with folding up, each folding up operation at a node N 0 adding thenegation �L of a solved subgoal L to the label of an edge incident to a nodeN , can be simulated as follows. Perform a cut step at the node N with thecut formula L, producing two new nodes N1 and N2 labelled with L and �L,respectively; shift the solution of L from N 0 below the node N1 and the part ofthe tableau previously dominated by N below its new successor node N2; �nally,perform a reduction step at the node N 0. Apparently, the unmarked branchesof both tableaux can be injectively mapped to each other such that all pairsof corresponding branches contain the same sets of literals, respectively. Thesimulation is graphically shown in Figure 3.22. �Corollary 3.5.7 Tableaux with atomic cut and regular connection tableaux withthe tautology rule can linearly simulate (connection) tableaux with factorization.



144 Propositional Calculi3.5.3 The Folding Down RuleThe simulation of factorization by folding up also shows how a restriction ofthe folding up rule could be de�ned which permits an optimistic labelling ofedges. If a strict linear (dependency) ordering is de�ned on the successor nodesN1; : : : ; Nm of any node, then it is permitted to label the edge leading to anynode Ni, 1 � i � m, with the set of the negations of the literals at all nodeswhich are smaller than Ni in the ordering. We call this operation the foldingdown rule (in German: \Umklappen"). The folding down operation can also beapplied incrementally, as the ordering is completed to a linear one. The foldingdown rule is sound, since it can be simulated by the cut rule, as illustratedin Figure 3.23. The rule can be viewed as a very simple and e�cient way ofimplementing factorization. Over and above that, if also the literals on the edgesare considered as path literals in the regularity test, an extreme new search spacereduction can be achieved this way. It should be noted that it is very di�cult toidentify this re�nement in the factorization framework.
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Figure 3.23: Simulation of folding down by cut.3.5.4 Enforced Folding Up and Strong RegularityThe folding up operation has been introduced as an ordinary inference rule which,according to its indeterministic nature, may be applied or not. Alternatively, wecould have de�ned versions of the (connection) tableau calculi with folding upin which any solved subgoal must be folded up immediately after it has beensolved. It is clear that whether folding up is performed freely, as an ordinaryinference rule, or in an enforced manner, the resulting calculi are not di�erentconcerning indeterministic power, since the folding up operation is a monotonicoperation which does not decrease the inference possibilities. But the calculidi�er with respect to their search spaces, since by treating the folding up rule



3.5 Controlled Integration of the Cut Rule 145just as an ordinary inference rule, which may be applied or not, an additionaland absolutely useless form of indeterminism would be imported, resulting in anunnecessary increase of the search space. Consequently, the folding up rule shouldnot be introduced as an additional inference rule, but as a tableau operation tobe performed immediately after the solution of a subgoal. The resulting calculiwill be called the (connection) tableau calculi with enforced folding up.The superiority of the enforced folding up versions over the unforced onesalso holds if the regularity restriction is added, according to which no two nodeson a branch must have the same literal as label. But apparently, the mannerin which the folding up and the folding down rules have been introduced raisesthe question whether the regularity condition might be sharpened and extendedto the consideration of the literals in the labels of the edges, too. It is clearthat such an extension of regularity does not go together with folding up, sinceany folding up operation makes the respective closed branch immediately violatethe sharpened regularity condition. A straightforward remedy is to apply thesharpened condition to the subgoal trees of tableaux only.De�nition 3.5.3 (Strong regularity) An E-tableau T is called strongly regular ifit is regular and on no branch of the subgoal tree of T a literal appears more thanonce, be it as a label of a node or within the label set of an edge or the root.When the strong regularity condition is imposed on the connection tableaucalculus with enforced folding up, then a completely new calculus is generatedwhich is no extension of the regular connection tableau calculus, that is, not everyproof in the regular connection tableau calculus can be directly simulated by thenew calculus. This is because after the performance of a folding up operation cer-tain inference steps previously possible for other subgoals may become impossiblethen. A folding up step may even lead to an immediate failure of the extendedregularity test, as demonstrated below. Since the new calculus is no extensionof the regular connection tableau calculus, we do not even know whether it iscomplete, since the completeness result for strongly regular connection tableaux(Theorem 3.4.6 on p. 132) cannot be applied. In fact, the new calculus is notcomplete for arbitrary selection functions.Proposition 3.5.8 There is an unsatis�able set S of ground clause formulaeand a selection function � such that there is no refutation for S in the stronglyregular connection tableau calculus with enforced folding up.Example 3.5.2 Consider a set of clause formulae of the structures:p;:s;:r , p; s; r , :q; r , q;:r ,:p; t; u , p;:t;:u , :q; s , q;:s ,:q; t , q;:t ,:q; u , q;:u .



146 Propositional CalculiProof Let S be the set of ground clause formulae given in Example 3.5.2, whichis minimally unsatis�able. The non-existence of a refutation with the top clauseformula p; s; r for a certain unfortunate selection function � is illustrated inFigure 3.24. If � selects the s-node, then two alternatives exist for extension,separated by a _. For the one on the left-hand side, if � shifts to the p-subgoalabove and completely solves it in a depth-�rst manner, then the enforced foldingup of the p-subgoal immediately violates the strong regularity, indicated with a� below the responsible :p-subgoal on the left. Therefore, only the second alter-native on the right-hand side may lead to a successful refutation. Following the�gure, it can easily be veri�ed that for any refutation attempt there is a selectionpossibility which either leads to extension steps which immediately violate theold regularity condition or produce subgoals labelled with :p or :r. In thosecases, the selection function always shifts to the respective p- or r-subgoal in thetop clause formula, solves it completely and folds it up afterwards, this way vi-olating the strong regularity. Consequently, for such a selection function, thereis no refutation with the given top clause formula. The same situation holdsfor any other top clause formula selected from the set. This can be veri�ed ina straightforward though tedious manner. Alternatively, in order to shorten theproof, we may use the same trick employed in the proofs of Proposition 3.4.5 onp. 130 and Proposition 3.5.4 on p. 140; by adding appropriate literals and clauseformulae to the set one can easily obtain an input set in which the incompletenessresult holds for any top clause formula. �For depth-�rst selection functions, however, the new calculus is complete.Theorem 3.5.9 (Completeness for depth-�rst selection functions of strongly regularconnection tableaux with enforced folding up) For any �nite unsatis�able set S ofproper ground clause formulae, any depth-�rst tableau node selection function,and any clause formula c which is relevant in S, there exists a refutation of Swith top clause formula c in the strongly regular connection tableau calculus withenforced folding up.Proof The completeness proof is very similar to the one for strongly regularconnection tableaux (Theorem 3.4.6 on p. 132). We proof that for any subgoalN with a certain property there exists an inference step producing only subgoalswith the same property. This inherited property is that the tableau clause for-mula determined by the position of N and its brother nodes is relevant in thestrengthening19 of S by the extended path set20 P from the root to N , excludingthe latter. Suppose that N with literal L is such a subgoal with tableau clauseformula c which is relevant in P . S. If N is selected �rst for solution, either areduction step can be performed at N , or, by the Strong Mate Lemma 3.4.7, a19As introduced in de�nition 3.4.9 on p. 132.20The extended path set of a path contains all literals at the nodes of the path or in the unionof the labels of the edges and the root.



3.5 Controlled Integration of the Cut Rule 147aaaaaaaa!!!!!!!!����� QQQQQ ����� QQQQQ
����� ��� ����� �������� ��� ��� ������ ����� ��� ��� @@@

HHHHHH
HHHHHHHHHHHH QQQQQ QQQQQ

               ��� ���������
!!!!!!!! aaaaaaaa

��� XXXXXXXXXXXX���QQQQQ������ ������������
SSS SSS

r
p s r

:s q :s:r:p _
t:q :q u _

:s
s:q :q

:u:tp :rq:uq:u:tp:tq
:st:p:r:s:put:p :r:pu

:r:p_

�

� �
�

_ _

_

_
�

� � �
�

�Figure 3.24: Incompleteness for some selection functions of the strongly regularconnection tableau calculus with enforced folding up.clause formula c 0 exists for an extension step which is relevant in (P [ fLg) . S,and we are done. Otherwise, brother subgoals of N might have to be solved �rst,leading to an increase of the context of N . The relevance of c in P . S entailsthe existence of a subset S 0 of S such that c is essential in P . S 0. Now we per-mit only solutions of the brother nodes of N using clause formulae from S 0 n fcgfor extension; such solutions exist due to the completeness of the regularity re-striction. By the soundness of the folding up rule, during such solutions of thebrothers of N only literals can be inserted above N which are logically impliedby the satis�able set (P . (S 0 n fcg). Consequently, L must be relevant in theincreased context too, and the second case reduces to the �rst one. The success-ful termination of any tableau construction satisfying the mentioned propertiesfollows from the relevance of the top clause formula c in S and from the fact thatfor any input set only regular tableaux of �nite depths exist. �The new calculus promises to play an important role in the practice of auto-mated deduction. While, concerning indeterministic power, the calculus is def-



148 Propositional Calculiinitely superior to the regular connection tableaux, it may also be better o�concerning search pruning.Combining Folding Up and Folding DownThe interesting question may be raised whether it is possible to combine thepessimistic folding up rule with the optimistic folding down rule. We explain thecombination for depth-�rst selection functions. Whenever a subgoal is selectedfor solution, before the solution process is started, all other unsolved brothernodes are folded down to the edge leading to N . The additional literals onthe edge increase the number of inference possibilities, but they also increase thepossibilities for a failure of the strong regularity test, and hence achieve additionalsearch pruning. A na��ve combination of folding down with the folding up rule,however, immediately results in an unsound calculus, as illustrated in Figure 3.25with a \refutation" of the satis�able set of clause formulaef :p;:q ; :p; q ; :q; p g:In the incorrect deduction, the :p-subgoal is selected �rst for solution. Before it issolved the unsolved :q-subgoal is folded down to the edge above the :p-subgoal.Then the latter is solved using the framed literal q. Thereupon, according to theway the reduction and folding up operations have been de�ned, the :p-subgoalmay be folded up to the root; this is the unsound operation. Afterwards, the:q-subgoal can be solved using the framed literal p.
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pq:p :q:q?after unsoundfolding upFigure 3.25: An unsound combination of folding up and folding down.We brie
y sketch how a sound combination of folding up and folding downcould be achieved. Apparently, the literals inserted into the labels of the edges byfolding down operations need to be treated di�erently. The easiest solution wouldbe to explicitly use the simulation of folding down by cut illustrated in Figure 3.23on p. 144. In this simulation the dependency structure of the optimistic foldingdown rule is expressed in a pessimistic manner, which is compatible with thefolding up rule.



Chapter 4First-Order CalculiIn this chapter we study and develop �rst-order calculi and proof procedureswhich are most suited for automated deduction. In the �rst section the Herbrandcompactness property of �rst-order logic is reviewed, and proof procedures aredescribed that can be viewed as direct algorithmic transpositions of the compact-ness property. Also, we introduce the notion of Herbrand complexity, which is animportant lower bound on the sizes of proofs in many calculi, termed Herbrandcalculi. The second section is devoted to proving some fundamental results on�rst-order resolution. On the one hand, it is shown that, due to the possibilityof renaming lemmata, resolution is not polynomially bounded by Herbrand com-plexity, and hence superior to Herbrand calculi concerning indeterministic power.On the other hand, however, the renaming of lemmata destroys the polynomialtransparency of resolution, both in the strong and in the weak sense. In Section 3,the �rst-order versions of connection tableau calculi are introduced, which by theirvery nature are Herbrand calculi. It is shown that in the �rst-order case new pow-erful pruning methods may be applied that can be implemented very e�cientlyusing syntactic disequation constraints. Furthermore, the reductive potential ofoptimizing tableau node selection functions is exhibited. This demonstrates thesuperiority of the tableau format over more restricted frameworks. In the fourthsection proof procedures based on connection tableau calculi are presented, whichare fundamentally di�erent from resolution proof procedures. Using the matingsframework, a new important global search pruning method is developed and inte-grated into the connection tableau format. We conclude with formally identifyinga general source of redundancy contained in any decomposition-based logic cal-culi. This redundancy motivates the future development of additional globalsearch pruning methods using information coming from the proof process itself.4.1 Herbrand ProceduresFirst-order logic di�ers from ground or propositional logic in that there are nodecision procedures for the logical status of a set of formulae, but merely semi-



150 First-Order Calculidecision procedures. More precisely, there exist e�ective mechanical methods forverifying the logical validity of �rst-order formulae1 (or the unsatis�ability of setsof �rst-order formulae) whereas, when subscribing to Church's Thesis, the non-validity of �rst-order formulae (or the satis�ability of sets of �rst-order formulae)is not e�ectively recognizable2.We will concentrate on the indirect case of proving the unsatis�ability of sets of�rst-order formulae. Also note that we will assume throughout the whole chapterthat a de�nitional logical language is available and whenever (sets of) expressionsare substituted or uni�ed, the de�nitional application of substitutions is to beperformed or a polynomial uni�cation algorithm is to be used, respectively. Theexistence at least of semi-decision procedures is due to a particular property of�rst-order logic, namely, its compactness.4.1.1 The Compactness PropertyDe�nition 4.1.1 (Herbrand base ordering) A Herbrand base ordering � on a setS of Skolem formulae is a strict linear ordering on the Herbrand base of S.Proposition 4.1.1 For every set S of Skolem formulae there exists a Herbrandbase ordering on S.De�nition 4.1.2 (Herbrand interpretation tree) Given a Herbrand base ordering� on a set S of Skolem formulae. The Herbrand interpretation tree T for � isthe semantic tree de�ned as follows. All branches in T have the same lengths,namely, the cardinality of the Herbrand base of S, and the edges outgoing ofevery node N are labelled with the n-th atom in � and its negation, respectively,where n� 1 is the depth of N in T . We say that T is a Herbrand interpretationtree of S.The branches of a Herbrand interpretion tree of a set S of Skolem formulaeencode precisely the Herbrand interpretations existing for S.Theorem 4.1.2 (Compactness Theorem) Any unsatis�able set of Skolem formu-lae has a �nite unsatis�able subset.Proof Let � be any Herbrand base ordering on S, and T the Herbrand in-terpretation tree for �. A node N in T is called a failure node for S if thereexists a formula � in S such that all Herbrand interpretations falsify � which arecorresponding to the branches with the initial segment from the root up to N .We say that � closes the path from the root up to N . Because of the one-to-onecorrespondence between branches and Herbrand interpretations, the unsatis�a-bility of S entails that every branch in T must pass through a failure node. Now,1This result was �rst demonstrated by G�odel in [G�odel, 1930].2Thus settling the undecidability of �rst-order logic, which was proved by Church in[Church, 1936] and Turing in [Turing, 1936].



4.1 Herbrand Procedures 151we may cut all parts of the Herbrand interpretation tree which are dominated byfailure nodes; the resulting labelled tree T 0 is called the failure tree of T for S.By K�onig's Lemma [Knuth, 1968], T 0 must be �nite. Now, any �nite subset S 0of S must be unsatis�able which contains for any of the �nitely many branchesin T 0 a formula from S which closes the respective branch. �De�nition 4.1.3 (Herbrand instance) Given a formula � with matrix F in a setof Skolem formulae S. A ground formula F 0 is called a Herbrand instance of �wrt S if there exist a variable substitution � into the Herbrand universe of S suchthat F� = F 0.Theorem 4.1.3 (Herbrand Instance Theorem) For any unsatis�able set S ofSkolem formulae there exists a �nite unsatis�able set S 0 of ground formulae suchthat every formula in S 0 is a Herbrand instance of a formula in S.Proof Due to Proposition 1.7.8 on p. 58 and De�nition 1.2.18 item 8 on p. 10,a set S of Skolem formulae is unsatis�able if and only if the union S 0 of the setsof Herbrand instances of its elements wrt S is unsatis�able. By the CompactnessTheorem 4.1.2, S 0 must have a �nite unsatis�able subset. �4.1.2 Direct Herbrand ProceduresThe �rst attempts [Gilmore, 1960, Davis and Putnam, 1960, Davis et al., 1962]to devise and implement proof procedures for �rst-order logic can be viewed asdirect mechanizations of the Herbrand Instance Theorem. Such procedures con-sist of two relatively loosely coupled subprocedures. Given a set S of Skolemformulae, the �rst subprocedure selects a set S 0 of Herbrand instances of theformulae in the input set, while the second subprocedure is simply a decisionprocedure for ground formulae. When the second procedure detects the unsatis-�ability of S 0, the unsatis�ability of S has been demonstrated. When the secondprocedure outputs the satis�ability of S 0, however, nothing is said about the ac-tual logical status of the input. In this case the �rst procedure must select anotherset of Herbrand instances. In order to obtain completeness, the �rst subproce-dure needs to enumerate increasing sets of ground formulae. Corresponding tothe two subprocedures, there are two types of problems which render direct Her-brand procedures unsuccessful for automated deduction. On the one hand, theenumeration routine either may enumerate too many satis�able sets of Herbrandinstances before it arrives at the �rst unsatis�able one, or the �rst encounteredunsatis�able set of Herbrand instances may be too large. On the other hand,the ground decison procedure may need too much time to determine the logicalstatus of the input sets.4.1.3 Improved Herbrand ProceduresOriginating with [Prawitz, 1960], a signi�cant improvement of na��ve Herbrandprocedures could be achieved, although the approach is still subscribing to the



152 First-Order Calculitwo-step methodology. The improvement is best formulated in the frameworkof matings [Bibel, 1981, Bibel, 1987, Andrews, 1981], which were introduced inSubsection 3.3.5 on pp. 120. First, we have to generalize the matings terminologyto the �rst-order case. Recall that a path in a set of proper clause formulae S isa set of literal occurrences in S, exactly one from each clause formula in S, thatany subset of a path in S is called a subpath in S, and that a connection in S is atwo-element subpath in S whose literals have di�erent signs and equal predicatesymbols.De�nition 4.1.4 (Uni�able connection, mate] Given a �nite set of proper clauseformulae S. A connection C = fhK; i; c1i; hL; j; c2ig in S is said to be uni�ableif there is a variable substitution � with K� = �L�; C is said to be weaklyuni�able if there are variable substitutions � and � with K� = �L� . The literaloccurrences in a (weakly) uni�able connection are called (weakly) uni�able matesof each other.De�nition 4.1.5 (Uni�able mating) Given a �nite set of clause formulae S. Anyset M of connections in S is called uni�able or a uni�able mating for S if thereexists a substitution � such that for every pair of two connected literals K andL in M : K� = �L�.De�nition 4.1.6 (Compound instance, multiplicity] Given a set S of clause for-mulae, a compound instance of S is any �nite set S 0 whose elements are allinstances of matrices of clause formulae in S. A compound instance S 0 of S iscalled a multiplicity of S if all its elements are (variable-renamed) variants ofmatrices of clause formulae in S.The matings characterization of unsatis�ability for the �rst-order case is ex-pressed in the following proposition.Proposition 4.1.4 A set S of proper clause formulae is unsatis�able if and onlyif there exists a uni�able spanning mating for a multiplicity of S.Proof Let S be an unsatis�able set of proper clause formulae. By the HerbrandInstance Theorem 4.1.3, there exists a �nite unsatis�able set S 0 of clause formulaewhich are ground instances of the matrices of the clause formulae in S. S 0 isa compound (ground) instance of S. Proposition 3.3.12 on p. 121 guaranteesthe existence of a complementary spanning mating M for S 0. Now, a uni�ablespanning mating for a multiplicity of S can be easily constructed from S 0 andM ; obtain a multiplicity S 00 of S by taking, for any ground clause formula c inS 0 which is a ground instance of the matrix of a clause formula � in S 0, a newdisjointly renamed variant F 0 of the matrix of � 0; then, obtain the mating M 0by replacing every connection in M with the connection between the respectiverenamed matrices of clause formulae in S 00. Since there is a ground substitution� which uni�es M 0, M 0 is a uni�able spanning mating for S 00. �



4.1 Herbrand Procedures 153For any multiplicity only �nitely many matings exist, therefore, we can im-mediately infer the following proposition.Proposition 4.1.5 It is decidable whether a multiplicity of a set of clause for-mulae has a uni�able spanning mating.This property motivates a signi�cant improvement of the two-step method-ology of direct Herbrand procedures. Instead of enumerating sets of Herbrandinstances, one enumerates multiplicities. Example 4.1.1 illustrates that in mostcases this approach is superior to the enumeration of ground instances.Example 4.1.1 Given a set S containing two clause formulae of the structures8x1 � � � 8xn P (x1; : : : ; xn; a1; : : : ; an) , and8y1 � � � 8yn :P (a1; : : : ; an; y1; : : : ; yn) :For each clause formula in S there exist nn Herbrand instances, but only oneof them (per clause formula) may contribute to a refutation. There is a lowprobability that the right instances are chosen early if sets of ground instancesare enumerated blindly. In the matings approach, however, one would start withthe multiplicity consisting of the two matrices itself of the formulae in S andobtain a uni�able spanning mating within one step.Note It should be noted however that, according to the current state of knowl-edge, the problem of verifying the existence of a uni�able spanning mating for amultiplicity is more di�cult than the problem of verifying the unsatis�ability ofa set of ground clause formulae. This is because the latter is a coNP-completeproblem, whereas the former is complete for the union of coNP and NP. Thisis because any constraint satisfaction problem can be viewed (or polynomiallyreformulated) as a problem of �nding a uni�able spanning mating. Furthermore,even the improved method is not optimally suited for the purposes of automateddeduction. The weakness is that the selection of a multiplicity and the searchfor a uni�able spanning mating are separated subprograms. In order to arrive ata successful system both subprograms need to be interleaved more closely. Theconnection tableau calculi discussed later on can be viewed as such intimate in-terleavings of the generation of multiplicities and the examination whether theyhave uni�able spanning matings.4.1.4 Herbrand Complexity and Herbrand CalculiA fundamental property which both approaches mentioned above have in com-mon, the direct and the improved one, is that the size of any refutation of an inputset S is bounded from below by some unsatis�able set of Herbrand instances ofthe input S.



154 First-Order CalculiDe�nition 4.1.7 (Herbrand complexity) The Herbrand complexity of an unsatis-�able set S of Skolem formulae is the minimum of the sizes of the unsatis�ablesets of Herbrand instances of S.3Herbrand complexity can be used to characterize so-called Herbrand calculi.De�nition 4.1.8 (Herbrand calculus) A Herbrand calculus is any calculus forrefuting sets of Skolem formulae in which the size of any refutation D of a set Sis bounded from below by the Herbrand complexity of S.Herbrand calculi are extremely weak concerning proof lengths if comparedwith logic calculi of the traditional generative type. This is expressed in thefollowing proposition, which was proved in [Statman, 1979].Proposition 4.1.6 There exists an in�nite class fS1; S2; S3; : : :g of unsatis�ablesets of formulae such that the smallest Herbrand instance S 0i of any set Si fromthe class has a size which is not bounded by an elementary function of the sizeof a proof in a �rst-order Frege/Hilbert or sequent system of the negation of anappropriate translation of Si.In the next section, we shall discuss �rst-order resolution, which does notful�ll the requirement of a Herbrand calculus.4.2 First-Order ResolutionWith the advent of the resolution calculus [Robinson, 1965a], the developmentof Herbrand calculi was pushed into the background until the beginning of theeithies. While the resolution paradigm, at least in its moulding as a forward rea-soning approach, is not suited for propositional or ground logic, the incorporationof uni�cation renders the calculus successful for �rst-order logic.44.2.1 Resolution with Uni�cation and FactoringResolution for sets of �rst-order clauses is generated from ground resolution bythe incorporation of two mechanism, namely, uni�cation and factoring.De�nition 4.2.1 (Resolution rule) Given two clauses c1 and c2, and two clausesr1 = fK1; : : : ; Kmg and r2 = fL1; : : : ; Lng with r1 \ c1 = ; and r2 \ c2 = ;. Theresolution rule has the shape:fK1; : : : ; Kmg [ c1 fL1; : : : ; Lng [ c2(c1 [ c2�)�3Under the assumption that the Herbrand instances are formulated using de�nitionalexpressions.4Apparently, this can only be the case because the problems considered as relevant for �rst-order logic are of a completely di�erent type than the ones considered as relevant for groundor propositional logic.



4.2 First-Order Resolution 155where � is a renaming substitution which renders the variables in r2 [ c2 disjointfrom the variables in r1[c1, and � is a uni�er for r1[f�L1; : : : ;�Lng. The clause(c1 [ c2�)� is called a resolvent of r1 [ c1 and r2 [ c2 over r1 and r2, and r1 [ c1and r2 [ c2 are termed parent clauses of the resolvent.Note First-order resolution is much more complex than ground resolution, par-ticularly concerning the contained indeterminism. While in the ground case forevery pair of parent clauses at most one non-tautological resolvent exists, in the�rst-order case there may be exponentially many of them, as illustrated withthe two clauses fP (x1; : : : ; xn); Q(x1); : : : ; Q(xn)g and f:Q(y)g. The main rea-son is the factoring rule, which permits to group together any uni�able subsetof a clause. Unfortunately, by omitting factoring and resolving over single lit-erals only one loses completeness. This can be veri�ed with the two clausesfP (x; y); P (y; x)g and f:P (u; v);:P (v; u)g. In Subsection 4.2.6 it is shown thatthe unrestricted factoring rule is responsible for the fact that resolution can neverbe made polynomially transparent.Fortunately, the complexity of a single resolution step is under control.Proposition 4.2.1 Given any two clauses c1 and c2, the time needed for inde-terministically computing any resolvent c of c1 and c2 is polynomially (O(n logn))bounded by the size of c1 and c2, and size(c) < size(c1) + size(c2)� 1, where asthe size of a clause we take the number of symbol occurrences.Proof The time complexity of resolution is due to the complexity of the uni�ca-tion operation plus the complexity of merging identical literals in the resolvent.The size bound follows from Proposition 1.6.8 on p. 53 and the fact that resolutionremoves at least two literals from the input. �The proof objects for �rst-order resolution, resolution deductions, resolutiondags, and resolution trees, are de�ned in analogy to the ones for the ground caseon pp. 93.Resolution is sound and refutation-complete for �nite unsatis�able sets ofclauses.Proposition 4.2.2 (Soundness of resolution) If there is a resolution proof of aclause c from a set of clauses S, then S j= c.Proof Similar to the one for the ground case (p. 95). �Lemma 4.2.3 (Lifting Lemma) Given two �rst-order clauses c1 and c2, a groundsubstitution �, and a renaming substitution � making the variables in c2 disjointfrom the variables in c1. Then, for any ground resolvent c of c1� and c2��, thereexist a �rst-order resolvent c 0 of c1 and c2 and a substitution � 0 with c 0� 0 = c.



156 First-Order CalculiProof Suppose c is a ground resolvent of c1� and c2��. Let r1 and r2 be the setsof literals in c1 and c2� uni�ed by the substitution �, respectively. The existenceof a �rst-order resolvent c 0 of c1 and c2 over r1 and r2 which meets the demandedproperty follows immediately from the Uni�cation Theorem 1.5.12 on p. 40. �Proposition 4.2.4 (Completeness of �rst-order resolution) For any unsatis�ableset S of �rst-order clauses there exists a refutation of S by �rst-order resolution.Proof By the Herbrand Instance Theorem there is an unsatis�able set S 0 ofHerbrand instances of the clauses in S. The completeness of ground resolutionguarantees the existence of a ground resolution deduction D = (c1; : : : ; cn) of S 0with cn = ;. Now, an iterative application of the Lifting Lemma assures thatthere is a �rst-order resolution deduction D 0 = (c 01; : : : ; c 0n) of S in which everyclause c 0i, 1 � i � n, can be instantiated to c1, respectively. Consequently, cnmust be the empty clause, and D 0 a �rst-order resolution refutation of S 0. �The properties of ground purity and ground subsumption can be lifted to the�rst-order case in a straightforward manner.De�nition 4.2.2 (Purity) Let L be a literal in a clause c of a set of clauses S.The literal occurrence Lc is called1. strongly pure in S if the literal �L is not weakly uni�able5 with a literal Kin a clause of S,2. pure in S if the literal �L is not weakly uni�able with some literal K inanother clause of S,3. weakly pure in S if, for any subset r of c containing the literal L, eachresolvent of c with some other clause c 0 in S over r and some subset of c 0 istautological.Proposition 4.2.5 (Purity deletion) Let L be a literal in a clause c of an unsat-is�able set of clauses S. If Lc is strongly pure, pure, or weakly pure in S, thenS n fcg is unsatis�able.De�nition 4.2.3 (Subsumption) Given two clauses c1 and c2. We say that c1(properly) subsumes c2 if there is a variable substitution � such that c1� is a(proper) subset of c2.Properly subsumed clauses may be deleted, due to the following fact.Proposition 4.2.6 (Subsumption reduction) If a clause c is subsumed by anotherclause in a set S of clauses, then S � (S n fcg).Note Although the question whether a clause subsumes another one is an NP-complete problem [Kapur and Narendran, 1986], the subsumption problem ismuch simpler than the implication problem between two clauses, which is un-decidable.5Two literals L and K are weakly uni�able if there are variable substitutions � and � withL� = K� .



4.2 First-Order Resolution 1574.2.2 Re�nements of ResolutionThe resolution re�nements of linearity, regularity, and the tree re�nement con-sidered in Subsection 3.2.6 on p. 104 and the Davis/Putnam calculus introducedin Subsection 3.2.5 on p. 100 can be lifted to the �rst-order case, resulting incomplete �rst-order calculi. All of those, however, are not very successful in thepractice of automated deduction. Connection graph resolution [Kowalski, 1975]can be viewed as an interesting generalization of the Davis/Putnam calculus.Instead of replacing a clause by all resolvents possible over a certain literal, inconnection graph resolution the connections between the literals used in a res-olution step are deleted and the deletion information is inherited, which givesmore 
exibility. Unfortunately, no practically useful strong completeness re-sult is known for connection graph resolution. A concrete inference systembased on connection graph resolution is the Markgraf Karl Refutation Procedure[Bl�asius et al., 1981, Ohlbach and Siekmann, 1991].There are various other re�nements of resolution, particularly useful in prac-tice being hyper-resolution [Robinson, 1965b] which is a special form of semanticresolution [Slagle, 1967]. Hyper-resolution seems to be the preferred strategy ap-plied in the Otter system [McCune, 1988], which is currently the most widelyused automatic theorem prover. A number of resolution re�nements and dele-tion techniques like subsumption reduction are available in the system. Due tosophisticated implementation and indexing techniques, Otter can handle verylarge sets of clauses in an e�cient way.4.2.3 Resolution vs Herbrand CalculiResolution is not a Herbrand calculus according to the characterization given inDe�nition 4.1.8 on p. 154, that is, there may be resolution refutations for sets Sof clauses which are signi�cantly smaller in size than the smallest unsatis�ableHerbrand instance of (the clause formulae in) S. In fact, this even holds for linearresolution.Proposition 4.2.7 There is an in�nite class C of clause sets such that, forany element S 2 C, the Herbrand complexity of a set S 0 of clause formulaecorresponding to S is exponential in the size of a shortest (linear) resolutionrefutation of the input S.Example 4.2.1 Consider a set fS1; S2; S3; : : :g of sets of clauses with the fol-lowing structures:c1: f P (0; : : : ; 0) g;c2: f :P (x1; : : : ; xn�1; 0), P (x1; : : : ; xn�1; 1) g;c3: f :P (x1; : : : ; xn�2; 0; 1), P (x1; : : : ; xn�2; 1; 0) g;



158 First-Order Calculic4: f :P (x1; : : : ; xn�3; 0; 1; 1), P (x1; : : : ; xn�3; 1; 0; 0) g;� � �cn: f :P (x1; 0; 1; : : : ; 1), P (x1; 1; 0; : : : ; 0) g;cn+1: f :P (0; 1; : : : ; 1), P (1; 0; : : : ; 0) g;cn+2: f :P (1; : : : ; 1) g;where P is an n-ary predicate symbol in the respective set and 0 and 1 denoteconstants.Proof We use the clause set speci�ed in Example 4.2.1. For any set Sn in theclause set, there exists a linear resolution refutation of 2n resolution steps, asillustrated for the case of n = 4, i.e., for the input set:c1: f P (0; 0; 0; 0) g;c2: f :P (x1; x2; x3; 0), P (x1; x2; x3; 1) g;c3: f :P (x1; x2; 0; 1), P (x1; x2; 1; 0) g;c4: f :P (x1; 0; 1; 1), P (x1; 1; 0; 0) g;c5: f :P (0; 1; 1; 1), P (1; 0; 0; 0) g;c6: f :P (1; 1; 1; 1) g;The corresponding short linear resolution proof is the following:c7: f :P (x1; x2; 0; 1), P (x1; x2; 1; 1) g; (c2:1,c3:2)c8: f :P (x1; x2; 0; 0), P (x1; x2; 1; 1) g; (c7:1,c2:2)c9: f :P (x1; 0; 1; 1), P (x1; 1; 1; 1) g; (c8:1,c4:2)c10: f :P (x1; 0; 0; 0), P (x1; 1; 1; 1) g; (c9:1,c8:2)c11: f :P (0; 1; 1; 1), P (1; 1; 1; 1) g; (c10:1,c5:2)c12: f :P (0; 0; 0; 0), P (1; 1; 1; 1) g; (c11:1,c10:2)c13: f :P (0; 0; 0; 0), g; (c12:2,c6:1)c14: f g; (c13:1,c1:1)where on the right we have indicated the parent clauses and literals for deducingthe respective resolvent. The smallest unsatis�able Herbrand instance of the setof clause formulae corresponding to the clauses in S4, however, consists of thefollowing formulae: c1: P (0; 0; 0; 0) ;c12: :P (0; 0; 0; 0); P (0; 0; 0; 1) ;c13: :P (0; 0; 0; 1); P (0; 0; 1; 0) ;c22: :P (0; 0; 1; 0); P (0; 0; 1; 1) ;c14: :P (0; 0; 1; 1); P (0; 1; 0; 0) ;c32: :P (0; 1; 0; 0); P (0; 1; 0; 1) ;c23: :P (0; 1; 0; 1); P (0; 1; 1; 0) ;c42: :P (0; 1; 1; 0); P (0; 1; 1; 1) ;c5: :P (0; 1; 1; 1); P (1; 0; 0; 0) ;c52: :P (1; 0; 0; 0); P (1; 0; 0; 1) ;c33: :P (1; 0; 0; 1); P (1; 0; 1; 0) ;c62: :P (1; 0; 1; 0); P (1; 0; 1; 1) ;



4.2 First-Order Resolution 159c24: :P (1; 0; 1; 1); P (1; 1; 0; 0) ;c72: :P (1; 1; 0; 0); P (1; 1; 0; 1) ;c43: :P (1; 1; 0; 1); P (1; 1; 1; 0) ;c82: :P (1; 1; 1; 0); P (1; 1; 1; 1) ;c6: :P (1; 1; 1; 1); :It is apparent that, for any element Sn, the numbers of instances ofthe input formulae c1; c2; c3; : : : ; cn�1; cn; cn+1; cn+2 in the minimal unsatis�-able Herbrand instance of the corresponding set of clause formulae S 0n are1; 2n�1; 2n�2; : : : ; 22; 21; 20; 1, respectively, so that the total number of formulaein the Herbrand instance is 2n + 1. �The given exponential bound is tight, which can be recognized along thefollowing lines.Proposition 4.2.8 Tree resolution is a Herbrand calculus.Proof Given a tree resolution refutation for a set of clauses S, instantiate everyvariable occurring in the clauses of the tree with the same constant from theHerbrand universe of S. The set of clause formulae corresponding to the clausesat the leaves of the tree constitute an unsatis�able Herbrand instance of the setof clause formulae corresponding to S. �Proposition 4.2.9 Tree resolution can exponentially simulate resolution.Corollary 4.2.10 The size of any resolution refutation of a set S of clauses isexponentially bounded by the Herbrand complexity of the set of clause formulaecorresponding to S 0.Since resolution can maximally achieve an exponential speed-up with respectto Herbrand complexity, it is straightforward to prove that resolution is as weakas Herbrand calculi when compared with traditional logic calculi.Corollary 4.2.11 There exists an in�nite class fS1; S2; S3; : : :g of unsatis�ablesets of clauses such that the smallest resolution refutation of any Si is not boundedby an elementary function of the size of a proof in a �rst-order Frege/Hilbert orsequent system of the negation of an appropriate translation of Si.Note In [Baaz and Leitsch, 1992] it is shown that by adding appropriate newSkolem functions a nonelementary proof length reduction for resolution can beachieved.The following result clari�es the relation between resolution and linear reso-lution.Proposition 4.2.12 Linear resolution cannot polynomially simulate resolution.



160 First-Order CalculiProof This can be shown by an easy modi�cation of the class given in Exam-ple 4.2.1, using the same trick applied several times in the last chapter. Exceptfor the �rst clause fP (0; : : : ; 0)g, augment the set with a copy of each clause inwhich the predicate symbol P is renamed into another �xed predicate symbol P 0.Then, modify the �rst clause by adding the atom P 0(0; : : : ; 0). Now, any linearresolution deduction must �rst operate either in the P -part only or in the P 0-partonly, until eventually it uses the modi�ed �rst clause as a parent clause. Any fur-ther deduction in the other part must inevitable generate ground instances (orsuperset of ground instances) of the clauses in the other part, so that the resultingrefutation will be exponential. �4.2.4 First-Order Resolution and Polynomial Trans-parencyIn all investigations of the last section we have implicitly made use of the as-sumption that the number of inference steps of a resolution deduction give arepresentative measure for the actual size of the deduction. This assumption ofthe polynomial transparency of resolution was correct for the discussed examples.In general, however, this assumption cannot be made.Proposition 4.2.13 Resolution for �rst-order logic is not polynomially trans-parent.Example 4.2.2 Consider a set S of clauses of the structuresf:P (x)g;fP (s(x));:P (x)g;fP (0)g;where 0 denotes a constant.Proof We use the set of clause given in Example 4.2.2. By performing self-resolution on the second clause c0 of S and then repeatedly applying self-resolution to the deduced resolvents, in k steps one can generate a clause ckof size >2k. From ck the empty clause can be deduced in two further resolutionsteps. Clearly for any polynomial p there exists a proof D = (D1; : : : ; Dm) of thistype such that size(D) > p(size(S); m), that is, the size of D cannot be boundedby any polynomial of the size of the input and the number of resolution steps. �Consequently, in contrast to propositional logic, for �rst-order logic the num-ber of resolution steps is not an adequate measure for the complexities of res-olution derivations and proofs. The apparent reason is the following. Due tothe renaming of derived clauses, resolution violates the logp size step-reliability(De�nition 2.3.10 on p. 81).66It should be emphasized that the reason is indeed the renaming of derived clauses and nottheir multiple use as parent clauses.



4.2 First-Order Resolution 161But one may object that a resolution proof of the speci�ed type is not an opti-mal one, and that there exists a shorter resolution proof for S which immediatelyderives the empty clause, by simply resolving the two unit-clauses f:P (x)g andfP (0)g. For this short proof the relation between the proof size and the proofsteps is polynomial modulo the input size.The question is now whether at least for some short resolution proofs the sizesand the inference steps are always polynomially related, or in our terminology,whether weak polynomial transparency can be guaranteed for resolution. Un-fortunately, the answer to this question is no, too. There is an in�nite class ofclause sets for which every resolution proof is exponential in size with respect tothe input formula, whereas there are proofs that get by on polynomially manyresolution steps. Example 4.2.3 speci�es a formula class with this property. As-sume in the following that, for any 1 � i � n, Pi is the value of the i-th primenumber, and that sk(x) abbreviates a term of the structure s(� � � s(| {z }k�times x) � � �).Example 4.2.3 For any positive integer n, let Sn denote a set of Horn clausesof the following structure:f:P1(s(x)); : : : ;:Pn(s(x))g;fP1(sP1(x));:P1(x)g;� � �fPn(sPn(x));:Pn(x)g;fP1(0)g;� � �fPn(0)g:If in this class of Horn sets the function symbol s is interpreted as the successorfunction, and if the denotation of a predicate Pi is the set of natural numbersdivisible by the i-th prime number, then such a set can be used to computecommon multiples of primes. Apparently, from these considerations we can derivethe following lemma.Lemma 4.2.14 Given a set Sn of the type speci�ed in Example 4.2.3, let c �be any ground instance of the �rst clause c 2 Sn such that (Sn n fcg) [ fc �gis unsatis�able. Then the largest occurring term in c � must denote a commonmultiple of the �rst n prime numbers.Since the least common multiple of a sequence P1; : : : ;Pn of primes equalsQni=1Pi, the following result gains importance.Lemma 4.2.15 There is no polynomial p such that for every positive integer n:p(Pni=1Pi) > Qni=1Pi.



162 First-Order CalculiProof Consider the chainQni=1PiPni=1Pi � Qni=1Pin �Pn � 1n n�1Yi=1Pi = 2n n�1Yi=2Pi � 2n n�1Yi=1(i lnPi) � 2n n�1Yi=2 i = 2n!n2 :The only non-trivial step concerns the approximate equation. Here the famousresult from analytic number theory is used thatlimx!1 �(x) � lnxx = 1 (?)where � is the prime number function, i.e., �(x) is the number of primes � x.Since �(Pi) = i, by substituting Pi for x in (?) we get that Pi � i � lnPi, whichis what is employed in the chain above. �An immediate consequence of this result is that Qni=1Pi cannot be polynomi-ally bounded by the size of the input formula Sn.Lemma 4.2.16 There is no polynomial p such that for every positive integer n:p(size(Sn)) > Qni=1Pi, where Sn is a set of the type speci�ed in Example 4.2.3.The formula class described in Example 4.2.3 is intractable for resolution.Proposition 4.2.17 There is no polynomial p such that for every positive integern: p(size(Sn)) is greater than the size of any resolution refutation of Sn.In the proof of this proposition we shall exploit the fact that the sets in theclass consist of Horn clauses, for which the following lemma holds.Lemma 4.2.18 If t is a resolution refutation dag for a set of Horn clauses,then t contains one branch b|called the negative branch|on which exactly thenegative clauses of the refutation lie, i.e., those clauses which are void of positiveliterals.Proof of Lemma 4.2.18 It su�ces to notice that, on the one hand, in sucha dag no non-negative clause can dominate a negative clause, and, on the otherhand, every negative clause must be derived from a negative and a non-negativeclause. �Proof of Proposition 4.2.17 Let t be an arbitrary resolution refutation dagfor a set Sn, and let b be the negative branch of t, which exists by Lemma 4.2.18.Clearly, each occurrence of a negative clause on b is used only once as a parentclause in t. Consequently, replacing all clauses on the branch b by appropriateground instances does not alter the length of the branch, while the resulting dagremains a refutation|of resolution with free, i.e., not necessarily most general,



4.2 First-Order Resolution 163uni�cation rule. If this partial instantiation is performed on t, the negative branchb 0 of the resulting refutation dag t 0 must contain ground instancesf:P1(s�(0)); : : : ;:Pn(s�(0))gof the �rst clause c 2 Sn. Let c0; : : : ; ck be the clauses on the initial segmentof the branch b 0 from the root labelled with c0 (the empty clause) up to the�rst instance ck of c. Obtain t 00 by making ck a leaf of t 0 (it may already beone) plus removing the nodes and edges which are no more accessible from theroot. Apparently, t 00 still remains a refutation dag. Since ck is the only instanceof c in t 00, (Sn n fcg) [ fckg must be unsatis�able. From Lemma 4.2.14 followsthat in ck the maximal term depth � � Qni=1Pi. Consider now the non-negativeclauses s1; : : : ; sk in the refutation t 00 which are resolution partners of the clausesc1; : : : ; ck respectively|let us call those non-negative clauses the side clauses.The structure of Sn guarantees that each side clause either has the formfPi(sl(x));:Pi(x)gor the form fPi(sl(0))g:Consequently, if ascending the branch b 0 by one step towards the root from cito ci�1, 1 � i � k, the clause size can only decrease by at most the size of therespective side clause si: size(ci�1) � size(ci)� size(si):Therefore, size(c0) � size(ck)� kXi=1 size(si):Because size(c0) = 1, and since the side clauses have not been modi�ed by thepartial instantiation operation, we get thatsize(t) > kXi=1 size(si) � size(ck)� 1 > nYi=1Pi:An application of Lemma 4.2.16 completes the proof. �The existence of intractable formula classes for resolution is nothing excep-tional, even for the propositional case (at least since Haken's work [Haken, 1985]).The special property of the class considered here concerns the relation betweenthe proof sizes and the numbers of derivation steps. Although all resolution proofsfor the sets in the class are superpolynomial, there are short proofs in terms ofinference steps.



164 First-Order CalculiProposition 4.2.19 There is a polynomial p such that for every set Sn from theclass speci�ed in Example 4.2.3 there exists a resolution refutation D1; : : : ; Dm ofSn such that m < p(size(Sn)).Proof Let � = Qni=1Pi, i.e., the least common multiple of the primes P1; : : : ;Pn.Then a polynomial-step proof can be constructed as follows. For every clause ofthe type fPi(sPi(x));:Pi(x)gperform self-resolution and repeatedly apply self-resolution to the respective re-solvents. Within k steps this operation deduces clauses in which the number ofoccurrences of the function symbol s in the positive literals successively takes thevalues Pi 21;Pi 22; : : : ;Pi 2k. This is done as long as Pi 2k � �. Then, after atmost k further resolution steps which use clauses from this derivation, each clauseat most once, a clause of the structurefPi(s�(x));:Pi(x)gcan be deduced. Accordingly, for any 1 � i � n, we need at most 2 log2 �Pi steps,which is less than 2 log2 �, hence for all i: less than 2n log2 �. Lastly, in further2n resolution steps the empty clause can be derived by resolving these clauseswith the facts and the resulting n facts Pi(s�(0)), 1 � i � n, with the �rst clause.The whole refutation takes less than 2n+(2n log2 �) � 4n log2 � steps. It remainsto be shown that this value is polynomially bounded by the size of Sn. For thispurpose we may just use � = Pni=1Pi as a lower bound for the size of Sn andconsider the chain4n log2 nYi=1Pi � 4n log2 Pni=1Pin !n = 4n2 log2 �n < 4�3:The �rst inequality holds because of properties of the arithmetical mean, whilethe others are trivial. �The Propositions 4.2.17 and 4.2.19 have as an immediate consequence that,even if only step-minimal proofs are considered, the number of steps of a resolutionproof may not be a representative measure for the complexity of the proof.Theorem 4.2.20 Resolution for �rst-order logic is not weakly polynomiallytransparent.The violation of the logp size step-reliability turns out to be fatal, even if onlyshort proofs are counted.



4.2 First-Order Resolution 1654.2.5 Improvements of the Representation of FormulaeThe situation is quite instructive, because we can illustrate at the example ofresolution the three principal solution methodologies when facing the polynomialintransparency of a transition relation `.The �rst approach is to weaken the transition relation ` and to de�ne atransition relation ` 0, for example, by taking out each pair hS; S 0i which violatesthe logp size step-reliability, since this may be the problematic property, like inthe case of resolution. The most radical method to perform this modi�cationon the resolution calculus is to forbid the renaming or even the multiple use oflemmata. The latter results in the calculus of tree resolution.Proposition 4.2.21 Tree resolution is polynomially transparent.Proof Let there be a resolution tree|i.e., an upward tree|T for a set of clausesS with bottom clause cn computed with n resolution steps. The resolution treehas n + 1 leave nodes L1; : : : ; Ln+1 labelled with input clauses s1; : : : ; sn+1. ByProposition 4.2.1 on p. 155, for any clause c at a node N with successor nodes N1and N2 labelled with parent clauses c1 and c2, size(c) < size(c1)+size(c2). Due tothe tree structure of T , size(cn) < Pn+1i=1 size(si) < (n+1)� size(S). Consequently,size(T ) < (n+1)2 � size(S). �Note Polynomial transparency also holds for another re�nement of resolution,namely, V-resolution [Chang and Lee, 1973]. V-resolution is more powerful thantree resolution in that general resolution dags are permitted, but derived clausesmust not be renamed and whenever a derived clause is used as a parent clause,then the resulting uni�er must be applied to the clause and to the clauses derivedfrom it.Unfortunately, such weakenings of general resolution have the unacceptableconsequence that many proofs are thrown out which are short in steps and small insize. This holds for the short resolution deductions discussed in Subsection 4.2.3.Also, eliminating problematic pairs from a transition relation does not work forarbitrary transition relations. This leads to the second alternative. In order topreserve the problem solving functionality of the relation, that is, to guaranteethat the transitive closures|or at least the provable states|of both transitionrelations remain identical, in the general case, each problematic step must bereplaced by a series of computationally innocuous steps. For logic calculi, thisamounts to a rede�nition of the notion of an inference step.Both methods are relatively unappealing for the practical working with logiccalculi, since in no case the indeterministic power of a calculus is increased, ei-ther it is weakened or it remains unchanged, and only the presentation structureof the calculus is modi�ed. The real importance of the notion of polynomialtransparency for the advance of science is that it can motivate research follow-ing the third approach. The third approach is to let the general structure of a



166 First-Order Calculitransition relation as it is, and to try to remedy the polynomial intransparency ofthe transition relation. Since the typical stumble-block for attaining polynomialtransparency is the violation of the logp size step-reliability, a promising researchdirection consists of improving the data structures of the elements in the tran-sition relation in such a way that they can be represented with less space thanin the original relation, with the hope to gain polynomial transparency this way.The advantage of such an attempt, if it succeeds, is that the distances betweenthe elements in the transition relation can be preserved while the real computingcost and sizes properly decrease.The di�erence between the solution methodologies is that the second approachalways succeeds, whereas the third one may fail in principle. This case will beconsidered below (in Subsection 4.2.6).Number Terms in the Object LanguageSimilar to the case of the uni�cation operation, which, in order to attain the poly-nomial time step-reliability of an inference system, has enforced the necessity torepresent logical terms as dags, one should think about the development of moresophisticated mechanisms which would admit a notation for resolvents polyno-mially bounded in size by the number of their derivation steps, with respect tothe input set. An obvious improvement is to integrate into the object languagethe same vocabulary of upper indices we already used in our meta-language forthe purpose of polynomially specifying terms of exponential depth. It is apparentthat with the use of such number terms the transparency problems of the Exam-ples 4.2.2 and 4.2.3 can be solved, even polynomial transparency in the strongsense can be achieved for these examples. One can predict that number termswill play an important role in future automated deduction systems.7We shall not pursue further the attempt of extending the representation oflogical formulae, instead we want to present a critical example class which mayturn out to be a hard problem for the e�orts to achieve polynomial transparency.These new formulae are obtained from the previous class of Example 4.2.3 byaugmenting the arity of the function symbol s by 1. This means that the previousformula class is just an abstraction of the new class.Example 4.2.4 For any positive integer n, let Sn denote a set of Horn clausesof the following structure:f:P1(s(x; y)); : : : ;:Pn(s(x; y))g;fP1(s(s(x; y1); y2));:P1(x)g;fP2(s(s(s(x; y1); y2); y3));:P2(x)g;7Much more than polynomial uni�cation algorithms, which have turned out to be relativelyunimportant for the practice of deduction systems. This can be veri�ed by observing that theexamples (particularly Example 4.2.2) for demonstrating the necessity of number terms aremuch simpler and occur more frequently in practice than the ones which demand polynomialuni�cation techniques.



4.2 First-Order Resolution 167fP3(s(s(s(s(s(x; y1); y2); y3); y4); y5));:P3(x)g;� � �fPn(s(s(� � � s(s(| {z }Pn�times x; y1); y2); � � � ; yn�1); yn));:Pn(x)g;fP1(0)g;� � �fPn(0)g:In the new class the second argument of the function symbol s does notplay any role at all, the variables at these positions are just dummy variables.Consequently, the results concerning proof steps and proof lengths carry over fromExample 4.2.3 to this example. But there is a crucial di�erence between bothexamples, which becomes apparent when self-resolution is applied to a clause ofthe mixed type in Example 4.2.4. Let us demonstrate this with the input clausecorresponding to the prime number 3:fP2(s(s(s(x; y1); y2); y3));:P2(x)g:In its self-resolventfP2(s(s(s(s(s(s(x; y1); y2); y3); y4); y5); y6));:P2(x)gthe number of distinct dummy variables has doubled. In general, in any suchself-resolution step the resolvent contains 2n�1 more distinct variables than theoriginal clause. Accordingly, for this class of clause sets, in any polynomial-stepproof of an instance Sn, clauses are needed in which not only the term depthis exponential (which could be remedied by using number terms in the objectlanguage) but also the number of distinct variables. And to this problem noobvious solution is in sight.84.2.6 The Impossibility of Resolution TransparencyAlthough the current data structures for resolution do not achieve the weak poly-nomial transparency of resolution, we have no apparent reason to abandon hopethat such data structures might exist. For the case of the strong polynomialtransparency, however, according to which for every resolution deduction the in-ference steps must provide a representative complexity measure of the deduction,one can prove that such data structures cannot exist.8There seems to be an interesting analogy between decidability and complexity propertieswith respect to the distinction of clause formulae containing unary function symbols only fromthose containing binary function symbols. While the former are decidable and permit thesuccessful application of number terms, the latter are undecidable and polynomial transparencycannot be achieved using number terms.



168 First-Order CalculiProposition 4.2.22 (Impossibility of resolution transparency) It is impossible torender resolution polynomially transparent without having to increase the dis-tances in the resolution transition relation.Example 4.2.5 Consider the set S of three clauses of the following shapesfP (x : y);:P (x);:P (y)g,fP (0)g,fP (1)gwhere 0 and 1 are constants and s : t denotes a term of the structure f(s; t), forsome binary function symbol f .Proof The iterative application of self-resolution to the �rst clause in Exam-ple 4.2.5 and to the resulting resolvents, after n steps produces a clause of thestructure fP (x1 : � � � : x2n+1);:P (x1); : : : ;:P (x2n+1)g:In two further resolution steps, extensively employing factoring and using the twoother clauses in the input set, any positive unit clause of the formfP (c1 : � � � : c2n+1)g; ci 2 f0; 1g; for 1 � i � c2n+1;may be deduced. The set of unit clauses derivable in this manner can be viewedto encode the set S of all strings of lengths c2n+1 over the alphabet f0; 1g. If adata structure or general technique would exist rendering resolution polynomi-ally transparent without increasing the original number of inference steps in thecalculus, then it must be possible to encode any of the strings in the set S with asize polynomially bounded by the input size and n+2. This, however, contradictselementary facts of Kolmogorov complexity theory [Li and Vit�anyi, 1990]. �The apparent reason for the impossibility of making resolution polynomiallytransparent is the factoring rule, which may render a highly regular structurestrongly irregular within a single inference step, or, in terms of Kolmogorov com-plexity theory, factoring can turn a regular string into a random string within asingle step. Consequently, in order to remedy the intransparency of resolution,the factoring rule need to be restricted. A further interesting open question iswhether the problems with the factoring rule also have an in
uence on the weakpolynomial transparency of resolution.4.3 First-Order Connection TableauxIn contrast to the standard way of generalizing the tableau calculus from theground case to the �rst-order case, by including di�erent rules for quanti�erelimination [Smullyan, 1968], the working with Skolemized formulae renders the�rst-order calculus signi�cantly simpler and also facilitates the incorporation ofuni�cation into the tableau calculus. We consider clausal �rst-order tableaux.



4.3 First-Order Connection Tableaux 1694.3.1 Clausal First-Order TableauxDe�nition 4.3.1 (Clausal �rst-order tableau) A clausal �rst-order tableau for a�nite set S of proper clause formulae is a pair ht; �i consisting of an orderedtree t and a labelling function � on its nodes such that the root is labelled withthe verum >, and each successor set of nodes N1; : : : ; Nn is labelled with literalsK1; : : : ; Kn such that there exists a variable substitution � and a clause formula8x1 � � � 8xm L1; : : : ; Ln in S with Ki = Li�, for 1 � i � n.The notions of tableau (top) clause formula, the closedness of a tableau,and marked tableaux can be transmitted unchanged from the ground case (Sec-tion 3.3).De�nition 4.3.2 (First-order connection tableau) A �rst-order connectiontableau for a �nite set S of proper clause formulae is a �rst-order clausal tableaufor S in which each inner node N labelled with a literal L has a leaf node N 0among its successor nodes which is labelled with the literal �L.The static speci�cations of �rst-order tableaux and connection tableaux put noparticular restrictions on the instantiations that may be applied to the renamedclause formulae from the input set in their use as tableau clause formulae. Theprocedural counterparts of the static deduction objects, however, shall be de�nedusing uni�cation as instantiation operation, this way achieving �nite branchingrates of the calculi. The two inference rules of the tableau calculus with uni�cationare the following straightforward generalizations of the inference rules for theground case. Again, we shall work with marked tableaux.Procedure 4.3.1 (First-order tableau expansion) Given a set S of proper clauseformulae as input and a marked �rst-order tableau T for S, choose a leaf node Nwhich is not marked, select a clause formula c 2 S, obtain a variant L1; : : : ; Lnof the matrix of c in which the variables are disjoint from the variables in theliterals occurring in T and in any predecessor tableau of T ,9 then attach n newsuccessor nodes N1; : : : ; Nn to N and label them with L1; : : : ; Ln respectively.Procedure 4.3.2 (Tableau reduction with uni�cation) Given a marked tableauT , choose an unmarked leaf node N with literal L, select a dominating node N 0with literal L 0 such that there is a most general uni�er � for f�L; L 0g, then applythe substitution � to the tableau literals,10 and mark N with N 0.The connection tableau calculus with uni�cation consists of three inferencerules, the tableau reduction rule with uni�cation plus the following two inferencerules.9Such renamings can easily be achieved without having to look at the tableau each time,namely, by carrying along a counter which is incremented whenever a new clause formula ischosen for expansion.10Again we presuppose the working with de�nitional expressions and the de�nitional appli-cation of substitutions.



170 First-Order CalculiProcedure 4.3.3 [First-order tableau start] Given a set of proper clause formulaeS as input and a one-node tree with root N and label >, simply perform a �rst-order tableau expansion step.Procedure 4.3.4 [Tableau extension with uni�cation] Given a set of proper clauseformulae S as input and a marked connection tableau T for S, choose a leaf nodeN with literal L which is not marked, apply a tableau expansion step at N , selecta node N 0 among the immediate successors of N , perform a tableau reductionstep at N 0 with the predecessor N , and mark N 0 with N .Although with the two (three) inference rules of the (connection) tableaucalculus with uni�cation not every �rst-order tableau can be generated, the in-ference rules are adequate with respect to the static speci�cations of �rst-order(connection) tableaux, in the following manner.Proposition 4.3.1 The �rst-order (connection) tableau calculus can only gen-erate marked �rst-order (connection) tableaux, and conversely, given any marked(connection) tableau T for a set of clause formulae, then, for any node selectionfunction, there exists a sequence of inference steps in the (connection) tableaucalculus with uni�cation and an output tableau T 0 which is isomorphic to T andmore general than T .11Proof The fact that the (connection) tableau calculus with uni�cation can onlygenerate �rst-order connection tableaux is obvious. For the converse, let T bea marked �rst-order (connection) tableau for an input set S with m markednodes. It is apparent that, ignoring the arguments of the literals, the respectivepropositional marked (connection) tableau skeleton T 0 of T can be constructed bythe propositional (connection) tableau calculus, for any selection function. FromT 0 obtain a tableau T 00 by adding the arguments of the renamed input clauses.By the de�nition of �rst-order (connection) tableaux, there exists a substitution� which, when applied to the literals in T 00, produces T . Let c1 = L1; : : : ; Lmbe a clause formula consisting of the literals at the marked nodes N1; : : : ; Nmrespectively in T 00, and c2 = K1; : : : ; Km the clause formula, in which, for1 � i � m, Ki is the complement of the literal at the node by which Ni is markedin T 00. The substitution � must be a uni�er for fc1; c2g. Now, the sequence ofuni�cation steps to be performed for any selection function in the (connection)tableau calculus with uni�cation in order to obtain a more general tableau thanT with the skeleton T 0 can be viewed as a single uni�cation operation of the setfc1; c2g. The di�erent selection functions just re
ect certain di�erent selectionsof disagreement sets.12 By the Uni�cation Theorem 1.5.12 on p. 40, any selectionfunction produces a uni�er which is more general than �. �11A tableau T 0 is more general than an isomorphic tableau T if there is a substitution � suchthat for any literal L occurring at a node N in T , if L 0 is the literal at the node correspondingto N , then L = L 0�.12In fact, the existing tableau node selections functions do not even exploit the full freedomof selection possible in the uni�cation process.



4.3 First-Order Connection Tableaux 1714.3.2 The Completeness of First-Order ConnectionTableauxWhile the regularity restriction can be transmitted unchanged from the groundcase to the �rst-order case, the lifting of the strong connectedness condition (De�-nition 3.4.7 on p. 132), however, is a more delicate problem. A direct transmissionto the �rst-order case leads to incompleteness, as illustrated in Figure 4.1 with theunsatis�able set of clause formulae P (x; y); P (y; x) and :P (u; v);:P (v; u) ,for which no closed and strongly connected �rst-order tableau exists.������ QQQQQQ������ QQQQQQ:P (y; x) P (y; x):P (x; y) P (x; y)
Figure 4.1: The incompleteness of the strong connectedness for �rst-order logic.The apparent reason for the incompleteness of the strong connectedness in the�rst-order case is that a strong connection between certain instances of two clauseformulae need not be strong for the original formulae. This consideration alsoshows how to weaken the strong connectedness in order to preserve completenessfor the �rst-order case.De�nition 4.3.3 (Potential strong connectedness) A connection fhL; i; c1i;hK; j; c2ig is called potentially strong if there exists a substitution � such thatfhL�; i; c1�i; hK�; j; c2�ig is a strong connection. A �rst-order tableau T is calledpotentially strongly connected if T has a substitution instance which is stronglyconnected.Example 4.3.1 In two clause formulae of the form :Q(x);:P (y; x) andQ(v); P (w; v) the �rst literals in each formula are strongly connected whilethe others are not.The weaker variant of strong connectedness retains the eliminative e�ect ontableaux, as shown in Figure 4.2. Thus, if the �rst clause from Example 4.3.1appears as a tableau clause, then the second clause must not be attached to thenode labelled with :P (y; x). The second clause can be attached to the nodelabelled with :Q(x) without violating the condition. Note, however, that if inthe second case a subsequent uni�cation step enforces the variables y and w to beuni�ed, then the potential strong connectedness is violated too, since no stronglyconnected instance of the resulting tableau exists.



172 First-Order Calculi������ QQQQQQ���� @@@@:Q(x) :P (y; x)Q(x) P (w; x)
������ QQQQQQ���� @@@@:Q(x) :P (y; x)P (y; x)Q(x) ? ?Figure 4.2: Violation (left) and satisfaction (right) of the potential strong con-nectedness for tableaux employing the clause formulae from Example 4.3.1.Theorem 4.3.2 (Completeness of regular strongly connected �rst-order tableaux)For any �nite unsatis�able set S of proper clause formulae and any clause formulac which is relevant in S, there exists a closed regular strongly connected �rst-ordertableau for S with an instance of the matrix of c as top clause formula.Proof By the Herbrand Instance Theorem (p. 151) there exists a �nite unsat-is�able set S 0 of ground formulae such that every formula in S 0 is a Herbrandinstance of a formula in S. Due to the completeness of regular strong connectiontableaux for the ground case (Theorem 3.4.6 on p.132), there exists a closed reg-ular strong connection tableau T for S 0. T is a closed regular strongly connected�rst-order tableau for S. �Corollary 4.3.3 (Completeness of the connection tableau calculus with uni�cationfor regular potentially strongly connected tableaux) For any �nite unsatis�able setS of proper clause formulae and any clause formula c which is relevant in S,there exists a refutation T of S in the connection tableau calculus with uni�cationin which c is used as expansion clause in the start step and T is regular andpotentially strongly connected.Proof Immediate from Theorem 4.3.2 and Proposition 4.3.1. �It is clear that the size of a closed �rst-order tableau for a set of clause formulaeS is bounded from below by the Herbrand complexity of S, so that all �rst-ordertableau calculi are Herbrand calculi. Also, the number of inference steps in the(connection) tableau calculus with uni�cation is a representative measure for thesize of the deduction.Proposition 4.3.4 The (connection) tableau calculus with uni�cation is poly-nomially transparent.Proof An application of Lemma 2.3.7 on p. 81 will do. The polynomial timestep-reliability of the calculi is obvious if de�nitional expressions and polynomial



4.3 First-Order Connection Tableaux 173uni�cation techniques are used. To recognize the logp size step-reliability, weassume that dag expressions (De�nition 1.4.10 on p. 23) are used. As the size ofa tableau we take the sum of the sizes of the literal occurrences in the tableaux.Then, every expansion step increases the tableau size at most by the size of thelargest clause formula from the input set, which is a constant increase rate for anygiven input. Due to the dag format, by Proposition 1.6.8 on p. 53, a reductionstep does not change the size of a tableau. Finally, the size increase resultingfrom an extensions step is the size increase of the contained expansion step. �4.3.3 Dynamic Pruning of First-Order TableauxIn the �rst-order case besides regularity interesting new useful search pruningtechniques are applicable, which have no signi�cance in the ground case.Tautology EliminationNormally, it is a good strategy to eliminate certain clause formulae from the inputset which can be shown to be redundant for �nding a refutation. Tautologicalclause formulae are of such a sort.13 In the ground case tautologies may beeliminated once and for ever in a preprocessing phase, before starting the actualproof search. In the �rst-order case, however, it may happen that tautologies aregenerated dynamically. Let us illustrate this phenomenon with the example of aclause formula expressing the transitivity of a relation.Example 4.3.2 (Transitivity) 8x8y8z :P (x; y);:P (y; z); P (x; z) .Suppose that during the construction of a tableau this clause formula is usedin an extension step|for the sake of the argument let us take the clause formulaitself and assume that the rest of the tableau be renamed. Suppose further thatafter some subsequent inference steps the variables y and z are instantiated tothe same term t. Then a tautological instance :P (x; t);:P (t; t); P (x; t) of thetransitivity formula has been generated. Apparently, connection tableaux withtautological tableau clauses need not be considered when searching for a refuta-tion. Therefore the respective tableau and any extension of it can be disregarded.Note Interestingly, the conditions of tautology-freeness and regularity are par-tially overlapping. Thus the non-tautology condition, on the one hand, does coverall occurrences of identical parent nodes, but not the more remote ancestors. Theregularity condition, on the other hand, captures all occurrences of tautologicalclauses for backward reasoning with Horn clauses (i.e. with negative start clause),but not for non-Horn clauses.13Although tautologies may render the basic calculus stronger concerning indeterministicpower, as shown in the last chapter.



174 First-Order CalculiSubsumption ReductionAn essential pruning method in resolution theorem proving is subsumption re-duction, which, during the proof process, deletes any clause that is subsumed byanother clause, and this way eliminates a lot of redundancy. Although no newclause formulae are generated in the tableau approach, the forward variant ofsubsumption reduction can be exploited in the (connection) tableau framework,too. First, we have to say what subsumption means for clause formulae.De�nition 4.3.4 (Subsumption for clause formulae) Given two clause formulae c1and c2. We say that c1 (properly) subsumes c2 if there is a variable substitution� such that the set of literals contained in c1� is a (proper) subset of the set ofliterals contained in c2.Similar to the dynamic generation of tautologies, it may happen, that a sub-stitution instance of a clause formula is created which is properly subsumed byanother clause formula from the input set. To give an example, suppose the tran-sitivity formula from above and a unit clause formula P (a; b) be contained inthe input set. If now the transitivity formula is used in a tableau, and after someinference steps the variables x and z are instantiated to a and b, respectively,then the resulting tableau clause formula :P (a; y);:P (y; b); P (a; b) is prop-erly subsumed by P (a; b) . Apparently, for any closed tableau using the formertableau formula a smaller closed tableau exists which uses the latter instead.Note Again, there is the possibility of a pruning overlap with the regularity andthe non-tautology conditions. It should be emphasized, however, that subsump-tion reduction is not a pure tableau structure restriction, since a case of propersubsumption cannot be de�ned by merely looking at the tableau. Additionally,it is necessary to take the respective input set into account. Consequently, sub-sumption reduction is not a monotonic reduction rule in the sense de�ned inSubsection 3.4.6 (pp. 130).4.3.4 Syntactic Disequation ConstraintsThe question may be raised whether in the �rst-order case it is always possiblewith tenable cost to check the tableau conditions of regularity, tautology, andsubsumption-freeness after each inference step. Note that a uni�cation operationin one part of a tableau can produce instantiations which may lead to an irregu-larity, tautology, or subsumed clause in another distant part of the tableau. Thestructure violation can even concern a closed part of the tableau. Fortunately,there exists a uniform and highly e�cient technique for implementing all thementioned search pruning mechanisms, namely, syntactic disequation constraints.Let us illustrate the technique �rst at the example of the dynamic tautologyelimination. Using the transitivity formula:P (x; y);:P (y; z); P (x; z)



4.3 First-Order Connection Tableaux 175from above, there are two classes of instantiations which may render instances ofthe formula tautological. Either x and y are instantiated to the same term, or yand z. Apparently, the generation of a tautological instance can be avoided if theuni�cation operation is constrained by forbidding that the respective variablesbe instantiated to the same terms. In general, this leads to the formulationof disequations of the form (s1; : : : ; sn) 6= (t1; : : : ; tn), where the si and ti areterms. A disequation contraint is violated if every pair hsi; tii in the constraintis instantiated to the same term ti, respectively. In the transitivity exampleabove the two disequation constraints (x) 6= (y) and (y) 6= (z) can be generatedand added to the transitivity formula. The non-tautology constraints for theformulae of a given input set can be generated in a preprocessing phase beforestarting the actual proof process. Afterwards, the tableaux construction workswith constrained clause formulae. Whenever, a constrained clause formula isused for tableau expansion, then the formula and its constraints are consistentlyrenamed, the expansion is performed with the formula part and the constraintspart is integrated into a special constraint store.Regularity can also be captured using disequation constraints. Obviously, reg-ularity constraints have to be generated dynamically. Whenever a new renamingc of a (constrained) clause formula is attached to a branch b by expansion, thenfor every literal L = [�]P (s1; : : : ; sn) contained in the formula part of c, dise-quation constraints of the shape (s1; : : : ; sn) 6= (t1; : : : ; tn) are generated wherethe (t1; : : : ; tn) are the argument sequences of literals appearing on b with thepredicate symbol P and the same sign as L.Subsumption is essentially treated in the same manner as tautology. Recallthe example from above where in addition to the transitivity formula a unitclause formula P (a; b) is supposed to be contained in the input set. Then,the disequation constraint (x; z) 6= (a; b) may be generated and added to thetransitivity clause. Like non-tautology constraints, non-subsumption constraintscan be computed and added to the formulae in the input set before the actualproof process is started.14 It is apparent that constraints resulting from di�erentsources|tautology, regularity, or subsumption|need not be distinguished in thetableau construction. In order to capture all cases of subsumption, however,a new type of terms, so-called structure variables, need to be introduced. Toexplain the necessity for doing this, assume that the transitivity formula and aunit clause formula of the shape P (f(v); g(v)) be contained in the input set.In analogy to the other example, a disequation constraint (x; z) 6= (f(v); g(v))could be added to the transitivity formula. But now in the constraint a variableis contained which does not occur in the transitivity formula. Since formulaeare always renamed before integrated into a tableaux, the variable v will notoccur as an ordinary variable in a tableau, so that the constraint is absolutely14Note, however, that due to the NP-completeness of subsumption, it might be necessary notto generate all possible non-subsumption constraints, since this could involve an exponentialpreprocessing time.



176 First-Order Calculiuseless, since it can never be violated. Apparently, the case of full subsumptioncannot be captured in this manner. What the constraint mechanism shouldavoid is that x and z be instantiated to terms which have the structures f(t)and g(t), respectively. This can be conveniently achieved by adding structurevariables, denoted with a `#' before the variable name, which are distinguishedfrom ordinary variables by the constraint handler. The respective disequationconstraint (x; z) 6= (f(#v); g(#v)) then is violated if x and z are instantiated toterms of the structures f(s) and g(t) where s = t.Note With the theorem prover Setheo [Letz et al., 1992] it could be experi-mentally veri�ed that the deletion of irregular tableaux and tableaux contain-ing tautological or properly subsumed formulae may reduce the search space bymagnitudes, although no complete constraint handling was implemented in thesystem. In the new Version 3.0 (Spring 1993) of Setheo the full constraint mech-anism is integrated. The new system demonstrates that disequation constraintinformation can be generated, stored, updated, and examined in a very e�cientway.The keeping of the constraint information alongside the tableau in a specialconstraint store also facilitates the working with subgoal trees instead of tableaux,since all relevant structure information of the solved part of a tableau is containedin the constraint part.4.3.5 Search Trees and Selection FunctionsThere is a source of indeterminism in the discussed tableau calculi which can beremoved without any harm concerning indeterministic power, namely, the choiceof the tableau node selection function being employed when building up a tableau.Therefore, it is reasonable to consider tableau calculi in which this indeterminismis not contained any more.De�nition 4.3.5 (Determined tableau calculus) A determined tableau calculus isa pair hC; �i consisting of a tableau calculus C and a tableau node selectionfunction �.Any determined tableau calculus uniquely determines the search tree of agiven input set S of clause formulae.De�nition 4.3.6 ((Tableau) search tree) Let S be a set of clause formulae andC = hC; �i a determined tableau calculus. The (tableau) search tree of S in C isa tree T labelled with tableaux de�ned as follows.1. The root of T is labelled with the trivial tableau, consisting of a root nodeonly.



4.3 First-Order Connection Tableaux 1772. Every non-leaf node in T labelled with a tableau T has as many successornodes as there are successful applications of a single inference step in Capplied to the tableau node in T selected by �, and the successor nodes arelabelled with the respective resulting tableaux.The leaf nodes of a (tableau) search tree can be partitioned into two sets of nodes,the ones labelled with tableaux that are marked as closed, called success nodes,and the others which are labelled with open tableaux to which no successfulinference steps can be applied, called failure nodes.In a pure deduction enumeration approach, according to which all possibledeductions are examined,15 the part of the search tree down to the �rst proof canbe taken as a useful approximation of the actual cost of �nding a proof using theunderlying determined calculus.De�nition 4.3.7 (Relevant part of a search tree) Let T be a search tree and letn be the minimal distance of a success node from the root of T . The relevantpart of the search tree T is the subtree obtained from T by cutting o� all nodeswith a depth > n.For any determined tableau calculus C, the complexity of the relevant part ofthe search tree of a given input set S in C can be taken as the actual complexityof the calculus C for the input S.16 It is important to emphasize that a variationof the selection function can dramatically change the actual complexities of thecalculus. This gives rise to the application of heuristic methods in the de�nitionof selection functions. Due to its greater freedom of choosing between selectionfunctions, the (connection) tableau format is superior to frameworks supportingdepth-�rst selection functions only, like connection matrices and model elimina-tion chains. This can be demonstrated formally as follows.Proposition 4.3.5 Let C be the regular connection tableau calculus with uni�-cation. There exist sets S of formulae for which the (relevant part of) the searchtree is exponential in size wrt S for any determined calculus hC; �i using a depth-�rst selection function �, whereas there are search trees linear in size for somefree selection functions.Proof We use Example 4.3.3 and start the tableau construction with the rele-vant top clause formula :P (x; y);:P (y; x) . Any depth-�rst selection functioninevitable runs into the exponential search space induced by S 0. Using a freeselection function, however, after the �rst extension step with P (x; b);:R(x) ,15In the next section the natural limitations of pure tableau enumeration procedures withrespect to search pruning will be investigated and the theoretical reasons will be given why witha pure deduction enumeration method it is impossible in principle to remove all redundanciescontained in proof search.16Or at least as an interesting upper bound for the actual complexity of the calculus.



178 First-Order Calculione may shift to the other subgoal in the top clause formula and perform again anextension step with P (x; b);:R(x) . After the second step the clause formulaR(a);� is no more accessible and the search tree is linear. �Example 4.3.3 Let S be a set consisting of the union of the clause formulae:P (x; y);:P (y; x) ,P (x; b);:R(x) ,R(a);� ,R(x);:Q(fn(x)) ,Q(f(x));:Q(x) ,Q(b) ,and a set S 0 containing clause formulae with connections to � only such that thesearch tree of S 0 [ f � g has exponentially many nodes with a depth � n, forany determined (regular connection) tableau calculus.4.3.6 Extensions of First-Order Connection TableauxThe transmission of the factorization rule and the folding up and folding downoperations from the ground case to the �rst-order case is straightforward. Toobtain �rst-order factorization, one simply has to generalize the ground factor-ization rule by performing uni�cation between the respective literals. The casesof �rst-order folding up and folding down are even trivial, since the ground foldingup and down need not to be changed at all; the �rst-order variants are achievedby using the reduction rule with uni�cation.In the �rst-order case, however, a further signi�cant di�erence appears be-tween the folding up operation and the explicit storing of lemmata beside atableau (as described in [Letz et al., 1992] and [Loveland, 1978]). When a lemmac which has been dynamically added to the input set is used in a subsequentextension step, then the variables in c may be soundly renamed as in any exten-sion step using input formulae. According to the folding up operation, however, a(unit) lemma is stored in the tableau itself, and all usages of the lemma must havea common substitution instance, as illustrated with the following Example 4.3.4.Example 4.3.4 :P (x);:P (a1); : : : ;:P (an) ,P (x);:Q(x) ,P (x); Q(x) .Assume that in the construction of a connection tableau we are starting withthe top clause formula :P (x);:P (a1); : : : ;:P (an) , select the subgoal :P (x),and solve it completely. Then, the folding operation puts the literal P (x) intothe label set of the root node. Now, the second subgoal P (a1) can be solved bya reduction step using P (x). But in the reduction step x gets instantiated toa1, so that afterwards the lemma is no more available for reduction steps from



4.3 First-Order Connection Tableaux 179the other subgoals. The lemmata made available by the folding up operationare just single-instance lemmata. Using a standard lemma technique, whichexplicitly would add the formula 8x P (x) to the input set, one could solveevery other subgoal in the top clause formula with a single extension step usingdi�erent renamings of P (x) . So in the �rst-order case an additional di�erenceconcerning proof lengths comes in, which is not present in the ground case.Note The single-instance property of folding up guarantees that the accordinglyextended �rst-order (connection) tableau calculi remain polynomially transpar-ent. Also, single-instance lemmata can be implemented in an extremely e�cientway, since no copying is necessary. The price of this restriction is that the calculiremain Herbrand calculi, that is, the Herbrand complexity of any unsatis�ableset of clause formulae is a lower bound to the size of any refutation in the ex-tended �rst-order (connection) tableau calculi. The standard technique of ex-plicitly adding derived lemmata to the input set, however, renders the �rst-ordercalculi polynomially intransparent, induces higher branching rates of the searchspaces, and demands more expensive implementation techniques. On the otherhand, the sizes of refutations in those calculi are not polynomially bounded bythe Herbrand complexity of an input set, so that signi�cantly shorter proofs mayexist than for the polynomially transparent versions. Which of the two versionswill turn out to be superior in practice depends on the examples considered asrelevant.One could also think about a multiple-instance variant of folding up. The basicproblem to be solved in such an approach is that the renaming of the variables ina literal folded up to an edge must be limited in certain ways in order to preservesoundness, as demonstrated in Figure 4.3 for the satis�able input set given inExample 4.3.5. Referring to the �gure, suppose that after two extension stepsand one reduction step the subgoal :Q(x) is solved completely, and is folded upto the edge above the node labelled with :P (x). If then the unmarked subgoallabelled with :Q(b) is permitted to be solved with a renaming of the contextunit lemma Q(x), i.e., without instantiating the variable x to b, then the subgoallabelled with :P (x) would have been solved in an unsound manner, correctlyit should be instantiated to P (b). Afterwards, the subgoal labelled with :R(x)could be solved by an extension step, which would not be possible if it be correctlylabelled with :R(b).Example 4.3.5 Consider a satis�able set of clause formulae of the form:P (x);:R(x) ,P (x);:Q(x);:Q(b) ,P (x); Q(x) ,R(a) .
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Figure 4.3: Unsoundness of the renaming of context unit lemmata.4.4 Connection Tableaux ProceduresIn contrast to the most successful style of resolution theorem proving, which isbased on formula enumeration or saturation procedures, such an approach isnot possible in the connection tableau framework, because, unlike resolution andunlike the tableau calculi without the connectedness condition, the connectiontableau calculi are not proof-con
uent, that is, not every proof attempt can becompleted successfully. This possibility of making irreversible decisions in thecalculus demands a di�erent organization of the proof process, namely, as a proofenumeration instead of a formula enumeration procedure.4.4.1 Explicit Tableau EnumerationIn Subsection 3.4.3 we have introduced the notion of subgoal formulae, accordingto which every subgoal tree of a tableau can be encoded as a formula.The processof tableau construction could therefore be viewed as the enumeration of subgoalformulae, with the objective to derive the logical falsum, just as in the standardformula saturation procedures using resolution calculi. Accordingly, one coulddesign connection tableau proof procedures just in the same manner resolutionprocedures are constructed, the di�erence from resolution being that one wouldhave to handle sets of subgoal formulae instead of sets of clauses. Also, new sub-goal formulae would not be derived by performing inference operations betweensubgoal formulae but between a subgoal formula and an input clause formula.This manifests the linear approach of connection tableau calculi. A proof proce-dure for tableaux or subgoal formulae could be achieved by simply exploring thesearch tree of a determined tableau calculus in a breadth-�rst manner startingfrom the root.



4.4 Connection Tableaux Procedures 181Tableau SubsumptionOne important strategy to achieve search pruning in a proof enumeration settingis to re�ne the calculus in such a way that the number of possible proof attemptswith a certain resource decreases, which has been our favourite pruning strategyup to know. Another strategy is to improve the proof procedure so that infor-mation coming from the proof search itself can be used to even eliminate proofattempts not excluded by the calculus. This is motivated, since certain redundan-cies in proof search can only be detected when comparing di�erent deductions, byconsidering the tableau search tree. Let N1 and N2 be two nodes in a search treeT labelled with tableaux (or subgoal trees) T1 and T2 respectively. In case it canbe seen that T1 can only be completed to a refutation if T2 can be completed to arefutation, then it is possible to ignore the entire subtree dominated by N1. Thesimplest application possibility of such a search tree reduction is when T1 and T2are identical. Interestingly, this very often occurs in practice, particularly whenworking with subgoal trees instead of tableaux.17 This will be demonstrated on aformal level in the next section. But over and above identity of tableaux, a morereductive notion of redundancy between tableaux should be de�ned, in the spiritof the notion of subsumption for resolution procedures. This is an importanttopic for future research.ConsolutionAs a matter of fact, inference operations could be performed between sub-goal formulae, too. Such an approach is pursued with the consolution calcu-lus [Eder, 1991], which can be viewed as a generalization both of the connectiontableau and the resolution framework. The consolution calculus manipulates spe-cial normalized subgoal formulae, so-called consolvents, which result from simplytransforming subgoal formulae into disjunctive normal form. In terms of sub-goal trees, a consolvent is just the disjunction of the literals on the branches ofa subgoal tree. In [Eder, 1991] a single consolution step is de�ned as a macrostep consisting of the following operations, which are reformulated in the tableauframework here. Consolution takes two subgoal trees T1 and T2, renames the vari-ables in T2, and expands T1 by attaching copies of the renamed tree18 to all leafnodes of T1. On the resulting tree, arbitrary many reduction, factorization, andbranch shortening steps may be applied. Input clause formulae are just treated assubgoal trees of depth 1. Resolution can then be viewed as a consolution re�ne-ment manipulating subgoal trees in which all branches are shortened to length1.17Note that if we are working with subgoal trees supplied with a set of disequation constraintsto be satis�ed, then the constraint parts must be taken into consideration when comparingdi�erent subgoal trees.18One could even attach di�erently renamed copies, which would result in a further strength-ening of consolution.



182 First-Order CalculiConsolution seems mainly useful as a framework for comparing calculi, since,apparently, consolution is not polynomially transparent, not even in the groundcase. Thus, every unsatis�able set of n ground clause formulae can be refutedwithin n consolution steps. This shows that the calculus needs a rede�nition ofwhat has to be counted as a single inference step, similar to the original de�nitionof the Davis/Putnam calculus. A further interesting question to be investigatedis whether consolution is superior to resolution concerning indeterministic power.4.4.2 Tableau Enumeration by BacktrackingThe explicit enumeration of tableaux or subgoal trees (formulae) su�ers from twodisadvantages. The �rst one is also present in the standard resolution procedures,namely, the extreme branching rate of the search tree, which very quickly leadsto the situation that the available memory on a computer is exhausted. Fortableaux or subgoal formulae, which are much more complex structures thanclauses, an explicit enumeration procedure may even be practically impossible.The second disadvantage is that the cost for adding new tableaux or subgoalformulae signi�cantly increases during the proof process as the sizes of the proofobjects increase, which is not the case for resolution procedures. These weaknessesgive su�cient reason why in practice no-one has seriously pursued an explicittableau enumeration approach up to now.Bounded Depth-First Iterative Deepening SearchA more successful paradigm is to perform tableau enumeration in an implicitmanner, using consecutively bounded depth-�rst iterative deepening search proce-dures, as follows. The tableau search tree is cut by imposing conditions, calledcompleteness modes, on the tableaux at the nodes of the tree. These conditionsare monotonic, i.e., if a tableau T at a node N violates the conditions, then do allthe tableaux in the search tree dominated by N . Let us introduce completenessmodes formally.De�nition 4.4.1 (Completeness mode) A completeness mode is a total mappingm from the set of all tableaux to the set of natural numbers satisfying the followingproperty. For every tableau search tree T and every n � 0,1. there is a k � 0 such that for every node N in T with a depth > k:m(T ) > n, for the tableau T at the node N , and2. for every node N with label T in T , if m(T ) � n, then for every node N 0with label T 0 dominating N : m(T 0) � n.Apparently, given any completeness mode m, any natural number n, and anytableau search tree T , there is a �nite initial segment of T such that exactly thenodes in this segment have labels T with m(T ) � n. Using a completeness mode



4.4 Connection Tableaux Procedures 183m and an initial natural number n, the proof procedure starts by completelyexploring the �nite initial segment of the search tree determined by m and n.If no success node is contained in the initial segment, n is incremented and thelarger initial segment is explored, and so forth. Since m is assumed to be total onthe set of all tableaux, it is guaranteed that eventually a proof will be found if asuccess node exists in the search tree. Due to the construction process of tableauxfrom the root to the leaves, many tableaux have identical or structurally identicalsubparts. This motivates to explore �nite initial segments in a depth-�rst manner,by strongly exploiting structure sharing techniques. Accordingly, at each timeonly one tableau is in memory, which is extended following the branches of thesearch tree, and truncated, when a leaf node of the respective inital segment ofthe search tree is reached. Although according to this methodology initial partsof the search tree are explored multiply, no signi�cant e�ciency is lost if theinitial segments increase exponentially [Korf, 1985].The most natural completeness modes are the number of inferences (used in[Stickel, 1988]) and the depth of a tableau. In [Letz et al., 1992] results of anexperimental comparison between both modes are given.4.4.3 Permutability of Tableaux and The Matings Opti-mizationIn proof procedures using a pure tableau enumeration approach a source of re-dundancy is contained which cannot be removed by methods of re�ning thetableau calculi. Calculus re�nements like (strong) connectedness, (strong) reg-ularity, tautology-, and subsumption-freeness are local pruning methods in thesense that the violation of the conditions can be determined from looking at therespective tableau only (plus at the input formula, in the case of subsumption),whereas reference to alternative tableaux is never needed to check the conditions.A more global view, however, by which certain tableaux are grouped together intoequivalence classes, can reveal that it is not necessary to construct all tableauxin such a class but only one representative of the class. A particularly interestingnotion of equivalence classes of tableaux is provided by the matings framework.In Figure 4.4, it is shown that for one and the same spanning mating for the inputset f :p ; p; q ; :q; p g there are two closed regular connection tableaux withthe relevant formula :p as top clause formula. Apparently, only one of thetwo tableaux need to be considered. The redundancy contained in the tableauframework is that certain tableaux are permutations of each other correspondingto di�erent possible ways of traversing a set of connections.Motivated by this observation, we propose a technique to avoid the multipletraversal of certain matings, by restricting the applicability of reduction steps.Proposition 4.4.1 (Matings optimization) Given any total ordering � on theelements of an unsatis�able set S of proper clause formulae. Starting with anyrelevant clause formula in S, there is a refutation T of S in the regular connection
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Figure 4.4: Two closed tableaux for one and the same spanning mating.tableau calculus with uni�cation satisfying the following property. Let N1; : : : ; Nnbe any successor set of nodes in T labelled with literals L1; : : : ; Ln stemming froma clause formula c 2 S. Then, at no node Ni, 1 � i � n, reduction steps with adominating node N are permitted at which an extension step with a clause c 0 � chas been performed.Proof Consider an unsatis�able set S� of Herbrand instances of S. The fact thatthe mentioned restriction of reduction steps preserves completeness is demon-strated by using the proof of Theorem 3.4.6 (pp. 132). In this proof it wasdemonstrated that, for any unmarked node N labelled with a literal L and on abranch with literal set P , an extension step can be performed with any clauseformula containing �L from a minimally unsatis�able subset of P . S�. Let S 0be such a minimally unsatis�able subset and S 0�L its subset of clause formulaecontaining �L. According to the mentioned completeness proof, we can alwaysselect a ground formula c� from S 0�L for extension such that, for some originalformula c in S of which c� is a Herbrand instance: c 6� c 0, for all original formulaeof the ground formulae in S 0�L. The lifting to the �rst-order case is trivial. �Applied to the example shown in Figure 4.4, the matings optimization achievesthat, for any clause ordering, one of the two tableaux is no more derivable. Sincethe multiple traversal of sets of connections occurs recursively in a pure tableauenumeration procedure, the matings optimization can result in an exponentialsearch space reduction for tableau procedures. This illustrates the bene�t ofintegrating di�erent frameworks.Incompatibility problems with the Strong ConnectednessUnfortunately, the matings optimization is not compatible with the strong con-nectedness condition on regular tableaux. As a counterexample, consider Exam-ple 4.4.1, using an ordering in which :Q(a); P � P;Q(a) .Example 4.4.1 f P;Q(a) , :Q(a); P , :P;Q(a) , :P;:Q(x) g
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Figure 4.5: Deduction process for Example 4.4.1.We describe the failure of �nding a refutation for a backtracking-driventableau procedure. If we take the fourth clause formula, which is relevant inthe set, as top clause formula, enter the �rst clause formula, then the second oneby extension, and �nally, perform a reduction step, then the closed subtableauon the left-hand side encodes the mating fC1; C2; C3g. Now, any extension stepat the subgoal labelled with :Q(x) on the right-hand side immediately violatesthe strong connectedness condition. Therefore, backtracking has to occur, up tothe state in which merely the top clause formula remains. Afterwards, only thesecond clause formula may be entered, followed by an extension step into the �rstone. But now the matings optimization forbids a reduction step at the subgoallabelled with P , since it would violate the given clause ordering and produce aclosed subtableau encoding the same mating fC3; C2; C1g as before. Since ex-tension steps are impossible because of the regularity condition, the deductionprocess would fail and incorrectly report that there exists no closed tableau withthe fourth clause formula as top clause formula.19Consequently, there is a certain trade-o� between pruning the calculus andpruning the proof procedure.4.4.4 A General Limitation of Pruning the CalculusEven if redundancies due to the permutability of proofs are eliminated, by usingmethods like the matings optimization, there still remains a lot of redundancy inthe search tree which cannot be captured by local techniques. The fundamentalreason for this redundancy is contained in the very nature of the logic calculithemselves which we are employing, namely, their methodology of separating aproblem into subproblems and solving the subproblems separately.19It is even possible to construct an example in which for no clause ordering a refutationexists.



186 First-Order CalculiThe situation can be explained best using the terminology of strengtheningsintroduced in De�nition 3.4.9 on p. 132. Apparently, if a set S of clause formulaeis unsatis�able then any strengthening of S by some set of literals fL1; : : : ; Lng isalso unsatis�able. Furthermore, if fLg . S is a strengthening of S with L beingcontained in an essential clause formula of S, then the unit clause formula Lis essential in the strengthening fLg . S.In the process of demonstrating the unsatis�ability of a set of clause formulaeusing a top-down approach, for example, during the generation of a semantictree or a tableau, we always implicitly make use of the strengthening operation,namely, whenever we perform the branching operation. In a bottom-up orientedprocedure like resolution, of course, the strengthening operation is applied re-versely, just in the way semantic trees are a reversed description of resolutiontrees.We will now present a phenomenon of logic which sheds light on a problematicproperty of proof search. As we have already mentioned, it is crucial for thepurposes of optimizing proof search to avoid as much redundancy as possible.Thus we should strive for identifying a minimally unsatis�able subset of the inputset under investigation, or, equivalently, a subset in which every relevant formulais essential. The problematic property of logic with respect to search pruning isthat even if we have identi�ed a minimally unsatis�able subset of an input set,the strengthening process may introduce new redundancies, regardless whetherit is applied in a forward or in a backward manner. Let us formulate this moreprecisely.Proposition 4.4.2 If a set of clause formulae S is minimally unsatis�able, andL is a literal occurring in formulae of S, then the strengthening fLg . S maycontain more than one minimally unsatis�able subsets, or, equivalently, not everyrelevant clause in fLg . S may be essential.Proof We use a set S constructed by M. Schramm, which consists of the followingpropositional clause formulae p;:q ,p;:r;:s ,q; r ,q; s ,:p; q;:s ,:p;:r; s ,:p;:q; r ,:p;:q;:r;:s .S is minimally unsatis�able, as shown with the table of interpretations in Fig-ure 4.6. In the �gure, overlining abbreviates negation, and writing literals sideby side denotes disjunction. Also, in order to make the distinction between truthvalues more visible we have denoted the truth value > with � and the truth value



4.4 Connection Tableaux Procedures 187? with �. The fact that each formula is essential in the initial set is expressedwith boxes in the columns of the formulae which exclusively are falsi�ed by theinterpretation in the respective line. In the strengthening fpg . S the clauseformulae q; r and q; s both are relevant but no more essential, since the newclause formula p is also falsi�ed by the interpretations which have renderedthe formulae essential in S. �Sz }| {p q r s p�q p�r�s qr qs �pq�s �p�rs �p�qr �p�q�r�s p� � � � �� � � � �� � � � �� � � � �� � � � �� � � � � �� � � � � �� � � � � �� � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � � �| {z }fpg . SFigure 4.6: Illustration of the proof of Proposition 4.4.2.In more concrete terms, if we perform an expansion step with, e.g., the clauseformula p;:q of the example in question, then there are at least two minimallyunsatis�able subsets contributing to a refutation of the extended branch on whichp lies. Or, in terms of resolution, there are two di�erent minimal clause sets fromwhich the unit clause f:pg may be derived. Since any calculus uses (variants of)the strengthening operation as inference mechanism, the existence of such exam-ples destroys the hope that one can develop extremely restricted calculi whichguarantee for each unsatis�able formula the existence of exactly one proof. Thisobservation illuminates a natural restriction of every work towards the avoidanceof redundancy using calculus restriction only: however sophisticated the e�orts,there will always remain redundancy.Consequently, an important future research topic is to develop global pruningtechniques which extract and use information from the search process itself.



ConclusionWe conclude this work with a brief summary of its main contributions to theadvance of science, and mention the most important future research perspectives.First, it has been demonstrated that the �eld of automated deduction canbene�t a lot from meta-theoretical work of the type presented in Chapter 2. Theformalization of intuitively existing abstraction ideas for deductions has produceda number of fundamental concepts for measuring the complexities of logic calculi.Particularly, the new notion of polynomial transparency promises to serve as auseful and research-stimulating property of deduction systems, and of transitionrelations in general. The application of the concept has provided new insightsinto the inferential power of basic deduction mechanisms, like lemmata and therenaming of formulae, and motivates the development of even more compact datastructures than the ones considered in this work. A further challenging researchperspective is to compare the di�culties of rendering certain transition relationspolynomially transparent with other problems in complexity theory.Secondly, in this thesis a number of calculi and inference mechanisms havebeen compared which play a central role in the area of automated deduction. Wehave uncovered new results concerning mutual polynomial simulation between theconsidered proof systems. Furthermore, the framework of connection tableaux hasbeen developed which turned out as an optimal environment for reformulatingand improving some of the well-known calculi like model elimination and theconnection calculus. The structural richness of this framework simpli�es thepresentation of many calculi and permits more compact and elegant completenessand simulation proofs than for some of the original formalisms. This is importantfor further re�nements and extensions of the systems and may help avoidingredundant work in the di�erent frameworks, as illustrated with a study of thefactorization and the C-reduction operations and their relation with lemmataand the atomic cut rule. An interesting future task is a complete clari�cation ofall simulation possibilities between the presented systems.Finally, we have designed proof procedures based on connection tableaux. It isdemonstrated that the developed pruning mechanisms can be implemented verye�ciently, by using a constraint technology based on syntactic term inequations.Also, two fundamental results are given which demonstrate that local pruningmethods, i.e., methods that are restricted to the structures of deductions, are notsu�cient for avoiding all of the redundancies occurring during proof search. Ad-ditionally, it is necessary to consider global techniques which compare deductionswith one another. Here the use of the matings framework facilitates a gain ine�ciency which cannot be achieved with the pure tableau format. In future alsothe complexities of proof procedures need to be investigated, that is, the e�ort for�nding proofs. Since slight modi�cations of the control strategy can dramaticallychange the behaviour of proof procedures, it is very di�cult to �nd a reliable androbust measure for the complexity of proof procedures.
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