First-Order Calculi and

Proof Procedures for

Automated Deduction

Reinhold Letz

July 1993

Contents

1 First-Order Logic
1.1 Computational Preliminaries
Basic Abstract Machine Models
Sequences and Strings oL
1.1.3 Space and Time Complexity Measures

1.2 Syntax and Semantics of First-Order Logic
First-Order Signatures
First-Order Expressions
1.2.3 Semantics of First-Order Logic

1.3 Graphical Representation of Logical Expressions
Directed Acyclic Graphs

1.1.1
1.1.2

1.2.1
1.2.2

1.3.1
1.3.2

Symbol Dags .

1.4 The Language of Definitional Expressions
Definitional Expressions
Definitional Expressions vs Symbol Dags
Identification of Definitional Expressions
1.5 Instantiations of Logical Expressions
Substitutions and Matching

141
1.4.2
1.4.3

1.5.1
1.5.2

Unification . . .

1.5.3 The Complexity of Unification
1.6 Instantiations of Definitional Expressions
Definitional Substitutions
Matching of Definitional Expressions

1.6.3 Unification of Definitional Expressions
1.7 Sublanguages and Normal Forms
Formulae in Prenex and Skolem Form
Herbrand Interpretations
Complete and Compact Sets of Connectives
Formulae in Clausal Form
Ground and Propositional Formulae

1.6.1
1.6.2

1.71
1.7.2
1.7.3
1.7.4
1.7.5

2 Complexity Measures for Logic Calculi
2.1 Logics and Logical Problems

2.1.1

Logic Structures

S O O i N — = =

o o IS AR S L N1 B, S~ O O S JCRN U GC I NG Y N Y Sy Sy Sy ey W
AR OB R AR R KN ©OoK Ut W o

ii

Contents

2.1.2 Logical Relations and Logics 66
2.1.3 Logical Problems 68
2.1.4 Specializations of Logics 70

2.2 Logic Calculi and Transition Relations 71
2.2.1 Inference Rules and Deductions 71
2.2.2 Deduction Processes 72
2.2.3 General Notions of Transition Relations 73

2.3 Indeterministic Complexities 75
2.3.1 Three Natural Measures for Derivations 75
2.3.2 Polynomial Size- and Step-Transparency 7
2.3.3 Sufficient Conditions for Polynomial Transparency 80
2.3.4 Weaker Forms of Size- and Step-Transparency 83

2.4 Proof Procedures 84
2.4.1 Strong Completeness 85
2.4.2 From Completeness to Strong Completeness 86

3 Propositional Calculi 89
3.1 The Importance of Propositional Logic 89
3.1.1 Propositional Logic and Complexity Theory 90
3.1.2 Generative Calculi 91

3.2 Resolution Systems and Semantic Trees 92
3.2.1 Resolution 92
3.2.2 Resolution Deductions vs Resolution Procedures 96
3.2.3 The Indeterministic Power of Ground Resolution 97
3.2.4 The Resolution Proof Relation 99
3.2.5 The Davis/Putnam Calculus 100
3.2.6 Other Resolution Refinements 104
3.2.7 Semantic Trees 106

3.3 Tableau and Connection Calculi 111
3.3.1 The Tableau System 111
3.3.2 The Tableau Calculus 114
3.3.3 The Indeterministic Power of Tableaux 115
3.3.4 The Clausal Tableau Calculus 118
3.3.5 The Connection Method 120

3.4 Connection Tableaux 122
3.4.1 The Connection Tableau Calculus 122
3.4.2 Tableau Node Selection Functions 124
3.4.3 From Tableaux to Subgoal Formulae 125
3.4.4 Connection Matrices 127
3.4.5 Model Elimination 128
3.4.6 Further Structural Restrictions on Tableaux 130
3.4.7 The Completeness of Connection Tableaux 132

3.5 Controlled Integration of the Cut Rule 134

3.5.1 Factorization 135

Contents

iii

3.5.2 The Folding Up Rule
3.5.3 The Folding Down Rule
3.5.4 Enforced Folding Up and Strong Regularity

4 First-Order Calculi

4.1

4.2

4.3

4.4

Herbrand Procedures
4.1.1 The Compactness Property
4.1.2 Direct Herbrand Procedures
4.1.3 Improved Herbrand Procedures
4.1.4 Herbrand Complexity and Herbrand Calculi
First-Order Resolution
4.2.1 Resolution with Unification and Factoring
4.2.2 Refinements of Resolution
4.2.3 Resolution vs Herbrand Calculi
4.2.4 First-Order Resolution and Polynomial Transparency . . .
4.2.5 Improvements of the Representation of Formulae
4.2.6 The Impossibility of Resolution Transparency
First-Order Connection Tableaux
4.3.1 Clausal First-Order Tableaux
4.3.2 The Completeness of First-Order Connection Tableaux . .
4.3.3 Dynamic Pruning of First-Order Tableaux
4.3.4 Syntactic Disequation Constraints
4.3.5 Search Trees and Selection Functions
4.3.6 Extensions of First-Order Connection Tableaux
Connection Tableaux Procedures
4.4.1 Explicit Tableau Enumeration
4.4.2 Tableau Enumeration by Backtracking
4.4.3 Permutability of Tableaux and The Matings Optimization
4.4.4 A General Limitation of Pruning the Calculus

137
144
144

149
149
150
151
151
153
154
154
157
157
160
165
167
168
169
171
173
174
176
178
180
180
182
183

iv

Contents

Introduction

The field of automated deduction has reached a state of maturity and seriousness,
in which the hope for finding a proof method which is simple, uniform, and
successful in general has been rightly given up. On the other hand, a wealth
of isolated techniques has been developed so far, which, when combined in an
appropriate non-trivial manner, may give rise to such successful proof methods. In
a situation like this there are three essential tasks. First, the existing mechanisms,
which are typically formulated in different frameworks, need to be compared and
classified, in order to make the similarities and differences transparent. Also, this
way a lot of redundant work in related formalisms can be avoided. Secondly,
the techniques need to be evaluated with respect to two properties particularly
relevant for automated deduction, namely, their inferential and reductive power.
Finally, promising ways of combining and integrating the selected mechanisms
need to be identified.

In this work contributions are made to all three of the mentioned tasks. Thus,
as opposed to many other investigations in automated deduction, we compare and
put forward mechanisms in different frameworks in parallel. Furthermore, we de-
velop conceptual tools for classifying inference rules and inference systems in a
rigorous and computationally reliable manner. For the evaluation of the mecha-
nisms we are using the well-established notion of polynomial simulation. Finally,
we illustrate that by means of integrating methods from different frameworks new
promising proof systems for automated deduction can be obtained.

The work is organized in four chapters. In the following we shall give a detailed
overview on the main contents of the chapters and their interdependencies.

In the first chapter, which is of a preparatory nature, we discuss basic repre-
sentation techniques and modification operations on logical expressions. After a
complete presentation of the syntax and semantics of first-order logic, which we
have included in order to render the work self-contained, we concentrate on more
compact representation formats for logical expressions than the ordinary string
or tree notation. The standard motivation for employing such representations is
that they are needed to make the wunification operation perform in polynomial
time. We show that the failure of achieving polynomial unification with the ordi-
nary data structures is just one symptom of their weakness, the more elementary
reason being that an iterative application of substitutions may lead to an expo-
nential behaviour. We present two types of compact data structures. One are

vi Introduction

the well-known directed acyclic graphs, which are well-suited for a direct trans-
mission to the computer, but unconvenient for a textual handling. Therefore, we
additionally develop a string notation, the language of definitional expressions,
which permits equally compact formulations as graphs but is better suited for
the human use. After introducing the modification operations of matching and
unification for ordinary expressions, we describe their polynomial variants using
the compact representation formats. We conclude the preparatory chapter with
reviewing the most widely used sublanguages and normal forms of the first-order
language.

The wealth of logical systems currently developed increases the interest in
conceptual frameworks for classifying and comparing different systems. The sec-
ond chapter of this work is devoted to the development of notions which are
fundamental for analyzing the structural and computational properties of logic
calculi. After an explication of the general concepts of logical relations and logi-
cal problems, we stress the importance of distinguishing between the declarative
and the operational or transitional aspects of logical systems. Then we present
a general framework for measuring the computational complexities of arbitrary
transition relations and deductions, which are treated as particular transition
relations. In order to be able to compare complexities on a level which is as
abstract as possible, we subscribe to abstractions modulo polynomials, as usual
in complexity theory. The central notions emerging this way are the properties
of polynomial transparency and weak polynomial transparency. The polynomial
transparency of a transition relation guarantees that the number of rewrite steps
in any transition sequence represents an adequate measure for the actual com-
putational complexity of the sequence. Weak polynomial transparency is the
adequate concept for evaluating the indeterministic powers of special transition
relations, called proof relations, by restricting attention to shortest proofs only.
The benefit of the framework is twofold, not only does it facilitate the abstract
classification of deduction systems, it also may give advice how to improve the
systems. This is illustrated most significantly in the fourth chapter, when the
developed notions are used on the resolution calculus.

Since the basic design decisions for first-order calculi are settled on the propo-
sitional level, we follow the common practice of first considering in an extra
chapter the propositional or ground versions of the calculi developed later on.
Also, propositional logic is important in its one right, since it plays a central role
in complexity theory, due to the NP-completeness of the satisfiability problem.
Although the traditional generative types of logic calculi, Frege/Hilbert systems,
natural deduction and sequent calculi, are relatively strong with respect to in-
deterministic power, i.e., permit the formulation of relatively short proofs, the
systems are not suited to a direct automation. This is because the calculi contain
too much indeterminism and are lacking in goal-orientedness, which renders it
almost impossible to actually find short proofs using those systems.

Introduction vii

We study in detail two families of logic calculi which are particularly ap-
propriate for the purposes of automated deduction. The first family consists
of resolution systems and semantic tree procedures, which have in common that
they use a condensed variant of the cut rule from sequent systems. The close
relationship between both types of calculi becomes apparent when considering
their declarative proof objects, which are identical for certain subsystems. Since
resolution applies the cut rule in a forward, i.e., generative, manner, just like se-
quent systems, resolution is not suited as a basis for deciding the logical status of
propositional formulae. The semantic tree format, which applies the cut rule in a
backward manner, has proven as the optimal framework for solving propositional
formulae in practice. This is because in propositional logic, where the number of
interpretations is fixed, the backward cut rule can be viewed as a mechanism of
enumerating sets of interpretations in a particularly efficient way.

The other family investigated in this work consists of tableau systems and
connection calculi, which, by their very nature, are cut-free proof systems. Since
in first-order logic the backward application of the cut rule is problematic, the
systems are excellently suited as bases for developing successful first-order calculi.
By a straightforward amalgamation of the central ideas in both types of calculi,
we obtain the connection tableau framework, which generalizes the model elim-
ination calculus. The main characteristic of connection tableau calculi is their
missing proof-confluence, that is, not every proof attempt of a provable formula
can be completed successfully. This possibility of making irreversible decisions
in the calculus demands a different organization of the proof process as in res-
olution or systematic tableau procedures, namely, as a deduction enumeration
instead of a formula enumeration procedure. Since in connection tableau proce-
dures, in general, all deductions need to be enumerated, we consider a number
of structural refinements which extremely reduce the numbers of deductions with
a certain resource. We also show that those refinements may weaken the inde-
terministic powers of the calculi. Due to their cut-freeness, connection tableau
calculi are significantly weaker concerning indeterministic power than semantic
trees or resolution systems. In order to remedy this weakness, we develop a new
controlled variant of the cut rule, the folding up operation, which can be applied
without introducing to much additional indeterminism. This technique, which
is properly more powerful than the factorization rule in connection calculi, is
presented as an efficient way of integrating lemmata into the connection tableau
calculus. The folding up operation also gives rise to an additional structural re-
finement of tableaux, which produces a new promising calculus for automated
deduction.

In the fourth chapter we discuss first-order calculi and proof procedures for
automated deduction belonging to three classes. First, we consider Herbrand pro-
cedures; then fundamental properties of resolution calculi are studied; finally, we
develop advanced connection tableau calculi and proof procedures. The presen-
tation follows the historical course of scientific development in the field, since the

viii Introduction

sixties. Accordingly, we start with a review of the Herbrand compactness prop-
erty, which directly suggests a two-step methodology of proving Skolemized first-
order formulae, so-called Herbrand procedures. While the naive approach works
by really enumerating sets of ground instances, which afterwards are decided by
propositional means, a significant improvement can be achieved by enumerating
so-called multiplicities of the input, which then are decided by checking whether
there exist unifiable spanning matings. Although the second approach is superior
to the naive one, it still suffers from the two-step methodology, by employing
two relatively independent subprocedures. The consideration of sets of Herbrand
instances also motivates the introduction of the notion of Herbrand complezity as
an important complexity measure for the classification of first-order calculi. The
Herbrand complexity of a set of formulae S is the minimal size of an unsatisfiable
set of ground instances of the formulae in S. This measure gives rise to a natural
generalization of the notion of Herbrand procedures to so-called Herbrand calculi,
which is the class of all calculi for which Herbrand complexity is a lower bound
to the sizes of proofs.

Subsequently, in concordance with the historical development, we move over to
the first-order resolution calculus, which from the mid-sixties on for fifteen years
almost completely absorbed the efforts in automated deduction. The relative
success of resolution in automated deduction is due to a particularly prosper-
ous combination of two inference mechanism, namely the forward cut rule and
the unification operation, which achieves optimal variable instantiations. This
also illustrates that automated deduction in propositional logic and automated
deduction in first-order logic have completely different emphases, with respect
to the problems considered as relevant for the respective domain. Thus, in
first-order logic, normally, nondenumerably many interpretations exist, so that
interpretation-oriented methods like semantic tree procedures cannot be applied.
A first-order variant of semantic trees, in which the backward cut rule is gener-
alized appropriately, seems not to exist either. Since resolution refinements and
resolution proof procedures have been thoroughly investigated in the literature,
we restrict ourselves to the presentation of two closely related fundamental results
on resolution. First, we demonstrate that resolution is not polynomially bounded
by Herbrand complexity, so that there may exist significantly shorter proofs than
in Herbrand calculi. On the other hand, however, first-order resolution lacks
polynomial transparency, even in the weak sense. Consequently, the number of
inferences in a resolution proof does not give a representative measure of the
actual complexity of the proof, even if only shortest proofs are considered. We
present a class of formulae which have resolution proofs with a polynomial num-
ber of inference steps, but for which the size of any proof is exponential. Both the
superiority of resolution over Herbrand calculi and the intransparency of resolu-
tion are due to the possibility of renaming the variables in derived clauses, which
is a fundamental deduction mechanism. This result motivates the development
of new data structures for the representation of formulae.

Introduction ix

Since the beginning of the eighties, with the connection method and model
elimination, non-resolution frameworks for automated deduction in first-order
logic have been reconsidered. The motivation for the development of alternatives
to resolution is the fact that not the cut rule is the main reason for the relative
success of resolution but the unification operation. Consequently, other proposi-
tional inference systems than resolution can be made into successful first-order
calculi by integrating unification. In fact, the first-order versions of the connec-
tion tableau calculi, on which we concentrate, can even more easily be lifted to the
first-order case, since only unification is needed for first-order completeness and
no additional mechanism, like the factoring rule in resolution. We develop new
powerful pruning mechanisms, which can be implemented in a very efficient way,
and illustrate the superiority of the tableau format over frameworks like model
elimination, by demonstrating the reductive potential of using free selection func-
tions. The folding up operation can be integrated smoothly into the first-order
version of connection tableaux. We conclude our work with the discussion of two
important aspects of connection tableau proof procedures. On the one hand, we
show that due to the permutability of tableaux, pure uninformed enumeration
procedures contain a source of redundancy, which can be removed if information
about the matings corresponding to the tableaux is used. On the other hand, we
point to a further fundamental redundancy, which results from the very nature of
any logic calculi working by decomposing problems into subproblems and solving
the subproblems separately. In order to avoid this redundancy it is necessary to
apply global deletion methods which compare alternative deductions. This ob-
servation motivates the future development of global pruning methods employing
information from the proof search itself.

Acknowledgements

Im am indebted to a number of people without whom this work never would
have been completed. Most of all I like to thank Eveline Krebs for her constant
encouragement and psychological support over the last years. Also, I want to
express my gratitude to Eike Jessen, Bertram Fronhofer, and Ulrich Furbach
for their patience in providing the financial and contractual requirements of this
undertaking. Scientifically, I have benefitted a lot from the stimulating discussions
with Klaus Mayr. Thanks go also to Johann Schumann, Graham Wrightson, and
Christoph Goller for proof-reading parts of the work. Theodor Gemenis was a
tireless advisor in any questions of lay-out and text formatting.

Furthermore, T would like to thank my co-reviewer Christoph Walther, who
identified and helped remove a systematic error in the unification part of the the-
sis. Finally, I am grateful to my advisor Wolfgang Bibel for introducing me to the
subject of automated deduction, for his support during the doctorate procedure,
and his comments on an earlier version of the text which resulted in a number of
significant improvements.

Munich, July 1993 Reinhold Letz

Chapter 1

First-Order Logic

This chapter presents the basic components of first-order logic. After some com-
putational preliminaries in the first section, in Section 2 the syntax and semantics
of ordinary first-order logic is introduced. The automatic processing of logic has
revealed that the standard representation of logical expressions is not optimally
suited to an efficient computational treatment. For this reason, more compact
representational formats are discussed. Section 3 presents the well-known graphi-
cal encoding of logical expressions by use of directed acyclic graphs. Since graph-
ical representations are very hard to handle textually, in Section 4 a string vari-
ant of the graphical encoding is developed, the definitional first-order language.
Subsequently, we discuss the basic modification mechanisms used in automated
deduction, namely, the instantiation operations of matching and unification. In
Section 5 these operations are introduced for ordinary logical expressions, and in
Section 6 matching and unification are generalized to the handling of definitional
expressions. Section 7 concludes this chapter with the discussion of important
sublanguages and normal forms of the first-order language.

1.1 Computational Preliminaries

This work is concerned with giving complexity measures on the space needed
for encoding various mathematical objects on a computer and on the space and
time needed for manipulating the represented objects. For this purpose uniform
and realistic representation models are necessary for describing space and time
consumption.

1.1.1 Basic Abstract Machine Models

In order to make the complexity measures independent of actually existing hard-
ware, which is diverse and rapidly changing, it is reasonable to base the consider-
ations on abstract machine models, mathematical idealizations of real computers.
There are a number of basic abstract computation and machine models like Tur-

2 First-Order Logic

ing machines [Aho et al., 1974]—the standard mathematical model for string-
oriented computation—or random access machines [Cook and Reckhow, 1973]—
the idealized von Neumann computer. All these models have in common that
one can distinguish between a finite program—formulated with a finite number
of elementary symbols—which is to operate on machine states or configurations.
The program determines for any machine state a set of possible subsequent ma-
chine states, hence, mathematically, the program defines a transition relation
between machine states. A computation on a machine can then be defined as
a sequence of successive machine states. While Turing machines, random access
machines, and other generally accepted basic machine models differ in their space
and time measures, there seems to be the general assumption that all “realistic”
frameworks can simulate each other within a constant factor overhead in space
and a polynomially bounded overhead in time (as formulated, for instance, in
[van Emde Boas, 1990] which provides an introduction to this subject). In fact,
this assumption can be used to define realistic machines if, for example, Turing
machines are taken as realistic.

1.1.2 Sequences and Strings

In this work, we subscribe to a string-oriented computation model, which is the
most natural representation framework for the objects we are dealing with. In
order to introduce strings formally some basic definitions are needed.

Definition 1.1.1 (Partial sequence and sequence) Any mapping' with its do-
main being a subset of the positive integers N, while its range may be any set
of objects, is called a partial sequence. The length of a sequence S, written
length(S), is its cardinality, card(S). A partial sequence S is called connected if
for arbitrary integers i < j < k: whenever i € domain(S) and k£ € domain(S),
then j € domain(S). A connected partial sequence S is named a sequence if
1 € domain(S). A partial connected sequence S is said to be a subsequence of a
partial connected sequence S’ if S C S'. If a subsequence S’ of a sequence S is
itself a sequence, then S’ is termed a prefiz of S.

Notation 1.1.1 We denote the values S(i) of partial sequences with S;.
Connected partial sequences {(i,S;), (i+1,Sit1), (i+2, Sit2),...} are written
“(S;, Sis1, Sita, - --) where the left index i is omitted for sequences, i.e., for i = 1.

Example 1.1.1 Given a sequence of letters S = (‘¢’,'t’.,‘a’,'r’,‘t’,‘’,'n’,‘g’).
The sequence (‘s’,‘t’.,‘a’,'r’,‘t’) is a prefix of S, the partial connected sequence
S’ = 3(‘a’)'r''t") is a subsequence of S, and the partial sequence S" =

{(1,$"),(2,t"), (4, 1), (6,1),(7,n’), (8, ‘g") }, which is a subset of S, is no subse-
quence of S.

! As usual, we view relations and mappings as sets of ordered pairs.

1.1 Computational Preliminaries 3

Definition 1.1.2 (Occurrence) For any partial sequence S a partial function
nthg: N — range(S) can be defined that maps any positive integer i < card(S)
to that value S; for which there are i elements (k,Si) in S with £ < j. The
mapping nthg is a sequence and is named the sequence normalization of the
partial sequence S. If S” is the sequence normalization of a subsequence S’ of
a sequence S, then S’ is called an occurrence of S” in S. Also, all objects in
the range of a partial sequence S are said to occur in S. We call an occurrence
S’ of a sequence S” (an occurrence *(0) of an object o) in a sequence S the k-th
occurrence of S" (of the object o) in S if there are k—1 occurrences of S” (of the
object 0) in S such that their least domain numbers are smaller than the least
domain number of S’ (of ¥(0)).

Referring to the sequences given in Example 1.1.1, the sequence

(‘s’¢7,'r",9,‘n’,‘g’) is the sequence normalization of the partial sequence S”, and

the subsequence ?(‘a’,'r’,t’) of S is an occurrence of its sequence normalization
(‘a’,'r’'t") in S.

Definition 1.1.3 (Alphabet) An alphabet is a countable set of objects, called
symbols.

Definition 1.1.4 (String) A string or word over an alphabet is a finite sequence
of symbols from the alphabet. A symbol string is a string of length 1. Any
subsequence S of a string S’ is called a substring of the string S’, and if S is a
symbol string, it is said to be a subsymbol of S’.

Notation 1.1.2 Normally, we abbreviate any string (si, ..., s,) by just writing
its symbols side by side as s; - -+ s,. For the case of a symbol s, this induces the
ambiguity that we do not know whether by writing ‘s’ the symbol or the unary
string of this symbol is meant. We shall systematically exploit this ambiguity in
that we shall normally not distinguish between a symbol and its symbol string.
The context will clear up possible uncertainties.

Definition 1.1.5 (Concatenation of strings) If Wi, Ws, ..., W, are strings with
lengths Iy, 15, ..., l,, respectively, then we call the string defined by

Wy (7) for1 <i<y
W(Z) _ WQ(Z—ll) forly <i<ly+1,
Wali =l = =1lpq) forly+- 4l <i <+ +1,

the concatenation of Wi, Wy, ..., W, which is written W ;W5 .- W,.

4 First-Order Logic

1.1.3 Space and Time Complexity Measures

The space complexity of the objects treated in this work is measured in terms of
encodings of the objects as strings over some alphabet. The idea of such encodings
is that any unstructured object o is represented as a string over the alphabet, and
any finite structure of objects oq,...,0, is encoded as a string composed of the
object representations plus an appropriate encoding of the structure.

Note By unstructured objects we mean objects such that, for any two of them,
it can merely be determined whether they are different or identical. Accordingly,
the only information expressed in a set S of unstructured objects is the cardinality
of the set.

We use a number of space complexity measures. Only one of them is real-
istic with respect to actual physical devices, the others are all unrealistic but
convenient. A realistic size of any object o, written #(0), is the length of an
appropriate, i.e., structure-preserving, string representation of the object over a
given finite alphabet. All realistic sizes of an object differ only by a constant
factor, thus reflecting the assumed correspondence in space complexity between
the generally accepted basic machine models mentioned above. Besides the real-
istic measure, we use various more abstract space complexity measures, written
size(0). The simplest of these unrealistic measures takes the length of an ap-
propriate string representation of the object over an infinite alphabet as its size.
This measure is extremely convenient, because it permits that any unstructured
object can be encoded as a symbol string, and hence has the size 1. Since any
representation of an object using an infinite alphabet can be encoded as a string
of a length of the order O(nlogn) over a finite alphabet, a realistic size of an
object can be easily computed from the mentioned unrealistic size. Occasionally,
we shall go further and use situation-dependent space complexity measures which
are even more convenient. Unrealistic measures are computationally adequate for
those abstract considerations where the trade-off between the realistic and the
employed unrealistic measure does not matter. Whenever the representativeness
of an unrealistic model is doubtful, we shall relate it to the realistic model—this
will be the case in Section 2.3.

The complexity of a computation will be measured in terms of its time com-
plexity, since the space complexity of a computation, as the maximal size of its
states, gives only a very rough complexity measure?. The time complexity is
finer and also has implications on the space complexity. A useful time com-
plexity measure for any computation in a basic machine model is the number of
transition steps, i.e., the length of the sequence of configurations minus 1. In
order to make this uniform time measure a realistic measure, it is necessary that
the hidden factor, namely, the time spent for a single transition operation, be

2Note, however, the strong influence of the increase in size on the time complexity, which is
elaborated in Section 2.3.

1.2 Syntax and Semantics of First-Order Logic 5

bounded in a certain way. Here, Turing machines provide a realistic model by
permitting the manipulation of only one symbol in each step—manipulations of
arbitrarily large structures in one transition, like in the case of a random access
machine, demand different measures, like logarithmic time, to render them real-
istic. Under this assumption, all variants of Turing machines and the logarithmic
time versions of random access machines are polynomially related (again consult
[van Emde Boas, 1990]).

The mentioned realistic measures are defined in terms of the machine resources
only, they do not consider the input of a computation as a complexity parameter.
Accordingly, a natural abstraction from the realistic time measures is to quantify
machine resources with respect to the input sizes of computations. This unrealis-
tic measure is very useful for the computational assessment of a given procedure,
since one is often not so much interested in the actual computing time of the pro-
cedure but in the relation between the input size and the computing time. Also,
from this unrealistic measure the actual computing time can be easily obtained.
Consequently, this measure, with the abstraction modulo polynomials, will be
the standard time complexity measure in our investigations. In Section 2.3, we
shall use the input size and the number of steps of a computation as the two
ingredients to define a generalized class of basic machine models, related through
the property of polynomial transparency.

1.2 Syntax and Semantics of First-Order Logic

The language of first-order logic has a structure which is a very convenient and
powerful formal abstraction from expressions and concepts occurring in natural
language, and, most significantly, in mathematical discourse. The expressions of a
first-order language are particular strings over an infinite alphabet of elementary
symbols.

1.2.1 First-Order Signatures

Definition 1.2.1 (First-order signature) A first-order signature® is defined as a

pair ¥ = (A, a) consisting of a denumerably infinite alphabet A and a partial
mapping a: A — Ny, associating natural numbers with certain symbols in A,
called their arities, such that A can be partitioned into the following six pairwise
disjoint sets of symbols.

1. An infinite set V of variables, without arities.

2. An infinite set of function symbols, all with arities such that there are in-
finitely many function symbols of every arity. Nullary function symbols are
called constants.

3In this work solely untyped signatures will be used.

6 First-Order Logic

3. An infinite set of predicate symbols, all with arities such that there are
infinitely many predicate symbols of every arity.

4. A set of connectives consisting of five distinct symbols =, A, V, —, and
<>, the first one with arity 1 and all others binary. We call — the negation
symbol, A is the conjunction symbol, V is the disjunction symbol, — is the
material implication symbol, and < is the material equivalence symbol,

5. A set of quantifiers consisting of two distinct symbols V, called the universal
quantifier, and 3, called the existential quantifier, both with arity 2.

6. A set of punctuation symbols consisting of distinct symbols (,), and ,,
without arities.

Notation 1.2.1 Normally, variables and function symbols will be denoted with
lower-case letters and predicate symbols with upper-case letters. Preferably, we
use for variables letters from ‘u’ onwards; for constants the letters ‘a’, ‘b’, ‘¢’, ‘d’,
and ‘e’; for function symbols with arity > 1 the letters ‘f’, ‘¢’ and ‘A’; and for
predicate symbols the letters ‘P’, ‘Q)’ and ‘R’; nullary predicate symbols shall
occasionally be denoted with lower-case letters. Optionally, subscripts will be
used. With the same letters the corresponding symbol strings will be denoted,
too. We shall extend the terminology in such a way that unary strings containing
variables, function, or predicate symbols are also called wvariables, function, or
predicate symbols, respectively—the context will clear up possible ambiguities.
We will always talk about symbols of first-order languages and never give examples
of concrete expressions within a specific object language.

1.2.2 First-Order Expressions

Given a first-order signature X, the corresponding first-order language is defined
inductively? as a set of specific strings over the alphabet of the signature. In the
following, let ¥ = (A, a) be a fixed first-order signature.

Definition 1.2.2 (Atomic term) Every (symbol string of a) constant or variable
in A is said to be an atomic term over ¥.

Definition 1.2.3 (Term) (inductive)

1. Every atomic term over X is a term over X.

2. If f is (the symbol string of) an n-ary function symbol in A with an arity
n > 1 and ty,...,t, are terms over ¥, then the concatenation f(t,...,%,)
is a term over X.

4In inductive definitions we shall, conveniently, omit the explicit formulation of the necessity
condition.

1.2 Syntax and Semantics of First-Order Logic 7

Definition 1.2.4 (Atomic formula) (inductive)

1. Every (symbol string of a) nullary predicate symbol in A is an atomic
formula, or just atom, over X.

2. If P is (the symbol string of) an n-ary predicate symbol in A with an arity
n > 1and ty,...,1, are terms over 3, then the concatenation P(ty,...,t,)
is an atomic formula, or atom, over X.

Definition 1.2.5 (Formula) (inductive)
1. Every atom over ¥ is a formula over X.

2. If F and G are formulae over ¥ and x is (the symbol string of) a variable
in A, then the following concatenations are also formulae over X:
= F, called the negation of F,
(F' A G), called the conjunction of F' and G,
(F'V G), called the disjunction of F' and G,
(F — @), called the material implication of G by F,
(F + G), called the material equivalence of F and G,
Vo F, called the universal quantification of F' in x, and
dxF, called the existential quantification of F in x.

Definition 1.2.6 ((Well-formed) expression) All terms and formulae over ¥ are
called (well-formed) expressions over .

Definition 1.2.7 (First-order-language) The set of all (well-formed) expressions
over X is called the first-order language over ¥, which we write Ly.

Definition 1.2.8 (Complement) If a first-order formula F' has the structure -G,
then G is the complement of F', otherwise, i.e., in case F'is not a negated formula,
then the complement of F'is —=F.

Notation 1.2.2 The complement of a formula F'is denoted with ~F'.

Definition 1.2.9 (Subexpression) If an expression ® is the concatenation of
strings Wy, ..., W, in concordance with the Definitions 1.2.2 to 1.2.5, then any
expression among these strings is called an immediate subexpression of ®. The
sequence obtained by deleting out all strings from W, ..., W, which are not ex-
pressions is called the immediate subexpression sequence of ®. Among the strings
Wy, ..., W, there is a unique symbol string W whose symbol is a connective, a
quantifier, a function symbol, or a predicate symbol; W and its symbol are called
the dominating string and the dominating symbol of @, respectively. An expres-
sion @' is said to be a subexpression of an expression ® if the pair (&', ®) is in
the transitive closure of the immediate subexpression relation. Analogously, the
notions of (immediate) subterms and (immediate) subformulae are defined.

8 First-Order Logic

Example 1.2.1 Presupposing our conventions of denoting symbols and sym-
bol strings, a formula P(z, f(a,y), z) has the immediate subexpression sequence
(x, f(a,y), x); the immediate subexpressions = and f(a, y); the subexpressions x,
f(a,y), a, and y; and, lastly, P as dominating symbol (string).

Definition 1.2.10 (Scope of a quantifier occurrence) Let S = *(Q) be a sub-
symbol of an expression ® where () is a quantifier. Due to the fact that ® is an
expression, there must exist an occurrence S’ = %(Q, z,...) of a quantification in
®. The substring S’ is called the scope of S in ®. Any substring of S’ is said to
be in the scope of S.

Example 1.2.2 In a formula Vo3y(P(z,y) V Ve=P(z,y)), i.e., in the string
vz, 3,9, P, (,x,,,y,),V,V,2,—~, P, (,x,,,y,),),), the scope of the first quanti-
fier occurrence (V) is the whole formula, whereas the scope of '*(V) is the substring
B, z,~, P (,z,,,y,),). The subsymbol '¥(x) is both in the scope of (V) and in
the scope of '3(V).

Definition 1.2.11 (Bound and free variable occurrence) If an occurrence *(z) of
a variable x in an expression @ is in the scope S of a quantifier subsymbol 7(Q)
which is immediately followed by an occurrence of the same variable x, and if
‘() is not in the scope of some quantifier occurrence *(Q') immediately followed
by an occurrence of x in a proper substring of S, then (x) is said to be bound
by 7(Q). A variable occurrence ‘(z) is called free in an expression ® if ?(z) is not
bound by some quantifier subsymbol of .

Referring to Example 1.2.2, the subsymbol '8(z) is bound by '*}(V), but not
by (V) or 3(3). Clearly, every occurrence of a variable in a well-formed expression
is bound by at most one quantifier subsymbol of the expression.

Definition 1.2.12 (Closed formula) Any formula which does not contain free
variable occurrences is called a closed formula.

Definition 1.2.13 (Closure of a formula) Let F' be a formula F with {z1,...,z,}
being the set of free variables occurring in F', then the formula Vz,---Vz,F
is called a wuniversal closure of F, and the formula dz;---dx,F is called an
existential closure of F'.

1.2.3 Semantics of First-Order Logic

A logic can be viewed as a pair (£, R) consisting of a logical language £—in our
case a first-order language—and a relation R on the expressions in £. Among
the relations on logical expressions, the binary relations of logical consequence are
most important. Any logical consequence relation attempts to formalize an intu-
itively given paradigm of correct reasoning. Historically the first definitions of log-
ical consequence relations were formulated in purely syntactic terms, by specifying

1.2 Syntax and Semantics of First-Order Logic 9

systems of structural rules for deducing logical expressions from logical expres-
sions [Frege, 1879, Hilbert and Ackermann, 1928, Lukasiewicz and Tarski, 1930,
Gentzen, 1935]. The sensibility of one thus defined system can be motivated by
making plausible that every rule in the system corresponds to an accepted rule
in an intuitively given paradigm of correct reasoning. This way, different systems
were developed and indeed turned out to define the same consequence relations,
thus providing a completely formal motivation for the significance of the specified
consequence relations.> Among the consequence relations, the relation of classical
logical consequence, written -, plays a central role.

Initiated by the work of Tarski [Tarski, 1936], an alternative way of character-
izing logics became customary. Tarski showed that it is possible to give declarative
meaning to the expressions of a logic language, in analogy to the situation in nat-
ural language where certain expressions can be interpreted as denoting objects in
the real world. The standard way of giving semantics to a formal language is by
specifying mappings, called interpretations, from the signature and the expres-
sions of the language to mathematical objects.

Definition 1.2.14 (Universe) Any non-empty set of objects is called a universe.

Notation 1.2.3 For every universe U, we denote with Ur the collection of map-
pings Upen, U" — U, and with Up the collection of relations U,cn, pow(U")
where pow(S) denotes the power set of a set S. Note that any nullary mapping
in Ur is from the singleton set {(} to U, and hence, subsequently, will be iden-
tified with the single element in its image. Any nullary relation in Up is just
an element of the two-element set {(, {0}} (= {0,1}, according to the Zermelo-
Fraenkel definition of natural numbers). We call the sets () and {0} truth values,
and abbreviate them with L and T, respectively.

In the following, we denote with £ a first-order language, with ¥, F, and P the
sets of variables, function symbols, and predicate symbols in the signature of L,
respectively, and with 7 and W the sets of terms and formulae in £, respectively.

Definition 1.2.15 (L-structure, interpretation) An L-structure is a pair (L, U)
consisting of a first-order language £ and a universe U. An interpretation for an
L-structure (£,U) is a mapping Z: F U P — Ur U Up such that

1. Z maps every n-ary function symbol in F to an n-ary function in Uz, and
2. 7 maps every n-ary predicate symbol in P to an n-ary relation in Up.

Definition 1.2.16 (Variable assignment) A wariable assignment from a first-
order language £ to a universe U is a mapping A: V — U.

5 Just like the equivalence of different formalizations of computability furnishes a completely
formal support for Church’s Thesis.

10 First-Order Logic

Definition 1.2.17 (Term assignment) (inductive)

Let Z be an interpretation for an L-structure (£,U), and let A be a variable
assignment from £ to U. The term assignment of T and A is the mapping Z:
T — Ur defined as follows.

1. For every variable z in V: T4(z) = A(x).
2. For every constant ¢ in F: T4(c) = Z(c).

3. If f is a function symbol of arity n > 0 and ¢, ...,¢, are terms, then

TAf(tr, o 1) = Z(TAM), . TA).

Definition 1.2.18 (Formula assignment) (by simultaneous induction)

Let Z be an interpretation for an L-structure, and let A be a variable assignment
from £ to U. The formula assignment of T and A is the mapping J34: W — Up
defined as follows. Let F' and G denote arbitrary formulae of L.

1. For any nullary predicate symbol p in the signature of £: 34(p) = Z(p).
2. If P is a predicate symbol of arity n > 0 and ¢, ...,t, are terms, then

T if (IA(tl), . ,IA(tn)) € I(P)
1 otherwise.

JAP(t,.. . ty)) = {

3. FA(FVG)) = { T ESE =T or 3G =T
: P ={ T e,

5. FA((F A G)) = FA((=F v =~G)).

6. FA((F = G)) = F((-F V G)).

7. FA((F & G)) = FA(((F = G) A (G = F))).

8. Let A, be the collection of variable assignments from £ to U differing from
A in the value of x only.

T if 34(F) = T for all elements A’ of A,

~A _
I (Vo F) _{ 1 otherwise.

9. JA(3xF) = 3A(=Va—F).

1.2 Syntax and Semantics of First-Order Logic 11

Note The induction in Definition 1.2.18 runs over the noetherian ordering on the
expressions in £ defined as follows: every expression in the definiens is smaller
than the expression in the definiendum. Moreover, every formula in £ occurs at
the definiendum position in this ordering. Therefore, for any interpretation Z for
an L-structure and any variable assignment from £ to U, the respective formula
assignment is a total mapping on the language L.

We are particularly interested in interpretations for closed formulae. From
the definition of interpretations (item 8) it follows that, for any closed formula
and any interpretation Z, the respective formula assignments are all identical,
and hence do not depend on the variable assignments. Consequently, for closed
formulae, we shall speak of the formula assigment of an interpretation Z, and
write it J.

To comprehend the manner in which formula assignments give meaning to
expressions, see Example 1.2.3. The example illustrates how formulae are in-
terpreted in which a variable is associated with different quantifier occurrences.
Loosely speaking, Definition 1.2.18 guarantees that variable assignments obey
“dynamic binding” rules (in terms of programming), in the sense that a vari-
able assignment to a variable x for an expression ® is overwritten by a variable
assignment to the same variable x in a subexpression of ®.

Example 1.2.3 Consider two closed formulae ® = Vz(3zF(x) A G(z)) and
U = Vz3z(F(z) A G(x)). Given a universe U = {uq,us}, and an interpretation
I(F)=Z(G) = {u1}, then 3(®) = L and J(¥) =T.

Definition 1.2.19 (Model) Let I be any set of formulae of a first-order language
L. An interpretation Z for an L-structure (L£,U) is called a model for T if, for
each variable assignment A from £ to U, 34(®) = T for each formula ® € T. If
[is a singleton set {®}, we also shall say that Z is a model for the formula ®.

Definition 1.2.20 (Satisfiability, validity) Suppose I' is any set of formulae of a
first-order language £. We call T' satisfiable if there exists a model for I'. If T’
is not satisfiable, it is named unsatisfiable. We say that T' is valid if, for every
universe U, every interpretation for (£,U) is a model for T'. If T is not valid, it
is termed inwvalid.

Definition 1.2.21 ((Logical) implication, equivalence) Let I' and A be two sets
of formulae of a first-order language £. We say that A is (logically) implied by
[, written T' = A, if every model for T is a model for A. If T" and A imply each
other, they are named (logically) equivalent, written T = A. Again, if one or
both sets are singletons, we use the same terminology for their elements.

According to this definition, any first-order formula is logically equivalent to
any-one of its universal closures.

12 First-Order Logic

Note The logical implication relation = on the set S of formulae of a first-
order language is identical to the classical logical consequence relation - on S,
which is defined purely syntactically (this will be shown in Chapter 4 of this
work). Accordingly, declarative semantics provides an alternative non-procedural
characterization of logical consequence. As such, declarative semantics can be
very helpful for many purposes. For instance, it is often much easier to prove
the equivalence of two logical rule systems by relating them via the declarative
semantics.

The following important equivalences between first-order formulae can be
demonstrated easily.

Proposition 1.2.1 Let F', G, and H be arbitrary first-order formulae.
(a) F =—-=F.

(b) (FAF)=F.

(c) (FVF)=F.

(d) (FAG)=(GAF).
(e) (FVG)=(GVF).
(f) (F+ G)=(G+ F).
(9) (FAG)NH)=(FA(GAH)).
(h) (FVG)VH)=(

(1) (

(j) ~(FANG) = (=F V=G).

(k) =(FVG) = (=F A=G).

() FV(GANH)=(FVG)A(FVH)
(m) FA(GVH)=(FAG)V (FAH)
(n) F— G=-G — —F.

(o) =3xF =Vz—F.

(p) —VzF = Jz-F.

(q) Yx(F N G) = (Vo F AVzQ).

(r) x(FV G) = (FzF Vv I2G).

Fv(GV H)).

(F+ G)+ H)=(F+ (G+ H)).

(A-idempotency)

(V-idempotency)
(A-commutativity
(V-commutativity
(¢+>-commutativity

(A-associativity

)
)
)
)
(V-associativity)
(«+>-associativity)

(De Morgan law for A)
(De Morgan law for V)
(V-distributivity
(A-distributivity
(Contraposition)
(3V-conversion
(V3-conversion
(VA-permutability

)
)
)
)
)
)

(3V-permutability

Notation 1.2.4 In order to gain readability, we shall normally spare brackets.
As usual, we permit to omit outermost brackets. Furthermore, for arbitrary
binary connectives o1, 09, any formula of the structure F oy (G os H) may be
abbreviated by writing just F oy G oy H (right bracketing).

1.3 Graphical Representation of Logical Expressions 13

Logical formulae possess the fundamental property that under certain condi-
tions subformulae can be substituted by equivalent subformulae without changing
the meaning of the formulae.

Lemma 1.2.2 (Replacement Lemma) Given a formula ® of a first-order lan-
guage L and any subformula F' of ®. If G is any formula which is logically
equivalent to F' where F' and G possess the same sets of free variables, and ¥ is a
formula obtained from ® by replacing some occurrences of F' in ® with G, then
® and ¥ are logically equivalent.

Proof Straightforward from the definition of formula assignments. 0]

The concepts of material (object-level) implication and logical (meta-level)
implication of first-order logic are connected in the following simple manner.

Theorem 1.2.3 (Implication Theorem) Given two closed first-order formulae ®
and U. & = U if and only if the formula ® — ¥ is logically valid.

Proof For the “if”-part, assume ® — U is logically valid. Let Z be an arbitrary
model for ®. Then, J(®) = T. By assumption and Definition 1.2.18, J3(®) = L
or J(¥) = T. Consequently, 3(¥) = T, and Z is a model for . For the “only-
if”-part, suppose ® = W. Let Z be an arbitrary interpretation for ® — W. Either,
J(®) = L; then, by Definition 1.2.18, 3(® — ¥) = T. Or, J(®) = T; in this
case, by assumption, J(¥) = T, too; hence, by Definition 1.2.18, J(® — ¥) = T.
Therefore, in either case 7 is a model for & — W, 0]

1.3 Graphical Representation of Logical Ex-
pressions

The ordinary string representation of logical expressions suffers from two weak-
nesses. On the one hand, the representation does not easily reveal the internal
compositional structure of an expression. On the other hand, a certain subex-
pression may occur multiply within an expression, so that the ordinary string
representation is not the most compact format for encoding logical expressions.

1.3.1 Directed Acyclic Graphs

An alternative two-dimensional framework for representing logical expressions is
offered by certain graphs.

Definition 1.3.1 (Directed graph) A directed graph is a triple (V, E, f) where V/
and F are disjoint sets of objects called vertices (or nodes) and edges, respectively,
and f is a total mapping from E into V' x V. If f(e) = (v, v2), then the edge e
is said to go out of or begin in the vertex vy and to go into or end in the vertex

14 First-Order Logic

v9; furthermore, the vertex v; is called a predecessor of the vertex v, and v, is a
successor of vy in the graph. Any vertex without successors is called a leaf, and
any vertex without predecessors is called a root. A path in or through a directed
graph is any sequence S of edges (e, e, €3, ...) taken from E such that if e; ends
in a vertex v;, then e;;; begins in v;, for every ¢ > 0. A branch in a dag is a path
S = (€1, €9, €3,...) beginning in a root and satisfying, for every e; in S, whenever
e; ends in a non-leaf vertex, then S contains also an edge e; 1. A directed graph
is called rooted if it contains exactly one vertex without a predecessor. A directed
graph is said to be acyclic if no path in the graph contains the same vertex twice.

Definition 1.3.2 (Isomorphy of directed graphs) Two directed graphs t; =
(Vi, By, f1) and ty = (Va, Es, fy) are said to be isomorphic if there are two total
and injective mappings ay from V; onto V5 and ap from E; onto E, such that,
for any edge e € Ey with fi(e) = (vi,v2): falar(e)) = (ay(v1), ay(vq)).

Notation 1.3.1 (Dag) A dag is a directed graph which is rooted and acyclic.

Definition 1.3.3 (Dag consistency) A set S of dags is said to be consistent if
for any two dags t; = (Vi, E1, f1) and ty = (Vs, By, fo) in S:
1. for every edge e € E1 N Ey: fi(e) = fa(e), and

2. for every vertex v € V; N Vy: each edge going out of v in t; is an outgoing
edge of v in 5.

Definition 1.3.4 (Subdag) Let t = (V. E, f) be a dag. A dag (V',E', f") is
called a subdag of t if V! CV, E' CE, f' C f, and {t,t'} is consistent.

In Figure 1.1 three dags o, t;, and t5 are displayed. Nodes are represented
by circles and edges by arrows. The entire graph, the dag t,, is consistent with
t1, and t; is consistent with ¢,, whereas t; and 5 are not consistent, because the
root of ¢, has merely three outgoing edges. Accordingly, ; is a subdag of tq, but
ty 1S not.

Definition 1.3.5 (Ordered dag) An ordered dag is a pair (t,O) consisting of a
dag t and a mapping O associating with every vertex a strict linear ordering on
its outgoing edges. We say that an edge which is the i-th element in such an
ordering is the i-th edge of the respective source vertex. A set of ordered dags is
said to be consistent if the contained dags are consistent and the outgoing edges
of any node are ordered in the same way in every dag of the set.

In general, the vertices and edges of dags are only used as index sets and will
be labelled with certain objects.

Definition 1.3.6 (Labelled (ordered) dag) A labelled (ordered) dag is a pair (¢, \)
consisting of an (ordered) dag and a (possibly partial) labelling function A on its
vertices and edges. A set S of labelled (ordered) dags is said to be consistent if
the contained (ordered) dags are consistent and every labelled vertex and edge is
labelled with the same object in every element of S.

1.3 Graphical Representation of Logical Expressions 15

Figure 1.1: Three rooted directed acyclic graphs.

Convention We will graphically represent labelled dags by drawing arrows for
the edges and by marking them with (names of) their labels, if existing. In
labelled dags the nodes are normally not explicitly depicted, instead we display
(names of) their labels. If ordered dags are displayed, we shall assume the order
to be from left to right.

1.3.2 Symbol Dags

Logical expressions can be represented with dags by labelling their vertices with
symbols.

Definition 1.3.7 (Symbol dag) (inductive)

1. Any labelled ordered dag T = (¢, A\) where ¢ consists just of one vertex v
labelled with the symbol of a symbol string s is a symbol dag of s.

2. Suppose ® is an expression with the immediate subexpression sequence
®,...,P, and the dominating symbol s, and let T7,...,T,, be consistent
symbol dags of the expressions ®q,...,d,, respectively. Any labelled or-
dered dag obtained by forming the union of the dags t,...,¢,, adding a
new root vertex r, labelled with s, and adding n new edges ey, ..., e, con-
necting r with the roots of the t1,...,%,, in the respective order, is a symbol
dag of the expression .

16 First-Order Logic

One and the same logical expression may have symbol dags of different struc-
tures, i.e., non-isomorphic underlying dags, as illustrated in Figure 1.2.

o
\f/ f/ \f f
hooohobod

Figure 1.2: Symbol dags of a term f(f(f(a,a), f(a,a)), f(f(a,a), f(a,a))).

Definition 1.3.8 ((Edge) size of a symbol dag) The (edge) size of a symbol dag
t, size(t), is the number of its edges.

As will be shown in the next section, any symbol dag T' can be appropriately
represented as a string over a finite alphabet such that the realistic size #(7T') is
of the order O(n logn) with respect to size(T'), where n is the number of edges
of T'. Consequently, it is natural to take the number of edges as a representa-
tive size measure of a symbol dag; note that the number of nodes may not be
representative.

Definition 1.3.9 (Minimal symbol dag) A symbol dag T of an expression ® is
called minimal if no symbol dag T of ® has a smaller edge size than T'. A symbol
dag T of an expression ® is called strongly minimal if it is minimal and no symbol
dag T" of ® has a smaller number of nodes than 7.

In strongly minimal symbol dags of an expression every subexpression is rep-
resented only once, and in minimal symbol dags every complex, i.e., non-atomic,
subexpression is represented only once. Note, however, that no edge size reduc-
tion can be achieved by representing atomic expressions only once.

Proposition 1.3.1 Any two strongly minimal symbol dags for an expression
have isomorphic underlying dags.

Proof Let T1 = <<<V1,E1,f1>,01>,)\1> and TQ = <<<‘/2,E2,f2>,02>,)\2> be
strongly minimal symbol dags of a first-order expression ®. Then, card(F;) =
card(Fy), and card(V;) = card(V;). Furthermore, due to the strong minimality,
no two distinct symbol subdags of 77 are symbol dags of one and the same ex-
pression, and also for 75. We define two mappings oy and ag, as follows. First,

1.3 Graphical Representation of Logical Expressions 17

given any vertex v; € V; being the root of a symbol dag 7T; of a subexpression ®;
of &, we set ay (v;) = v} where v/ is the vertex in V; being the root of the symbol
dag T} of ®;. Clearly, ay: Vi — V4 is total, injective, and surjective. Secondly,
for any vertex v; € Vi, let V = (eq, ..., ex) be the sequence of edges beginning in
v;, in the order induced by Oy, and suppose V' = (e}, ..., e/) to be the sequence
of edges beginning in ay (v;), in the order induced by Oy. Since the symbol dags
with roots v; and v/ represent the same expression, by the definition of symbol
dags, k = 1. Set ag(e;) = ej, for any 1 < j < k. Clearly, ag: By — E
is total, injective, and surjective, too; furthermore, for any edge e € F; with

file) = (vi,v9): folag(e)) = (av(v1), av(va)). [

Accordingly, we can speak of the strongly minimal symbol dag of an expres-
sion, which can be seen as a normal form. In Figure 1.2, the rightmost symbol
dag is the strongly minimal symbol dag of the respective expression.

Note Given any symbol dag ¢ of an expression ®, it can be normalized, i.e.,
transformed into the strongly minimal symbol dag of ®, with linear cost with
respect to the size of ¢; the transformation works in a bottom-up manner level
by level (starting at the leaves) by identifying lists of edges pointing to the same
vertices. Consequently, in principle, one could always work with strongly minimal
symbol dags (but consider the remarks at the end of the next section).

As a very useful specialization of rooted dags we introduce the concept of
trees.

Definition 1.3.10 (Tree) A tree is a rooted dag in which no vertex has more
than one predecessor. The depth of a vertex in a tree is the number of nodes
dominating N.

Convention Subtrees are defined in analogy to subdags. Trees will normally be
displayed with roots upward, and since the direction of edges in trees is always
assumed downward, we shall often omit the arrow heads.

Definition 1.3.11 (Symbol tree) If the symbol dag of an expression ® consists
of a tree, then it is called a symbol tree of ®.

As in the dag notation, in the tree representation there is no need for punctu-
ation symbols. But in contrast to symbol dags, all symbol trees of an expression
are isomorphic—they may differ in their index sets only. Therefore, we will speak
of the symbol tree of an expression. In Figure 1.3 the symbol tree of the expres-
sion from Figure 1.2 is displayed. From the viewpoint of space complexity it is
important that the string and the tree representation of logical expressions are
polynomially related representation schemes.

Proposition 1.3.2 There are constants ¢, ca such that for the symbol tree t of
any expression ®: size(t) < ci(length(®)) and length(P) < co(size(t)).

f/f\f
SN N
A AAA

Figure 1.3: Symbol tree of a term f(f(f(a,a), f(a,a)), f(f(a,a), f(a,a))).

Apparently, the second of these two facts does not hold for the dag represen-
tation of logical expressions, even if we replace ‘constant’ by ‘polynomial’.

Proposition 1.3.3 For every polynomial p there is a symbol dagt of an expres-
sion ® such that length(®) > p (size(t)).

Proof Immediate from Figures 1.2 and 1.3. 0]

Consequently, the dag format permits a more compact representation of logical
expressions, and hence a considerable extension of the power and applicability of
logic.

Note Unfortunately, there are two reasons for the fact that the dag representa-
tion of logical expressions is not really used in logical practice. The first reason is
a conceptual one. It is based on the misunderstanding that the question of how
logical expressions are to be represented ought not concern the designer of logical
languages and calculi, but belong to the task of implementing logical systems in
an optimal way. Since implementations contain many irrelevant details, such a
position impedes the study of essential complexities of logical systems. The other
reason for the fact that the dag notation is not used by logicians is simply that it
is very uncomfortable and complicated to draw graphs and to communicate and
process graphical information textually®, so that the graph representation is not
sufficiently supported.

1.4 The Language of Definitional Expressions

In general, there are two different principal approaches of solving the represen-
tation problem of logical expressions. On the one hand, one can leave logical
expressions suboptimal with respect to compactness, and put an additional layer
on top of logical expressions, where more compact representations like graphs are

6 Although directed graphs can be implemented very efficiently on a computer.

1.4 The Language of Definitional Expressions 19

at hand. The advantage is that different representations for one and the same
logical expression are handled on the meta-level, so that equality of logical ex-
pressions on the object level remains string identity. But this may not help in
practice, for complexity assessments will then be made for the representations and
not for the object level, thus making the object level superfluous. Consequently,
we shall pursue the other possibility and generalize the object level itself.

1.4.1 Definitional Expressions

Since something as powerful as the dag representation seems necessary, but two-
dimensional information is too hard to handle textually, the natural approach
is to look for a compact one-dimensional (i.e., string) encoding of dags which is
convenient for the logician. Customary encodings of graphs on computers are
adjacency matrices or adjacency lists (see [van Leeuven, 1990]), which should be
used when it comes to representing symbol dags on a computer. Unfortunately,
both representations are also two-dimensional, and their string variants are too
overloaded to be appealing to the human. Instead we shall design a string variant
of the dag notation which facilitates to formulate logical expressions in both a
compact and a convenient manner. The basic idea is that the power of symbol
dags comes from their ability to abbreviate expressions. This can also be achieved
on the string level by extending the ordinary logical language with the possibility
of using abbreviations or definitional expressions.
First, the alphabet of the logical language is extended.

Definition 1.4.1 (Definitional alphabet and signature) Suppose ¥ = (A, a) is a
first-order signature. Let Dy and D be two countably infinite sets of symbols,
called term definition symbols and formula definition symbols, respectively, such
that all three sets are pairwise disjoint. D = AU D7y U Dp is called a definitional
(first-order) alphabet, and Xp = (D, a) is said to be a definitional (first-order)
signature.

Notation We shall use lower-case gothic letters for denoting definition symbols.
Let, in the sequel, ¥p be a definitional first-order signature.

Definition 1.4.2 (Potential definitional expression) (by simultaneous induction)

1. Every (ordinary) logical term, formula, and expression according to the
Definitions 1.2.2 to 1.2.6 is a potential definitional term, formula, and ex-
pression, respectively.

2. If D is a potential definitional term or formula and ? is a term or formula
definition symbol, respectively, then the concatenation 0 D—we prefer to
write it by left-indexing 5 D—is a potential definitional term or formula,
respectively. The string D is called a term or formula definition, respec-
tively; 0 is named its definiendum and D its definiens.

20 First-Order Logic

3. If D is a potential definitional expression and D' is a subterm” or subformula
of D, then any string obtained by replacing an occurrence of D’ in D with a
term definition or term definition symbol string or with a formula definition
or formula definition symbol string, respectively, is a potential definitional
ETPression.

Definition 1.4.3 (Definiens of a definition symbol) Let D be a potential defini-
tional expression. If a definition symbol 9 is the definiendum of a definition D’
occurring in D, then we call D’ a definiens of 0 in D; we shall also say that 0 is

defined by D'.

Definition 1.4.4 (Definition dependency) Let D be a potential definitional ex-
pression. A definition symbol 0, is said to immediately depend on a definition
symbol 01 in D, 01 <4 09, if 07 occurs in a definiens of 05 in D. The definition de-
pendency relation on D is the transitive closure <1 of the immediate dependency
relation <; on the definition symbols in D.

Definition 1.4.5 (Well-defined or definitional expression) A potential definitional
expression D is called well-defined or a definitional expression in case

1. any definition symbol 0 in D is defined exactly once in D, i.e., 0 occurs
exactly once as a definiendum in D, and

2. the definition dependency relation <} on D is well-founded®.

Proposition 1.4.1 (Well-definedness of an expression) For any potential defini-
tional expression S, it can be checked with linear cost with respect to the input
size whether S is well-defined.

Proof The linear complexity of checking the first condition is apparent. The
second condition can be examined in the same way as the cycle-freeness of a
directed graph, which can be done in linear time. O

Definition 1.4.6 (Definitional language) The definitional (first-order) language
Ly, over ¥ is the set of definitional expressions over X.

Example 1.4.1 (Definitional term) The following string denotes a definitional
term:

f(flf(f2f(aa7 a): f2)7 fl)

"Subexpressions of potential definitional expressions are defined in analogy to the manner
ordinary subexpressions were introduced in Subsection 1.2.2, with the only extension that
certain complex expressions—the definitions—do not possess dominating symbols.

8 A binary relation < is well-founded if every nonempty subset M of the field of < contains a
minimal element with respect to <, i.e., there is an element m € M such that for nom’ € M :
m' < m (see, for instance, [Krivine, 1971]).

1.4 The Language of Definitional Expressions 21

The ordinary expression represented by a definitional expression can be de-
fined as the expansion of the definitional expression.

Definition 1.4.7 (Expansion) (inductive)
1. The ezpansion of any (ordinary) expression D is D.

2. If D is a definitional expression but no (ordinary) expression, and if D’ is
a definitional expression obtained from D by replacing a single definition
D" occurring in D and every other occurrence of 9 in D by its definiens
D", then any expansion of D’ is an ezpansion of D.

Evidently, expansions are properly defined and all expansions of a definitional
expression are identical and an (ordinary) logical expression. The expansion of
Example 1.4.1 is the term denoted by the symbol dags of Figures 1.2 and 1.3.

Convention As the declarative meaning of a definitional expression we take
simply the meaning of the expansion of the expression.

Just as in the case of symbol dags, different definitional expressions may
have one and the same expansion, which can be viewed as their normal form.
The significant advantage of the definitional language is that it provides a com-
pact logical notation for expressions without having to rely on two-dimensional
notation. It should be mentioned that definitional expressions differ from or-
dinary logical expressions in certain respects. First, the well-formedness of a
definitional expression D is no longer a local condition which is automatically
inherited from the subexpressions of D, like for ordinary expressions; instead, the
well-formedness can only be determined globally. This renders the composition
and decomposition of definitional expressions more difficult, though tractable.
Furthermore, the equality of definitional expressions does not remain string iden-
tity but becomes string identity of the expansions of the definitional expressions,
as discussed below.

Note The presented format of definitional expressions is but one possibility of
modelling dag structures with strings. An alternative related framework would be
to work with pairs (D, ®) consisting of a potential definitional expression D, in
the sense above but without definitions, and a collection of definitions 2, this way
keeping the definitions alongside the expressions. Although, conceptually, such
an approach may be more elegant, it has the big disadvantage that the expression
part D might degenerate to a single definition symbol, with the consequence that
the entire structure information would have to be expressed in the definition part.
Therefore, from the point of view of readability, definitional expressions seem to
be more convenient.

22 First-Order Logic

1.4.2 Definitional Expressions vs Symbol Dags

It is interesting to investigate the correspondence between symbol dags and defini-
tional expressions. A transformation from symbol dags to definitional expressions
might work as follows.

Procedure 1.4.1 [(From symbol dags to definitional expressions) Let ¢ be a symbol
dag of an expression D. Annotate every vertex v; of the dag with a distinct
definition symbol 0; of the appropriate type. Let 9; be the annotation of the root
vertex vy. Starting with the unary string (91), iteratively perform the following
operation.

Select a definition subsymbol o = ?(d) where ? is not yet defined in the
string and annotates a vertex v labelled with a symbol s. If v is a leaf
vertex, replace the subsymbol o with the definition 4s. If v is no leaf vertex,
suppose (01,...,0,) is the sequence of definition symbols annotating the
vertices succeeding v, in the order and multiplicity of the edges starting at
v; let D’ be the potential definitional expression which is the concatenation
determined by the symbol that labels v as dominating symbol and the
immediate subexpression sequence (91,...,0,); replace the subsymbol o
with the definition ,D’.

The resulting string is a definitional expression and represents the expres-
sion D. Tt is evident that the length of the output string of this procedure is
polynomially (i.e., linearly) related with the size of the input dag ¢.

Definition 1.4.8 (Strict dag expression) Any string obtained from a symbol dag
by Procedure 1.4.1 is called a strict dag expression.

Because of this correspondence between symbol dags and definitional expres-
sions, any manipulations on symbol dags can be directly performed on the string
level of the corresponding definitional expressions.” But the correspondence be-
tween symbol dags and definitional expressions is not one to one, not even if the
difference in definition symbols is disregarded and only non-isomorphy with re-
spect to consistent renaming of definition symbols is considered. This is because
the definitional framework is slightly more general and permits the formulation of
strings which are not strict dag expressions. On the one hand, a definitional ex-
pression may contain non-atomic substrings composed only of definition symbols,
and on the other hand, not every non-definition subexpression D in a definitional
expression need be abbreviated, i.e., D need not be the definiendum of a def-
inition. This is the case for Example 1.4.1 where the expression itself is not
abbreviated. Both phenomena cannot occur in strict dag expressions.

In fact, in this framework also general directed graphs can be encoded, namely, by drop-
ping the well-foundedness condition in Definition 1.4.5. Such a generalization would per-
mit to express what on the level of non-logical expressions are called infinite terms (see
[Colmerauer, 1982] or [Courcelle, 1983]), which is not our concern in this work.

1.4 The Language of Definitional Expressions 23

Yet, one can simply associate a symbol dag with any definitional expression
by transforming it into a strict dag expression. To be most general, we present
this operation for potential definitional expressions.

Definition 1.4.9 (Potential strict dag expression) Any string D’ obtainable from
a potential definitional expression D by Procedure 1.4.2 is called a potential strict
dag expression. D' is said to correspond to D.

Procedure 1.4.2 (From potential definitional expressions to potential strict dag
expressions) Let D be a potential definitional expression. Abbreviate any non-
abbreviated occurrence of any subexpression in D which is neither a definition
nor a definition symbol with a new distinct definition symbol of the appropriate
type. Afterwards, iteratively, replace any non-atomic substring *(dy,...,0, 1, 0,)
of definition symbols with its rightmost definition symbol 9,,, and substitute any
other occurrences of the other definition symbols 0, ...,0, 1 in the string by ?,,,
too.

The output of this procedure is a potential definitional expression. Appar-
ently, if D is a definitional expression, then its corresponding potential strict
dag expression is a strict dag expression. Furthermore, the input and the out-
put have the same expansions, and the input length is polynomially related with
the output length. With this intermediate operation, the definitional expression
from Example 1.4.1 can be viewed as corresponding to the rightmost (i.e., the
minimal) dag depicted in Figure 1.2. Granted this transformation, the leftmost
and the middle dag of Figure 1.2 can be seen as encoded, for example, by the
definitional expressions f(f(hf(aa (L), fl)a f(fla fl)) and f(flf(f(aa a)’ f(a’ a))a fl)a
respectively.

A slight generalization of strict dag expressions turns out to be a central
notion for technical purposes.

Definition 1.4.10 ((Potential) dag expression) A (potential) definitional expres-
sions D is called a (potential) dag expression if each occurrence of a subexpression
that is not a definition is abbreviated, i.e., immediately preceded by a definition
symbol.

Apparently, any (potential) strict dag expression is a (potential) dag expres-
sion, while the converse does not hold, since in (potential) dag expressions non-
atomic substrings of definition symbols may occur. We have introduced this
weaker notion because it is the optimal framework for all kinds of modification
operations, like identification, matching, or unification. Yet, from the point of
view of readability, it is more convenient not to abbreviate every subexpression
in a string that is no definition, but only those which correspond to subdags with
more than one ingoing edge. Consequently, we shall work with arbitrary defini-
tional expressions, and whenever a modification has to be performed, we shall
transform them into (strict) dag expressions.

24 First-Order Logic

Definition 1.4.11 (Minimal definitional expression) A definitional expression D
is called minimal if for any definitional expression D’ with the same expansion:

length(D") > length(D).

It is apparent that minimal definitional expressions satisfy the following prop-
erties.

Proposition 1.4.2 (Structure of minimal definitional expressions)
Let D be a minimal definitional expression and D' an arbitrary subexpression
of D.
(a) If length(D') > 1, then there is exactly one occurrence of D' in D.

(b) If length(D') = 1 (D' is atomic), then D does not contain D' as a
definiens.

Note that the dag expression j, f(j,f(j;f(a@, @), f3), f2) encoding the minimal
symbol dag on the righthand side of Figure 1.2 is not a minimal definitional
expression, because there is a shorter one, namely, f(s, f(s,f(a,a), f2), f1), which
does neither abbreviate the constant a nor the entire expression. But apparently,
any minimal definitional expression encodes a minimal symbol dag via Proce-
dure 1.4.2, and any minimal definitional expression is only linearly shorter than
one of its corresponding (strict) dag expressions.

In order to illustrate the differences between the variants of definitional ex-
pressions, in the following chart, for any type a significant example is displayed.
All strings have the same expansion, namely, the ordinary expression given in the
first line.

Chart 1.4.1 (Types of definitional expressions)

ordinary expression 9(f(g(a,g(f(b),a))), 9(a, g(f(b),a)))
arbitrary definitional expression | ¢(f(g(a,a,a,g9(f(0),02))), g(02,9,a)))
minimal definitional expression 9(f(g9(a.g(f(b),a))).)
dag expression Qog(fof(gsgwlg(a’ 94g(f1f(bb)7 aa)))a 91)
(minimal) strict dag expression Qog(fof(glg(a’ 92g(f1f(bb)7 aa)))a 91)

1.4.3 Identification of Definitional Expressions

Since definitional expressions with the same expansion are intended to be iden-
tified by viewing them just as different representations of their expansion, the
interesting question arises how expensive it is to determine whether two defini-
tional expressions have the same expansion. Fortunately, this problem can de
decided in time polynomially bounded by the sizes of the definitional expressions
and does not depend on the sizes of the respective expansions.

It is not necessary that the strings to be identified be definitional expressions,
in the general case it is sufficient that both are potential definitional expressions
with respect to a certain context. A useful notion to express this formally is the
following.

1.4 The Language of Definitional Expressions 25

Definition 1.4.12 (Well-defined sequence) A sequence S = (Dy,..., D,) of po-
tential definitional expressions is well-defined, if each definition symbol occurring
in some member of S is defined exactly once in exactly one element D;, 1 < i < n,
of S, and if the transitive closure of the union of the definition dependency rela-
tions on the members of S is well-founded.

According to this definition, if a potential definitional expression D;, 1 < i <
n, is contained more than once in a well-defined sequence S = (D, ..., D,), i.e.,
if for each 1 < j < n: j # i entails D; # D;, then no definition can occur in D;.
Given a well-defined sequence of potential definitional expressions, we can make
any of its members D, a definitional expression, as follows. We call this operation
making D; independent of its context S.

Procedure 1.4.3 (Context independency operation) If S = (Dy, ..., D,) is a well-
defined sequence of potential definitional expressions and D; is a member of S,
then, starting with the string D;, iteratively, perform the following operation.

As long as the current string is no definitional expression, select any occur-
rence of a definition symbol which is undefined in the string, and replace it
with its definition in some member of S.

Lemma 1.4.3 (Context independency) Suppose S = (Di,...,D,) is a well-
defined sequence of potential definitional expressions and D; is a member of S. If
D] is the result obtained by making D; independent of S, then

n

length(D Z length(D

Proof Immediate from the definition of a well-defined sequence. O

An algorithm for identifying well-defined sequences of potential defini-
tional expressions is presented in Procedure 1.4.4. We use an informal
functionally-oriented!? language for specifying algorithms. The meaning of its
instructions is self-explanatory to anyone familiar with languages like LISP
[McCarthy et al., 1962]. The main characteristics of this language are the follow-
ing ones. It permits the use of both local program variables and global structures,
the latter destructively assignable (:=). The output of any sequence of instruc-
tions is the value of the last function call, just like in LISP, or, in case of indeter-
minism, one of the possible outputs. Global structures and predefined program
components are set in bold (sans serif) font. For convenience, we also make use
of the meta-function apply, which permits to compose function calls from func-
tion names and the respective argument lists; thus, apply(‘function’; ay, ..., a,) is
equivalent to the function call function(ay, ..., a,).!t

19Qccasionally, we shall permit indeterminism to occur in operations, so that, strictly speak-
ing, we have a relational framework.
"For this semi-formal language, we do not introduce the full terminology of the A-calculus.

26 First-Order Logic

Procedure 1.4.4 (Identification Algorithm)
{ define identification(D, D,)
input two strings Dy, Dy such that (Dy, Ds) is a well-defined sequence
output boolean
initialization of a global structure:
a partial mapping id: Dy U Dp — D7 U Dp, initially defined by

id(0)i= 0 for any definition symbol in D; or D,
! ' undefined otherwise

identify(D;, Dy) }

{ define identify(D}, D})
input two potential definitional expressions D}, D},
output boolean
let (D1, Dy) = unfold(D}, D)),
if Dy is a symbol (string) : Dy = D,
else if D, is a symbol (string) : false
else let S1, Sy be the immediate subexpression sequences
of Dy, Dy and oy, 05 their dominating symbols, resp.,
if 01 = 0y : sequences(‘identify’, Sy, S5)
else false }

NN N N N N
~ O Ot = W N~
~— O S S

Procedure 1.4.5 (Unfolding Algorithm)

{ define unfold(D;, D,)
input two potential definitional expressions
output a pair of potential definitional expressions
if D, is a definition 5, D] or a definition symbol (string) 9, :
if Dy is a definition 4,D) or a definition symbol (string) 9 :
if |d(01) = |d(02) <01,01>
else id(d,) := id(91) : unfold(definiens(?;), Ds))
else unfold(definiens(2;), Ds)
else if D, is a definition 5, D) or a definition symbol (string) 05 :
unfold(Dy, definiens(03))
else (Dy, D,) }

NN N N N S S
~ O Ot = W N~

co
— N S S e N e S

Procedure 1.4.6 (Sequence Meta-Algorithm)

{ define sequences(Function_name, Sy, Ss)
input a function name and two finite sequences of strings
output boolean
if Si=0and Sy=10: true (1)
else if apply(Function_name,first(S)),first(Sy)) : (2)
sequences(Function_name,rest(S),rest(Ss)) (3)
else false } (4)

1.4 The Language of Definitional Expressions 27

Description of the Identification Algorithm (Procedure 1.4.4)

The input to the algorithm are two strings which form a well-defined sequence.
First, a global mapping id is defined associating with every definition symbol oc-
curring in the input strings a representative of the set of definition symbols which
have already been identified to abbreviate the same expansions. As a matter of
fact, initially, every definition symbol 0 is the representative of the singleton set
{0}.'2 The algorithm employs three functions: identify and sequences, which call
each other mutually recursively, and unfold, which is a subroutine of identify.
The function identify takes two potential definitional expressions and calls the
auxiliary unfold procedure, which unfolds the expressions with respect to the def-
initions formulated in the input (lines (4),(5), and (7)), until neither of them are
definitions or definition symbols; except the respective definition symbols have
already been identified (line (3)), in which case no unfolding is done, instead a
pair of identical definition symbols is returned. In case both expressions have
to be unfolded, during the unfolding procedure it is noted that the respective
definition symbols must have the same expansions, by modifying the mapping id
and making equal the id-values of both definition symbols (line (4)). The output
strings of unfold are processed further by identify. The procedure checks whether
at least one of them is a symbol string; in this case the value of their syntactic
comparison is returned (lines (2) and (3)). If both strings are non-atomic and
have the same dominating symbol, the procedure sequences is called with a name
of the identify function and the immediate subexpression sequences as arguments
(line (6)); otherwise false is returned (line (7)). The procedure sequences either
returns true, in case both sequences are empty (line (1)); or splits apart the first
pair of expressions from the input sequences and calls identify (line (2)); if the
result is true, sequences proceeds recursively with the rest of both sequences (line
(3)), otherwise the procedure returns false (line (4)).

The working of the procedure on a concrete input is illustrated in Exam-
ple 1.4.2.

Example 1.4.2 (ldentification process) Given two definitional expressions D; =

9(s, f(a,a), f(a,a),f1), and Dy = g(fa, f3, fo55 f (@, @)), the following sequence of
operations and function calls will be executed.

identification(D;, Ds)

Eld = {<f1; f1>7 <f27 f2>7 <f3: f3>}
identify(Dl, DQ)
HUI’]fOld(Dl, DQ)
E(D1, D)

12 Although, in a successful sequence of identification operations, it is not necessary to initialize
the id mapping at the beginning of each identification operation, one can correctly work with
the same id mapping throughout the sequence, which allows for a further increase in efficiency.
This is possible for matching and unification, too.

28 First-Order Logic

Hsequences(‘identify’,(flf(a, Cl), f(aa a): fl)a (f2: f3: fafs ())
Hidentify(;, f(a, a), f2) [if true: sequences(‘identify’,(f(a, a),
HunfOId(hf(aa a)’ fQ)
Blid(f2) = f1
unfold (f(a,)., f (a, a))
Hunfold(f(a,a), f(a,a))
888(f(a, a), f(a,a))
Hsequences(‘identify’,(a, a), (a, a))
Hidentify(a, a) [if true: sequences(‘identify’,(a), (a))]
Htrue
Hsequences(‘identify’,(a), (a))
Hlidentify(a, a) [if true: sequences(‘identify’,(), ())]
KHtrue
Hlsequences(‘identify’,(), ())
HHHHtrue
Hsequences(‘identify’,(f(a, Cl), fl): (f3: f2f3f(a7 Cl)))
Hidentify(f(a, a), f5) [if true: sequences(‘identify’,(f1), (,5,.f (a, a)))]
Hunfold(f(a, a), 1)
5(f(a,a), f(a,a))
Hsequences(‘identify’,(a, a), (a,a)) - - - (see above) ~
Htrue
Hsequences(‘identify’,(f1), (5,5, f (a, a)))
Hidentify(f1, 1,1,.f (a, a)) [if true: sequences(‘identify’,(), ())]
Htrue (since id(f1) = id(f2))
Hsequences(‘identify’,(), ())
HHHHHtrue

The termination and the total correctness of the Identification Algorithm can
be verified easily. The only non-trivial point is that identification of the id-values
is performed before the respective strings have been proved to have the same
expansion. Due to the fact that an iterated unfolding of a definition symbol ?
can never produce the same definition symbol—this follows from the acyclicity
guaranteed by the well-foundedness of the definition dependency relation (Defini-
tion 1.4.5)—line (4) may not give rise to possible incorrectness. More interesting
is the question of the computational cost of the identification algorithm in the
worst case.

)
fl)a (f37 f2f3f(a7 a)))]

Proposition 1.4.4 (Polynomial identification of dag expressions) There is a poly-
nomial p (of order O(n?)) such that for any two potential dag expressions Dy, Dy
which form a well-defined sequence (D, Dy): if the procedure identification is
called with both strings as input, then it terminates within p (length(D;) +
length(D,)) steps.

Proof Let Dy, D, be as assumed. First of all, the cost for initialization is linearly
bounded. We shall prove that there are at most quadratically many function calls.

1.4 The Language of Definitional Expressions 29

To begin with, note that, clearly, the identification of two ordinary expressions
is linearly bounded by the input. The case of definitional expressions is more
complex. Whenever two distinct definitions or definition symbols are compared
by identify, then their values under id are identified by unfold, before identify pro-
ceeds with their definientia. Therefore, whenever D;, Dy are compared again, a
pair of identical definition symbols is returned (line (3) in unfold), which leads to
an immediate success in line (2) of identify, and hence induces no further function
calls. Because of the strict dag format, exactly those occurrences of subexpres-
sions in D; and Dy which are neither occurrences of definitions nor occurrences of
definition symbols are abbreviated. Consequently, if d is the number of distinct
definition symbols in Dy and D,, the number of non-recursive exits from unfold
which are no pairs of identical definition symbols (i.e., exits via line (8)), must
be < d?. This entails that the number of calls of sequences from within identify
(line (6)) must be bounded by d*. While in the case of ordinary expressions each
occurrence of a subexpression sequence in the input is processed only once by the
procedure sequences, in the definitional case, each pair of occurrences of subex-
pression sequences need to be processed at most once. Therefore, the number of
calls of sequences is quadratically bounded by the input. The number of calls of
identify is at most one more (the initial call) than the number of calls of sequences,
and the maximal depth of recursive calls of unfold is bounded by the value 2, due
to the strict dag format. It remains to be noted that the arising low-level cost,
like examining and identification of id-values or performing definition unfolding,
is computationally innocuous. O

Since any potential definitional expression can be transformed into the strict
dag format with linear cost, we get the following corollary.

Corollary 1.4.5 Any pair of potential definitional expressions which form a
well-defined sequence can be identified with cost quadratically bounded by the input.

Note From the complexity point of view, the gist of the identification
algorithm—which guarantees its polynomial run time—is that the procedure re-
members whenever pairs of expressions have been identified before, lines (3) and
(4) of the procedure unfold. Tt should be noted that all polynomial unification
algorithms make use of this simple technique, which therefore is nothing intrinsic
to unification itself but completely independent of the unification problem.

It is important to emphasize that the (strict) dag format is necessary for
making the procedure polynomial.'® In Example 1.4.3 two classes of definitional
expressions are given, which are not dag expressions, i.e., in which not every oc-
currence of a subexpression is abbreviated that is no occurrence of a definition or
a definition symbol. For those classes of definitional expressions, the identification
procedure needs exponential time.

13In fact, the dag format is sufficient, for strict dag expressions the quadratic bound can be
obtained.

30 First-Order Logic

gl f/f\f | f<//f b
o \\\f/ f \f |

©
S

I

I

I

I

I

Y
—n
—

7N NN

IS

Figure 1.4: Symbol dags of the term classes from Example 1.3.2.

Example 1.4.3 (Critical expressions for identification) Consider two classes of def-
initional expressions with the structures

FUf G f(f (g f (o f(gu faa), 8n), f(@n, 8n) -+), 82, f (82, 82)), 91), f(g1,81)) and
f(fhf(f(fhf(f(’ '[Jnf(f(aa: a): f(aa a))a O '): f(B, b -)): hQ)a f(hQa 62)): hl)

The dags corresponding to these expressions are depicted in Figure 1.4. The
dashed arrows label the vertices in the dags which correspond to the abbreviated
complex subexpressions.

It can be verified easily that when identifying the definitional expressions from
Example 1.4.3, then the id-values always remain unchanged. This has as a con-
sequence that the identification procedure implicitly expands both definitional
expressions completely, so that the cost arising is not smaller than the cost for
comparing the expansions themselves. The expansions, however, have an expo-
nential size with respect to the input; therefore also their identification needs
exponential time.

Note One might ask why we do not avoid the problem of dealing with dif-
ferent definitional expressions with one and the same expansion in an efficient
way by exclusively working with an (up to definition renaming) unique normal

1.5 Instantiations of Logical Expressions 31

form, like minimal strict dag expressions, for which less sophisticated methods
may suffice. Any definitional expression could implicitly be transformed into this
normal form. The reasons for dealing with general definitional expressions are
the following two. On the one hand, it is interesting in itself to know that a
minimal representation is not necessary to obtain polynomial run times for the
identification (matching, and unification) procedures. On the other hand, the
possibility of working polynomially with non-minimal dag expressions is very im-
portant for highly efficient unification methods using Warren machine technology
[Warren, 1983], like [Letz et al., 1992], because the memorizing can be restricted
to the full unification routine.

1.5 Instantiations of Logical Expressions

In the following, we shall introduce the concepts needed for describing instantia-
tions of logical expressions, which is the most important operation performed on
logical expressions. The developed notions culminate in the presentation of uni-
fication as instantiation operation. Unification marks one of the most successful
advances of automated deduction, because it allows to make instantiation optimal
with respect to generality. In this section, we shall work with logical expressions
only, and extend the methods to the handling of definitional expressions in the
subsequent section.

1.5.1 Substitutions and Matching

Let in the following denote 7 the set of terms and V the set of variables of a
first-order language.

Definition 1.5.1 ((Variable) substitution) Let V' be any finite subset of V. A
(variable) substitution is any mapping o : V. — T, satisfying that for every
r € domain(o): z # o(x).1

Definition 1.5.2 (Binding) Any element (x,t) of a substitution, abbreviated
x/t, is called a binding. We say that a binding x/t is proper if the variable x does
not occur in the term t.

Definition 1.5.3 (Instance, matching) If F is any (finite set of) expression(s)
and o is a substitution, then the o-instance of F, written Fo, is the (set of)
expression(s) obtained from F' by simultaneously replacing every occurrence of
each variable z € domain(o) in F by the term o(z). If F' and G are (finite sets of)
expressions, then F'is called an instance of G in case there is some substitution o

14 Alternatively, variable substitutions can be introduced as total mappings from V to T with
almost all variables mapped to themselves. The advantage of that approach is that composition
of substitutions becomes just functional composition, the disadvantage is that substitutions do
not differ in their cardinality.

32 First-Order Logic

with F' = Go. We also say that G can be matched with F, and call o a matching
substitution from G onto F.

It is interesting to investigate the size increase caused by applying a substi-
tution to a string. First, we need a representative size measure for substitutions.
Apparently, the following will do.

Definition 1.5.4 (Size of a substitution) As the size of a substitution o =
{x1/t1, ..., xp [ty } we take

> length(t;).

i=1
Proposition 1.5.1 If E is an expression and o is a substitution, then
length(Eo) < length(E) x size(o).

Note This quadratic increase rate is the weak point of the standard manner of
applying a variable substitution to an expression, and hence will be improved in
the next section.

A standard algorithm for determining whether an expression can be matched
with another is presented in Procedure 1.5.1.

Procedure 1.5.1 (Matching Algorithm)

{ define matching(E,, E)

input two expressions Eq, F»

output a matching substitution from F; onto E, or false

initialization of a global structure:

a partial mapping o: V — 7T, initially empty

if match(E,, Ey) :
let o be the substitution obtained from & by removing all pairs (z, x),
o

else false }

{ define match(E,, E,)
input two expressions F, F»
output boolean
if Ej is a variable (string) « and F, is a term :
if o(x)is undefined : o(x) := Ey, true
else o(z) = E,
else if E is a symbol (string) : Ey = E»
else if E, is a symbol (string) : false
else let Sy,.S5 be the immediate subexpression sequences of
E,, E5 and o0y, 05 their dominating symbols, respectively,
if 01 =0, : sequences(‘match’, S;,Ss)
else false }

1.5 Instantiations of Logical Expressions 33

Description of the Matching Algorithm (Procedure 1.5.1)

Given two input expressions F; and FEj, the algorithm proceeds by incrementally
generating a matching substitution, starting with the empty mapping. Whenever
the procedure comes across a variable x at the first argument position, it checks
whether x has already been given an instantiation, in which case it returns the
truth value of the syntactic comparison of this instantiation with the other ar-
gument ¢; otherwise, if the variable is yet undefined, o (z) is defined as ¢, and
true is returned. The auxiliary procedure sequences (Procedure 1.4.6 on p. 26) is
employed in the standard way.

The termination and the total correctness of the matching algorithm are ob-
vious. Also it is evident that the complexity of this algorithm is linearly bounded
by the input and that the procedure is deterministic, hence generates a unique
matching substitution in the positive case. Furthermore, the computed substitu-
tion fulfills a certain minimality condition.

Proposition 1.5.2 If 0 is a matching substitution computed by the Matching
Algorithm (Procedure 1.5.1) on two input expressions Ey, Ey, then o is a subset
of any matching substitution from FE; onto F5.

Let us study the size'® of the substitution resulting from a matching operation.

Proposition 1.5.3 If 0 is a substitution resulting from the successful matching
of an expression Ei with an expression FEo according to the Matching Algorithm
(Procedure 1.5.1), then

size(o) < length(FE).

Definition 1.5.5 (Composition of substitutions) Assume o and 7 to be substi-
tutions. Let o’ be the substitution obtained from the set {(z,t7) | z/t € o} by
removing all pairs for which = ¢7, and let 7’ be that subset of 7 which contains
no binding z/t with # € domain(o). The substitution o’ U 7', denoted by o7, is
called the composition of o and 7.
Proposition 1.5.4 Let o, 7 and 0 be substitutions.

(i) o) = Do = o, for the empty substitution (.

(11) If for all (finite sets of) expressions F : Fo = Fr, then 0 = 7.
(i1i) (Fo)t = F(oT), for all (finite sets of) expressions F.

(iv) (o71)0 = o(70).

15Recall that the size of a substitution is defined as the sum of the lengths of the terms in
the range of the substitution.

34 First-Order Logic

Proof (i) is immediate.

For (ii) assume, by contraposition, that o # 7. Then, without restriction of
generality, there is a binding z/t € o such that =/t ¢ 7. To demonstrate the
existence of a (finite set of) expression(s) F' for which Fo # Fr, set F = x.

For the proof of (iii) let be a variable in F. There are three cases. If x ¢
domain(o) U domain(r), then (zo)r = z = z(o7). If x € domain(o), then
(zo)T = z(o7). If, lastly, z ¢ domain(o) but = € domain(7), then (zo)T = 27 =
xz(oT). Since x was arbitrary and only variables are replaced in F', we have the
result for F'.

For (iv) let F' be any (finite set of) expression(s). Then a repeated application of
(iii) yields that F'((o7)0) = (F(o1))0 = ((Fo)7)8 = (Fo)(16) = F(o(70)), and,
by using (ii), the proof is accomplished. O

Summarizing these results, we have that () acts as a left and right identity for
composition, (ii) expresses that a difference in substitutions involves a difference
for some instances, by (iii) substitution application and composition permute, and
(iv), the associativity of substitution composition, permits to omit parentheses
when writing a composition of substitutions.

Definition 1.5.6 (Renaming substitution) Let F' be a (finite set of) expression(s)
and let Vi denote the set of variables occurring in F'. A substitution o is called
a renaming substitution for F' in case

1. o is injective,
2. range(o) C V, and
3. (V& \ domain(o)) Nrange(o) = 0.

Definition 1.5.7 (Variant) Let F' and G be (finite sets of) expressions. F' and
G are called variants of each other if there are substitutions ¢ and 7 satisfying
that G = Fo and F = GT.

Proposition 1.5.5 Let F' and G be (finite sets of) expressions which are vari-
ants of each other. Then there are renaming substitutions o for F' and T for G

with G = Fo and F = GT.

Proof By assumption, there exist substitutions ¢’ and 7’ with G = Fo’ and
F = Gr'. Let Vg and Vg be the sets of variables occurring in F' and in G
respectively. Then set 0 = ¢’ | Vp and 7 = 7' | Vg.'® We will show that o and
7 are such renaming substitutions. First, apparently, G = Fo and F = GT.
Since F' = Fot and G = G1o, both range(o) and range(7) must be subsets of V.
Consider any x,y € domain(o) with x # y. Then xoT = © # y = yor. Since 7 is
a mapping we have that zo # yo, which settles the injectivity of 0. By analogy, 7
can be proved injective. Let, lastly, z € Vp \ domain(o) and z € range(o). Then

6With f [S we denote the restriction of a mapping f to a set S, i.e., {{e1,e2) € f | e; € S}.

1.5 Instantiations of Logical Expressions 35

there exists y € domain(o) with z = yo and z # y. Since yor = y, we get z # 27.
On the other hand, x ¢ domain(o), which yields x # y and = zo. Noting that
x = zot yields x = x7. Therefore, x # 2. Analogously, Vg \ domain(7) and
range(7) can be shown disjoint, which completes the proof. O]

For any given pair of substitutions, it is of fundamental importance whether
one can be obtained from the other by composition.

Definition 1.5.8 (More general substitution) If ¢ and 7 are substitutions and
there is a substitutions # such that 7 = o6, then we say that o is more general
than 7.

1.5.2 Unification

We are mainly interested in substitutions which, when applied to a certain finite
set of expressions, render all these expressions equal.

Definition 1.5.9 (Unifier) If S is a finite set of expressions and o is a substitu-
tion such that So is a singleton set, then o is a unifier for S. If a unifier exists
for a finite set of expressions S, then S is called unifiable.

The general notion of a unifier can be subclassified in certain useful ways.

Definition 1.5.10 (Restricted unifier) A unifier o for a finite set of expressions
S is called restricted to S if every variable in domain(o) occurs in S. If o is a
unifier for a finite set of expressions S and Vy is the set of variables occurring in
S, then o [Vg is called the restriction of o to S.

Definition 1.5.11 (Most general unifier) A unifier for a finite set of expressions
S is called a most general unifier, mgu, if ¢ is more general than any unifier for
the set S.

Most general unifiers have the nice property that any unifier for a set of
expressions can be generated from a most general unifier by further composition.
This qualifies mgu’s as a useful instantiation vehicle in many inference systems.

Definition 1.5.12 (Minimal unifier) If a unifier o for a finite set of expressions
S has the property that for every unifier 7 for S: card(c) < card(7), then we say
that o is a munimal unifier for S.

For a minimal unifier the number of substituted variables is minimal. It is
apparent that for any finite unifiable set of expressions a minimal unifier always
exists and that any minimal unifier for a finite set of expressions S is restricted to
S, as opposed to most general unifiers, whose existence is not so obvious and which
are not restricted to S. Also, any finite set of expressions has only finitely many
minimal unifiers, again in contrast to most general unifiers. Another immediate
consequence of the Unification Theorem (Theorem 1.5.12) demonstrated below is
the following proposition.

36 First-Order Logic

Proposition 1.5.6 FEvery minimal unifier is a most general unifier.

For this reason, not most general unifiers but the more restrictive notion of
minimal unifiers is the optimal tool for proof-theoretic and practical purposes,
which has not been sufficiently recognized so far. The crucial question is, how,
given a finite set of expressions, a minimal unifier can be obtained. To these ends,
some additional terminology is needed.

Definition 1.5.13 (Address) The address of a node or subtree in an ordered tree
is a sequence of positive integers defined inductively as follows.

1. The address of the root node (the tree itself) is the empty sequence () = 0.

2. The address of the i-th successor node (subtree) of a node (subtree) with
address (ki,...,k,), n>0,1s (ki,..., ky,1).

Definition 1.5.14 (Disagreement set) Let S be a finite non-empty set of ex-
pressions Ey, ..., E,, and T},...,T, their symbol trees, respectively. If S is a
singleton set, i.e., n = 1, then the only disagreement set of S is the empty set.
If S is no singleton set, then there exists an address (ki,...,k;), m > 0, such
that among the nodes Ny,..., N, with this address in the symbol trees T}, ..., T,
some are labelled with different symbols, and all i-th ancestors, 0 < i < m, of
the nodes in all symbol trees are labelled with the same symbols Ej;, respectively.
Any set S’ of expressions Ej,..., E] represented by the symbol subtrees with
such an address is a disagreement set of S.

Example 1.5.1
A set of atoms of the structure {P(f(z),y), P(f(9(a)),x), P(f(y),g(2))} has
the two disagreement sets {x, g(a),y} and {y,z, g(2)}.

Proposition 1.5.7 Let o be a unifier for a finite set of expressions S, and Dg
a disagreement set of S.

(i) o unifies Dg.
(ii) Each member of Dg is a term.
(111) If Dg is non-empty, then it contains a variable x with x # zo.

(iv) Dg contains no pair of a variable x and a distinct term t such that x occurs
in t.

Proof (i) and (ii) are obvious. For (iii), note that whenever Dg is non-empty,
its cardinality must be > 1. Furthermore, Dg must contain variables, since
otherwise, due to (i) and (ii)), all terms contained in Dg would have the same
top-level function symbol, which would contradict the cardinality assumption or
the definition of disagreement sets. Then, by (i) and the cardinality condition,
one of the variables must be in the domain of o, which proves (iii). Finally, it is

1.5 Instantiations of Logical Expressions 37

clear that the existence of a non-proper binding xz/t contradicts (i), hence (iv).
UJ

Operationally, the examination whether a binding is proper is called the
occurs-check. An extremely useful property for theoretical purposes is the fol-
lowing lemma.

Lemma 1.5.8 (Decomposition Lemma) Let o be a unifier for a finite set of
expressions S with card(S) > 1, and let z/t be any binding composed from a
disagreement set of S such that x # xo (which exists by Proposition 1.5.7(iv)).
Let 7 = o\ {z/xc}. Then {z/t}T =0.

Proof First, since o unifies any disagreement set of S, xro = to. By Propo-
sition 1.5.7(iv), = does not occur in ¢, which gives us to = tr. Consequently,
xo = tr and x # tr. Furthermore, z ¢ domain(7), and by the composition of
substitutions, {z/t}7 = {x/tr} U r. Putting all this together yields the chain
{z/t}r ={z/tr} Ut = {x/zc} UT = 0. O

Now we shall introduce a concept which reflects the elementary operation
performed when making a set of expressions equal by instantiation. It works by
eliminating exactly one variable x from all expressions of the set and by replacing
this variable with another term ¢ from a disagreement set containing x and t,
provided that z does not occur in .

Definition 1.5.15 (Variable elimination and introduction) If S is a finite set of
expressions such that from the elements of one of its disagreement sets a proper
binding z/t can be formed, then S{z/t} is said to be obtained from S by a variable
elimination wrt x/t. Conversely, we say that S can be obtained from S{z/t} by
a variable introduction wrt x/t.

Proposition 1.5.9 Let S be any finite set of expressions and let Vg be the set
of variables occurring in S.

(i) If S is unifiable, so are all sets obtainable from S by a variable introduction
or a variable elimination.

(1) Only finitely many sets can be obtained from S by a variable elimination.

(ii1) If S’ has been obtained from S by a variable elimination wrt a binding {x/t}
and Vs is the set of variables occurring in S', then card(S’) < card(S) and

VSI = VS \ {l‘}

(iv) The transitive closure of the relation
{(8',S) | S" can be obtained from S by a variable elimination step}

is well-founded, where S and S' are arbitrary finite sets of expressions, i.e.,
there are no infinite sequences of successive variable elimination steps.

38 First-Order Logic

Proof For the proof of (i), note that the result for variable introductions follows
immediately from their definition; for the case of variable eliminations, let S’ =
S{z/t} be obtained from S by a variable elimination wrt to the binding z/¢
composed from a disagreement set of S, and suppose ¢ unifies S. Since o unifies
every disagreement set of S, it follows that o = to. Let 7 = o \ {z/x0}. By
the Decomposition Lemma (Lemma 1.5.8), we have {z/t}7 = o. Therefore,
S({z/t}T) = (S{z/t})T = S'r. Hence, T unifies S’.

For (ii) note that, since there are only finitely many disagreement sets of S and
each of them is finite, only finitely many proper bindings are induced, and hence,
only finitely many sets can be obtained by a variable elimination.

To recognize (iii), let S’ = S{x/t} be any set obtained from S by a variable
elimination. Then S’ is the result of replacing any occurrence of x in S by the
term ¢. Therefore, card(S') < card(S), and, since x/t is proper and ¢ already
occurs in S, we get Vsr = Vg \ {z}.

Lastly, (iv) is an obvious consequence of (iii). |

Now we turn to the computationally interesting notion of a computed unifier
for a finite set of expressions, which is defined by simultaneous induction on the
collections of all restricted unifiers and all finite sets of expressions, whereby the
induction runs over the cardinality of the unifier.

Definition 1.5.16 (Computed unifier) (by simultaneous induction)

1. 0 is a computed unifier for any singleton set of expressions.

2. If a substitution 7 of cardinality n is a computed unifier for a finite set
of expressions S’ and S is a variable introduction of S’ by some binding
x/t, then the substitution o = {z/t}7, which is of cardinality n+1, is a
computed unifier for S.

Note That the notion of a computed unifier is indeed properly defined can
be recognized as follows. By Proposition 1.5.9 (iii), the variable = does neither
occur in the term ¢ nor in the set S’ nor in the expressions contained in the
substitution 7, since by assumption 7 is restricted to S’. Consequently, by the
definition of substitution composition, o = {z/t}r = {z/tr} U 7. Therefore,
card(o) = card(7) + 1 and o is restricted to S.

While the concepts of minimal and most general unifiers are mathematically
comfortable, computed unifiers are computationally useful. On the one hand, if
we read the inductive definition in a forward manner, it allows for the generation
of pairs (S, o) such that o is a unifier for S. On the other hand, if we employ the
definition in a backward manner, it specifies an algorithm for really computing
a unifier for a given set of expressions. In Procedure 1.5.2 this algorithm is
introduced in a more procedurally oriented fashion, which is a generalization of
the procedure given by Robinson in [Robinson, 1965a].'"

THistorically, the first unification procedure was given by Herbrand in [Herbrand, 1930].

1.5 Instantiations of Logical Expressions 39

Procedure 1.5.2 (Set Unification Algorithm)
{ define unification(S)
input a finite set of expressions S
output a unifier for .S or false
initialization of a global structure : a substitution o, initially empty
if unify(S) : o
else false }

{ define unify(S)
input a finite set of expressions S
output boolean
if S is a singleton set : true
else select a disagreement set D of S
if D contains a proper binding : choose one, say x/t,
o = o{x/t}, unify(So)
else false }

Note that the unification algorithm presented in Procedure 1.5.2 is a nonde-
terministic procedure. This is because there may be several different choices for
a disagreement set and a binding. Apparently, the unification procedure can be
directly read off from the definition of a computed unifier: it just successively
performs variable elimination operations, until either there are no variable elim-
ination steps possible, or the resulting set is a singleton set. Conversely, the
notion of a computed unifier is an adequate declarative specification of the uni-
fication algorithm. It follows immediately from Proposition 1.5.9 (i) and (iv)
that each computed unifier is indeed a unifier and that the procedure terminates,
respectively.

Another important property of computed unifiers is the following one.

Lemma 1.5.10 If o is a computed unifier for a finite set of expressions S, then
no variable in domain(c) occurs in the terms of range(o).

Proof The proof is by induction on the cardinalities of the computed unifiers.
The induction base is evident: the computed unifier () of any singleton set of
expressions meets the disjointness property. For the induction step, assume the
demanded property to hold for any computed unifier of cardinality n. Let o be any
computed unifier of cardinality n+1 (n > 0) for a finite set of expressions S. By
definition, S can be obtained from a set S’ = S{x/t} by a variable introduction
wrt a proper binding {z/t}, and 0 = {z/t}7 where 7 is a computed unifier for S’
with card(7) = n. As already noted, 0 = {z/t}7 = {z/tT} U7 and the variable
x does neither occur in 7 nor in . Since, by the induction assumption, 7 fulfills
the disjointness property, the property is passed on to o. 0]

By the definition of the composition of substitutions, from this lemma we get
as an immediate corollary the idempotence of computed unifiers.

40 First-Order Logic

Corollary 1.5.11 If 0 is a computed unifier for a finite set of expressions S,
then o = oo.

We shall demonstrate now that the notions of a minimal and a computed
unifier coincide, and that both of them are most general unifiers.

Theorem 1.5.12 (Unification Theorem) Let S be any unifiable finite set of ex-
Pressions.

(i) If o is a minimal unifier for S, then o is a computed unifier for S.
(ii) If o is a computed unifier for S, then o is a minimal unifier for S.

(111) If o is a computed unifier for S, then o is an mgu for S.

Proof We will prove (i) to (iii) by induction on the cardinalities of the respec-
tive unifiers. First, note that () is the only minimal and computed unifier for any
singleton set of expressions, and that () is an mgu. Assume the result to hold
for any set of expressions with minimal and computed unifiers of cardinalities
< n. For the induction step, suppose S has only minimal or computed unifiers
of cardinality > n (n > 0). Let o be an arbitrary unifier for S and z/t any
proper binding from a disagreement set of S with = # xo (which exists by Propo-
sition 1.5.7(iv)). Let S’ = S{x/t} and set 7 = o \ {x/xc}, which is a unifier for
S’, by the Decomposition Lemma (Lemma 1.5.8).
For the proof of (i), let 0 be a minimal unifier for S. We first show that 7 is min-
imal for S’. If #' is any minimal unifier for S’, then § = {z/t}6' is a unifier for
S. Since 6’ is restricted to S’, the Decomposition Lemma can be applied yielding
that 8’ = 6\ {z/z0}. And, from the chain card(f’) = card(f) — 1 > card(o) — 1
= card(r) it follows that 7 is a minimal unifier for S’. Since card(r) < n, by
the induction assumption, 7 is a computed unifier for S’. Hence, by definition,
o = {z/t}T is a computed unifier for S.
For (ii) and (iii), let o be a computed unifier for S. Then, by definition, 7 is a
computed unifier for S’. Let # be an arbitrary unifier for S. Since x is in some
disagreement set of S, either z € domain(f) or there is a variable y and y/x € 0.
Define
R if x € domain(6)
= { 6{x/y} otherwise.

Since z € domain(n), the Decomposition Lemma yields that if n' = n\ {z/an},
then {z/t}n' = n, and 1’ is a unifier for S’. The minimality of o can be recognized
as follows. By the induction assumption, 7 is minimal for S’. Then, consider the
chain

card(f) = card(n) = card(n') + 1 > card(r) + 1 = card(o).

For (iii), note that 7 is an mgu for S’, by the induction assumption, i.e., there is
a substitution 7: n’ = 7. On the other hand, § = {x/y}{y/x}, hence there is
a substitution v: 8 = nr. This gives us the chain

SO = Snv = S{x/t}n'v = S{z/t}ryv = Soyv

1.5 Instantiations of Logical Expressions 41

demonstrating that o is an mgu for S. This completes the proof of the Unification
Theorem. 0J

Corollary 1.5.13 Minimal unifiers are idempotent and fulfil the variable-
disjointness condition formulated in Lemma 1.5.10.

Note Concerning terminology, notions are treated differently in the literature
(see [Lassez et al., 1988] for a comparison). In [Robinson, 1965a], J. A. Robinson
used a deterministic unification algorithm, by selecting one substitution from the
computed unifiers for a finite set of expressions which he called the most general
unifier. We have subscribed to the generalized versions, which relax the determin-
istic selection and, henceforth, the uniqueness of an mgu, as, e.g., in [Lloyd, 1984]
and [Chang and Lee, 1973]. We even permit alternative disagreement sets, be-
cause this gives more flexibility for selecting among mgu’s (this is exploited in
the proof of Proposition 4.3.1 on page 170). Furthermore, we have introduced
here the notion of a minimal unifier, which turned out to be very helpful. Note
that our Unification Theorem also states that each minimal unifier indeed can
be computed. Finally, the introduction of the declarative concept of a computed
unifier—in contrast to working with the Unification Algorithm itself, how it is
normally done—makes the proof of the Unification Theorem more elegant.

Just because of its mathematical perspicuity, as a direct implementation of the
variable elimination reduction ordering, the Unification Algorithm presented in
Procedure 1.5.2 contains a lot of obvious redundancies: in each variable elimina-
tion operation the procedure must run through the entire expressions by instan-
tiating the substituted variable and by afterwards computing a new disagreement
set. Therefore, nobody would program this algorithm exactly the way it is pre-
sented. Instead one would rather incrementally perform both the instantiation
operation and the recomputation of a disagreement set. We shall give an op-
timized version of the Unification Algorithm which is doing exactly this. Also,
we shall exploit in this algorithm the fact that each unification operation can be
decomposed into binary unification operations, which successively always com-
pare two-element sets of expressions. In order to establish the adequacy of such
a decomposition approach, we prove the following lemma.

Lemma 1.5.14 (Unification decomposition) If o is any unifier for a set of ex-
pressions S = S1 U Sy, 7 an mgu for Si, and 0 an mgu for St, then 70 is more
general than o.

Proof On the one hand, since o unifies S; and 7 is an mgu for Sy, there is a
substitution v: o = 7. On the other hand, by assumption, # is an mgu for ST,
hence there is a substitution 7n: v = 0n. Therefore o = 7. OJ

An iterative application of Lemma 1.5.14 justifies that the solution of a set
unification problem can be broken down into any possible combination of unifica-
tion subproblems induced by the input set, and that any unifier for the complete

42 First-Order Logic

set can be obtained by composing the most general unifiers resulting from solving
the unification subproblems.'®

In particular, any set unification problem can be solved by an iterative unifi-
cation of two-element sets. An incremental binary unification algorithm, which
is very close to an implementation, is presented in Procedure 1.5.3.

Procedure 1.5.3 (Binary Unification Algorithm)
{ define binary-unification(E, F»)
input two expressions E; and FE5
output a unifier for {Fy, Fy} or false
initialization of a global structure : a substitution o, initially empty
if binary-unify(E1, Es) : o
else false }

{ define binary-unify(E;, E»)
input two expressions F; and F5
output boolean
if E; is a variable (string) x; and F5 is a term :
if o(r) is undefined :
if E, is a variable (string) x5 and o (x9) is undefined :
if 27, =uaxy: true
else either o := o {x1/23} or o := o{xs/21} , true
else if x; does occur in Eyo : false
else o .= o{r/Eyo} , true
else binary-unify(z,0,F5)
else if E, is a variable (string) xo and Fj is a term :
if o(xy) is undefined and x5 does not occur in Eo :
o =o{xy/E 0}, true
else binary-unify(E1, z50)
else if E) is a symbol (string) : E) = Ey
else if E, is a symbol (string) : false
else let Si, Sy be the immediate subexpression sequences of
E., E5 and 01, 0o their dominating symbols, respectively,
if 01 = 0y : sequences(‘binary-unify’, S, Ss)
else false }

Description of the Binary Unification Algorithm (Procedure 1.5.3)
Given two input expressions F; and FEj, the algorithm proceeds by incrementally
generating a unifier, starting with the empty mapping. Whenever the procedure

18A related topic, the problem of finding a simultaneous unifier for finitely many sets of
sets of expressions is treated in [Eder, 1985a]. Using the lattice property of the collection of
idempotent substitutions, it is shown there that one can proceed by, first, determining mgu’s
for each single set of expressions and compute a simultaneous unifier by building the supremum
of the mgu’s in this lattice afterwards.

1.5 Instantiations of Logical Expressions 43

comes across two distinct variables which have not yet been instantiated by o,
one of the variables is instantiated to the other, and the already generated sub-
stitution is composed with this binding. This is the only point of indeterminism
in the whole procedure. If only one of the arguments is an unbound variable,
the so-called occurs-check is performed—this corresponds to the test whether a
proper binding exists in the Unification Algorithm for sets of expressions (Proce-
dure 1.5.2); the occurs-check must fail in order to permit the continuation of the
unification process.

Note In an actual implementation one even might go one step further. Instead
of updating the complete unifier during the unification procedure one could only
accumulate a set of local bindings in the process which themselves would not
represent the unifier but from which the unifier could be constructed as the fix-
point of a transitive closure operation of variable instantiations. In detail, assume
during the unification process an unbound variable x has to be unified with an
expression F, then one could just augment the current set of bindings b by set-
ting b := bU {z/E}. This modification would not affect the total correctness of
the unification procedure provided that the following two adjustments be made.
First, the occurs-check needs to be changed slightly in that one would have to
look for occurrences of a variable in an expression modulo the recursive instanti-
ations induced by the current set of bindings. Secondly, after a total success of
the unification procedure, from the resulting set of local bindings {b1,...,b,} the
unifier would have to be computed as the substitution composition b; - - - b,. Such
an approach is particularly interesting in case an entire sequence of unification
steps has to be performed—as it is the standard case in automated deduction
calculi. Then, the intermediate unifiers need not be computed, instead every new
unification step could be started with the already generated set of local bindings
as input and the total unifier could be computed only once at the end of the
sequence of inference steps.

1.5.3 The Complexity of Unification

Unification is the central ingredient applied in each inference step of the advanced
proof systems for first-order logic. As a consequence, the complexity of unifica-
tion is a lower bound for the complexity of each advanced calculus. While the
cardinality of a most general unifier o for a set of expressions S is always bounded
by the number of variables in S, the range of the unifier may contain terms with
a size exponential with respect to the size of the initial expressions. Of course,
this would also involve that So contains expressions with an exponential size.
The following class of examples demonstrates this fact.

Example 1.5.2 If Pis an (n+ 1)-ary predicate symbol and f a binary function
symbol, then, for every n € N, define S, as the set containing the atomic formulae

44 First-Order Logic

P(zy,x9,...,2,,2,), and
P(f('rﬂa'rﬂ)a f(xlaxl)a ey f(xn—laxn—l)al‘n)'

Obviously, any unifier for an S,, must contain a binding z,/t such that the
number of symbol occurrences in ¢ is greater than 2". As a consequence, we have
the problem of exponential space and, therefore, also of exponential time, when
working with such structures.

Different solutions have been proposed for doing unification polynomially.
Venturini-Zilli [Venturini-Zilli, 1975] could reduce the complexity to quadratic
time. A number of “almost” linear algorithms have been developed in
[Huet, 1976], [Martelli and Montanari, 1976, Martelli and Montanari, 1982], and
in [Paterson and Wegman, 1978, whose algorithm is really linear (see also
[Jaffar, 1984]). Similar to Herbrand’s early approach in [Herbrand, 1930], all
of the mentioned efficient algorithms reduce the unification problem to the prob-
lem of solving a set of equations. Since all those procedures need sophisticated
additional data structures (sets of multi-equations) and operations (merging of
sets of multi-equations) and deviate from the basic idea of Robinson’s unifica-
tion algorithm (the binary version specified in Procedure 1.5.3 on p. 42), Corbin
and Bidoit rehabilitated Robinson’s algorithm by improving it with little addi-
tional data structures up to a quadratic complexity [Corbin and Bidoit, 1983].
Although this algorithm has a higher worst-case complexity than the linear ones
it turns out to be more efficient in most practically occurring cases. Corbin and
Bidoit used minimal dags as data structures for representing logical terms.

By employing the framework of definitional expressions, in the next section,
we shall present a generalization of their algorithm which facilitates the working
with arbitrary, i.e., not necessarily minimal, definitional expressions.

1.6 Instantiations of Definitional Expressions

In this section the matching and unification operations are generalized to the han-
dling of definitional expressions. Also, the application of a variable substitution
to an expression will be improved.

The necessity for both modifications can be explained with the matching op-
eration. The matching of ordinary logical expressions always produces a unique
matching substitution, if one exists. Furthermore, if there is a matching substitu-
tion o from an expression E; onto an expression Es, then Ei0 = E,. In the case
of definitional expressions—or potential definitional expressions that form a well-
defined sequence, to be more general-—matters change slightly. Let us illustrate
with an example how things behave here.

Example 1.6.1 Consider the task of matching a definitional expression D; =
f(x,x) with a definitional expression Dy = f(;f(a,a),f). Apparently, (the ex-
pansion of) D; can be matched with the expansion of D,, but there is no variable
substitution o with Do = D,.

1.6 Instantiations of Definitional Expressions 45

Example 1.6.1 demonstrates that for definitional expressions the matching op-
eration needs to be revised. The only condition which definitely must be fulfilled
if a string D; is to be matched with a string Dy by a matching substitution o
is that the expansions of Dyo and D, be identical. The open question is how
D;o should look like. Referring to Example 1.6.1, there are two possibilies for
Dy = f(z,x). Either Dio = f(f,f) or Dyo = f(f(a,a), f(a,a)). It is clear that, in
order to obtain compact representations, one should vote for the first alternative.

Both alternatives leave the standard manner of applying a variable substitu-
tion to an expression untouched. But once definitional expressions are at hand,
the interesting question occurs whether the application of variable substitutions
to expressions may be improved, too. The following trivial example proves that
an improvement is really necessary.

Example 1.6.2 Consider a variable z and a substitution ¢ = {z/f(z,x)}. If
the application of substitutions is taken literally, then the term xo - - - o has a size
which is exponential with respect to the number of substitution applications.

Accordingly, the iterative application of substitutions may result in an expo-
nential behaviour. Since the application of substitutions is contained as a subrou-
tine in the matching algorithm, the iterative performance of matching operations
may lead to an exponential behaviour, too.

In order to remedy this weakness, the application of a variable substitution
to an expression needs to be changed.

1.6.1 Definitional Substitutions

Let, in the sequel, 7p be the collection of definitional terms of a definitional
first-order language.

Definition 1.6.1 (Definitional (variable) substitution) Let S = (Dy,...,Dy)
be a well-defined sequence of potential definitional expressions. A definitional
(variable) substitution in context S is any finite mapping o: V — Tp with
domain(o) = {x1,...,2,} such that:

1. the sequence S’ = (o(x1),...,0(xy,), D1,..., Dy,) is well-defined, and

2. for every variable z € domain(o): = # expansion(o(z)), where the expan-
sion is with respect to the sequence S’.

Any member (z,t) of a definitional substitution is called a definitional binding,
and is written z/t.

The notion of definitional substitutions is a natural generalization of ordinary
substitutions, so that every ordinary substitution is a definitional substitution.
However, a crucial difference can be made between the ordinary application and
the definitional application of a substitution.

46 First-Order Logic

Definition 1.6.2 (Definitional application of a definitional substitution) Let o be
a definitional substitution in context S = (D, Dy,...,Dy,). The definitional
application of o to D produces the following string, which we write Do.'* Let
0z, ...,0z, bealist of distinct new term definition symbols, one for each variable
in domain(o). Simultaneously do, for every variable x in domain(o):

1. if o(z) is a definition symbol ® or a definition with definiendum 9, then
replace every occurrence of x in D with 0.

2. if o(x) is neither a definition nor a definition symbol and either o(x) is a
symbol (string) or x occurs only once in D, then replace all occurrences
(the single occurrence) of x in D with o(z).

3. if o(x) is a complex string D’, no definition, and 2 occurs more than once
in D, then replace the leftmost occurrence of x in D with the new definition
2, D', and substitute all other occurrences of z in D by the definition symbol
0.

Example 1.6.3 Given a definitional substitution ¢ = {z/f,y/g(a,a),z/g(a,a)}
in context S = (;f(a,a)), and a term t = h(z,y, g(z, 2)), the definitional appli-
cation of o to t, is a definitional term of the structure h(y49(a,a), g(a, a), g(f, 9)),
which depends on the context S.

Proposition 1.6.1 If S = (D, Dy,...,D,,) is a well-defined sequence and o is
a definitional substitution in context S, then (Do, Dy, ..., Dy,) is a well-defined
sequence.

Note The third case of the definition above marks the crucial difference with the
ordinary application of substitutions. Evidently, this entails that whenever a defi-
nitional substitution contains no complex terms in its range, then the definitional
and the ordinary manner of applying a substitution coincide.

The length increase caused by applying a definitional substitution to a string
can be estimated as follows.

Proposition 1.6.2 If D is a potential definitional expression and o is a defini-
tional substitution®®, then length(Do) < length(D) + size(c) — card(o).

Proof Each complex term zo in range(o) is inserted only once into D, either by
completely removing the respective occurrence of the old variable x in D or, in
Case 3 of Definition 1.6.2, by replacing the occurrence of z with a new definition
symbol 0, of the same size; all other replacements are size-preserving. O

19We use the same notation used for denoting the result of the ordinary application of a
substitution. Whether the ordinary or the definitional form is meant either will be said explicitly
or it will be apparent from the context.

20The size of a substitution is the sum of the lengths of the terms in the range of the
substitution.

1.6 Instantiations of Definitional Expressions 47

Note This linear increase rate significantly differs from the value for the ordinary
application of a substitution, which is of quadratic order.

The definitional composition of definitional substitutions is defined in analogy
to the composition of ordinary substitutions, as follows.

Definition 1.6.3 (Definitional composition of definitional substitutions) Assume
o and 7 to be definitional substitutions. Let ¢’ be the definitional substitution
obtained from the set {(x,t7) | /t € o} (where ¢ is the definitional application
of 7 to t) by removing all pairs for which x = expansion(¢7), and let 7" be that
subset of 7 which contains no binding /¢t with 2 € domain(o). The definitional
substitution o’ U 7/, which we abbreviate?' with o7, is called the definitional
composition of o and 7.

Referring to Example 1.6.2, with ¢ = {z/f(z,z)}, under the definitional
application of substitutions, the term x ¢ - - - ¢ has the structure

n—times

f(fn—lf(' "f2f(f1f(x:x)afl):f2 o ')afnfl)

which is linear with respect to n and the sizes of x and o.

Now, we are well-equipped to turn to the definitional versions of the matching
and unification operations. Recall that Dy and D denote the sets of term and
formula definition symbols, respectively, of the underlying definitional language.

1.6.2 Matching of Definitional Expressions

Procedure 1.6.1 (Definitional Matching Algorithm)

{ define definitional-matching(D;, D,)
input two strings Dy, Dy such that (Dy, Ds) is a well-defined sequence
output a definitional substitution in context (Dy, D) or false
initialization of two global structures :
a partial mapping o: V — Tp, initially empty, and
a partial mapping id: Dy U Drp — Dy U Dp, initially defined by

id(0):= 0 for any definition symbol in D; or D,
"] undefined otherwise

if definitional-match (D, Ds) :
let o be the definitional substitution obtained from o by removing
all pairs (z,t) with 2 = expansion(t),
o

else false }

21 Again, we use the standard terminology. Possible ambiguities will be cleared up explicitly
or by the context.

48 First-Order Logic

{ define definitional-match(D!, Dj)
input two potential definitional expressions D7, D,
output boolean
let (D1, Dy) = unfold(Dy, Dj),
if D, is a variable x and D, is a definitional term :
if o (x) is undefined :
if D) is a definition with definiendum 9, : o (z) := 0y, true
else o(x) := D,, true
else identify(o (), D;)
elseif Dy is a symbol (string) : D; = Dy
else if Dy is a symbol (string) : false
else let Sy, Sy be the immediate subexpression sequences of
Dy, Dy and 01, 0o their dominating symbols, respectively
if 07 = 0y : sequences(‘definitional-match’, S, S5)
else false }

Ot = W N

© oo

—~
[E T Sy

— O ~
S S N S e e e e S e e

—~
[u—
DO

Description of the Matching Algorithm for definitional expressions
(Procedure 1.6.1)

Given two strings D; and Dj such that (Dy, Ds) is a well-defined set, the algo-
rithm proceeds by incrementally generating a definitional matching substitution,
starting with the empty mapping, as in the Matching Algorithm for ordinary
expressions (Procedure 1.5.1 on p. 32). The only difference from there is that
here a second global structure is carried along and the definition unfolding mech-
anism unfold (Procedure 1.4.5 on p. 26), also used in the Identification Algo-
rithm (Procedure 1.4.4 on p. 26), is inserted at the beginning of the procedure
definitional-match (line (1)). All other parts are analogous to the ordinary Match-
ing Algorithm, with only two exceptions. First, if an unbound variable has to be
instantiated to a definition, we do not take the definition itself, but its definien-
dum (this is in order to avoid double occurrences of definitions). On the other
hand, instead of demanding that the instantiation of a variable at the first ar-
gument be syntactically equal to the second argument, here the equality of the
expansions is tested, by calling the procedure identify as a subroutine (line (6)).
Evidently, the Matching Algorithm for definitional expressions is just a natural
combination of the Matching Algorithm for ordinary logical expressions with the
Identification Algorithm for definitional expressions.

The termination and total correctness of this algorithm are evident. Its com-
plexity behaviour can be estimated as follows.

Proposition 1.6.3 There is a polynomial p (of order O(n?)) such that for any
two potential strict dag expressions Dq, Dy which form a well-defined sequence
(D1, Dy): if the procedure definitional-matching is called with both strings as input,
then the procedure terminates within p (length(D;) + length(Dy)) steps.

1.6 Instantiations of Definitional Expressions 49

Proof Let the input Dy, Dy be as assumed. First of all, the cost for initialization
is linearly bounded. We proceed by demonstrating that the run time of the
procedure is constantly related with the run time of a very similar identification
problem. For this, note that the Definitional Matching Algorithm can be obtained
from the Identification Algorithm (Procedure 1.4.4 on p. 26) by pushing the lines
(2) to (6) of the Definitional Matching Algorithm in between the lines (1) and
(2) of the Identification Algorithm and by replacing the if in line (2) of the
Identification Algorithm with an else if. This demonstrates that the Definitional
Matching Algorithm behaves exactly as the Identification Algorithm, except when
a variable z is the definiens of the string at the first argument position. Due to the
strict dag format, every occurrence of any subexpression in Dy which is neither a
definition nor a definition symbol is abbreviated. Therefore, in case the variable
x is unbound, the mapping o is augmented with a pair (z,0,), where 0, is a
definition symbol. Since the number of these instantiation steps and their cost is
linearly bounded by the input, we may safely ignore them. In case the variable is
bound, the instantiation of the variable is fetched and identified with the string at
the second argument position. Let o be the mapping generated at the sucessful
or unsuccessful end of the procedure, and let D be the string obtained from
D, by substituting each occurrence of every variable x by the definition symbol
0, = o(x). Now, the problematic part of the matching process, i.e., that part in
which cases of unbound variables at the first argument position do not occur, can
be viewed as simulating the Identification Algorithm applied to the strings D
and Dy. We only have to add, for each simulation of an identification operation
identify(d,, D) with a definition symbol 9, at the first argument position which
replaces an occurrence of a variable = in the original input string D, the cost for
an additional unfold(d,, D) plus the cost for fetching the value of x in o, which
are computationally innocuous, due to the strict dag format; also, the id values
are properly identified. Since, by assumption, the input strings are potential
strict dag expressions, the string D/ is a potential strict dag expression, too. By
Proposition 1.4.4 on p. 28, the cost for Identification of D{ and D, is quadratically
bounded by length(D7) + length(D;), and also by length(D;) + length(Ds), since
the structure of o guarantees that length(D;) = length(D;). As demonstrated
above, the simulation cost is constantly related with that cost. Therefore, the
cost for definitional matching is quadratically bounded by the input. It remains
to be noted that, for the final removal of pairs with identical expansions from the
resulting mapping, the expansions itself need not be computed. 0]

Since any pair of definitional expressions can be transformed into strict dag
format at linear cost, we get the corollary.

Corollary 1.6.4 For any pair of potential definitional expressions which form a
well-defined sequence it can be decided whether one can be matched with the other
with cost quadratically bounded by the input.

50 First-Order Logic

An important consequence for the iterative execution of definitional matching
operations—for instance, in an inference system—is the subsequent proposition.

Proposition 1.6.5 Suppose o is the output of the Procedure 1.6.1 matching a
potential strict dag expression Dy successfully with a potential strict dag expres-
sion Do, where S = (D1, Dy) is a well-defined sequence. If D is the result of mak-
ing D10 independent of its context S, then length(D;]) < length(D;)+length(Dy).

Proof Due to the dag format, the range of o contains only definition sym-
bols. Therefore, by Proposition 1.6.2 on p. 46, length(D;0) = length(D;). Since
(Dyo, Dy) is a well-defined sequence, an application of Lemma 1.4.3 on p. 25
completes the proof. O

1.6.3 Unification of Definitional Expressions

Now we present an efficient procedure for unifying definitional expressions, which
is a generalization of the algorithm in [Corbin and Bidoit, 1983]. This algorithm
is constructed by a straightforward composition of Robinson’s binary unification
algorithm (Procedure 1.5.3 on p. 42) with the Identification Algorithm (Proce-
dure 1.4.4 on p. 26), in a very similar manner the Definitional Matching Algorithm
is generated.

Procedure 1.6.2 (Definitional Unification Algorithm)

{ define definitional-unification(Dy, D)
input two strings Dy, Dy such that (Dy, Ds) is a well-defined sequence
output a definitional unifier for D; and D, or false
initialization of two global structures :
a definitional substitution o in context (Dy, Ds), initially empty, and
a partial mapping id: Dy U Dp — Dr U Dp, initially defined by

id(0)= 0 for any definition symbol in D; or D,
"] undefined otherwise

if definitional-unify(D;, Dy) : o
else false }

{ define definitional-unify(D;, Dj)
input two potential definitional expressions Dy, D,
output boolean
let (D1, Dy) = unfold(Dy, D)),
if D is a definition with definiendum 9, : let D =9,
else let D{' = Dy,
if D, is a definition with definiendum 0, : let DY = 0,
else let D) = D,
if D; is a variable x; and D, is a definitional term :

o N e R R
- w
— N S S

1.6 Instantiations of Definitional Expressions 51
if o(x;)is undefined : (7)

if Dy is a variable x5 and o(x2) is undefined : (8)

if 1 =umxy: true (9)

else either o := o{x,/Djo} or o := o{zy/D/'c} , true (10)

else if occurring(z,,Dy0) : false (11)

else o .= o{x/D}o} , true (12)

else definitional-unify(z,0,D)) (13)

else if D, is a variable x5 and D; is a definitional term : (14)
if o(xy) is undefined : (15)

if occurring(zy,D o) : false (16)

else o .= o{xy/D]'c} , true (17)

else definitional-unify(D7, z90) (18)

else if Dy is a symbol : Dy = D,
else if Dy is a symbol : false
else let S, Sy be the immediate subexpression sequences of
Dy, Dy and oy, 05 their dominating symbols, respectively,
if 01 = 0y : sequences(‘definitional-unify’, Sy, S5)
else false }

Description of the Unification Algorithm for definitional expressions
(Procedure 1.6.2)

Given two strings Dy and D, such that (Dy, Ds) is a well-defined sequence, the al-
gorithm proceeds by incrementally generating a definitional unifier, starting with
the empty mapping, as in the Unification Algorithm for ordinary expressions
(Procedure 1.5.3). Again, the difference from there is that here a second global
structure is carried along and the definition unfolding mechanism is inserted, as
in the Definitional Matching Algorithm. The local parameters Dy’ and D are in-
troduced to take care that no definition is taken as the instantiation of a variable.
Furthermore, the occurs-check has been adapted to the handling of definitional
expressions, as presented in Procedure 1.6.3. The gist of the occurs-check, which
is responsible for its polynomial run time, is that any first time a definition sym-
bol 0 is checked, it is marked as wisited, so that any further time 0 is checked,
no definition unfolding is performed and the procedure immediately returns false.
All other parts of the occurs-check are standard and self-explanatory.

Procedure 1.6.3 (Occurs-check)

{ define occurring(z, D)
input a variable z and a potential definitional expression D
output boolean
initialization of a global structure : a mapping visited, initially empty
if occurs(z, D) : true
else false }

{ define occurs(z, D)
input a variable x and a potential definitional expression D

52 First-Order Logic

output boolean
if D is a definition , D’ or a definition symbol :
if visited(d) = true : false
else visited(0) := true : occurs(z, D')
else if D isasymbol: z=D
else let S be the immediate subexpression sequence
of D and o its dominating symbol, respectively,
occurs_sequence(r, S) }

{ define occurs_sequence(z, S)
input a variable and a finite sequence of strings
output boolean
if S=10: false
else if occurs(z,first(S)) : true
else occurs_sequence(z,rest(S)) }

The termination and the total correctness of the Definitional Unification Al-
gorithm can be realized easily. For its complexity behaviour, we can formulate
the following estimate.

Proposition 1.6.6 There is a polynomial p (of order O(n?)) such that for
any two potential strict dag expressions Dq, Dy which form a well-defined se-
quence (D1, Dy): if the procedure definitional-unification is called with both strings
as input, then any deterministic execution of the procedure terminates within
p (length(Dy) + length(Dy)) steps.

Proof Let the input be as assumed. First of all, the cost for initialization is lin-
early bounded. We employ the same technique used in the proof of the polynomial
run time of the Definitional Matching Algorithm. First, note that the Definitional
Unification Procedure (1.6.2) can be obtained from the Identification Algorithm
(Procedure 1.4.4 on p. 26) by pushing the lines (2) to (18) of the Definitional Uni-
fication Procedure in between the lines (1) and (2) of the Identification Algorithm
and by replacing the if in line (2) of the Identification Algorithm with an else else
if. Consequently, the Definitional Unification Procedure behaves exactly as the
Identification Algorithm, except when a variable x is the definiens of one of the
arguments. Due to the strict dag format, every occurrence of any subexpression
in D, which is neither a definition nor a definition symbol is abbreviated. There-
fore, in case the variable x is unbound, the definitional substitution o is composed
with a definitional binding z/0,, where 0, is a definition symbol, as in the case
of matching. Also, the run time of each occurs-check is quadratically bounded by
every input, even if it is not in dag format. Therefore, all operations on unbound
variables can be safely ignored. Consider an arbitrary deterministic execution of
the unification procedure, and let o be the finally generated substitution with
cardinality n. We demonstrate that the selected deterministic execution of the

1.6 Instantiations of Definitional Expressions 53

Definitional Unification Procedure simulates an Identification Procedure with in-
put Dyo and Dyo. In any problematic case, i.e., a case in which an unbound
variable x is at one of the argument positions, and a string D at the other which
is no unbound variable, the procedure simulates an identification operation of the
corresponding substituted definition symbol 0, and Do with at most the 2n-fold
(in the worst case where D is a bound variable) of the following overheads: the
fetching of the value of one variable, the performance of the operations from line
(2) to (5), and an unfold on a definition symbol and another string; the cost of
all those additional operations is linearly bounded by the input, due to the strict
dag format, and only linearly many (the number of variables) problematic cases
may occur. Also, the id values are identified properly. Since the structure of o
guarantees that length(D;o) = length(Dy0o), the run time of the Identification
Algorithm must be quadratically bounded by the input. O

Since any pair of definitional expressions can be transformed into dag format
at linear cost, we get the corollary.

Corollary 1.6.7 For any pair of potential definitional expressions which form
a well-defined sequence it can be decided whether they are unifiable with cost
quadratically bounded by the input.

The following size estimate can be stated which is essential for the iterative
execution of unification operations, the standard modification mechanism in in-
ference systems.

Proposition 1.6.8 Suppose o is the output of the Procedure 1.6.2 unifying a
potential dag expression Dy successfully with a potential dag expression Do, where
S = (Dy, Dy) is a well-defined sequence. If D{ and Dy are the results of making
Dyo and Dyo independent of the context S, respectively, then length(D]) <
length(D;) + length(Dy), and length(D)) < length(D;) + length(Dy).

Proof In analogy to the proof of Proposition 1.6.5. U

Note The relative independency of the mechanisms used for definitional expres-
sions from the unification task illustrates that the necessity for improving the or-
dinary data structures of logical expressions is nothing intrinsic to the unification
problem itself, as is often argued. The fact that polynomial unification cannot be
achieved with ordinary logical expressions is just one indication of the weakness
of the traditional data structures. The basic symptom, which has not yet been
emphasized sufficiently, is that an iterative ordinary application of substitutions
may also lead to an exponential behaviour, as illustrated in Example 1.6.2 on
p. 45.

54 First-Order Logic

1.7 Sublanguages and Normal Forms

A logical problem for a first-order language consists in the task of determining
whether a relation holds between certain first-order expressions. For an efficient
solution of a logical problem, it is very important to know whether it is possible
to restrict attention to a proper sublanguage of the first-order language. This is
because certain sublanguages of the first-order language permit the application of
more efficient solution techniques than available for the full first-order format. In
this section, we shall present the most important sublanguages of the first-order
language.

1.7.1 Formulae in Prenex and Skolem Form

Definition 1.7.1 (Prenex form) A first-order formulae ® is said to be a prenex
formula or in prenex form if ® is a closed formula and has the structure
Q121 Qux, F, n > 0, where the @);, 1 < ¢ < n, are quantifiers, and F' is
quantifier-free. We call F' the matriz of ®.

Proposition 1.7.1 For every first-order formula ® there is a formula ¥ in
prenex form which is logically equivalent to ®.

Proof We give a constructive method to transform any closed formula & into
prenex form. Let) be any quantifier, V or 3. For any closed formula which
is not in prenex form one of the following two cases holds. Either, ® has a
subformula of the structure ~QxF'; then, by Proposition 1.2.1(0) and (p), and
the Replacement Lemma (Lemma 1.2.2), the formula ¥ obtained from & by
substituting all occurrences of =QxF in ® by Q'z—F is logically equivalent to ®
where Q' = 3if Q =V, and Q' =V if Q = 3. Or, ® has a subformula of the
structure (QzF o G) where o is any binary connective; let ' be a variable not
occurring in G, and F' = F{x/z'}; then, clearly (QxzF o G) and Qx'(F’' o G)
are logically equivalent; since both formulae have the same sets of free variables,
by the Replacement Lemma, the formula ¥ obtained from & by substituting
all occurrences of (QzF o G) in ® by Qx'(F' o G) is logically equivalent to ®.
Consequently, in either case one can let bubble up quantifiers, and after finitely
many iterations prenex form is achieved. O]

Note also that the run time of this procedure is polynomially bounded by the
input, and the resulting prenex formula has the same size as the initial formula.

Definition 1.7.2 (Skolem form) A first-order formula & is said to be a Skolem
formula or in Skolem form if ® is a prenex formula of the form Vx; - - -V, F, and
F is quantifier-free.

The possibility of transforming any first-order formula into Skolem form is
fundamental for the field of automated deduction. This is because the removal of

1.7 Sublanguages and Normal Forms 55

existential quantifiers facilitates a particularly efficient computational treatment
of first-order formulae (but see the remarks at the end of this section).

Definition 1.7.3 (Skolemization) Given a prenex formula ® of a first-order lan-
guage L with the structure Vx, - - - Vz,3dyF, n > 0. Suppose f is an n-ary function
symbol in the signature of £ not occurring in F. Then, let F'' be the formula
obtained from F' by replacing every occurrence of y which is bound by the left-
most occurrence of the existential quantifier in ® with f in case n = 0, and with
the term f(zq,...,2,) if n > 0. The prenex formula Vx;---Vz,F’ is named a
Skolemization of ®.

When moving to a Skolemization of a prenex formula, the collection of models
does not increase.

Proposition 1.7.2 Given a prenezx formula ® of a first-order language L and
a Skolemization U of ®, then ¥ = ®.

Proof Suppose ® has the structure V.- -Va,3dyF, n > 0, and ¥ has the
structure Vry ---Vx,F’', with f being an n-ary function symbol not occurring
in ® and F' = F{y/f(x1,...,2,}. Let T with universe & be a model for V.
By assumption, for every variable assignment A from the language £ to U, the
formula assignment J34(F') = T. Define the variable assignment A’ = (A \
{{y, Aw)Y) U {{y, TA(f(z1,...,20)))}. I (F) = T, and, by the definition of
formula assignments, A: J*(3yF) = T. Since A was chosen arbitrarily, this
holds for every variable assignment. Therefore, Z is a model for ®. 0

When moving to a Skolemization of a prenex formula the collection of mod-
els may decrease. Consequently, for the transformation of prenex formulae into
Skolem form, logical equivalence must be sacrificed, and merely the preservation
of satisfiability can be guaranteed.

Proposition 1.7.3 Given a prenezx formula ® of a first-order language L and
a Skolemization U of ®. If ® is satisfiable, then V is satisfiable.

In order to make the proof of this proposition easier, we introduce the tech-
nically useful notion of a partial variable assignment.

Definition 1.7.4 (Partial variable assignment) Let V be the set of variables in
the signature of a first-order language £. Any partial mapping A: V — U is
called a partial variable assignment from £ to U. The collection of all variable
assignments from £ to U which are functional extensions of A is written A and
named the extension of A.

Lemma 1.7.4 Let ® be a formula of a first-order language L with V' being the
set of free variables in ®, and U a universe. Given a partial variable assignment
A from L to U with domain V', an interpretation T for (L,U), and any two

A

variable assignments Ay, Ay € A.

56 First-Order Logic

(a) 34 (D) = 34(@).

(b) If ® has the structure 3z F, let AT denote the collection of all objects u
from U for which the modification of Ay by setting the value of x to u
results in a formula assignment which maps F to T, and analogously Aj.

Then, A7 = A3.

Proof The proof of (a) is obvious from Definition 1.2.18 of formula assignments.
To recognize (b), let A be any modification of A4, in the value of z only such that
JAF) = T. Set A" = (A \ {{z, Ay(x))}) U {(z, A(x))}. Then, both A and A’
are contained in the extension B of a partial variable assignment B with domain
V U {x}. Since V U {z} is the set of free variables in F, by (a), 3* (F) = T. By
symmetry, the reverse holds, and we get that A7 = AJ. O

Now, we wish to furnish the missing proof that Skolemization preserves sat-
isfiability.

Proof of Proposition 1.7.3 Suppose ® has the structure Vz;---Vo,IyF, n >
0, and ¥ has the structure Vz; - - -V, F’', with f being an n-ary function symbol
not occurring in ® and F' = F{y/f(x1,...,2,}. Let Z with universe U be a
model for ®. Then, for every variable assignment A, J4(JyF) = T. Let <y
be a well-ordering?? on I{. Let P denote the collection of all partial variable
assignments from £ to Y with domain {z,...,2,}. Clearly, P is a total and
disjoint partition of the collection of all variable assignments from £ to &. By
Lemma 1.7.4, for every member Ae P, the collection of objects u from U for
which the modification of any element A € A by setting the value of y to u
results in a formula assignment which maps F' to T is unique for all members of
A. By assumption, this collection is non-empty for every member Aof P. Let Am
denote the smallest element modulo <;; in the collection for A. We define a total
n-ary mapping f': U™ —s U by putting f'(us, ..., u,) = A" with A being the
extension of the partial variable assignment A = {(z1,u1),..., (Ty, un)}. Now,
define the interpretation Zy = (Z\{(f,Z(f))})U{(f, f)}. Since f does not occur
in ®, Zy is a model for ®. We prove that Zy is a model for . For this, let A be
an arbitrary variable assignment from £ to U. Clearly, J4(3yF) = T. Since P
is a total partition of the collection of all variable assignments, A is contained in
some element A of P. If u is the smallest element modulo <y in the collection A*Y
defined as above and A’ = (A \ {(y, A(y))}) U {(y,u)}, then 3¢ (F) = T. Since
the term assignment of Zy and A maps f(zy,...,2,) to u, 33 (F') = T. From
the fact that y does not occur in F" it follows that J¢ (F') = T. As A was chosen
arbitrarily, for every variable assignment, the respective formula assignment of
Zy maps F' to T. This proves that Zy is a model for . O

22A total relation < on a collection of objects S is a well-ordering on S if every non-empty
subcollection of objects from S has a smallest element modulo <. Note that supposing the
existence of a well-ordering amounts to assuming the axiom of choice (for further equivalent
formulations of the axiom of choice consult [Krivine, 1971]).

1.7 Sublanguages and Normal Forms 57

Theorem 1.7.5 (Skolemization Theorem) Given a prenex formula ® of a first-
order language L and a Skolemization U of ®. @ is satisfiable if and only if ¥
15 satisfiable.

Proof Immediate from Propositions 1.7.2 and 1.7.3. 0

Concerning the space and time complexity involved in a transformation into
Skolem form the following estimate can be formulated.

Proposition 1.7.6 Given a prenezx formula ® of a first-order language L and
a Skolem formula U obtained from ® via a sequence of Skolemizations, then
length(¥) < length(®)?, and the run time of the Skolemization procedure is poly-
nomially bounded by the size of ®.

Proof Every variable occurrence in @ is bound by exactly one quantifier occur-
rence in &, and every variable occurrence in an inserted Skolem term is bound
by a universal quantifier. This entails that, throughout the sequence of Skolem-
ization steps, whenever a variable occurrence is replaced by a Skolem term, then
no variable occurrence within an inserted Skolem term is substituted afterwards.
Moreover, the sizes of the inserted Skolem terms are bounded by the size of the
quantifier prefix of ®. Therefore, the output size is quadratically bounded by the
input size. Since in the Skolemization operation merely variable replacements
are performed, any deterministic execution of the Skolemization procedure can
be done in polynomial time. O

Note Skolemization only works for classical logic (the classical logical valid-
ity), but not for intuitionistic validity or other logical relations. In those cases
more sophisticated methods are needed to encode the quantifier nesting (con-
sult [Prawitz, 1960, Bibel, 1987], and the generalizations of their technique to
non-classical logic [Wallen, 1989] and [Ohlbach, 1991]).

1.7.2 Herbrand Interpretations

The standard theorem proving procedures are based on the following obvious
proposition.

Proposition 1.7.7 Given a set of closed formulae T' and a closed formula F'.
[' | F if and only if T U {—=F} is unsatisfiable.

Accordingly, the problem of determining whether a closed formula is logically
implied by a set of closed formulae can be reformulated as an unsatisfiability
problem. Demonstrating the unsatisfiability of a set of formulae of a first-order
language £, however, means to prove for any universe U/ that no interpretation
for the pair (£,U) is a model for the set of formulae. A further fundamental
result for the efficient computational treatment of first-order logic is that, for

58 First-Order Logic

formulae in Skolem form, it is sufficient to examine only the interpretations for
one particular domain, the Herbrand universe of the set of formulae.

Subsequently, let £ denote a first-order language and a, a fixed constant in
the signature of L.

Definition 1.7.5 (Herbrand universe) (inductive)

Let S be a set of Skolem formulae of £. With S~ we denote the set of constants
occurring in formulae of S. The constant base of S is S¢ if S¢ is non-empty, and
the singleton set {a.} if S¢c = 0. The function base Sg of S is the set of function
symbols occurring in formulae of S with arities > 0. Then, the Herbrand universe
of S is the set of terms defined inductively as follows.

1. Every element of the constant base of S is in the Herbrand universe of S.

2. If t4,...,t, are in the Herbrand universe of S and f is an n-ary function
symbol in the function base of S, then the term f(¢y,...,t,) is in the Her-
brand universe of S.

If S is a singleton set {®}, the same terminology shall be used for its formula ®.

Definition 1.7.6 (Herbrand interpretation) Given a set S of formulae of a first-
order language £ with Herbrand universe . A Herbrand interpretation for S is
an interpretation Z for the pair (£,U) meeting the following properties.

1. Z maps every constant in S¢ to itself.

2. 7 maps every function symbol f in S with arity n > 0 to the n-ary function
that maps every n-tuple of terms (1, ...,t,) € U" to the term f(t1,...,1,).

If S is a singleton set {®}, the same terminology shall be used for its formula ®.

Proposition 1.7.8 For any first-order formula ® in Skolem form, if ® has a
model, then it has a Herbrand model.

Proof Let Z' be an interpretation with arbitrary universe U’ which is a model
for @, and let U denote the Herbrand universe of ®. First, we define a total
mapping h: U — U’, as follows.

1. For every constant ¢ € U: h(c) =TI'(c).
2. For every term f(t1,...,t,) € U: h(f(t1,...,tn) =T'(f)(h(t1),..., h(tn)).
Next, we define a Herbrand interpretation Z for ®.

3. For every n-ary predicate symbol P, n > 0, and any n-tuple of objects
(t1y .oy tn) € U™ (t1,...,t,) € Z(P) if and only if (h(t1),...,h(t,)) €
T'(P).

1.7 Sublanguages and Normal Forms 59

Now, let A be an arbitrary variable assignment A from £ to 4. With A’ we denote
the functional composition of A and h. It can be verified easily by induction on
the construction of formulae that 3'Y (®) = T entails 34(®) = T. The induction
base is evident from the definition of Z, item 3 above, and the induction step
follows from Definition 1.2.18. Consequently, Z is a model for . 0

The fact that Herbrand interpretations are sufficient for characterizing mod-
elhood can be used for proving the Lowenheim-Skolem theorem.

Theorem 1.7.9 (Lowenheim-Skolem theorem) Ewvery satisfiable first-order for-
mula P has a countable model.

Proof Given any satisfiable first-order formula ®, let ¥ be a first-order formula
obtained from ® by prenexing and Skolemization. By Propositions 1.7.1 and 1.7.3,
U must be satisfiable, too. Then, by Proposition 1.7.8, there exists a Herbrand
model Z for ¥, which is countable since every Herbrand model is countable. By
Propositions 1.7.1 and 1.7.2, Z is a model for ®. 0]

The working with Herbrand interpretation has the advantage that interpre-
tations can be represented in a very elegant manner.

Definition 1.7.7 (Herbrand base) Given a set S of formulae of a first-order lan-
guage L with Herbrand universe U. The predicate base Sp of S is the set of
predicate symbols occurring in formulae of S. The Herbrand base of S, written
Bg, is the set of all atomic formulae P(ty,...,t,), n > 0, with P € Sp and ¢; € U,
for every 1 < i < n. If S is a singleton set {®}, the same terminology shall be
used for its formula .

Notation 1.7.1 Since every Herbrand interpretation Z of a set of formulae S
can be represented by the set

H={A€Bs|I(A)=TIU{-A| A€ Bsand J(A) = -}

from now on the literal set notation will be used for denoting Herbrand interpre-
tations.

1.7.3 Complete and Compact Sets of Connectives

From the Definition 1.2.18 of formula assignments it is apparent that, with re-
spects to the semantics of first-order formulae, certain logical connectives are
definable by other connectives. This is expressed formally with the following
notion.

60 First-Order Logic

Definition 1.7.8 (Complete set of connectives) A subset S of the set of connec-
tives {—, A, V, =, <} is called complete? if for any first-order formula ® there
exists a first-order formula ¥ which is logically equivalent to ® and in which only
connectives from S occur.

Proposition 1.7.10 All sets of connectives which are supersets of one of the
following sets of connectives are complete: {—,V}, {=, A}, and {—, —=}.

Proof The case of {—, V} is obvious from the Definition 1.2.18 of formula as-
signments. By Proposition 1.2.1(a) and item 5 of Definition 1.2.18, (F'V G) =
—=(==F V ==G) = —=(=F A =G), which reduces the completeness of {—, A}
to the first case. By Proposition 1.2.1(a) and item 6 of Definition 1.2.18,
(FV @)= (——FVGQG) = (-F — G), which reduces the completeness of {—, —}
to the first case, too. O

Note There are connectives (the Sheffer stroke | and |) which alone form com-
plete sets; we do not consider them here. The mentioned two-element sets of
connectives are the only two-element sets of the considered connectives which are
complete.

Completeness is one requirement on a set of connectives, another desired prop-
erty is that a set of connectives is complete and additionally permits compact
formulations.

Definition 1.7.9 (Compact set of connectives) A subset S of the set of connec-
tives {—, V, A, =, «>} is called compact if there is a polynomial p such that for any
first-order formula ® there is an equivalent formula ¥ using merely connectives
from S and length(®) > p (length(¥)).

Unfortunately, not every complete set of connectives is compact. Consider
the formula class presented in Example 1.7.1 for which no set of the considered
connectives without <+ can provide an equivalent formulation which is polynomial
in size.

Example 1.7.1 For every n > 0, define F,, = A; <> Ay & - A,_1 & A,

There are polynomial transformations which are merely satisfiability and un-
satisfiability preserving [Reckhow, 1976]. Also, similar to the case of Skolemiza-
tion, the transformed formula logically implies the source formula, so that most
problems of automated deduction—unsatisfiability detection and model genera-
tion if possible—can be solved by considering the transformed formula.

23 Also, using this set of connectives, any n-ary boolean function can be equivalently for-
mulated as a propositional formula over n nullary predicate symbols (see [Shannon, 1938] or
[Moret, 1982]).

1.7 Sublanguages and Normal Forms 61

Proposition 1.7.11 All sets of connectives which are supersets of one of the
following sets of connectives are compact: {—=,V, <}, {=, A\, <}, or {—=, =, <}

Proof Apparently, the paraphrasing of any occurrence of a connective from the
set {V, A, —} by any pair of connectives {—, 0}, o € {V, A, =}, gives rise to only
a constant increase in size. The fact that any superset of the mentioned sets of
connectives is compact is then an immediate consequence of Lemma 2.3.7, proven
in Chapter 2. 0

Every compact set of the considered connectives must contain <». This can be
verified by considering Example 1.7.1. As a consequence, no minimal complete
set of the considered connectives is compact. One of the superiorities of the
definitional first-order language over the ordinary first-order language is expressed
in the following fundamental result.

Proposition 1.7.12 For the definitional first-order language, every complete
set of connectives is compact.

Proof It suffices to consider the minimal complete sets of connectives {—,V},
{=, A}, and {—, =}, and the manner how the paraphrasing of the material equiv-
alence sign can be performed. First, any occurrence of a material equivalence
¢ = (F < @) can be substituted by the formula ¥ = ((£ — ¢G) A (g — f))
which is only by a constant larger than ®. Then, for any target connective
o € {V,A,—1}, the paraphrasing of the other connectives produces a formula in
which for every replaced connective in ¥, — and/or A, at most the target connec-
tive o plus a constant number of negation signs and brackets are obtained, so that
the resulting formula is also merely by a constant larger than ®. An application
of Lemma 2.3.7 completes the proof. O

Note The important consequence to be drawn from this property of the defi-
nitional language is that there are linear and equivalence preserving translations
between any two complete sets of connectives. In contrast, compare the consider-
able amount of work done by Reckhow in [Reckhow, 1976] to distinguish between
different forms of translations (so-called direct and indirect translations), which
becomes obsolete for the definitional format. One may object that this is because
the definitional formalism introduces the material equivalence <> in a hidden form.
But this is not true. There is a fundamental distinction between permitting the
formulation of material equivalences F' <> G and the possibility of abbreviating
formulae by definitions jG. The difference is that logical calculi have to contain
additional inference rules for <>, and this way introduce additional sources of
redundancy. From the perspective of automated deduction, which deals with the
problem of finding proofs, additional inference rules may have the effect that the
calculus gets worse; this is because the branching rate of the calculus increases
with additional inference rules, so that the proof search may become more dif-
ficult. The working with definitional expressions, however, can be organized in

62 First-Order Logic

such a way that it induces no additional redundancy, just like the availability of
dags for the unification operation does not render unification more indeterminis-
tic. This can be obtained by distinguishing in the inference mechanism between
definition symbols and ordinary expressions by applying a similar technique used
in the identification, matching, and unification procedures for definitional ex-
pressions. This way, compactness becomes a matter of representation, and not a
matter of logical operators.

1.7.4 Formulae in Clausal Form

After prenexing and Skolemizing a formula, it is a standard technique in auto-
mated deduction to transform the resulting formula into a normal form, called
clausal form. In order to be able to define this normal form, it is useful to extend
the first-order language.

Definition 1.7.10 (Generalized conjunction and disjunction) Let (Fi,...,F,),
n > 0, be a sequence of formulae. The concatenation 1F}--- F,T is called the
generalized conjunction of (Fy,..., F,); if n = 0, the generalized conjunction
17 is named the verum and is abbreviated by writing T. The concatenation
1Fy -+ F,L is called the generalized disjunction of (Fy,...,F,); if n = 0, the
generalized disjunction JL is named the falsum and is abbreviated by writing —.

Any first-order language £ can be extended in an obvious way to a generalized
first-order language L by permitting formulae in which generalized disjunctions
and conjunctions may occur recursively as subformulae. The declarative seman-
tics of expressions for generalized first-order languages is defined by extending
the definition of formula assignment (Definition 1.2.18).

Definition 1.7.11 (Formula assignment for a generalized first-order language)
Given an interpretation Z for a first-order language £ with universe U, and a
variable assignment A from £ to U, then the formula assignment for the gen-
eralization Lg of L is defined by simultaneous induction as in Definition 1.2.18
with the addition of the following two lines. Let Fi,..., F,, n > 0, be arbitrary
generalized formulae.

T if there is an F;, 0 < i < mn, and jA(Fz‘) =T

A =
10. J32(1F -+ Ful) {J_ otherwise.

11. JANE, - FyT) = JA(=1=F - = F,L).

Proposition 1.7.13 Any generalized first-order formula 1Fy---F,L, n > 0,
15 logically equivalent to Fy NV -V F,, and any generalized first-order formula
TF - F,T, n >0, is logically equivalent to Fy A -+ N\ F,.

Proof Immediate from Definition 1.7.11 on p. 62 and Proposition 1.2.1(g) and
(h) (the associativity of A and V) on p. 12. O

1.7 Sublanguages and Normal Forms 63

Definition 1.7.12 (Literal) A literal is an atomic formula or the negation of an
atomic formula.

Definition 1.7.13 (Clause formula) If Ly,...,L,, n > 0, are literals, then the
generalized disjunction IL;---L,l and any of its universal closures are called
clause formulae.

Definition 1.7.14 (Conjunctive, disjunctive normal form) A formula is said to be
in conjunctive or clausal form if it is a generalized conjunction of clause formu-
lae. A formula is in disjunctive normal form if it is a generalized disjunction of
existential closures of generalized conjunctions of literals.

The following is straightforward from Definition 1.2.18 and Proposition 1.2.1.

Proposition 1.7.14 For any first-order formula ® in Skolem form there exists
a formula U in clausal form with ® = W,

Proof Let F' be the matrix of a first-order formula ® in Skolem form. We per-
form the following four equivalence preserving macro steps. First, by items 6 and
7 of the Definition 1.2.18 of formula assignment, successively, the connectives <>
and — are removed and replaced by their definientia. Secondly, the negation
signs are pushed immediately before atomic formulae, using recursively Proposi-
tion 1.2.1(a) and de Morgan’s laws (j) and (k). Thirdly, apply V-distributivity
from left to right until no conjunction is dominated by a disjunction, Finally, move
the quantifier prefix of F' directly before the clause formulae (by iteratively ap-
plying Proposition 1.2.1(q), and delete redundant quantifiers and variables from
the resulting clause formulae.

As an immediate consequence of Proposition 1.7.11 we obtain the following
corollary.

Corollary 1.7.15 There is no polynomial p such that for every first-order for-
mula ® in Skolem form there exists an equivalent clausal form formula U with
length(®) > length(p (V)).

Again, the class of formulae A; <> --- < A, from Example 1.7.1 furnishes
a counter-example. But there are polynomial transformations if logical equiva-
lence is sacrificed. Similar to Reckhow’s transformations, these transformations
[Eder, 1985b, Boy de la Tour, 1990] are satisfiability and unsatisfiability preserv-
ing, and the transformed formula logically implies the source formula.

Note It is an important open question, however, whether the representational
advantages of definitional expressions can be made available to the standard
mechanisms working on formulae in clausal form, of the type discussed in Chap-
ter 3. The apparent problem is that those mechanisms cannot handle arbitrarily

64 First-Order Logic

complex formulae, which would be necessary in order to exploit the full power
of definitional expressions. The naive approach, to simulate the abbreviating
power of definitional expressions with the addition of ordinary clause formulae
(see [Tseitin, 1970]), suffers from the mentioned weakness that it increases the
branching rate of the calculus tremendously.

A specific sublanguage of clausal formulae which is fundamental for the field
of logic programming is the Horn clause language.

Definition 1.7.15 (Horn clause formula) If (Ly,...,L,), n > 0, is a sequence
of literals with an atom at at most one position, then any universal closure of
the generalized disjunction 1L --- L,L is called a Horn clause formula. A Horn
clause formula is called definite if it derives from a sequence of literals with an
atom at exactly one position.

Definition 1.7.16 (Horn clause form) A formula is said to be in Horn clause
form if it is generalized conjunction of Horn clause formulae.

In general, there is no equivalence-preserving transformation from Skolem
formulae to formulae in clausal form, even if polynomiality is sacrificed. Merely
satisfiability and unsatisfiability can be preserved. Furthermore, the transformed
formula does not logically imply the source formula.

Proposition 1.7.16 For any first-order formula ® in Skolem form there exists
a formula ¥ in Horn clausal form such that ® is satisfiable if and only if ¥ is
satisfiable.

There exist translation procedures which even have a polynomial run time
[Letz, 1988]. Since these methods are typically not model-theoretic and require
proof-theoretic techniques, we shall not discuss them here.

1.7.5 Ground and Propositional Formulae

Apart from the restriction of a first-order language by disallowing the use of
certain connectives or quantifiers, one can consider formulae without variables or
function symbols.

Definition 1.7.17 (Data-logic formulae) A first-order formula is said to be a
data-logic formula if it is a Skolem formula in which no function symbols of arity
> (0 occur.

Definition 1.7.18 (Ground formulae) A first-order formula is ground if no vari-
ables occur in the formula.

Definition 1.7.19 (Propositional formula) A first-order formula is a propositional
formula if no variables, quantifiers or function symbols occur in the formula.

For all three sublanguages the satisfiability problem of a formula or a finite set
of formulae is decidable. Since the class of propositional formulae is fundamental
for complexity theory, it will be studied extensively in Chapter 3 of this work.

Chapter 2

Complexity Measures for Logic
Calculi

This chapter developes the basic concepts needed for determining the complez-
ities of logic calculi. In Section 1, we introduce the notions of logic structures
and logics, and identify the different principal types of logical problems. In the
second section, logic calculi are introduced, as the general mechanisms for solving
logical problems; since, computationally, logic calculi can be viewed as transition
relations, afterwards, the basic properties of transition relations are introduced.
For a quantitative competitive assessment of different calculi the lengths of proofs
are of crucial importance; in Section 3, three different formats are presented for
measuring proof lengths, which are of increasing degree of abstraction, and it is
investigated under which conditions the higher abstraction levels adequately rep-
resent the lowest level, by introducing the notions of polynomial size-transparency
and polynomial step-transparency. In the automation of reasoning it is not suffi-
cient to design powerful calculi which are (weakly) complete, the ultimate goal is
to develop strongly complete calculi or proof procedures; in Section 4 proof pro-
cedures are introduced and it is investigated in which way one can come from
complete calculi to proof procedures.

2.1 Logics and Logical Problems

2.1.1 Logic Structures

With the use of logical expressions a wealth of domains can be modelled and
many problems in these domains can be described. Yet it has proven convenient
not to be restricted to isolated logical expressions as representing elements but
to have at one’s disposal compositions of logical expressions.! This leads to the
concept of what we shall call logic structures.

'In fact, one has never been satisfied with logical expressions alone, additionally, structures
composed of logical expressions were used, typically, sets of logical expressions.

66 Complexity Measures for Logic Calculi

Definition 2.1.1 (General logic structure) A general logic structure S on a first-
order language? L is any set-theoretic object composed of expressions from L.

This definition is very broad and does not impose any restrictions on the
nature and the size of the involved objects. For example, an interpretation of a
logical formula—which in general is infinite—or even the collection of all interpre-
tations of a formula—which for the first-order case normally is non-denumerable—
are general logic structures. In principle, logic structures have the same status
as logical expressions, since logical expressions themselves are strings over an
alphabet, and strings are just ordinary set-theoretic constructs. To work with
structures composed of logical expressions just means that logical expressions
constitute a useful class of basic units from which further interesting structures
can be achieved by composition.

With respect to mechanization, the condition of finiteness is an indispensible
feature. This condition characterizes proper logic structures, in which we are
particularly interested in this work.

Definition 2.1.2 ((Proper) logic structure) A proper logic structure or just logic
structure S on a first-order language £ is any finite? object composed of logical
expressions from L.

Logic calculi can cope with proper logic structures only. Proper logic struc-
tures impose principal representational restrictions on general logic structures.
Indeed, it is impossible to represent all general logic structures as proper logic
structures, as exemplified by the above example, namely, the collection of all
interpretations for a formula of first-order logic.

2.1.2 Logical Relations and Logics

While logical expressions are the basic components of logic structures and hence
at the microscopic end of the spectrum, there are particularly useful and uniform
mathematical objects that are best-suited to represent the top elements in the
hierarchy of logic structures. These are relations of logic structures.

Definition 2.1.3 (General logical relation) A general logical relation on a collec-
tion of logic structures S is any n-ary relation such that every tuple (Sy,...,S,) €
R consists of general logic structures from S.

As a matter of fact, general logical relations are just general logic structures.
The advantage offered by the format of logical relations is that it is both uniform

2Although in our work only the first-order language (or sublanguages of it) are considered,
the concepts developed in this chapter are not specific to first-order languages but apply to
more expressive logical languages too.

3With finite objects we mean such objects which can be explicitly described by finitistic
methods, for instance, injectively mapped to strings over a finite alphabet.

2.1 Logics and Logical Problems 67

and general enough to represent many domains in a natural way. As will become
apparent in a moment, relations on logic structures also play the key role in the
formulation of logical problems.

Examples of relations on logic structures The classical example of a relation
on logic structures is the binary relation of [ogical consequence, which contains
tuples (T', A) of sets of logical formulae such that A is a logical consequence of
I'. In the recent time, the abduction relation is gaining interest. Abduction may
be viewed as a ternary logical relation consisting of triples (I', A, A) of (sets of)
logical formulae such that T'UA is consistent and A follows from I'UA but neither
from I' nor from A. As a third important example, the theory revision or update
relation, as typically used in information systems, could be defined as a collection
of triples (I', A, A) of sets of logical formulae such that (I" and A are inconsistent
and) A is some minimal subset of the theory I' satisfying that I' \ A and the
update A are consistent.

Of particular importance is the study of those relations which are based upon
proper logic structures.

Definition 2.1.4 (Proper logical relation) A general logical relation is said to
be a proper logical relation or just a logical relation if its tuples are composed of
proper logic structures.

It is important to note that proper logical relations need not be proper logic
structures. While the elements of the relations, the tuples, have to be finite
structures, the relations themselves may be—and typically are—infinite.

Proposition 2.1.1 FEvery proper logic structure is countable.

Proof By definition, every proper logic structure can be injectively mapped to a
string over some given finite alphabet. Since the set of strings over any alphabet
is countable, any proper logical relation must be countable, too. O

Lastly, we can come to the formal definition of what we will understand by a
logic, both in the general and in the proper sense.

Definition 2.1.5 (General and proper logic) A general logic is a pair L = (S, R)
where § is a collection of general logic structures and R is a logical relation of
arbitrary arity on §. Whenever S is a collection of proper logic structures, then
L is called a proper logic or just a logic.

68 Complexity Measures for Logic Calculi

2.1.3 Logical Problems

Given a logic (S, R), then some fundamental types of logical problems can be
formulated. The simplest logical problem is the verification problem. It consists
in finding a universal and mechanical procedure which for any tuple £ € R can
verify that t € R. The other basic types of logical problems need some definitions
for both a general and precise formulation.

Definition 2.1.6 (Projection) A projection function 7 from a positive integer
n to a non-negative integer k (k < n) is a bijective mapping from a subset of
the positive integers {1,...,n} onto the set of positive integers < k which is
monotonic with respect to <, i.e., for all 7, j in the domain of 7: ¢ < j implies
m(i) < m(j). A projection function is called proper in case n > k. If w is a
projection function from n to k and R is a logical relation of arity n, then the
m-projection induced by ™ on R, written 7, is a mapping with domain R and
defined by

,tn>) _ { é)tﬂl(l), ce ,tﬂ—l(k)> if k>0

To present an example, suppose a projection function 7 is the mapping
{(1,1),(3,2),(4,3)}, then its w-projection on a relation R of arity 4 maps any
quadruple (a,b,c,d) € R to the triple (a,c,d). In case a projection function 7
is from n to 0, then the corresponding 7-projection Tz on any n-ary relation R
maps its members constantly to ().

Definition 2.1.7 (Complement projection, complement tuple) If 7 is a projection
function from n to k, then its complement projection, written 7, is the projection
function from n to n—k which has as its domain the complement of the domain
of 7 in the set {1,...,n}. Suppose 7wz is a m-projection induced by a projection
function 7 and a relation R. For arbitrary tuples ¢,t', if 7 (t) = 7z (¢'), then we
call Tz (t") a complement tuple of Tz (t) under 7 and R.

Note While any projection function 7 has a unique complement projection 7, a
tuple 7 (¢) on a relation R may have more than one complement tuples.

The notion of complement tuples serves as the basis for the formulation of
logical computation relations. Beforehand, we need the concept of logical projec-
tions.

Definition 2.1.8 (Logical projection) A logical projection is a triple (S, R,)
where R is an n-ary logical relation on a collection of logic structures & and
7 is any projection function from n to some natural number k£ < n. A logical
projection is called proper if k < n.

2.1 Logics and Logical Problems 69

Definition 2.1.9 (Computation relation) Given a logical projection (S, R,),
the binary relation C consisting of the set of pairs {(mz(t),Tz(t")) | m=(t) =
mr(t')}, i.e., the set of all pairs of tuples and their complement tuples, is called
the computation relation of the logical projection. For any member (i, 0) in a
computation relation C we say that ¢ is an input of o in C and that o is an output
of i in C. Furthermore, we call the sets {i | 7 has an output in C'} and {o | 0 has
an input in C'} the input set and the output set of C, respectively. A computation
relation is called proper if it derives from a proper logical projection.

Example 2.1.1 Assume S is the set of formulae of a first-order language, and
let R C & X § be the binary relation

{(®,¥) | ® = V¥ and there isno T € S with ® =T and size(Y) < size(V)}.

The computation relation C of the logical projection (S, R, {(1,1)}) associates
with every input formula a logically equivalent formula which is minimal in size,
i.e., for this logical projection, the computation relation C is R itself.

Clearly, the output set of any improper computation relation either is empty,
in case the relation itself is empty, or contains only the empty tuple. The same
holds for the input set if the projection function is from n to 0.

Any specific logical problem can be expressed as a logical computation relation
C. Its solution consists of computing for any member 7 in the input set of C
outputs of 7 in C. Due to the fact that for any n-ary logical relation up to
2" different computation relations may be formulated, corresponding to the 2"
existing logical projections, logical computation relations offer a flexible tool for
expressing various logical problems for a given logical relation.

Two fundamental types of computation problems may be distinguished. On
the one hand, there is the task of finding for any element 7 in the input set of C at
least one output of 7 in C, which we will call an ezistential computation problem.
On the other hand, one can pose the problem of computing for any element 7 in
the input set of C all outputs of 7 in C; in this case we will speak of a universal
computation problem or an enumeration problem. In the general case, in which
there are infinitely many output values for ¢, an enumeration problem can only
be solved by a perpetual process which never terminates.

In the terminology of computation problems, a verification problem for a
logical relation R turns out to be the special case of an improper computation
problem, i.e., 7z = R and T contains at most the empty set. Since in this
case the computation relation is a (constant) function, existential and universal
computation problems coincide.

The notions of logical computation relations and computation problems pro-
vide both a rich and elegant terminology for describing logical problems. Let us
illustrate this at some concrete computation problems that can be formulated for
typical logical relations.

70 Complexity Measures for Logic Calculi

Examples of computation problems The verification problem for the binary
relation of logical consequence is the classical task of automated deduction. The
problem of enumerating the logical consequences of a formula is a proper universal
computation task. For problems like constraint satisfaction, model generation, or
query answering in logic programming, one normally is satisfied if one output is
computed, so these are typical existential computation problems.

In practice, during the solution of one particular problem type any of the three
types of problems may occur as subproblems. For subproblems which are univer-
sal computation problems, due to possible non-termination—in case of infinitely
many output values—it may then be necessary to use interleaving techniques.

Example of a complex computation problem Complex computation prob-
lems can be formulated for the ternary abduction relation mentioned above, which
consists of triples (I', A, A) of sets of logical formulae such that T UA is consistent
and A follows from ['UA but neither from I' nor from A. The typical computation
relation for abduction is the one which takes pairs of the type (I', A) as inputs and
computes output values, abducibles, of the type A. The problem of computing
abducibles contains as subproblems the verification of logical consequence and
consistency.

2.1.4 Specializations of Logics

A logic explicitly distinguishes between the underlying collection of logic struc-
tures and the logical relation defined on these structures. This separation turns
out to be helpful when comparing logics, in particular, in case one logic is a spe-
cialization of the other. Apparently, there are two different ways of specializing a
logic. On the one hand, there are restrictions on the admissible logic structures,
and on the other, there are restrictions on the logical relation.

Definition 2.1.10 ((Structure) restriction) If (S, R) and (S, R') are logics where
S'CSand R ={t€ R |tisatuple on §'}, then (S, R') is called a (structure)
restriction of (S, R).

Definition 2.1.11 (Sublogic) If (S,R) is a logic and R’ C R, then (S, R’) is
called a sublogic of (S, R).

The two different ways of specializing a logic also have implications on the
resulting logical problems. While, typically, the structural recognition of whether
a logic structure belongs to a given collection of logic structures is decidable with
low cost, proving that a tuple belongs to a logical relation is difficult in most
cases, often undecidable. The possibility of keeping this separation motivates a
further subclassification of logic structures.

2.2 Logic Calculi and Transition Relations 71

Definition 2.1.12 (Polynomial difficulty) A collection of logic structures S is said
to be of polynomial difficulty if there is a polynomial p and a decision procedure P
for membership in § such that, for arbitrary logic structures .S, the run time of P
on input S is less than p (size(S)) where size(S) is the string size of an appropriate
string encoding of S. A logic (S, R) is said to be of polynomial structure-difficulty
if S is of polynomial difficulty.

Any method for solving a logical problem for a logic (S, R) automatically
carries over to any structure restriction (S', R') of the logic if 8’ is of polynomial
difficulty.

2.2 Logic Calculi and Transition Relations

Once a logical problem has been formulated, the question is whether there exist
effective methods for solving arbitrary instances of this problem. The material-
izations of such effective mechanisms for logical relations are in the form of logic
calculs.

2.2.1 Inference Rules and Deductions

Viewed from the highest representational level, a logic calculus is given as a
finite set of structural rules which specify deductive or inferential operations.
Traditionally, these deduction or inference rules are presented as collections of
figures of the general shape

S, . S,
S

where Sy,...,95, and S are schemata describing the permitted structures in the
input tuple and the output of the rule, respectively. The paradigmatic interpre-
tation of an inference operation according to such a figure is meta-level matching
and deduction: given an already generated set S of proper logic structures,

1. select a tuple (S],...,S,) of logic structures from S such that there exists

a substitution o for schema variables with (Sjo,...,S,0) = (S{,...,S,),

2. afterwards, select a logic structure S’ such that there is a substitution 7 for
schema variables with Sor = S".

S’ is the output of the deduction step. Sometimes additional conditions need to be
met to admit the performance of the deduction step. Typically, these conditions
cannot be expressed using the schematic form, therefore they are formulated
alongside.

The following two examples of inference rules which are taken from the az-
iomatic Frege/Hilbert calculi [Frege, 1879, Hilbert and Bernays, 1934] are con-
crete instances of such inference rules formulated in modern symbolism, without
additional conditions. The gothic letters stand for arbitrary first-order formulae.

72 Complexity Measures for Logic Calculi

Example 2.2.1 (Detachment or Modus ponens rule)

A A — B
B

Example 2.2.2 (First axiom rule! of the Frege/Hilbert system)

A— (B —>A

Note In the modus ponens rule the second substitution 7 is empty, whereas
in the axiom rule the first substitution o is empty. In Gentzen’s sequent system
[Gentzen, 1935] there are inference rules in which both substitutions are non-
empty.

Inference rules describe the elementary steps for building deductions and
proofs, which are special types of deductions. There are different paradigms
for defining deductions. One frequently used definition is to view deductions
as finite sequences (Si,...,S,) of logic structures where each S;, 1 < i < n,
can be deduced by applying an inference rule to structures with an index
strictly less than i; examples of calculi in which deductions normally are un-
derstood this way are the Frege/Hilbert systems mentioned above and the res-
olution calculi [Robinson, 1965a]. Another popular interpretation is to define
deductions as trees labelled with logic structures where each parent node is
obtained by applying an inference rule to its successor nodes; sequent deduc-
tions were originally presented this way. In Section 3.3, tableau deductions
[Beth, 1955, Beth, 1959, Smullyan, 1968] will be defined as trees which satisfy
certain graph properties.

There is no limitation to further ways of defining deductions. However, all
deductions seem to share one essential property in order to be accepted as such,
namely, the cost for deciding whether a given logic structure is a deduction of a
certain type must be adequately represented in the size of the logic structure. A
reasonable weak formalization of the term ‘adequately’ is to read it as ‘polyno-
mially’. In other words, any collection of logic structures defining deductions of
a certain type must be of polynomial difficulty.’

2.2.2 Deduction Processes

For investigations into the computational complexity of logic calculi, it is impor-
tant to realize that one can distinguish between the deduction as a declarative

“In the literature, often a distinction is being made between inference rules of the modus
pones type and so-called aziom schemata presented in this example. An axiom schema is
sometimes not read as an inference rule, but as specifying the set of all instances of logic
structures (in the example just formulae) which are instances of the schema. Computationally,
such a distinction does not make sense. We treat axiom schemata simply as inference rules
without any structural conditions on the input set.

°Tt is for this reason, that complementary spanning matings (Definition 3.3.12 on p. 121)
cannot be accepted as deductions.

2.2 Logic Calculi and Transition Relations 73

object and the deduction process. Deductions as static objects of the type men-
tioned above tend to be non-operational, in the sense that they do not prescribe
the precise methodology according to which they have to be constructed. A de-
duction process can be viewed as one particular way of building up a deduction
object.®

There is no agreement in the logic community about whether a logical system
merely has to describe deductions as static objects or whether the system should
also determine the operational generation paradigm of deductions. This is an
important subject since different logical systems may produce the same deduction
objects but completely differ in the recommended methodology how to construct
the deduction objects. From the viewpoint of automated deduction, which is
concerned with the problem of finding proofs, the deduction process is essential.
Also, strictly speaking, the deduction process is the more fundamental notion
and the deduction object is just a—even though extremely useful—by-product of
the deduction process. This evaluation can be justified by recalling under which
conditions a given object is accepted as a deduction of a type S, namely, if there
exists a procedure which decides in polynomial time whether the object has type
S. Consequently, the declarative reading of deductions need to be supplemented
with an additional operational methodology.

Since, in its essence, the concept of a logic calculus is an operational concept,
there has to be a clear idea of mechanical processing, a notion of moving from one
state of affairs to another, and the possibility for doing this iteratively. Therefore,
a very natural and general specification model is to interpret logic calculi as
defining binary transition relations between proper logic structures, which play
the role of the states in the transition relations.

2.2.3 General Notions of Transition Relations

First, we have to review the standard vocabulary for transition or reduction rela-
tions, which is taken from the area of rewriting systems. We begin with a series
of notational abbreviations.

Notation 2.2.1 For a given transition relation -, we let denote

the i-fold composition of +;

the transitive closure of +;

the transitive-reflexive closure of F;
- the symmetric closure of F.

T, T, T.

Definition 2.2.1 (Derivation, predecessor, successor, ancestor, descendant, acces-
sibility) Given a transition relation b, then any sequence S of objects such that
for every two successive elements e;, e;.1 in S: e; - e;4 is called a derivation in

6In the Chapters 3 and 4, we shall frequently make use of the distinction between deductions
as objects and the different processes for generating deductions.

74 Complexity Measures for Logic Calculi

. If ek e, we call e a predecessor of e’ and e’ a successor of e in k. If e F e,
we call e an ancestor of ¢’ and e’ a descendant of e in . If e F ¢/, we say that
e’ is accessible from e.

Notation 2.2.2 If two objects e; and ey are accessible from a common object
in a transition relation -, we write e; A €5, and if from two objects e; and ey a
common object is accessible, we write e; Y e5. The set of objects accessible from
an object e in -, {e’ | e F e}, is written ¢ .

Definition 2.2.2 (Height) Let - be a transition relation. The height A of an
element e in I is defined by

Ale) = max({i | there is an e’ with e l—ie’}) if it exists
00 otherwise.
Definition 2.2.3 We say that a transition relation F is
1. acyclic if F is irreflexive;
noetherian if there is no infinite derivation in +;

bounded if for all objects e: A(e) # oc;

- W N

locally confluent if for all ey, e;: whenever there exists an e with e - e; and
e - eg, then e; Y es.

ot

(globally) confluent if for all e;, es: €1 A ey entails eq Y es.
6. locally finite if for all e: the set of successors of e in - is finite;

7. (globally) finite if for all e: ¢F is finite.

Definition 2.2.4 (Normal form) An object e from the field of a transition rela-
tion F is in normal form or irreducible in = if it has no successor in . An object
e’ is said to be a normal form of e if €' is irreducible and e F ¢’

Definition 2.2.5 (Maximal derivation) A derivation is called mazimal in a tran-
sition relation F if either it is infinite or its last member is irreducible in .

Let us state some more or less evident dependencies between the introduced
notions (for proofs of the non-obvious results consult, for example, [Huet, 1980]).

Proposition 2.2.1

(i) Every bounded relation is noetherian, and every noetherian relation is
acyclic.

(1) Any locally finite and noetherian relation is bounded and globally finite.
(111) Any acyclic and globally finite relation is bounded.

2.3 Indeterministic Complexities 75

(iv) If a relation is confluent, then for all e1,ey: €; - ey if and only if e; Y e
(“Church-Rosser” property).

(v) If a relation is confluent, then the normal form of any element, if it exists,
1S unique.

(vi) If every element from the field of a relation has a unique normal form, then
the relation is confluent.

(vii) Any noetherian and locally confluent relation is confluent.

A further basic notion is the distance between two elements in a transition
relation.

Definition 2.2.6 (Distance) Let - be a transition relation. The distance ¢ of
an element e from an element e’ in F is defined by

5(e e’ 1) = { min({i | e I—ie’}) if it exists

o0 otherwise.

2.3 Indeterministic Complexities

Given a logical computation problem, as defined in Section 2.1 (p. 69), and dif-
ferent logic calculi which can solve the instances of this problem, the question is
which is the best among these calculi. Essentially, the competitiveness of a logic
calculus is determined by two complementary factors; on the one hand, there is its
ability to provide compact proofs, and on the other, there is the effort needed for
finding such proofs, i.e., the search space induced by the indeterminism inherent
in the calculus. In this section, we shall systematically address the problem how
to measure the first of these two capabilities of a calculus, which could be called
its indeterministic power. The indeterministic power of a calculus is determined
by the complexities of the shortest proofs for a given logical computation prob-
lem. This raises the fundamental question how the complexities of proofs and
deductions in a calculus should be measured. This subject is general enough to
be investigated on the level of arbitrary transition relations.

2.3.1 Three Natural Measures for Derivations

For evaluating the complexity of a derivation ey, ..., e, in a transition relation ,
three different measures are the obvious alternatives, which correspond to three
different degrees of precision. The finest measure charges the minimal comput-
ing cost needed in a basic machine model to come from the initial state eq to
the terminal state e, via the given intermediate states in the derivation. The
computing cost of rewriting a state e; to a state e;;; may be, for example, the
minimal number of configurations of a nondeterministic Turing machine (or the

76 Complexity Measures for Logic Calculi

machine operations of the indeterministic version of any alternative realistic ma-
chine model)” to transform e; into e;4;. Conceptually, the chosen basic machine
model can be viewed as another (more elementary) transition relation, written

—. Then, the elementary computing cost of the derivation D = eq,...,e, can be
defined as .
COSt(D) = Z 5(61‘, €it1, —>)
i=0

where § denotes the distance between two elements in a transition relation (Def-
inition 2.2.6 on p. 75).

Taking the elementary computing cost of a derivation as the measure of its
complexity has certain disadvantages. First, for the standard realistic machine
models, the measure is too detailed to be interesting as a quantity of comparison
on a higher level of abstraction. Second, its value may vary strongly, depending on
the chosen realistic machine model—even though only up to polynomials. Lastly,
it may be very difficult to actually obtain the realistic computing cost, because
the mapping down of high-level transition steps into basic machine operations is
normally not carried out explicitly, instead one is satisfied with knowing about
the possibility of such a transformation and its computational invariances.

An advance is offered by abstracting from the elementary computing cost and
restricting oneself to a higher level of representation, by only considering the
realistic (string) size of a derivation D = e, ..., e,:

#(D) = ﬁg#(e».

Note We shall introduce all notions and results for the case of realistic string
sizes. A generalization of the concepts and the propositions presented below
to unrealistic string sizes is straigtforward, as long as the unrealistic sizes are
polynomially related with realistic ones.

The highest abstraction level even disregards the size of a derivation D =
€, - - -, €n, and considers only the number of rewrite steps in the top-level transition
relation -, in terms of logic calculi, the number of inference steps:

steps(D) = n.

Eventually, it is this measure that is being striven for. It has been used
successfully for analyzing the indeterministic power of many propositional calculi,
for example, in [Reckhow, 1976], [Haken, 1985], and various other papers. The
abstraction performed by these authors is an abstraction modulo polynomials;
they make plausible that the elementary computing cost is polynomially bounded
by the number of inferences. Such an abstraction is very natural in that it takes
into account the problem area of NP vs coNP, on the one hand, and additionally

7See the remarks on realistic machine models in Section 1.1.

2.3 Indeterministic Complexities 77

leaves aside uninteresting subpolynomial differences which result from the choice
of the realistic machine model, on the other.

One of the main objectives of this work is to explore the possibilities of ab-
straction modulo polynomials in a systematic manner, and to apply it to the
investigation of arbitrary logic calculi and transition relations.

2.3.2 Polynomial Size- and Step-Transparency

The following two notions are fundamental for a general theory of the abstraction
modulo polynomials. First, we consider the abstraction step from the elementary
computing cost to the size of a derivation, and state under which condition such
an abstraction is permissible.

Definition 2.3.1 (Polynomial size-transparency) A transition relation F is called
polynomially size-transparent if there is a polynomial p such that for every deriva-
tion D =eg,...,e, in I

cost(D) < p (#(D)).

If a transition relation - is polynomially size-transparent, then the size of any
derivation gives a representative complexity measure of its elementary computing
cost, as long as we are interested in complexities modulo polynomials. Polynomial
size-transparency generalizes a basic concept introduced by Cook and Reckhow
in [Cook and Reckhow, 1974]. They define a (complete) proof system as a (sur-
jective) in polynomial time computable function from the set of strings to the set
of valid formulae. Apparently, any proof system is polynomially size-transparent.

In order to define a general criterion which guarantees that we can even ab-
stract from the size of a derivation, it is necessary to use polynomials in two
arguments.

Definition 2.3.2 (Polynomial (step-)transparency) A transition relation F is
called polynomially step-transparent or just polynomially transparent if there is a
polynomial p in two arguments such that for every derivation D = ey, ..., e, in
F:

cost(D) < p (#(eo),n).

It is apparent that polynomial transparency is a highly desirable property. If a
transition relation (logic calculus) is polynomially transparent, then the number of
rewrite steps (inference steps) of any derivation is a representative measure of the
complexity of the derivation. In a transition relation (logic calculus) which lacks
polynomial transparency the number of rewrite steps (inference steps) furnishes
no reliable information about the actual complexity of the derivation. For such
systems, it is impossible to measure complexities on an abstract level. Also, the
comparison with other transition relations (logic calculi) may become extremely
difficult. The benefit of stressing the importance of polynomial transparency is

78 Complexity Measures for Logic Calculi

twofold, not only does it facilitate the abstract classification of different systems,
it also may give advice how to improve the systems, as shown in Section 4.2 for the
case of resolution. There, we shall present the principal solution methodologies
when faced with the polynomial intransparency of a transition relation.

Furthermore, the concept of polynomial transparency leads to a natural gen-
eralization of the notion of a realistic machine model. By a generalized realistic
machine model we can understand any computation model which, as a transi-
tion relation, is polynomially transparent and has the expressive power of Turing
machines.

Note It is clear that indeed a polynomial in two arguments is needed for the
definition of polynomial transparency. Demanding that cost(D) < p (n) does not
result in a useful notion. As an example, consider a calculus which solely can
check whether a logical formula has the structure F' vV —F. According to the
intended reading of inference steps, we wish to say that the calculus can verify its
input in a single inference step. However, there is no complexity function (and
hence no polynomial) which bounds the elementary computing cost for verifying
formulae of arbitrary size that have the shape F'V = F.

Proposition 2.3.1 If a transition relation = is polynomially transparent, then
F 1s polynomially size-transparent.

Proof By assumption, there is a polynomial in two arguments p such that for
every derivation D in : cost(D) < p(#(eo),steps(D)). Apparently, #(D) >
#(eg) and #(D) > steps(D), since any state has a size > 1. Hence, cost(D) <
p (#(D),#(D)), which can be made into a polynomial with one argument. [J

Since most transition relations considered here are polynomially size-

transparent, the following weaker variant of polynomial transparency proves use-
ful.

Definition 2.3.3 (Polynomial transparency wrt size) A transition relation is
called polynomially transparent wrt to (derivation) size if there is a polynomial p
in two arguments such that for every derivation D = ey, ..., e, in I

#(D) < p(#(eq),n).

Proposition 2.3.2 If a transition relation = is polynomially transparent wrt size
and = s polynomially size-transparent, then = is polynomially transparent.

The indeterministic power of a transition relation as a problem solving mech-
anism is intended to be the minimal cost needed for solving a given computa-
tion problem. Accordingly, we have to define when a computation problem has
been solved by a transition process in a transition relation. This can be done
by introducing for transition relations the notion of a successful derivation or

2.3 Indeterministic Complexities 79

proof. There are different possibilities for defining successful derivations, depend-
ing on whether existential or a universal computation problems are concerned. To
avoid unnecessary complications, we shall deal with verification problems only,
for which existentiality and universality coincide. Then, proofs can be defined
by associating with a given transition relation - a distinguished state (2, named
the success state, which is assumed to be irreducible in . We shall call such
transition relations proof relations. Any finite derivation in a proof relation F
with an initial state e and terminal state €2 is said to be a proof of e in -; we
also say that e is provable in .

Now, we can define the properties of soundness and (weak) completeness of a
proof relation with respect to a given computation problem.

Definition 2.3.4 (Sound and complete proof relation) Any pair ¥ = (X, X7)
consisting of disjoint sets of states X1 and X~ is called an input pair, ¥ is termed
the positive part and ¥~ the negative part of ¥. A proof relation I is said to be
sound for an input pair ¥ if no element of its negative part is provable in . A
proof relation is called (weakly) complete for an input pair ¥ if every element of
its positive part is provable in .

Definition 2.3.5 ((Indeterministic) polynomial boundedness) A proof relation +
is called (indeterministically) polynomially bounded for an input pair ¥ if there is
a polynomial p such that for any element e in the positive part of ¥ there exists
a proof D of e in - with:

cost(D) < p (#(e)).

It is more convenient, to measure the indeterministic power of a transition
relation in more abstract terms.

Definition 2.3.6 (Polynomial size-boundedness) A proof relation I is called poly-
nomially size-bounded for an input pair X if there is a polynomial p such that for
any element e in the positive part of ¥ there exists a proof D of e in - with:

#(e) <p(#(D)).

Definition 2.3.7 (Polynomial step-boundedness) A proof relation I is called poly-
nomially step-bounded for an input pair X if there is a polynomial p such that for
any element e in the positive part of ¥ there exists a proof D of e in - with:

#(e) > p(#(e), steps(D)).

The polynomial size- or step-transparency of a proof relation permit to eval-
uate its indeterministic power as a problem solving mechanism for a verification
problem in terms of the sizes of proofs or the sizes of inputs and proof steps,
respectively. This is expressed in the following obvious propositions.

80 Complexity Measures for Logic Calculi

Proposition 2.3.3 Given a proof relation b which is polynomially size-
transparent. If + is polynomially size-bounded for an input pair ¥, then b is
polynomially bounded for X.

Proposition 2.3.4 Given a proof relation &= which is polynomaially transparent.
If + is polynomially step-bounded for an input pair X, then F is polynomially
bounded for X.

2.3.3 Sufficient Conditions for Polynomial Transparency

After the importance of polynomial transparency has sufficiently been empha-
sized, the question emerges how it can be determined whether a given transition
relation has this property. Polynomial transparency is a characteristic defined on
derivations of arbitrary lengths. It would be comfortable if the polynomial trans-
parency of a transition relation could be derived from more elementary properties
of the transition relation. We shall present a very useful sufficient condition for
polynomial transparency which only takes into account the step-behaviour of a
transition relation. For this purpose, we have to consider different forms of step-
reliability.

Definition 2.3.8 (Polynomial time step-reliability) A transition relation is
called polynomial time step-reliable if there is a polynomial p such that for any
one-step derivation D = (e,e’) in

cost(D) < p (#(e)).

Proposition 2.3.5 If a transition relation b is polynomial time step-reliable,
then = is polynomially size-transparent.

Note The development of data structures and algorithms for polynomial unifica-
tion can be viewed as the attempt to achieve the polynomial time step-reliability
of deduction systems using unification.

Definition 2.3.9 (Polynomial size step-reliability) A transition relation i is called
polynomial size step-reliable if there is a polynomial p such that for any pair
(e,e') € F:
#(e') < p(#(e)).
The following obvious proposition demonstrates that transition relations
which are locally infinite—and most of the traditional logic calculi are locally

infinite according to the naive reading—are very problematic from a computa-
tional point of view.

Proposition 2.3.6 If a transition relation = is not locally finite, then, for any
complexity function f, there exists a pair of states (e,e') € b with

#(e') > f(#(e))-

2.3 Indeterministic Complexities 81

Note It is clear that locally infinite transition relations can never be polynomially
transparent.

Unfortunately, polynomial time and polynomial size step-reliability of a transi-
tion relation do not guarantee its polynomial transparency. As a counter-example
consider the transition relation F defined in Example 2.3.1.

Example 2.3.1 Let - = {(F,(FAF)) | F € L} where L is the language of
propositional logic.

Obviously, F is polynomial time and polynomial size step-bounded, but it is
not polynomially transparent, since after n successive rewrite steps a formula of
exponential size is generated. This example is in perfect analogy to Example 1.6.2
(p. 45) where the ordinary n-fold application of a substitution o = {z/f(z,z)}
to a variable x generated a term xo -- -0, exponential in size with respect to n
and the input. While (here and there) polynomial time step-reliability poses no
problems, the condition of polynomial size step-reliability must be tightened.® A
sufficient general condition is provided with the following notion.

Definition 2.3.10 (Logarithmic polynomial size step-reliability) A transition re-
lation F is called logarithmic polynomial size step-reliable, or just logp size step-
reliable, if there is an integer b > 1 and a polynomial p such that for every pair
(e,e') € F:

#(e') < (log, p (#(€))) + #(e).

The following lemma is fundamental for the theory of abstraction modulo
polynomials.

Lemma 2.3.7 If a transition relation F is polynomial time step-reliable and
logp size step-reliable, then b is polynomially transparent.

Proof Let F be as assumed, and suppose the value of the polynomial p for an
argument « be

pla)=> k.
r=1

Consider an arbitrary derivation D = eq, ..., e, in . The following upper bound
can be obtained for the size of each ¢;, 1 < ¢ < n. First, by simply replacing each
#(e;), 1 < j <, with its upper bound in terms of #(e;_1), we get that

#(ei) < (12_5 logbp(#((fj))) + logy, #(eo) + #(eo)-

8In the case of substitution application, this led us to the development of the definitional
application of a substitution.

82 Complexity Measures for Logic Calculi

Then, for any state e;, the following upper bound can be obtained:

#(ej) < #(ej-1) + logy i kvt (i)' < #(ej) + Zs: logy (ke #(e;—1)") =

r=1 r=1

#(ej_1) + i logyk, + i(hrlogb#(ej,l)) < cH(ej_q)

r=1 r=1
for some constant ¢. Consequently, for any member log, p (#(e;)) of the big sum
above, the following estimate holds:

log, p (#(c;)) < log, (c7 " #(ca)) = (logy 7 ") + log, #(eo) =

log, c/=! j—1
_ 08O _ I |
log, b + logy, #(eo) log, b + logy, #(eo)

Cc Cc

For the entire big sum, this yields the bound:

> loes #le,)) < 5o

j=1

+ (1—1) log, #(eo).

C

Therefore, for any member e; in the derivation D:

1
2log, b

#(e;) < 2 4 (i + 1)#(eo).

Finally, for the whole derivation D, we get that

#D) < 3 (g + 0+ D)

= \2log, b

which is a polynomial in #(eg) and n, and hence demonstrates that F is poly-
nomially transparent wrt size. Since, by assumption, - is polynomial time step-
reliable, and therefore polynomially size-transparent, by Proposition 2.3.2 (p. 78)
the transition relation F is polynomially transparent. O

Note The logp size step-reliability condition generalizes various special instances.
The simplest one is the constant size increase condition #(e') < ¢+ #(e), which
is that special instance of logp size where p is a constant polynomial of the form
be.

Since the generalization of the above lemma to unrealistic but polynomially
related size measures proves useful in practice, we shall carry out this generaliza-
tion explicitly.

Corollary 2.3.8 If a transition relation & is polynomial time step-reliable and
logp size step-reliable where the size measure s polynomially related with a real-
istic size measure, then = is polynomially transparent.

2.3 Indeterministic Complexities 83

Proof Let F be a transition relation such that the chosen size measure is poly-
nomially related with a realistic size measure # for all members in the field of |-,
that is, there are polynomials py, ps such that for any object e in the field of +:

#(e) < pi(size(e)) and size(e) < pa(#(e)).

In analogy to the proof of Lemma 2.3.7, there exists a polynomial p such that for
any derivation D = eq, ..., e, in F:

size(D) < p (size(eg), n).

Since
#(D) < pi(size(D)) < p (size(eg), n) < p (p2(#(e0)), 1),

I is logp size step-reliable for the realistic size measure #. Then, by Lemma 2.3.7,
- is polynomially transparent. 0

2.3.4 Weaker Forms of Size- and Step-Transparency

There are transition relations for which polynomial size- or step-transparency
cannot be guaranteed for arbitrary derivations, so that not in any case the size
or the input size and the steps of a derivation give a representative measure of its
complexity. But, one may argue, whenever a transition relation is applied as a
mechanism of solving a computation problem, its indeterministic power is solely
determined by those derivations which are shortest proofs of the inputs in the
computation relation. Accordingly, one can weaken the notions of polynomial
size- and step-transparency in such a way that only those derivations are being
taken into account which are shortest proofs. The question is how to define ‘short’,
in terms of elementary computing cost, in terms of derivation size, or number
of steps. Also, the shortest proof, in anyone of these models, may violate the
conditions of polynomial size- or step-transparency, but the second shortest may
fit. In order to facilitate the formulation of reasonably tolerant generalizations of
polynomial size- and step-transparency, we define minimal proofs with respect to
polynomials.

Definition 2.3.11 [p-(size,step-)minimal proof) Given a proof relation - and a
polynomial p.

(a) A proof D of a state e in I is said to be minimal with respect to p, or just
p-minimal, in b if for any proof D’ of e in F:

cost(D) < p (cost(D")).

(b) A proof D of a state e in I is said to be size-minimal with respect to p, or
just p-size-minimal, in F if for any proof D’ of e in F:

#(D) < p(#(D)).

84 Complexity Measures for Logic Calculi

(c) A proof D of a state e in I is said to be step-minimal with respect to p, or
just p-step-minimal, in F if for any proof D' of e in F:

steps(D) < p (#(e), steps(D")).

Now, polynomial difference in complexity poses no problems, not the abso-
lutely shortest proof must be taken, any proof will do which p-simulates the
shortest one. Using p-size- and p-step-minimal proofs the notions of polynomial
size- and step-transparency can be weakened as follows.

Definition 2.3.12 (Weak polynomial size-transparency) A proof relation F is
called weakly polynomially size-transparent for an input pair ¥ if there are poly-
nomials p and p’ such that for every element e in the positive part of ¥ there
exists a p-size-minimal proof D of e in - with

cost(D) < p'(#(D)).

Definition 2.3.13 (Weak polynomial (step-)transparency) A proof relation F is
called weakly polynomially (step-)transparent or just weakly polynomially trans-
parent if there are polynomials p and p’ such that for every element e in the
positive part of X there exists a p-step-minimal proof D of e in - with

cost(D) < p'(#(eq), steps(D)).

Note One could even be more liberal and only demand the existence of p-
minimal proofs in both definitions above. We think that the resulting notions
would become too weak, for the following reason. With the notions of weak
polynomial size- and step-transparency we intend to express that the respective
chosen abstraction level indeed provides a representative complexity measure for
the indeterministic power of a transition relation, even though not for the abso-
lutely shortest proofs, so at least for one of the short proofs. But the class of
short proofs should be defined in terms of the respective abstraction level, this
way demonstrating the usefulness of the abstraction level.

2.4 Proof Procedures

While proof relations which are (weakly) complete only ensure the ezistence of
proofs for any state in the positive part 3 of a given input pair ¥ = (X7, X7)
(see Definition 2.3.4 on p. 79), in automated deduction, one is interested in really
finding a proof. For such purposes one needs proof relations which meet the
stronger requirement of strong completeness.

2.4 Proof Procedures 85

2.4.1 Strong Completeness

Definition 2.4.1 (Strong completeness) A proof relation b is called strongly
complete for an input pair ¥ if, for any element e in the positive part of ¥, every
maximal derivation in - with initial state e is finite and terminates in the success
state €.

Definition 2.4.2 (Proof procedure) A proof relation + which is sound and
strongly complete for an input pair ¥ is named a proof procedure for X.

Note Most theorem proving programs are implementations of deterministic proof
procedures or deterministic implementations of proof procedures. In general,
proof procedures need not be deterministic, and indeed, most of them are nonde-
terministic. It is an important research topic in the field of automated deduction
to extract from a given nondeterministic proof procedure an optimally behaving
deterministic subsystem.

The property of strong completeness puts very strict requirements on proof
relations. Thus, every proof procedure must be acyclic and, consequently, asym-
metric and irreflexive. For the design of proof procedures it is instructive that
the property of strong completeness can be broken up into the two notions of
proof-confluence and semi-noetherianness.

Definition 2.4.3 (Semi-confluence, proof-confluence) Given a proof relation F
and an input pair ¥. Let w - denote the set of all states from the field of - which
are accessible from objects in the positive part of ¥. If the field restriction® of
- to wF is confluent, then F is called semi-confluent for X. A proof relation
is said to be proof-confluent for an input pair ¥ if any state which is accessible
from an element in the positive part of ¥ is provable in I-.

Proposition 2.4.1 A proof relation & is proof-confluent for an input pair X if
and only if + is complete and semi-confluent for 3.

Proof The ‘only if’-part is trivial. For the proof of the ‘if’-part, assume F to
be complete and semi-confluent for an input pair . Let e be an arbitrary state
accessible from some element ¢’ in the positive part of ¥. By the completeness
assumption, e’ F €, and by the semi-confluence assumption, e Y 2. According to
the definition of proof relations, the success state {2 must be irreducible, therefore
ek Q. O

Definition 2.4.4 (Semi-noetherianness) A proof relation - is semi-noetherian
for an input pair ¥ if there are no infinite derivations starting from states in the
positive part of X.

9The field restriction of a relation R to a set S is the collection of tuples from R with
elements in S.

86 Complexity Measures for Logic Calculi

Proposition 2.4.2 A proof relation + is strongly complete for an input pair 3
if and only iof + is proof-confluent and semi-noetherian for X.

Proof The ‘only if’-part is trivial. For the proof of the ‘if’-part, let D be
any maximal derivation from an element in the positive part of ¥X. By semi-
noetherianness, D is finite and has a last element e. By the property of proof-
confluence, e F Q. From the maximality of D follows that e is irreducible,
therefore e must be the success state 2. O

Definition 2.4.5 (Noetherianness) A proof relation F is noetherian for an input
pair ¥ if there are no infinite derivations starting from states in the positive or
negative part of X..

Definition 2.4.6 (Decision procedure) A proof relation - which is sound, noethe-
rian, and strongly complete for an input pair ¥ is a decision procedure for 3.

2.4.2 From Completeness to Strong Completeness

Although the ultimate goal in the automation of reasoning is the design of proof
procedures, it is often very difficult to construct a proof procedure all at once.
Instead, it is reasonable to start off from a sound and complete proof relation
and, in a second step, to modify the relation and its internal data structures in
such a way that strong completeness is obtained. Normally, this is achieved by
putting an additional control structure on top of the relation. One can distinguish
two principle methodologies for this approach, the object-level and the meta-level
approach. The object-level approach works by state saturation whereas the meta-
level approach works by state enumeration.

State Saturation The state saturation methodology presupposes a proof rela-
tion to be sound, complete, and proof-confluent, and achieves strong completeness
by making the relation semi-noetherian. There is no standard technique for ob-
taining semi-noetherianness, it strongly depends on the structure of the states of
the proof relation.

The methodology of state saturation can be illustrated at best with logic
calculi of a generative nature, in which the states of the proof relation are sets
of logical formulae which principally are accumulated (as in resolution systems).
Typically, in such proof relations, one can directly step to the success state if
a formula of a “success” type (in resolution: the empty clause) is contained in
the current state. For this particular type of proof relations, semi-noetherianness
can be achieved in two steps. First, construct a saturation relation Fg from the
initial proof relation -, by modifying I in such a way that, for every formula e in
the positive part of the input pair ¥, every formula in ¢+ (i.e., the set of states
accessible from e) is contained in a state of every maximal derivation in g with
initial state e. Due to the completeness of -, this fairness condition guarantees

2.4 Proof Procedures 87

that in every such maximal derivation a state occurs which contains a formula of
the success type. The second step simply consists in replacing every pair (e, e’) €
s where e contains a success formula with the pair (e, Q). Apparently, the
resulting proof relation is semi-noetherian.

A general method for obtaining semi-noetherianness for proof relations which
are sound, complete, and proof-confluent, is to minimize the distances from the
success state.

Proposition 2.4.3 Given a proof relation &+ which is sound, complete, and
proof-confluent for an input pair 3. If, for every state e accessible from the
positive part of ¥, there exists a number k € N such that for every state e’ with
ete,i>k: (e, QF) <bd(e,QF), then & is semi-noetherian for X.

State Enumeration The state enumeration methodology merely presupposes
the soundness and completeness of a proof relation - for an input pair (X1, 37),
and hence has more cases of application. Using this approach, strong complete-
ness is obtained on the meta-level by enumerating all possible states accessible
from a given state. This can be done in two steps. First, construct an enumera-
tion relation ¢ which has the property that, for every state e € X: every state
accessible from e except the success state occurs in every maximal derivation in
e with initial state e. The second step simply consists in replacing every pair
(e,e') € kg where e = Q with the pair (e,). Apparently, the resulting proof
relation is strongly complete.

88

Complexity Measures for Logic Calculi

Chapter 3

Propositional Calculi

Since first-order calculi are to a large extent determined by their propositional or
ground fragments, we devote a whole chapter to the presentation of logic calculi
for propositional and ground formulae. The first section contains some general
remarks on the central role of propositional logic in complexity theory; also we
shortly argue why the traditional calculi of the generative type are not suited
for the purposes of automated deduction. In the second section, resolution and
semantic tree systems are introduced, which both utilize a condensed variant of
the cut rule from sequent systems, resolution in a forward, and semantic trees in
a backward manner. In Section 3, tableau and connection calculi are introduced,
which in their pure versions are cut-free systems. A straightforward combination
of both systems leads to the so-called connection tableaux, which are treated in
the fourth section. Due to their lack of proof-confluence, connection tableaux
are not optimally suited for the propositional case, but they offer an excellent
framework for the development of successful first-order calculi. In Section 5, we
present a method to overcome the weakness of connection tableaux concerning
indeterministic power by adding the folding-up rule, which is a controlled incor-
poration of lemmata and the cut rule, and an improvement of factorization used
in connection calculi.

3.1 The Importance of Propositional Logic

Deciding the logical validity of a formula of propositional logic is one of the
central problems in time complexity theory. This is, on the one hand, because
very many other important problems are in essence of the same difficulty. On the
other hand, propositional logic is contained as a central sublanguage in almost
all logic-based languages and systems and, therefore, gives a lower complexity
bound on the handling of those more expressive logical formalisms.

90 Propositional Calculi

3.1.1 Propositional Logic and Complexity Theory

In 1971, Cook defined the NP-class, as the collection of all languages accepted
by a non-deterministic algorithm in time polynomially bounded by the size of
the input. He also showed the language of the satisfiable propositional formulae
to be an adequate representative of this class, by proving that the recognition
problem of any language in the NP-class can be reduced to the propositional
satisfiability problem, at polynomial cost [Cook, 1971]. This manifests the so-
called NP-completeness of the satisfiability problem, a property it shares with
hundreds of other well-known problems!.

The complement problem of proving the satisfiability is to demonstrate the
unsatisfiability of a propositional formula, which is equivalent to showing the
validity of the negation of the formula. This problem belongs to the most difficult
problems in the coNP-class, which is defined to contain exactly the complements
of the languages in the NP-class.

The whole area of time complexity is full of open questions. First, it is not
known whether the NP-class or the coNP-class differ from the P-class, which is
the collection of all languages accepted by a deterministic algorithm in polynomial
time. Secondly, it is unknown whether NP and coNP are different—since P is
closed under complements, such a result would entail that P # NP and P #
coNP. The satisfiability of a propositional formula can be “solved” in polynomial
time by a non-deterministic algorithm?. One merely has to guess the right truth
valuation, which then can be checked in polynomial time with respect to the size
of the input. For the complement problem, that is, proving the unsatisfiability
of a propositional formula, it is not known whether there exist non-deterministic
algorithms which have a polynomial run time. Or, in terms of logic calculi,
which constitute the most natural formulations of non-deterministic algorithms,
it is not known whether there exists a sound logic calculus such that every valid
propositional formula has a proof in the system which is polynomially bounded
by the size of the formula. Therefore, according to our intuitions, the recognition
of satisfiability seems to be “easier” than the recognition of unsatisfiability or
validity, which means that one is rather inclined to believe that the NP-class is
contained in the coNP-class than the converse. The strange thing about this
intuition is that it leads to what might be called the paradoz of time complexity.

Proposition 3.1.1 (The paradox of time complexity)
NP C coNP if and only if coNP C NP.

Proof Suppose NP C coNP. Let £ be any language in coNP. By definition,
its complement language, written £~!, is in NP and, by assumption, £~! is in

'For a nice survey, see the book of Garey and Johnson [Garey and Johnson, 1979].

2We have put the term ‘solved’ in quotation marks, because a non-deterministic algorithm
is a mathematical notion and there may not exist a corresponding actual computing devise,
as opposed to deterministic algorithms. It is for this reason that the term ‘non-deterministic
algorithm’ can be very misleading.

3.1 The Importance of Propositional Logic 91

coNP. Therefore, by the definition of complement, £~' ' = £ is in NP. The other
direction holds by analogy. O

So, either NP = coNP or none of them is properly contained in the other.?

3.1.2 Generative Calculi

Historically the first formalized logical rule system was developed by Frege in
[Frege, 1879], which was modified and elaborated in [Hilbert and Bernays, 1934].
Since, traditionally, the Frege/Hilbert systems are subclassified into aziom
schemata and proper inference rules, these rule systems are called aziomatic
calculi®. Another very influential work in logic is Gentzen’s dissertation
[Gentzen, 1935] where consecutively two alternative characterizations of logical
consequence were developed, the natural deduction system and the sequent sys-
tem. The natural deduction system is an attempt to formalize the mathematical
way of presenting arguments, by making assumptions, drawing conclusions from
assumptions, and discharging assumptions. The elegance of natural deduction is
the way logical symbols are treated, by having both introduction and elimina-
tion rules for the symbols, which is not the case in Frege/Hilbert systems. The
sequent system is a proof system combining two interesting properties. On the
one hand, unlike natural deduction, the system is logicistic, that is, all derived
formulae are logically valid by themselves and do not depend on assumption for-
mulae; on the other hand, the sequent system adopts from natural deduction the
symmetric classification of inference rules into introduction and elimination rules
for the logical symbols.

The naive transitional interpretations of all three systems, by which, start-
ing from the empty set of formulae, successively new formulae are generated,
suffer from two fundamental weaknesses which render the procedures unsuitable
as bases for solving logical computation problems. The first weakness—in fact,
this is the crucial one—derives from the manner the systems tackle a verifica-
tion problem. The verification problem is transformed into a proper computation
problem, the computation problem is solved by guessing an output, and finally,
it is verified whether the output is indeed the desired one. Since the structure
of the formula to be proven or refuted is solely used as an exit information, the
procedures lack goal-orientedness.” The second weakness is due to the fact that
all systems contain rules which induce an infinite branching rate of the respective

3The consequence to be drawn from this observation is that as a heuristic conceptual guide
line for our problem solving intuitions, the notion of a non-deterministic algorithm alone seems
not to be sufficient, because it presents a distorted picture of this area of complexity theory.
Additionally, one should develop a complementary positive characterization of the coNP-class,
or even device completely new concepts which better illuminate our intuitions.

4From a computational point of view this distinction is not very instructive (see the remarks
in Footnote 4 of Chapter 2).

5To call upon an analogy from the domain of sort algorithms, the procedures have the
efficiency status of permutation sort.

92 Propositional Calculi

calculus, i.e., the corresponding transition relations are not locally finite. Conse-
quently, for any positive integer n, there are infinitely many deductions with n
inference steps, and, by Proposition 2.3.6 on p. 80, any deduction may arbitrarily
increase in size within a single inference step. Both disadvantages render the
construction of proof procedures from the calculi very difficult.b

3.2 Resolution Systems and Semantic Trees

Most efforts in automated deduction concentrate on demonstrating the unsatis-
fiability of formulae in clause normal form. The restriction to this normal form
permits the application of particularly efficient proof techniques. In this section,
two families of calculi are presented, resolution systems and semantic tree pro-
cedures. Both families operate with a single inference rule, namely, a condensed
variant of the cut rule from the sequent system. The difference between both
families is that resolution systems work by a forward application of the cut rule
whereas semantic tree procedures use the cut rule in a backward manner.

3.2.1 Resolution

Resolution was introduced by J. A. Robinson in [Robinson, 1965a] as a calcu-
lus for first-order formulae in clause normal form. Resolution systems are typ-
ically defined as manipulating sets of literals. The associativity, commutativity
and idempotency of the logical disjunction operator with respect to the denota-
tions assigned by an interpretation admits a particularly simple representation
of a clause formula ¢ = Vzy ---Vz,(J Ly, ..., L,L), namely, by the set of literals
{L4,...,L,} occurring as disjuncts in the matrix of c.

Definition 3.2.1 (Clause) A clause is a finite set of literals. A clause is tau-
tological if it contains a literal and its complement.” A wunit clause is a clause
containing exactly one literal.

The semantic assignment function on logical formulae can be extended to also
give meaning to clauses.

Definition 3.2.2 (Clause assignment) Given an interpretation Z for a first-
order language £ with universe U, then the following line is added to the def-
inition of formula assignment (Definitions 1.2.18 and 1.7.11). For any clause
¢ ={Ly,...,L,}, n > 0, with z,...,z, being the variables occurring in the
literals of c:

6Note, however, that the second disadvantage can be completely overcome, at least for the
propositional case, by using truth value variables, which permit to reduce the branching rate
of any critical rule from oo to 1 (see [Letz, 1993a]).

TOur definition of a clause slightly differs from the ones given in [Robinson, 1965a] or
[Davis and Putnam, 1960], which demand that clauses be non-tautological.

Y

3.2 Resolution Systems and Semantic Trees 93

11. 3(¢) = 3(Vay - - Vo, 1Ly, ..., L,L).

Since every interpretation assigns T to every tautological clause, we have the
following proposition.

Proposition 3.2.1 (Tautology deletion) If a set of clauses S contains a tauto-
logical clause ¢, then S = (S\ {c}).

Resolution can be formulated very naturally as consisting of a unique inference
rule. Here we present the propositional or ground fragment of resolution.®

Definition 3.2.3 (Ground resolution rule) Let L be a literal and ¢; and ¢, clauses
with L ¢ ¢; and ~L ¢ ¢y. The ground resolution rule has the shape:

{L}uq {~L}Uec

61UCQ

The clause ¢; Uy is called a ground resolvent of {L}Ucy and {~L} Ucy over L,
and {L}Ucy and {~L}Ucy are termed parent clauses of the resolvent. Since every
pair ¢y, ¢y of ground clauses has at most one non-tautological ground resolvent,
this resolvent, if it exists, will be called the ground resolvent of ¢; and c¢,, and
written R(cq,).

We first introduce the static deduction objects generated by using the resolu-
tion rule.

Definition 3.2.4 (Ground resolution proof) A ground resolution deduction or
proof of a clause ¢, from a set of clauses S is a finite sequence D = (¢, ..., ¢y)
of clauses such that each clause ¢, 1 < k < n, is the (non-tautological) ground
resolvent of two parent clauses where for each parent clause c¢: either ¢ € S or
c=c¢; and i < k. A ground resolution proof of the empty clause from a set S is
called a ground resolution refutation of S. A ground resolution proof of a clause
¢, from a set S of ground clauses is compact if D has no proper subset whose
sequence normalization is a ground resolution proof of ¢, from S.

Example 3.2.1 Given a set of ground clauses

S ={{p,qa},{p, ~q}, {-p,a},{—-p,~q}}.

The sequence of clauses
({r};{a}, {-p},0)

is a compact ground resolution refutation of S.

8Propositional resolution is the dual of Quine’s consensus [van Orman Quine, 1955].

94 Propositional Calculi

Definition 3.2.5 (Ground resolution dag) A ground resolution dag is a pair T' =
(t, \) consisting of a directed acyclic graph ¢ which is rooted, finite, and binary
branching, and a function A labelling its nodes with clauses and its edges with
literals in such a way that

1. the clause ¢; U ¢y at each non-leaf node N is the (non-tautological) ground
resolvent of the clauses {L} U ¢; and {~L} U ¢y at its successor nodes N;
and Ny,

2. and the edges e; and ey leading from N to N; and N, are labelled with the
literals ~L and L, respectively.

The clause at the root of a ground resolution dag T is called the bottom clause
of T. Let S be the set of clauses at the leaves of a ground resolution dag 7. We
say that T is a ground resolution dag for S. A ground resolution dag for S with
empty bottom clause is called a ground resolution refutation dag for S. If the
dag t of a ground resolution dag T is a tree, T is named a ground resolution tree.

{p,q} {p.—q}

—q q

A} {-p,q}

/-p P

{a} {-p,—q}

» | g q

Figure 3.1: Resolution dag for {{p. ¢}, {p, ~¢}, {-p. ¢}, {—-p. ~q¢}}.

Convention In order to express the forward-oriented working methodology of
resolution calculi, we shall display resolution dags as ordinary upward trees.

3.2 Resolution Systems and Semantic Trees 95

An example of a ground resolution refutation dag is depicted in Figure 3.1.
The relation between resolution proofs and resolution dags is apparent. To every
ground resolution proof (cy,...,c,) from a set of clauses S there can be con-
structed a ground resolution dag for S with bottom clause ¢, according to the
following indeterministic procedure.

Procedure 3.2.1 (Transformation from resolution proofs to resolution dags) Given
a ground resolution proof D = (¢4, ..., ¢,) from aset S of ground clauses. Starting
with a one-node dag labelled with ¢,, iterate the following procedure. As long as
the current dag has clauses at leaf nodes which are not in S, choose such a leaf
node with clause ¢, 1 < k < n, attach two new successor nodes, label them with
two parent clauses of ¢, where for each parent clause ¢: either ¢ € S or ¢ = ¢;
and ¢ < k, and mark the edges with the respective complementary literals.

Conversely, from any resolution dag a corresponding resolution proof can be
constructed.

Definition 3.2.6 (Resolution inference steps) The number of resolution inference
steps of a resolution proof D, written steps(D), is length(D), and the number of
resolution inference steps of a resolution dag T', written steps(T'), is the number
of non-leaf nodes of T.

Proposition 3.2.2 Given a ground resolution proof D and a ground resolution
dag T obtained from D by a deterministic execution of Procedure 3.2.1, then
steps(T) < steps(D); and if D is compact, then steps(T) = steps(D).

Proposition 3.2.3 To every compact ground resolution refutation there ez-
ists exactly one ground resolution dag which can be obtained by applying Pro-
cedure 3.2.1.

Hence, for compact resolution proofs, Procedure 3.2.1 is a mapping, but this
mapping is not injective in the general case. Consequently, the dag representation
is more indeterministic than the sequence representation. The resolution dag of
Figure 3.1 is the result of applying the transformation procedure to the resolution
proof given in Example 3.2.1.

Proposition 3.2.4 (Soundness of the ground resolution rule) Any ground resol-
vent s logically implied by the set of its parent clauses.

Proof Let # be a Herbrand model® for a set of parent clauses {{L}Uc;, {~L}Ucy}
of a ground resolvent ¢, i.e., there are literals Ly € {L} U¢; and Ly € {~L} U ¢y
with L; € H and L, € H. This entails that L; # ~Ls. Consequently, either
Ly # L or Ly # ~L, so that either L; or L, is contained in the resolvent c.
Therefore, the formula assignment of 4 maps ¢ to T. W

9Recall that we use the literal set notation for denoting Herbrand interpretations (Nota-
tion 1.7.1).

96 Propositional Calculi

Corollary 3.2.5 (Soundness of ground resolution) If there is a ground resolution
proof of a clause ¢ from a set of clauses S, then S [c.

Proof Immediate from Proposition 3.2.4 and the transitivity of |=. U

Resolution is a refutational proof method. It proceeds by demonstrating that
from a given initial unsatisfiable set of clauses the empty clause can be a deduced,
which is false under every interpretation and hence explicitly testifies the unsat-
isfiability of the input set. This approach is sufficient for proving theoremhood,
because any verification problem of logical validity or logical implication is re-
ducible to an unsatisfiability problem. Ground resolution is refutation-complete
for ground clause formulae, i.e., for every unsatisfiable set S of ground clauses,
there exists a ground resolution refutation of S. Interestingly, resolution is not
deduction-complete, i.e., not every clause logically implied by a set of clauses can
be deduced by resolution.!® From the viewpoint of automation, however, this
weakness can be seen as an advantage, because this way the number of possible
proofs may be strongly restricted. We wish to postpone the completeness proof
of ground resolution to Subsection 3.2.5. There we shall demonstrate that even
a refinement of ground resolution—i.e., a system in which not every resolution
step is permitted—has this property, namely, the Davis/Putnam calculus.

3.2.2 Resolution Deductions vs Resolution Procedures

The sequence representation of resolution proof objects induces a particularly
natural operational reading. The ground resolution calculus proceeds by reason-
ing in a forward manner just like a sequent calculus or an axiomatic calculus of
the Frege/Hilbert style.

Definition 3.2.7 (Ground resolution calculus) The ground resolution calculus can
be defined as the following transition relation

R = {(S,SU{c}) | ¢ =R(cy, ¢2) for some ¢1,¢9 € S}
where S ranges over finite sets of ground clauses.

Resolution presents a striking example for illustrating the distinction between
the declarative and the procedural interpretation of a deduction. While a deduc-
tion of the former type is simply a sequence D of clauses where each element of
D is derived from clauses in the input set or earlier elements of D, the deduction
process consists of a sequence of increasing clause sets. If the deduction process
is based on unrestricted resolution—which is free of reduction rules like subsump-
tion deletion considered below—, then any state of the deduction process can be

190nly the following holds. For any ground clause ¢ logically implied by a set of ground
clauses S, there exists a ground resolution proof of a clause ¢’ from S with ¢’ = e.

3.2 Resolution Systems and Semantic Trees 97

made into a deduction of the declarative type. This property holds for all calculi
which are accumulative. In general, however, the states of a deduction process
need not represent declarative deduction objects, even if no reduction rules are
applied. The comparison also exhibits a certain weakness of measuring the size
of a deduction as the sum of the sizes of the states in the deduction process,
since untouched parts of the states are counted multiply, so that the static de-
duction object and the sum of the states in the deduction process may differ in
size, though only up to a polynomial (viz., quadratic) difference. A finer model
would count solely the touched parts of the non-initial states. It is important
to emphasize, however, that in the transition relational framework it is almost
impossible to make a computationally reliable distinction between touched and
untouched parts of a state, since, for instance, sets cannot be directly represented
on a computer. Questions of this type demand a more implementation-oriented
model like the proof module framework. We shall not concentrate on such fine
differences in this work. On the contrary, we shall exploit the polynomial relat-
edness of the deduction models and move back and forth between the models,
depending on which one is the best-suited for a certain purpose.

3.2.3 The Indeterministic Power of Ground Resolution

As is the case for deductions in the traditional calculi mentioned in the previ-
ous section, ground resolution proofs (or dags) are of polynomial difficulty (see
Definition 2.1.12 on p. 71), that is, for any given structure S, it can be decided
whether S is a ground resolution proof with cost polynomially bounded by the
size of §. Or, in terms of properties of transition relations, the ground resolution
calculus is polynomially size-transparent. But ground resolution has the advan-
tage over the traditional calculi that the cost for verifying a ground resolution
proof (dag) from a set of clauses S is bounded by a polynomial of the size of S
and the resolution inference steps of the proof (dag).

Proposition 3.2.6 The ground resolution calculus R (Definition 3.2.7) is poly-
nomially transparent.

Proof Apparently, the transition relation R is polynomial time step-reliable.
Since, for every given input S, the maximal length of clauses deducible by ground
resolution from S is bounded by size(S), R is logp size step-reliable. Therefore,
by Lemma 2.3.7, R is polynomially transparent. O

Concerning indeterministic power, however, propositional resolution is strictly
weaker than the propositional fragments of the traditional systems, which are all
in the same equivalence class of polynomial simulation. This is formally expressed
in the following two Propositions 3.2.7 and 3.2.9. We use the static deduction
model which is better suited for comparing the indeterministic powers of the
systems.

98 Propositional Calculi

Proposition 3.2.7 There is no polynomial p such that for any validity proof T
of a propositional formula F in the propositional Frege/Hilbert, natural deduction,
or sequent system there exists a ground resolution refutation D of a set of clauses
S which is an appropriate' translation of ~F such that size(D) < p (size(T)).

The proof of this proposition is too difficult to be carried out here from
scratch. We establish it by combining two results by Haken and Urquhart. In
[Haken, 1985] the following proposition was demonstrated.

Proposition 3.2.8 (Intractability of resolution) The ground resolution calculus
15 not polynomaially bounded for sets of unsatisfiable ground clauses.

Haken proved that there is an infinite class of unsatisfiable clause sets, the
so-called pigeon-hole class which are specified in Example 3.2.2, and the smallest
ground resolution refutation for any element of this class is of exponential size. In
[Urquhart, 1987] it was demonstrated that there is a polynomial p such that, for
any element S of this class, if ~F" is an appropriate translation of S, then there
exists a sequent proof T with end sequent — F' with size(T') < p (size(F')). Both
results together imply Proposition 3.2.7.

Example 3.2.2 The pigeon-hole principle asserts that n pigeons do not fit into
n — 1 holes, or, more formally, there is no total and injective mapping p with
a domain of n and a range of n — 1 elements. For any natural number n > 1,
this principle can be formulated as an unsatisfiable clause set S, consisting of
the union of the following sets of propositional clauses where p¥ denotes a nullary
atom which asserts that p maps pigeon £ to hole ::

U{—»i, —pi} 1<i<nl<k<l<n (injectivity of p)
ULPE. o0 1<k<n (totality of p)

The traditional proof systems, however, can polynomially simulate resolution.
We consider a slightly more general proposition.

Proposition 3.2.9 There is a polynomial p such that for any propositional res-
olution refutation of a set of clauses S there exists a validity proof T of a formula
~F in the propositional Frege/Hilbert, natural deduction, or sequent system with
F being an appropriate translation of S such that size(T) < p (size(D)).

A proof can be found in [Reckhow, 1976] (see also [Letz, 1993b] for a polyno-
mial simulation of resolution in the intuitionistic tree sequent system). Another
important difference of resolution from the traditional proof systems is the fol-
lowing.

"'The notion of appropriateness is investigated in Reckhow’s dissertation [Reckhow, 1976].
Briefly, the translation procedure should have a polynomial run time and preserve satisfiability
and unsatisfiability. An example of an adequate translation is the so-called definitional clause
normal form transformation mentioned in Chapter 1.

3.2 Resolution Systems and Semantic Trees 99

Proposition 3.2.10 For unsatisfiable sets of ground clauses, tree ground reso-
lution cannot polynomially simulate ground resolution.

The result can be easily proven by using a definitional form transformation
S, of formulae of the structure F, A —F, where F,, is a formula of the shape
F, = A < Ay & -+ A, < A, presented in Example 1.7.1. The S, have
polynomial resolution refutation dags but only exponential resolution refutation
trees (see [Reckhow, 1976]).

Note The reason why dags may help to improve the efficiency of resolution is
because they facilitate the multiple use of derived clauses as parent clauses, in a
recursive manner, whereas in the tree format for every use of a clause as a parent
clause, its entire derivation must be repeated.

3.2.4 The Resolution Proof Relation

The ground resolution calculus can be made into a strongly complete proof re-
lation for verifying the unsatisfiability of finite sets of ground clauses by the
following simple modification of the transition relation R from Definition 3.2.7.

Definition 3.2.8 (Ground resolution proof relation) The ground resolution proof
relation is the following transition relation R’ =

{(S,SU{e}) | ¢ = R(c1, ca) for some ¢1,co € Sand c ¢ S} U {(S,Q) |0 € S}
where S ranges over finite sets of ground clauses and €2 is the success state of R'.

Proposition 3.2.11 Let X7 be the set of all finite sets of unsatisfiable ground
clauses, and X~ the set of all finite sets of satisfiable ground clauses. The ground
resolution proof relation R' is a decision procedure for the input pair (3T,37).

Proof We have to prove soundness, noetherianness, and strong completeness of
R' for the given input pair. The soundness of R’ follows from Proposition 3.2.5.
Since from any finite number of ground literals only finitely many ground clauses
can be composed, from a given finite set of ground clauses only finitely many
states are accessible in R’. Now R’ is accumulative and irreflexive, hence acyclic.
Then, Proposition 2.2.1 (iii) yields the boundedness, and (i) the noetherianness
of R'. Finally, The strong completeness of R’ can be recognized as follows. From
the accumulativity of R’ follows its semi-confluence and from Corollary 3.2.16
below its completeness, which together, by Proposition 2.4.2, entail the strong
completeness of R'. O

Unfortunately, the ground resolution proof relation is not suited as a propo-
sitional decision procedure, because a shortest derivation from an input state
may extremely differ from a longest derivation, and typically most derivations
are much longer than a shortest one. This striking discrepancy is the motivation
for the development of refinements of the calculus.

100 Propositional Calculi

3.2.5 The Davis/Putnam Calculus

The Davis/Putnam calculus is a refinement and modularization of ground res-
olution and consitutes the kernel of the Davis/Putnam procedure which was
introduced in [Davis and Putnam, 1960] before Robinson’s resolution article
[Robinson, 1965a] was published. The working with this system has two ad-
vantages. First, it admits a particularly elegant completeness proof. Second, the
system is one of the most successful decision procedures for propositional and
ground formulae, in contrast to the original ground resolution calculus.

Note There is an unpleasant systematic incorrectness in the literature. In most
textbooks on automated deduction, the name ‘Davis/Putnam procedure’ is as-
signed to a proof procedure presented two years later by Davis, Logemann, and
Loveland in [Davis et al., 1962]. Although the latter procedure is constructed
from the original one by a simple modification, this modification concerns the
kernel of the Davis/Putnam procedure, so that both procedures significantly dif-
fer from each other, even with respect to indeterministic power. Conceptually,
the latter procedure is a variant of semantic trees, which are discussed below.

The Davis/Putnam calculus works by the replacement of clauses with other
clauses.

Definition 3.2.9 (Clause replacement) Let L be a literal in a clause ¢ of a set of
ground clauses S. Assume further ¢y, ..., ¢, are the clauses in S containing the
literal ~L and not the literal L. The set R of all non-tautological resolvents of ¢
and ¢; over L, 1 < i < n, is called the clause replacement of ¢ by L in S.

Lemma 3.2.12 Let L be a literal in a clause ¢ of a set of ground clauses S, and
assume R is the clause replacement of ¢ by L in S. If S is unsatisfiable, then
(S\ {c}) U R is unsatisfiable.

Proof Let L be a literal in a clause ¢ of an unsatisfiable set of ground clauses
S. Consider the set of Herbrand interpretations H,. which exclusively falsify the
clause c. If H,. is empty, S\ {c¢} must be unsatisfiable, and we are done trivially.
Otherwise, consider an arbitrary Herbrand interpretation H in .. Evidently,
the interpretation H' = (H \ {~L}) U {L} is a model for ¢. Hence H' must
falsify another non-tautological clause d in S. Since H and H' differ only in the
elements ~L and L respectively, the assumptions that H is a model for d and H
not entail that d must contain the literal ~L. Now, the Herbrand interpretation
H falsifies each of the clauses ¢\ {L} and d\ {~L}, hence also their union, which,
being a non-tautological ground resolvent of ¢ and d over L, is an element of
the clause replacement R of ¢ by L in S. Since H was chosen arbitrary, every
interpretation in #, falsifies an element of R. Therefore, the set (S \ {c¢}) U R
must be unsatisfiable. O

The proof of the strong completeness of the Davis/Putnam calculus is based
on the following obvious fact.

3.2 Resolution Systems and Semantic Trees 101

Lemma 3.2.13 Let L be a literal in a clause ¢ in a set of ground clauses S,
and R the clause replacement of ¢ by L in S. Then, the number of clauses in
(S'\ {c}) U R containing the literal L is by one less than the number of clauses
in S containing the literal L. O

This lemma shows how to get rid of all clauses containing a certain literal.

Definition 3.2.10 (L-clauses replacement) Let S be a set of ground clauses and
ST the set of clauses in S containing the literal L. The union of all clause

replacements of any clause in S* by L in S is called the replacement of L-clauses
in S.

Lemma 3.2.14 (Literal elimination) Let S be a set of ground clauses, St the

set of clauses in S containing the literal L, and R* the replacement of L-clauses
in S. If S is unsatisfiable, then (S\ S*) U R" is unsatisfiable.

Proof It suffices to recognize that a literal elimination step with a literal L
produces the same result as an iterative substitution of L-clauses with their re-
spective clause replacements. O

Although, in general, the number of occurrences of other literals as well as the
size of the formula may increase, the literal elimination step is the kernel of one
of the most natural resolution-based decision procedures for ground formulae.

Definition 3.2.11 (Davis/Putnam calculus) The Davis/Putnam calculus can be
defined as the following transition relation

R = {(S,(S\ S¥)URY) | L is contained in some clause of S}

where S ranges over finite sets of ground clauses, S” is the set of clauses in S
containing the literal L, R” is the replacement of L-clauses in S, and {0} is the
success state of R.

Note The original way of presenting a transition step in the Davis/Putnam cal-
culus [Davis and Putnam, 1960] is slightly more indirect. First, the given set of
clauses S is transformed into the logically equivalent set S’ of formulae

{AVL,BV~L}UR

where A is the conjunction of clause formulae 1Li,...,L,L not containing L
and with a clause {Ly,...,L,, L} € S, B is the conjunction of clause formulae
1Ly,...,L,L not containing ~L and with a clause {Ly,..., L,,~L} € S, and
R is the set of clauses from S neither containing L nor ~L. Apparently, S’ is
unsatisfiable if and only if S” = {AV B} U R is unsatisfiable. Afterwards, S”
is translated into clausal form by applying the standard transformation given in

102 Propositional Calculi

the proof of Proposition 1.7.14 on p. 63.!2 The resulting set of clauses is exactly
the subsequent state in the Davis/Putnam calculus given above.

Now we have collected the material for an easy proof of the completeness of
ground resolution.

Proposition 3.2.15 (Decision property of the Davis/Putnam calculus) Let ¥
be the set of all finite sets of unsatisfiable ground clauses, and ¥~ the set of
all finite sets of satisfiable ground clauses. The Davis/Putnam calculus R is a
decision procedure for the input pair (ST, %7).

Proof In each iteration the number of distinct literals contained in clauses of
the formula decreases by 1, while satisfiability and unsatisfiability are preserved.
Consequently, after finitely many transition steps a set S’ of clauses is reached
which is void of literals. If the initial set S was satisfiable, due to the soundness
of ground resolution, S’ = {}. If, on the other hand, S was unsatisfiable, by the
Literal Elimination Lemma 3.2.14, S’ = {(}}. O

Corollary 3.2.16 (Completeness of ground resolution) For any unsatisfiable set
S of ground clauses there is a ground resolution refutation of S.

Proof Given an input set S, the sequence of resolvents generated in any maximal
Davis/Putnam derivation, in the order of their generation, is a ground resolution
refutation of S.]

The transition relation of the Davis/Putnam calculus has some interesting
properties.

Proposition 3.2.17 The Davis/Putnam proof relation R is polynomially step-
bounded, but not polynomially bounded and not polynomially transparent.

Proof If n is the number of distinct literals contained in clauses of an unsatisfiable
input set S, then clearly the success state is reached within n steps from the
initial state S. Since the ground resolution calculus is not polynomially bounded
(Proposition 3.2.8), and the indeterministic power of the Davis/Putnam calculus
is not greater than that of resolution, R is not polynomially size-bounded, hence
not polynomially bounded. Then, the polynomial intransparency of R follows
from Proposition 2.3.4. 0]

Note The Davis/Putnam calculus is a good example of a proof relation in which
the notion of what has to be counted as a single inference step is not acceptable.

I2Note that the use of a definitional transformation procedure is not permitted here, because
it may introduce new propositional atoms, with the result that the Davis/Putnam procedure
may never terminate.

3.2 Resolution Systems and Semantic Trees 103

Apparently, if we would succeed in making the proof relation polynomially trans-
parent and preserving the distances between input states and normal forms of
the transition relation, then we would have solved the P/NP problem.

For the presentation of the Davis/Putnam procedure, some additional termi-
nology is needed.

Definition 3.2.12 (Literal occurrence) If a literal L is contained in a clause c,
then the pair (L, c), written L., is called a literal occurrence of L in S.

Definition 3.2.13 (Ground purity) Let L be a literal in a clause ¢ of a set of
clauses S. The literal occurrence L, is called

1. strongly ground pure in S if the literal ~L is not contained in a clause of S,
2. ground pure in S if the literal ~L is not contained in another clause of S,

3. weakly ground pure in S if the clause replacement of ¢ by L in S is empty.

Note All three versions of purity have been used in the literature. The standard
version, which has been introduced in [Robinson, 1965a], is the second one.

Proposition 3.2.18 (Ground purity deletion) Let L be a literal in a clause ¢ of
an unsatisfiable set of clauses S. If L. is strongly ground pure, ground pure, or
weakly ground pure in S, then S\ {c} is unsatisfiable.

Proof It suffices to prove the latter case, which is an immediate consequence of
the Clause Replacement Lemma 3.2.12 on p. 100. 0

It is clear that from the perspective of optimal reduction the third version of
purity is the best.

Definition 3.2.14 (Ground subsumption) Given two ground clauses ¢; and cs.
We say that ¢; (properly) ground subsumes ¢y if ¢; is a (proper) subset of cs.

Properly subsumed clauses may be deleted, due to the following fact.

Proposition 3.2.19 (Ground subsumption deletion) If a clause ¢ is properly
ground subsumed by a clause in a set S of ground clauses, then S = (S \ {c}).

Proof Clearly every model for S is also a model for S\ {¢}. For the converse,
note that, by assumption, there is a clause ¢’ € S with ¢/ C ¢. We show that
¢' = c. Let Z be an arbitrary model for ¢'. Its assignment J maps some literal
Lec toT. Since L € ¢, J(¢) = T, and hence, Z is a model for c. a

The Davis/Putnam procedure with subsumption can be defined as the follow-
ing complex transition relation.

104 Propositional Calculi

Definition 3.2.15 (Davis/Putnam procedure with subsumption) Let S be any fi-
nite set of ground clauses, S* the set of clauses in S containing L, and R* the
replacement of L-clauses in S. The Davis/Putnam procedure with subsumption
R’ is the union of the following binary relations:

1. {(S,S") | S# S’ and S’ is the subset of clauses in S which are not properly
ground subsumed in S},

2. {(S,S") | S # S’ and S’ is the subset of clauses in S which contain no
literal occurrences which are ground pure in S},

3. {(S,(S\ S¥) U R") | S contains neither properly subsumed clauses nor
ground pure literal occurrences, and L is any literal in a clause of minimal

length in S}.

The success state of the proof relation is {(}.

Note In the original Davis/Putnam procedure [Davis and Putnam, 1960] only
those properly subsumed clauses are deleted with are subsumed by unit clauses.
Apparently, there is no reasonable motivation for such a restriction.

Proposition 3.2.20 (Decision property of the Davis/Putnam procedure) Let ¥
be the set of all finite sets of unsatisfiable ground clauses, and ¥~ the set of
all finite sets of satisfiable ground clauses. The Davis/Putnam procedure (with
subsumption) is a decision procedure for the input pair (X1,357).

Proof In analogy to the proof of Proposition 3.2.15 on p. 102. 0

3.2.6 Other Resolution Refinements

There are various other refinements of resolution. We consider here linear ground
resolution and reqular ground resolution. Linear resolution was introduced simul-
taneously by Loveland [Loveland, 1969] and Luckham [Luckham, 1970].

Definition 3.2.16 (Linear ground resolution proof) A ground resolution proof
D = (¢1,...,¢,) from a set S of ground clauses is called linear if, for each ¢;,1 <
i < n, one of the parent clauses of ¢; is ¢;_1.

Definition 3.2.17 (Linear ground resolution dag) A ground resolution dag is
called linear if all inner nodes of the dag lie on the same branch.

The resolution proof given in Example 3.2.1 on p. 93 and the resolution dag
depicted in Figure 3.1 on p. 94 are both linear. The most natural way of defining
the linear ground resolution calculus is by using pairs consisting of the input set
and the current linear deduction.

3.2 Resolution Systems and Semantic Trees 105

Definition 3.2.18 (Linear ground resolution calculus) The linear ground resolu-
tion calculus can be defined as the transition relation

{((S: (er oo yem)), (S, (ers s emy €mga))) | for m > 12 ¢ is a parent of ¢y}

where the states in the transition relation are pairs (S, D) consisting of a set S
of ground clauses and a ground resolution proof D from S.

The linearity refinement is mainly interesting for first-order resolution. Linear
ground resolution is unsuited as a calculus for ground formulae, because of the
following obvious property.

Proposition 3.2.21 The linear ground resolution calculus is not proof-confluent
for input pairs (ST, X7) with 3T being the set of all pairs (S, ()) with S being a
finite unsatisfiable set of ground formulae.

This has as a consequence that strong completeness can only be achieved
by means of deduction enumeration. Such an approach turns out to be not
optimal for the propositional case, since here a calculus is typically used as a
decision procedure, whereas in the first-order case one can only demand semi-
noetherianness.

Regular resolution [Tseitin, 1970] is at best defined using the dag framework.

Definition 3.2.19 (Regular branch) A branch b = (ey,...,e,) in a ground reso-
lution dag is called regular if no two edges in b are labelled with the same literal.

Definition 3.2.20 (Regular ground resolution dag) A ground resolution dag is
called regular if every branch is regular, and semi-reqular if for every leaf node
N there exists a regular branch terminating in V.

The importance of regular resolution derives from the following fact.

Proposition 3.2.22 For unsatisfiable sets of ground clauses, regqular ground
resolution can polynomially simulate the Davis/Putnam calculus and the
Davis/Putnam procedure (with subsumption).

Proof Given a resolution proof D constructed from a deduction in one of the
Davis/Putnam systems, than any resolution dag resulting from applying Proce-
dure 3.2.1 to D is regular. OJ

In [Tseitin, 1970] the intractability of regular ground resolution was proven.
Moreover, Tseitin showed that ground tree resolution cannot polynomially simu-
late regular ground resolution. A recent interesting result concerning the relation
between regular and unrestricted resolution is the following.

106 Propositional Calculi

Proposition 3.2.23 For unsatisfiable sets of ground clauses, reqular ground
resolution (and hence any-one of the Davis/Putnam systems) cannot polynomially
simulate ground resolution.

This result was proven by Goerdt in [Goerdt, 1989]. He used a class of formu-
lae which are modifications of the pigeon-hole class and have polynomial proofs
in unrestricted resolution but only exponential proofs in regular resolution.

3.2.7 Semantic Trees

The most primitive approach to determining the satisfiability status of a propo-
sitional formula is the truth table method. Starting off from the model theory
of logic, all interpretations for the atoms in the formula are listed as lines in a
table, which afterwards are examined, one after the other. If n is the number of
atoms occurring in the formula, an evaluated truth table contains n+1 columns
and 2" lines. The first n columns in each line encode the truth assignments for
the atoms in the formula, and the last column contains the truth value of the
formula under this assignment. If the truth value T does not occur in the last
column of the evaluated table, the formula is unsatisfiable, and vice versa. While,
for each interpretation, the truth value of the formula can be computed from the
value of its atoms in polynomial time, the obvious problem is the number of lines,
which is exponential with respect to the number of atoms occurring in the for-
mula. Consequently, if the ratio between the lengths of formulae in an infinite
collection and their numbers of atoms is less than 2"—which is the case for al-
most all interesting formula classes—then the truth table method has exponential
complexity with respect to the formula sizes in the class. Truth tables are not
suited as a basis for propositional calculi, for two reasons. First, since all truth
tables for a formula have equal size, there is no difference between worst-case
and best-case behaviour, and hence no potential for heuristic support. Second,
since the size and the structure of the formula has no influence on the size of the
truth table, the efficiency of the method cannot be improved by manipulations
and accumulations of the input formula, which are the techniques for rendering
proof systems more powerful.

A natural improvement of truth tables—and one of the most promising frame-
works for propositional calculi—are semantic trees. Semantic trees were applied
in [Robinson, 1968, Kowalski and Hayes, 1969], as a representation tool for an-
alyzing first-order proof procedures of the resolution type. A binary version of
semantic trees turns out to be an excellent basis for propositional proof proce-
dures. The simple motivation for the method is that a formula can often be given
a definite truth value on the basis of merely a partial interpretation. In such a
case, the truth value of the partial interpretation V' of the formula is the same
as the truth value of all total interpretations which are functional extensions of
V. This way, in one inference step, instead of checking single interpretations, en-
tire sets of interpretations can be examined. This potential for shortening truth

3.2 Resolution Systems and Semantic Trees 107

tables was also noticed by Kleene in [Kleene, 1967], semantic trees generalize his
method.

Semantic trees can be introduced as manipulating ground clauses or ground
clause formulae. To keep closest proximity to resolution systems, we choose the
version for clauses. First, we define the deduction objects.

Definition 3.2.21 (Semantic tree) A semantic tree for a set of ground clauses S
is a binary rooted tree with a total labelling of its edges and a (possibly partial)
labelling of its leaf vertices, meeting the following conditions.

1. Each pair of edges leading out from the same vertex is labelled with an
atom p occurring in S and its negation —p, respectively.

2. Any leaf node N may be labelled with a clause from S, provided that all
literals in the clause occur complemented on the branch leading from the
root up to .

A semantic tree is called closed for S if every leaf node is labelled with a clause
from S.

{p,q} {p.~q} {-p.q} {=p. ~q}

Figure 3.2: Closed semantic tree for {{p, ¢}, {p, =g}, {-p,q},{—p, —q}}.

An example of a closed semantic tree is depicted in Figure 3.2; we display
semantic trees as downward trees, in order to conform with the construction
methodology of semantic tree calculi.

There is the following close relationship between semantic trees and resolution.

Proposition 3.2.24 FEvery ground resolution tree for a set of clauses S is a
semantic tree for S, provided the labellings of the internal nodes are disregarded.

Conversely, any closed semantic tree can be made into a resolution refutation
without increase in size, according to the following procedure.

Transformation from semantic trees to resolution trees Let T be a closed
semantic tree for a set of ground clauses S. Construct a ground resolution refu-
tation of S, by performing the following procedure on S.

108 Propositional Calculi

First, select any unlabelled node N of the current tree whose sucessors are
both labelled with ground clauses ¢; and ¢,. If the non-tautological ground
resolvent ¢ of ¢; and ¢y exists, label N with ¢. Otherwise, prune the tree by
connecting the edge incident to NV to one of its successors N; or Ny. Then,
iterate the procedure with the resulting tree.

It is clear that the procedure generates a ground tree resolution refutation of
S with a size equal or smaller than the initial semantic tree. Consequently, con-
cerning indeterministic power, semantic trees and tree resolution are equivalent
proof systems.

Proposition 3.2.25 For sets of ground clauses, semantic trees and tree resolu-
tion polynomially simulate each other.

Since ground tree resolution cannot polynomially simulate unrestricted ground
resolution (Proposition 3.2.10 on p. 99), we can immediately infer the following
corollary.

Corollary 3.2.26 For sets of ground clauses, semantic trees cannot polynomi-
ally simulate ground resolution.

Definition 3.2.22 A semantic tree is called regular if no atom occurs more than
once on a branch.!?

Again, the notational relation with resolution is preserved.

Proposition 3.2.27 Fvery reqular ground resolution tree is a reqular semantic
tree, provided the leaf vertices are disregarded.

The regularity restriction on semantic trees is very reasonable, which is moti-
vated by the following obvious proposition.

Proposition 3.2.28 Any smallest closed semantic tree for a set of clauses S is
reqular.

Consequently, in contrast to resolution where regularity is a proper restriction
when concerning lengths of shortest proofs, imposing regularity on semantic trees
has no disadvantages. Apparently, the resulting calculus is a decision procedure
for sets of ground clauses.

Note As recent experiments have shown [Buro and Kleine Biining, 1992], the
most successful logic-based computer programs for deciding the satisfiability sta-
tus of ground formulae are variants of regular semantic trees.

An interesting simulation possibility concerning linear ground resolution is
expressed in the following proposition.

13Normally, the regularity restriction is already included in the semantic tree definition. For
systematic and terminological reasons, we have left the condition outside.

3.2 Resolution Systems and Semantic Trees 109

Proposition 3.2.29 For sets of ground clauses, linear resolution can linearly
simulate (regqular) tree resolution and (regular) semantic trees.

In order to proof this result we make use of the following two lemmata.

Notation 3.2.1 If T is a dag with its nodes labelled with clauses, then we shall
denote with Sy the set of clauses appearing at the nodes of T', and with L7 the
set of clauses appearing at the leaf nodes of T.

Lemma 3.2.30 A reqular ground resolution tree T of the shape specified in
Figure 3.3 with K ¢ ¢, satisfies the following two properties.

(i) No complement of a literal in {~K} U ¢, is contained in a clause of Sr.

(i) Some of the clauses in Ly contain the literal ~K.

oo\

~K K

C1 U Co
Figure 3.3: Resolution tree T" with leaf and neighbouring subtree 7.

Proof The first fact is due to the regularity of T, the second because T is a
resolution tree—and not a general semantic tree. 0

Lemma 3.2.31 Suppose T to be a reqular ground resolution tree of the shape
specified in Figure 3.3 with K ¢ cy. Let, furthermore, r™ and r~ be clauses such
that no complement of a literal in r™ U r~ is contained in a clause of Sy. Set
¢'=rtU(({K}Uc)\ 7). Then, there is a subset r' of r~ and a linear ground
resolution dag T* with bottom clause ¢ = r* U ((c; Ucy) \1') for the set of ground
clauses L1, U {c'} with steps(T*) < 2 x steps(T).

Proof The proof is by induction on the depth of the subtree Tj. The induction
base depth(Ty) = 1 is trivial. For the induction step, assume the result to hold
for any regular ground resolution tree with depth(7;) < n, for its subtree Tj.
Let T be such a tree with depth(7y) = n, and assume r* and r~ as described.
By Lemma 3.2.30, there exists a leaf node N in T with neighbouring subtree T}
such that N is labelled by a clause {L} Ud; with ~K € d; and L # ~K; also, no
complement of a literal in { K'} U¢y is contained in a clause of S, (consult the left
tree in Figure 3.4 as an illustration). Set d’' = rt*U{L}Uc; U(d; \{~K}\r"). By
the induction assumption, there is a subset r{ of {~K} Ur’ and a linear ground
resolution dag T’ with bottom clause d = r* U ¢; U ((dy U dy) \ r{) for the set
St Ud" with steps(T”) < 2x (steps(T7)+1). If m is the distance in T between the

110 Propositional Calculi

node labelled with d; U dy and the node labelled with {~K} U ¢y, then m further
applications of the induction assumption yield the existence of a subset r, of r]
and a linear ground resolution dag 7" with bottom clause d' = r* Uc; U (ca\ 7))
for the set of clauses (St, \ {{L} U di}) U d’ with steps(T") < 2 x steps(Tp).
Modify the leaf of T" labelled with d’ by attaching two parent nodes labelled
with the clauses ¢/ = r* U{K} U (¢; \r7) and and {L} Ud;; note that d’ is their
ground resolvent. Two cases need to be distinguished. Either, ~K ¢ d’ and we
are done. Or, ~K € d’; in this case an additional (ancestor) resolution step with
d' and far parent clause ¢’ yields the desired linear resolution dag T*. In either
case steps(T*) < 2 x steps(T). O

Regular resolution tree Linear resolution dag

(Kjue {1}ud
//Qle////ﬁg

(L} U d, /QHU{L}UdQ\{~K}
~L L ’ |
dy Udy (cr Udy Udy) [\{~K}]
~K
(Kjua (~K}ue \ e U UK
aUc { \CIUC2 }

Figure 3.4: Simulation of regular tree resolution by linear resolution.

Proof of Proposition 3.2.29 It suffices to prove that linear ground resolution
can linearly simulate regular ground resolution trees. Let, therefore, T be a
closed regular ground resolution refutation tree for a set of ground clauses S.
From T one can construct a linear ground resolution refutation dag 7™ for S as
follows. Choose any clause {K} U ¢; at a leaf node of a branch with length m
in T" as start clause. Then, m successive application of Lemma 3.2.31, always
putting »* = r~, guarantee the existence of the desired linear refutation T*
with steps(7T*) < 2 x steps(T'). A single iteration of the process is schematically
displayed in Figure 3.4. U

3.3 Tableau and Connection Calculi 111

3.3 Tableau and Connection Calculi

In this section two families of logic calculi are discussed, tableau and connection
calculi. These families are closely related, in the following two respects. First,
both methodologies are working in a backward (goal-oriented) manner, like se-
mantic tree procedures. Secondly, the basic systems of both families are cut-free.
Tableau and connection calculi are not optimally suited as decision procedures for
ground formulae, their real applicability is on the first-order level. Accordingly,
some of the notions developed in this section gain their actual importance when
first-order formulae are considered.

3.3.1 The Tableau System

The tableau calculus was introduced by Beth in [Beth, 1955, Beth, 1959] and elab-
orated by Hintikka in [Hintikka, 1955] and Smullyan in [Smullyan, 1968]. Similar
to resolution, the tableau calculus is a refutational system, that is, the method
demonstrates the validity of a formula F' by proving the inconsistency of its nega-
tion —F'. In contrast to resolution, however, the tableau calculus can be used to
show the inconsistency of ordinary first-order formulae. We shall take Smullyan’s
analytic tableaux as standard reference system. The analytic tableau method pro-
ceeds by constructing a tree with its nodes labelled by subformulae—in a sense
defined immediately—occurring in the input formula, therefore the epithet ‘an-
alytic’. The standard tableau calculus is restricted to ordinary logical formulae.
Since such a restriction is unnecessary, we introduce a system which is a variant
of the standard tableau calculus, extended to the handling of finite sets of general
formulae, including general conjunctions and disjunctions. A further notational
difference is that in the standard method the root node of the tableau is labelled
with the respective input formula, whereas we prefer to keep the input alongside
the tableau. This way of designing the calculus has some advantages concerning
presentation and the formulation of complexity issues.

Conjunctive Disjunctive
Q a-subformulae 16 [-subformulae
sequence sequence

- F (F)

FAG (F,Q) -(FAG) (—F,—G)
-(FVG) (=F,-G) Fvd (F,QG)
-(F — G) (F,—Q) F—G (=F,G)

F+ G (F-GG—=F)| ~(F<GQ) |[(-(F—=G),~(G—F))

o= (T) -7)
—|F1,...,Fn|_ (Fla---;Fn) _ITFl,...,FnF (_'Fla---;_'Fn)
—1F,...,F,L| (=F,...,~F,) || JF,..., F,L (Fy,..., Fy)

Figure 3.5: Syntactic types and a-, S-subformulae of ground formulae.

112 Propositional Calculi

The ground tableau method is based on the fact that all ground formulae
which are no literals or nullary connectives can be partitioned into two syntactic
types, a conjunctive type, called the a-type, and a disjunctive type, named the
B-type; to any formula F' of any type (a or) a certain sequence of formulae
different from F' can be assigned, called the a- or (-subformulae sequence of F
depending on the type of F, as defined in Figure 3.5 (with assuming n > 1).

Proposition 3.3.1 A formula of the conjunctive type is logically equivalent to
the conjunction of its a-subformulae, whereas a formula of the disjunctive type is
logically equivalent to the disjunction of its B3-subformulae.

Although an a- or -subformula of a given complex formula F' is not always a
proper subformulae of F', in the standard sense defined in Chapter 1, the kind of
“subformula” relation defined here shares the following important property with
the standard immediate subformula relation.

Proposition 3.3.2 The transitive closure < of the union of the a- and 3-
subformula relations is well-founded on the collection of ground formulae, i.e.,
there are no infinite decomposition sequences. Moreover, the minimal elements
in the relation < are literals or nullary connectives.

We begin with the definition of the proof objects generated by the tableau
calculus.

Definition 3.3.1 (Unary formula) A non-literal ground formula is called unary
if its a- or f-subformulae sequence is unary.

Definition 3.3.2 (Tableau) A tableau T for a finite set S of general ground
formulae is a pair (¢, \) consisting of an ordered tree ¢ and a labelling function A
on its non-root nodes such that for any non-leaf node N:

1. if N has exactly one successor node N; labelled with a formula F}, then

— either F} € S,

— or F} is an a-subformula or the -subformula of a unary g-formula F
which is contained in S or appearing on the branch from the root of
T up to N,

2. if N has successor nodes Ni,...,N,, n > 1, labelled with formulae
Fy, ..., F,, respectively, then (Fy,..., F,) is the (-subformulae sequence
of a formula F' which is contained in S or appearing on the branch from
the root of T up to .

Definition 3.3.3 (Closed tableau) If on a branch in a tableau appears — or a
formula and its negation, then the branch and its leaf node are called closed;
otherwise the branch and its leaf node are termed open. A tableau is called

3.3 Tableau and Connection Calculi 113

closed if every branch is closed; otherwise the tableau is said to be open. If on a
branch in a tableau appears — or an atom and its negation, then the branch is
called atomically closed; a tableau is called atomically closed if every branch is
atomically closed. Two nodes N; and N, with labels F} and F5 in a tableau are
called complementary or connected if F; = —=F, or =F; = F.

In Figure 3.6 a closed tableau for a set of clause formulae is depicted. Like
semantic trees, tableaux are displayed as downward trees; normally, we do not
display the label of the root node.

Clause formulae Closed tableau D

¢ : dpl /l\
Ca ! JT‘, _'paqL

T -
c3: 1s, gl b e
Cs o Jmg, L -r q s —q
cg: 1T, qL / \
—|q —r —|q —S

Figure 3.6: Closed tableau for a set of clause formulae.

One interpretation of a tableau is to take any branch as the conjunction of the
formulae appearing on it, and the tableau itself as the disjunction of its branches.
Under this reading, a closed tableau represents the logical falsum. But, unlike an
unsatisfiable set of ground formulae, a closed tableau represents an explicit form
of unsatisfiability, in the sense that it can be verified in polynomial time, by just
checking each branch of the tableau. In other terms, the set of closed tableaux is
of polynomial difficulty (according to Definition 2.1.12).

Proposition 3.3.3 (Tableau soundness and completeness) A set S of general
ground formulae is unsatisfiable if and only if there exists a closed tableau for S.

The soundness is immediate from Proposition 3.3.1, for a completeness proof
of tableaux for general formulae, we refer to [Smullyan, 1968], the completeness
for clause formulae will be proved below (Theorem 3.4.6).

114 Propositional Calculi

Similar to semantic trees, the regularity condition can be defined for tableaux.

Definition 3.3.4 (Regular tableau) A tableau is regular if no two nodes on a
branch are labelled with the same formula.

3.3.2 The Tableau Calculus

Like resolution dags or semantic trees do not prescribe the precise order according
to which they have to be generated or worked off, there are different possibilities
how tableaux can be constructed in sequences of inference steps. The tableau
calculus introduced now describes the standard top-down methodology of building
up tableaux. In advance, we introduce the notion of marked tableaux.

Definition 3.3.5 (Marked tableau) A marked tableau is a pair (T, u) consisting
of a tableau T" and a partial labelling function x from the set of leaf nodes of T
into the set of nodes of the tableau. A (branch with) leaf node N of a marked
tableau is called marked if N € domain(u). A marked tableau is named marked
as closed if all of its leaves are marked.

The ground tableau calculus consists of the following two inference rules.

Procedure 3.3.1 (Tableau expansion) Given a set S of general formulae as input
and a marked tableau for S, choose a leaf node N which is not marked, and:

1. either select a formula F € S, expand the tableau at the node N with a
new node, and label it with F',

2. or select a formula F' from S or appearing on the branch from the root up
to N, and

— if F'is of type «, then expand the tableau at the node N with a new
node, and label it with an a-subformula of F',

— otherwise F'is of type 8 with the S-subformulae sequence (Fy,. .., F,),
in this case attach n new successor nodes Ny,..., N, to N, and label
them with Fy, ..., F, respectively.

Regular tableau expansion is defined in the same way except that the expanded
tableau need to be regular.

Procedure 3.3.2 (Tableau reduction) Given a marked tableau 7', choose an
unmarked leaf node N with literal L, select a dominating node N’ with literal
~L, and mark N with N’.

With the marking of a leaf node it is noted explicitly that the respective
branch has been checked off as being closed and need not be further expanded.

3.3 Tableau and Connection Calculi 115

Definition 3.3.6 (Tableau calculus) The (ground) tableau calculus can be de-
fined as the transition relation

{({S,T),(S,T")) | T' is obtained from T by an expansion or reduction step}

U {{{T¢e),Q) | Tc is a tableau which is marked as closed}

where S ranges over finite sets of ground formulae, 7" and T’ are marked tableaux
for S, and € is the success state of the transition relation. The regular version
results from replacing expansion with regular expansion.

It is apparent that any tableau can be obtained by applying the top-down
rules of the tableau calculus, and conversely.

Proposition 3.3.4 Given an input pair ¥ = (X7, 57) where L1 is the set of
finite sets of unsatisfiable ground formulae. The (regular) tableau calculus is

(1) finitely branching,
(ii) polynomially transparent, and
(1i1) proof-confluent for X.

(iv) Additionally, the regular version is a decision procedure for X.

Proof While the finite branching rate (i) is evident, the polynomial trans-
parency (ii) follows from the polynomial time and logp size step-reliability of
the tableau calculus. Proof-confluence (iii) follows from completeness and from
the fact that any tableau can be completed to a closed one if the input set is un-
satisfiable. The decision property (iv) for the regular case follows from (iii), the
soundness, and the noetherianness of the regular tableau calculus; the latter is a
consequence of the regularity condition and the well-foundedness of the transitive
closure of the a- and -subformula relations (Proposition 3.3.2). O

3.3.3 The Indeterministic Power of Tableaux

There is a close relation between tableau and sequent systems. Tableau calculi
are often viewed as backward variants of sequent calculi. Like for resolution, the
tableau system cannot polynomially simulate the propositional sequent system
with cut. In fact, the tableau system cannot even polynomially simulate truth
tables (and hence, semantic trees).

Proposition 3.3.5 There is no polynomial p such that for any given finite un-
satisfiable set S = {Fy, ..., F,} of propositional or ground formula there ezists a
closed tableauz T for S with size(T) < p(n) where n is the number of lines of a
complete truth table for Fy A -+ A\ F,; and conversely.

116 Propositional Calculi

Proof Consider the class of formula sets given in Example 3.3.1. A truth table
for the equivalent of an S,, has 2" lines. Any minimal closed tableau for an S, has
the tree structure shown in Figure 3.7, for n = 3. Therefore, taking the number
of unclosed nodes in such a tableau 7,, as a lower bound of its size, we get that

n n
size(T,,) > > _[[7 > n!
i=1 j=i

while the size of S,,—we take the number of atom occurrences in a propositional
formula as the size of the formula—is n x 2". The converse result is trivial. [

Example 3.3.1 For any set {Aj,..., A,} of distinct propositional atoms, let
S, denote the set of all 2" multiple disjunctions of the shape ILq,...,L,L where
LZ:AZOYLZ:_'AZ,lglg’I’L

Figure 3.7: Tree structure of a minimal closed tableau for Example 3.3.1, n = 3.

Tableaux can be made stronger with respect to indeterministic power by
adding the backward variant of the cut rule from sequent systems.

Procedure 3.3.3 (Tableau cut) Given a marked tableau T', choose an unmarked
leaf node N, select any ground formula F', attach two successor nodes, and label
them with F' and —F, respectively. F' is named the cut formula of the cut step.

The tableau cut rule is a data-oriented inference rule, in the following sense.
The tableau cut rule can be simulated by alternatively admitting the addition of
arbitrary tautologies of the shape F'V —F to the input formula and afterwards
applying standard tableau expansion. This also proves the soundness of the cut
rule.

The following proposition guarantees that we can always work with regular
tableaux.

Proposition 3.3.6 Any minimal closed tableau (with cut) for a set of ground
formulae S is reqular.

3.3 Tableau and Connection Calculi 117

Proof Any irregularity in a closed tableau can be removed by pruning the
tableau, as follows. Let T be a closed tableau (with cut). Until all cases of
irregularity are removed, repeat the following procedure.

Select a node N in 7" with an ancestor node N’ such that both nodes are
labelled with the same formula F. Remove the edges originating in the
predecessor N" of N and replace them with the edges originating in N.

Clearly, this operation does not affect the closedness of the tableau. O

Concerning indeterministic power, (regular) tableaux with cut and sequent
systems are equivalent (for a proof see [Letz, 1993a]). But, unfortunately, the
nice computational properties of analytic tableaux are lost when the cut rule is
added in a naive manner.

Proposition 3.3.7 The (regular) tableau calculus with cut is infinitely branch-
ing, and hence, not polynomially transparent.

A refinement of the general cut in tableaux is the analytic cut.

Procedure 3.3.4 (Tableau analytic cut) Given a marked tableau T for a set of
ground formulae S, choose an unmarked leaf node N, select a ground formula F
occurring as a subformula in some formula of S or on the path from the root up
to N, attach two successor nodes, and label them with F' and —F', respectively.

Proposition 3.3.8 The (reqular) tableau calculus with analytic cut is finitely
branching and polynomially transparent.

A definitely weaker variant of the general cut in tableaux is the atomic cut,
with and without the analyticity condition.

Procedure 3.3.5 (Tableau (analytic) atomic cut) Given a marked tableau T for
a set of ground formulae S, choose an unmarked leaf node N, select a ground
atom A (occurring in a formula of S, for the analytic case), attach two successor
nodes, and label them with the literals A and —A, respectively.

Fortunately, the working with non-analytic atomic cut can be avoided, due to
the following proposition.

Proposition 3.3.9 Any minimal closed tableau with atomic cut for a set of
ground formulae S is a tableau with analytic cut.

118 Propositional Calculi

Proof Any application of non-analytic atomic cut in a closed tableau can be
removed by pruning the tableau, as follows. Let 7" be a closed tableau with
cut for S. First, obtain a regular tableau 7" with cut by deleting all cases of
irregularity from 7. Then, as long as applications of non-analytic cut occur,
repeat the following procedure.

Select a node N in T’ with two ancestor nodes N; and N, labelled with
an atom A and its negation —A not occurring in the input set S or on the
path from the root up to N. Remove the edges originating in N and replace
them with the edges originating in N; (or with the edges originating in Ny).

Clearly, in each step the tableau size decreases. It remains to be shown that the
closedness is not affected. Closedness can only be affected if the node Ny (the
case of N, is treated analogously) is used as an ancestor in a reduction step, which
can only be from a leaf node N’ labelled with —A. Since A does not occur in the
formula, N’ must result from a cut step performed at its predecessor, so that N’
would have a brother node labelled with A. But this contradicts the regularity
assumption for 7. O

3.3.4 The Clausal Tableau Calculus

Definition 3.3.7 1If a literal L occurs as a disjunct in a clause formula ¢, then
we say that ¢ contains L.

Definition 3.3.8 (Proper, compact clause formula) A clause formula ¢ is proper
if ¢ # —. A clause formula ¢ = JLq,..., L,L is said to be compact if each literal
occurs only once as a disjunct in c.

Note For classical ground logic, attention can be restricted to compact clause
formulae. The first-order case, however, demands the handling of general (possi-
bly non-compact) clause formulae. The simple reason is that compact first-order
clause formulae may have non-compact substitution instances. In order to be
able to generalize the concepts and mechanisms developed for the ground case to
the first-order case in a straightforward manner, it is conceptually better to work
with general (possibly non-compact) clause formulae even on the ground level.

For sets of proper ground clause formulae, which are all of the disjunctive
type, a much simpler form of tableaux and tableau calculus can be employed.

Definition 3.3.9 (Clausal tableau) A clausal tableau T for a finite set S of
proper ground clause formulae is a tableau for S in which each successor set
of nodes Ny,..., N, is labelled with literals Lq,..., L, such that S contains a
clause formula 1L¢,...,L,L. For any successor set of nodes Niy,..., N, in a
clausal tableau, the generalized disjunction JLq,..., L,L of their labels is called
a tableau clause formula. The tableau clause formula immediately below the root
node of a clausal tableau is called the top clause formula of the tableau.

3.3 Tableau and Connection Calculi 119

The tableau displayed above in Figure 3.6 is a clausal tableau. In the clausal
tableau calculus the reduction rule remains the same, whereas the tableau expan-
sion rule degenerates in the following way.

Procedure 3.3.6 (Clausal tableau expansion) Given a set S of proper ground
clause formulae as input and a marked tableau for S, choose a leaf node N and
select a clause formula ¢ = I1Lq,...,L,L from S, attach n new successor nodes
Ny, ..., N, to N, and label them with L,,..., L,, respectively.

Clausal tableaux (with atomic cut) can polynomially simulate general
tableaux (with atomic cut), provided appropriate (definitional) translations are
permitted (see [Reckhow, 1976]). As a matter of fact, the converse holds too."
Clausal tableaux with atomic cut and semantic trees are even more closely related.

Proposition 3.3.10 There is a polynomial p such that for any closed clausal
tableaux T with atomic cut for a set S of proper ground clause formulae there
exists a closed semantic tree T' for the set of clauses corresponding to the clause
formulae in S with size(T') < p (size(T)), and conversely.

/\ ~L, L,
C L1 L2 tee Ln
NLQ LQ
~L | N\,
C

Figure 3.8: Simulation of tableau expansion with semantic trees.

Proof We prove that every tableau inference step can be polynomially simulated
by semantic trees. The polynomial simulation of expansion and reduction steps is
shown in the Figures 3.8 and 3.9, respectively. The simulation of the atomic cut
step is trivial (due to Proposition 3.3.9 we can restrict ourselves to analytic cuts),
instead of the nodes simply the edges must be labelled in the semantic tree. The
converse simulation is as follows. Semantic tree expansion is simulated by tableau
cut, and the labelling of a leaf node with a clause {Lq,...,L,} contradicting
the partial interpretation of a semantic tree branch is simulated by a tableau

14Tn order to obtain a fair evaluation of indeterministic power, the use of definitional transla-
tions must also be permitted for general tableaux, even if they accept non-normal form formulae.
That is, if a system is more general than another wrt to its rules and its input language, then
the general system must always polynomially simulate the special one (as opposed to the view
in [Reckhow, 1976]).

120 Propositional Calculi

NLZ.
NLZ.
NLl Ll
C: NLi_l Li—l
NLi+1 Li+1
~Ly| NI
C

Figure 3.9: Simulation of tableau reduction with semantic trees.

expansion step using the clause formula 1Lq,...,L,L, followed by n reduction
steps. [

3.3.5 The Connection Method

Based on work by Prawitz [Prawitz, 1960, Prawitz, 1969], the connection
method was introduced by Bibel in [Bibel, 1981, Bibel, 1987] and Andrews
[Andrews, 1981]—we shall use Bibel’s terminology as reference point. The con-
nection method is not a specific calculus or inference system but a general de-
duction methodology which emphasizes the importance of connections for auto-
mated theorem proving. In the original presentation of the connection method,
the logical validity of first-order formulae is proven directly, which is the dual
of demonstrating the unsatisfiability of the negations of the formulae. In order
to keep proximity to the refutational approach pursued in this work, we present
the connection method as a framework for proving the unsatisfiability of formu-
lae, which makes no difference concerning the employed notions and mechanisms.
The connection method for ground formulae can handle arbitrary formulae con-
structed over the connectives A, V, and — with the restriction that — is permitted
to dominate atomic formulae only. We present the version for sets of proper
clause formulae here.

Definition 3.3.10 (Literal occurrence in a set of clause formulae) For any clause
formula ¢ = Vx,---Va,,1L1,...,L,L in a set of clause formulae S, any triple
(Liyi,c), 1 <i<mn,is called a literal occurrence in S.

3.3 Tableau and Connection Calculi 121

As opposed to the case of clauses, for clause formulae, triples are needed to
individuate literal occurrences, since, in the case of non-compact clause formulae,
one has to distinguish between different occurrences of one and the same literal
as a disjunct in a clause formula.

Definition 3.3.11 (Path, connection, mate, complementarity) Given a finite set
of proper clause formulae S of cardinality n. A path in S is a set of n literal
occurrences in S, exactly one from each clause formula in S. Any subset of a
path in S is called a subpath in S. A connection in S is a two-element subpath
{{K,i,c1),(L,j,co)} in S such that K and L are literals with the same predicate
symbol, one literal is negated, and one is not. The literal occurrences in the
connection are called mates of each other, and ¢; and ¢y are said to be connected.
A path or subpath in S is called complementary if it contains a connection as
subset in which the connected literals have the same atoms. If all paths in a set
S of proper clause formulae are complementary, then S is named complementary
too.

The connection method is based on two fundamental principles. The first is
the idea that the unsatisfiability of a proper set of clause formulae can be proved
by checking all paths in S for complementarity.

Proposition 3.3.11 A set S of proper ground clause formulae is unsatisfiable
if and only if S is complementary.

Proof Let S = {cy,...,c,}. Then, the equivalent conjunction ¢; A- -+ A¢, can be
equivalently transformed into disjunctive normal form by iteratively applying the
A-distributivity (Proposition 1.2.1 (m)). By Definition 1.7.11, a ground formula
in disjunctive normal form in which — does not occur is unsatisfiable if and only
if each general disjunction contains a literal and its complement as a conjunct.
The paths in S represent exactly the conjunctions of literals occurring in this
disjunctive normal form formula. O

There are different methodologies of checking paths for complementarity. One
of the most naive ways is exemplified with the cut-free tableau calculus, which
therefore is belonging to the class of path checking procedures.

The second principle of the connection method is to use (sets of) connections
as control mechanism for path checking, which has no correspondence in the
standard tableau approach.

Definition 3.3.12 (Mating, spanning property) Given a finite set of proper clause
formulae S. Any set of connections in S is called a mating for S. A mating M
for S is said to be spanning if each path in S contains a connection in M as a
subpath; M is called complementary if each of its connections is complementary.

Proposition 3.3.12 A set S of proper ground clause formulae is unsatisfiable
if and only if there is a complementary spanning mating for S.

122 Propositional Calculi

Note On the ground level, if S has a complementary spanning mating, then
the set of all complementary connections in S is spanning, too. Consequently,
we can always work with the set of all complementary connections. On the
first-order level, however, the additional condition of unifiability comes into play
which makes it necessary to work with proper subsets of the set of all unifiable
connections. Interestingly, a complementary spanning mating for a set of ground
clause formulae S cannot be accepted as a refutation of S, since, apparently, the
problem of verifying the spanning property of a mating is coNP-complete. Hence,
with spanning matings nothing is gained with respect to proving unsatisfiability.
In a deduction enumeration approach, however, matings can be used to reduce
the number of deductions tremendously, as discussed in Subsection 4.4.3.

3.4 Connection Tableaux

One of the basic ideas of the connection method, to use connections as a control
structure for path checking, can be formulated as a refinement of clausal tableaux.

Definition 3.4.1 (Connection tableau) If T is a clausal tableau in which each
inner node N has a complementary leaf node N’ among its successor nodes, then
T is called connected or a connection tableau.

The tableau shown in Figure 3.6 is a connection tableau. The connection
tableau calculus introduced now describes the standard top-down methodology
of building up connection tableaux.

3.4.1 The Connection Tableau Calculus

In order to guarantee the connectedness condition, it is reasonable to reorganize
the standard tableau inference rules and to define the connection tableau calculus
as consisting of three inference rules, tableau start, tableau extension, and the
reduction rule from the standard tablau calculus. Again, we work with marked
tableaux.

Procedure 3.4.1 (Tableau start) Given a set of proper ground clause formulae
S as input and a one-node tree with root N and label T, a start step is simply a
tableau expansion step.

The tableau extension step is a particular tableau expansion step immediately
followed by a special tableau reduction step.

Procedure 3.4.2 (Tableau extension) Given a set of proper ground clause for-
mulae S as input and a marked connection tableau T for S, choose a leaf node
N with literal L which is not marked, select a clause formula 1L,...,L,L in
S containing ~L as a disjunct, and attach n successors to N labelled with the
literals Ly, ..., L,, respectively (this is an expansion step); then mark a successor
N’ of N which is labelled with the literal ~L with N (this is a reduction step).

3.4 Connection Tableaux 123

The transition relational formulation of the connection tableau calculus and
its regular version can be defined in analogy to tableaux. Apparently, we can
formulate the following fundamental difference with the general clausal tableau
calculus.

Proposition 3.4.1 The (reqular) connection tableau calculus is finitely branch-
ing, polynomially transparent, but not proof-confluent.

Proof The finite branching rate and the polynomial transparency follow from the
fact that the connection tableau calculus is basically a refinement of the tableau
calculus (except that in extension steps two tableau inference steps are counted
as one, which is not harmful computationally). To recognize the missing proof-
confluence, assume an input set S contains a clause formula ¢ containing a literal
L with ~L not contained in a formula of S. Then, there exists no closed tableau
with ¢ as top clause formula. O

Hence, if we are going to make use of the connection tableau calculus as
a proof or even a decision procedure for sets of proper ground formulae, then
we are forced to enumerate connection tableaux. This is the main weakness of
connection tableaux for the ground case, for which a different functionality is
demanded than for the first-order case.

Also, the connectedness condition results in a weakening of the indeterministic
power of clausal tableaux.

Proposition 3.4.2 The connection tableau calculus cannot polynomially simu-
late the clausal tableaur calculus.

Proof A simple modification of Example 3.3.1 will do, namely, the class pre-
sented in Example 3.4.1. The additional tautologies'® can be used to polynomi-
ally simulate the atomic cut rule in the clausal tableau calculus, hence permitting
short proofs for this example. But in connection tableaux, except for the start
step, the tautologies do not help, since any extension step at a node N with lit-
eral L using the tautology JL,~LL just lengthens the respective path by a node
labelled with the same literal L. Therefore, the size of any closed connection
tableau for an input set S, is greater than 2 x (n — 1)! while the size of S, is
nx (2" +2). Il

Example 3.4.1 For any set {Ay, ..., A,} of distinct propositional atoms, let S,
denote the set of propositional clause formulae given in Example 3.3.1, augmented
with n tautologies of the shape JA;, —A;L, 1< <n.

Moreover, the regularity condition turns out to be harmful for the indeter-
ministic power of connection tableaux.

15That these formula are tautologies is not essential for the argument. We could equally well
replace every tautology 1 A;, ~A;L with two clause formulae | A;, - B;l and |B;, = A;L with the
B; being n new distinct propositional atoms.

124 Propositional Calculi

Proposition 3.4.3 The reqular connection tableau calculus cannot polynomially
simulate the connection tableau calculus.

Proof For this result we use another modification of Example 3.3.1, which is
given in in Example 3.4.2. The elements of this class have polynomial closed
connection tableaux, since the additional clause formulae permit the polynomial
simulation of the atomic cut rule, as illustrated in Figure 3.10, for the case of
n = 3; to gain readability, A; is abbreviated with ¢ and —A; with 7 in the figure.
These connection proofs are highly irregular. In order to obtain short proofs, it
is necessary to attach the intermediating two-literal clause formulae of the shape
J1A;, AgL and J—A;, AgL again and again. In regular proofs, however, on each
branch intermediating clause formulae can be used at most once. Therefore, the
size of any closed regular connection tableau for an S,, is greater than 4 x (n—2)!
while the size of S, is n x (2" 4+ 7). O

Example 3.4.2 For any set {Ay, ..., A,} of distinct propositional atoms, let S,
denote the set of propositional clause formulae given in Example 3.3.1, augmented
with

1. n tautologies of the shape JA;,—A;, 7AoL, 1 <i<mn,

2. n clause formulae of the structure 1A4;, Agl, 1 <7 <mn, and

3. n clause formulae of the structure 1-A4;, Agl, 1 <i <n,

where A is a new propositional atom.

3.4.2 Tableau Node Selection Functions

There is a source of indeterminism in the tableau and the connection tableau
calculi which can be removed without any harm concerning indeterministic power.
This indeterminism concerns the selection of the next unmarked node at which
an expansion, extension, reduction, or cut step is to be performed.

Definition 3.4.2 (Selection function) A (node) selection function ¢ is a mapping
assigning to every marked tableau 7" which is not marked as closed an unmarked
leaf node N in T'. The node N is called the node selected by ¢.

Proposition 3.4.4 (Strong node selection independency) Any closed (connec-
tion) tableau for a set of ground clause formulae can be constructed with any
possible selection function.

Note This property is extremely important for tableau proof procedures. Thus,
we can always work with a fixed selection function, or switch from one selection
function to another if necessary, without losing indeterministic power. This lat-
ter property does not hold for resolution procedures like, e.g., linear resolution,

3.4 Connection Tableaux 125

/\

1 1 0

N NN
_—N\

0

~1 -1
AN AN AN NN

3 123123123 1 3 123123123

2

A NVA N

30 0

—
N
N

Figure 3.10: Polynomial closed connection tableau for Example 3.4.2, n = 3.

which is only weakly independent of the node selection function, in the sense
that all selection function preserve completeness, but they may produce different
(shortest) proofs. In other terms, different resolution selection functions induce
different resolution dags.

Definition 3.4.3 (Standard selection functions) A depth-first (depth-last) selec-
tion function selects from any tableau T containing unmarked leaf nodes one
with a maximal (minimal) depth. The depth-first (depth-last) left-most (right-
most) selection function selects that node which is the left-most (right-most)
node among the unmarked nodes with maximal (minimal) depth.

3.4.3 From Tableaux to Subgoal Formulae

Due to the fact that tableau calculi work by building up tree structures whereas
other calculi derive new formulae from old ones, the close relation of tableaux with
other systems is not immediately evident. In order to clarify the interdependen-
cies it is helpful to reformulate the process of tableau construction in terms of
formula generation procedures. There is a natural mapping from tableaux to for-
mulae represented by the tableaux, particularly, if only the open parts of tableaux
are considered, which we call subgoal trees.

Definition 3.4.4 (Subgoal tree) The subgoal tree of a marked tableau T is the
literal tree obtained from T by deleting out all nodes, together with their ingoing
edges, which are on branches with marked leaves only.

126 Propositional Calculi

For proving the unsatisfiability of a set of formulae using the tableau frame-
work, it is not necessary to explicitly construct a closed tableau, it is sufficient to
know that the deduction corresponds to a closed tableau. The subgoal tree of a
tableau contains only the unmarked leaves of a tableau and those nodes which
dominate unmarked leaves. For the continuation of the refutation process, all
other parts of the tableau may be disregarded without any harm.'6 Most im-
plementations of tableau calculi work by manipulating subgoal trees instead of
tableaux. From subgoal trees it is but a small step to the corresponding logical
formulae.

The logical interpretation of tableaux mentioned above—as the disjunction of
the conjunctions of the literals on its branches—leads to the definition of so-called
consolvents (see [Eder, 1991]). Here we do not use the consolvent interpretation of
a tableau, because this reading destroys the internal structure of a tableau, which
is very uncomfortable for defining refinements and extensions of the calculus.
Instead, we use a mapping which mirrors the tableau structure. Given a subgoal
tree of a tableau, the corresponding subgoal formula is defined inductively as
follows.

Definition 3.4.5 (Subgoal formula) (inductive)
1. The subgoal formula of the empty subgoal tree is —.

2. The subgoal formula of a one-node tree with label F'is simply F'.

3. The subgoal formula of a complex tree with root N and label F', and im-
mediate subtrees ¢y, ..., t,, in this order, is the formula FFA (FyV---V F,)
where F; is the subgoal formula of ¢;, for every 1 < i < n.

Notation 3.4.1 According to our definition of tableaux and subgoal formulae,
any complex subgoal formula has the shape T A F. In order to eliminate this
redundancy, we shall abbreviate any complex subgoal formula T A F' by writing
just the logically equivalent formula F'.

In Figure 3.12 three sequences of subgoal formulae are depicted which are
corresponding to three different constructions of the tableau in Figure 3.6 using
the connection tableau calculus. In order to facilitate the identification of the
inferences on subgoal formulae, the original tableau is redisplayed in Figure 3.11
with numbers as names of the relevant nodes, which appear as upper indices
at the literals. The subgoal formula sequences differ with respect to the chosen
selection functions, the node selected for the next inference step is marked by
framing the indexed literals.

The structure of the subgoal tree encoded by a subgoal formula can be read
off easily. For every subformula of the shape L A F' the node corresponding to
the occurrence of I dominates all nodes represented by the literal occurrences

16But note that information about the closed part of a tableau and its structure may be
necessary for improving search pruning. This will become relevant for the first-order case.

3.4 Connection Tableaux 127

T0
p
/TN
w7
- q s° =g
—q —rf —q" -

Figure 3.11: Connection tableau of Figure 3.6 with node indices.

depth-first left-most depth-first right-most | depth-last left-most

' A(ve?) ' AV) (v)

P AN D V) P APV (@A) (r*Ag? vl

P A AG A=) V) plAWv(qussA)) (A)V (@ As?)

p' A ¢ p Al (r*Ag*A=r®)V (g /\ﬂ))
pl/\q3/\ pl/\'r2/\ p' A((r2Ag* A=)\/(q3/\55/\))
pl/\q3/\35/\ pl/\r2/\q4/\ pt 3/\35/\
L

L L

A
A
A
/\(
Agq

Figure 3.12: Subgoal formula proofs corresponding to the tableau in Figure 3.6.

within the occurrence of F'; this involves that the open leaf nodes in the subgoal
tree are encoded by literal occurrences not immediately followed by a conjunction
symbol.

3.4.4 Connection Matrices

The connection calculus presented in [Bibel, 1987] Chapter II1.6 can be viewed
as a version of the connection tableau calculus restricted to depth-first selection
functions. Here we shall consider a refinement of this connection calculus, with-
out factorization, which is studied below. The favourite notation for displaying
connection proofs is by writing them as matrices, with the columns consisting of
the literals in the clause formulae. The information about the paths which have
been examined and those which remain to be checked in a certain state, is ex-
pressed with some additional data structures. In the original presentation, some
worked-off parts remain noted in the deduction. We apply the same technique

128 Propositional Calculi

used for tableaux—the working with subgoal trees—to the connection calculus,
by working with subgoal matrices. The resulting format is particularly appealing
for the presentation of deductions obeying any form of depth-first selection, as
shown in Figure 3.13. In the matrix proof we have indicated the next inference
with arrows at the selected subgoal, -t for extension, ©®— --- — for reduction,
and == for the path under consideration. Additionally, in any extension step,
the clause and the entry literal is given, and in any reduction step the respective
predecessor node. The relation of subgoal matrix proofs with the more general
subgoal formula and subgoal tree notation is evident. A subgoal matrix is ba-
sically a subgoal tree put on its left side. Notice that the subgoal proof on the
right-hand side of Figure 3.12 cannot be performed by the mentioned connection
calculus and not be represented in the subgoal matrix notation.

T
pl 13 .2
P ==

7"2 J_'I:} 061
==

r? == ¢ 1 5.1
p' q°

7”2 QL q4 e —|7"6
pt == ¢ 1Bt 3.2
pl == ¢ == s° 13t ;.2
pl N q3 QL 85 N _|q7
1

Figure 3.13: Subgoal matrix notation of the left-hand proof in Figure 3.12.

3.4.5 Model Elimination

The model elimination calculus was introduced in [Loveland, 1968] and improved
in [Loveland, 1978]. Model elimination can be viewed as a refinement of the
connection tableau calculus. This approach has various advantages concerning
generality, elegance, and the possibility for defining extensions and refinements.!”
Here, we treat a subsystem of the original model elimination calculus without
factoring and lemmata, called weak model elimination in [Loveland, 1978|, which
is still refutation-complete. The fact that weak model elimination is indeed a
specialized subsystem of the connection tableau calculus becomes apparent when
considering the subgoal formula deductions of connection tableaux. The weak

17The soundness and completeness results for model elimination, for example, are immediate
consequences of the soundness and completeness proofs of (regular) connection tableaux, which
are very short and simple. Compare these proofs with the extremely involved and lengthy
proofs in [Loveland, 1978].

3.4 Connection Tableaux 129

model elimination calculus can be viewed as that refinement of the connection
tableau calculus in which the selection of open nodes is performed in a depth-first
right-most manner. The strong node selection independence guarantees that weak
model elimination is a complete refinement of the connection tableau calculus.

Due to the depth-first right-most restriction of the node selection function, a
one-dimensional “chain” representation of subgoal formulae is possible (as used
in [Loveland, 1968, Loveland, 1978]), in which no logical operators are necessary.
The transformation from subgoal formulae with depth-first right-most selection
function to model elimination chains works as follows.

Transformation from subgoal formulae to model elimination chains
To any subgoal formula generated with a depth-first right-most node selection
function, apply the following operation. As long as logical operators are contained
in the string, replace every conjunction L A F' with [L]F and every disjunction
LyVv---V L, with Ly---L,.

In a model elimination chain, the occurrences of bracketed literals denote the
non-leaf nodes and the occurrences of unbracketed literals the leaf nodes of the
subgoal tree corresponding to the input subgoal formula. For every node N
corresponding to an occurrence of an unbracketed literal L, the bracketed literal
occurrences to the left of L encode the nodes dominating N. From the subgoal
formula proofs in Figure 3.12 only the middle one can be represented in model
elimination. The model elimination proof is depicted in Figure 3.14. Additionally,
we have given a precise specification of the applied inference rules, using the
following abbreviations:

S: 0, ¢; denotes a start step into top clause formula ¢;,
E: 7, ¢; denotes an extension step at node j into the i-th disjunct of ¢;,
R:j, k denotes a reduction step at node j with a dominating node k.

0,61
1,62.2
3,03.2
5,04.2
7,3
2,06.1
4,65.1
6,2

A mmzDmmmwum

Figure 3.14: Model elimination notation of the middle proof in Figure 3.12.

Note It is important to emphasize that the node selection function determines
the branching rate of the search tree of the calculus, i.e., the number of possible

130 Propositional Calculi

tableaux that can be generated in one inference step from a given tableau, which
is essential for the first-order level. Consequently, all forms of restrictions on the
node selection from the side of the calculus may heavily reduce the potential of
search pruning in this calculus. This subject will be discussed in the next chapter.

3.4.6 Further Structural Restrictions on Tableaux

Connectedness and regularity are restrictions of the tableaux structure. Such
restrictions are completely independent of the structure of the underlying set S
of input formulae or of the structures of other tableaux for S. In particular, any
structural restriction on tableaux of some type ® meets the following monotonicity
condition. If T is a tableau of type ® for an input S, then T is a tableau of type ®
for any superset of S. Below we shall discuss important other restrictions which
do not satisfy this monotonicity condition.

In [Plaisted, 1990] a refinement of connection tableaux is discussed in which
the reduction rule may be omitted either for all subgoals with atoms or for all
subgoals with negated atoms. This refinement can be formulated as a structural
restriction on marked tableaux. We demonstrate this for the case of forbidding
reduction steps at nodes labelled with atoms. The corresponding restriction on
the structure of marked tableaux is as follows. If a node N in such a tableau
is labelled with an atom, then no successor of N labelled with an atom must
be marked, and if a node N is labelled with a negated atom, then at most one
successor of N labelled with an atom is permitted to be marked. Interestingly,
this partial restriction of reduction steps cannot be formulated as a restriction of
pure (i.e., unmarked) tableaux.

Moreover, this partial restriction of reduction steps is incompatible with the
regularity condition.

Proposition 3.4.5 There are unsatisfiable sets of ground clause formulae such
that every proof in the reqular connection tableau calculus has to perform reduction
steps both at nodes labelled with atoms and at nodes labelled with negated atoms.

Proof We use the set of clause formulae given in Example 3.4.3. As illustration
of the proof consider Figure 3.15. If the first clause formula is chosen as top
clause formula, then, in any case, reduction steps have to be applied to nodes
labelled with the literals =¢ and r in the four possible subtrees T" dominated by
the p-node on the left-hand side; and similarly to nodes labelled with the literals
—q" and r’ in the four possible subtrees T’ on the right-hand side. Using one
of the other clause formulae as top clause formula does not help, since then the
clause —p V —p’ must be entered by an extension step, producing either an open
leaf literal —p or —p’. In either case a tree from one of two classes T or T need
to be attached then. O

Example 3.4.3 Consider a set of clause formulae of the following structures

3.4 Connection Tableaux 131

J=p,p'L,

lq,p,—rL, 1q',p', —r'L,
lq, sL, 1=q', s'L,
15,7, qL, 1=s',=q'L,
Ir,tL, 1=t rL,

1r' 'L, 1=t!,r'L.

/l\ .
/\ /\ analogously

s [—s] t [—t]

A

5 [s]

J
~
=

Figure 3.15: Necessity of full reduction for regular connection tableaux.

In order to preserve completeness for the restricted use of reduction rules, the
regularity condition has to be weakened (see [Plaisted, 1990]). We do not pursue
further this asymmetric approach.

Another refinement of connection tableaux, which has not been recognized
so far and which is compatible with the regularity restriction, results from a
sharpening of the connectedness condition.

Definition 3.4.6 (Strong connection) A connection {(L,i,¢;), (K, j,co)} is
called strong if L = ~K and K is the only literal contained in ¢, with a comple-
ment in ¢;. The literal occurrences in a strong connection are named strong mates
of each other. Two clause formulae are strongly connected if they are connected
and every connection between them is strong.

Example 3.4.4 Two clause formulae of the form 1P(a), =Q(a), P(b), P(a)L and
1=P(a), ~Q(a), =Q(b), ~P(a), ~Q(b),~P(a)L are strongly connected.

In terms of clauses, strong connectedness can be expressed as follows. If ¢] and
¢4 are the clauses containing the literals contained in two ground clause formulae
c; and ¢y, respectively, then the strong connectedness of ¢; and ¢y entails that
there is exactly one ground resolvent ¢ of ¢{ and ¢}, and ¢ is not tautological.

132 Propositional Calculi

Definition 3.4.7 (Strong connection tableau) A clausal tableau T is called
strongly connected or a strong connection tableau if T is connected and any two
tableau clause formulae ¢; and ¢ with ¢; lying immediately above ¢, are strongly
connected.

Like connectedness and regularity, strong connectedness is a pure tableau
structure condition, in the sense that marked tableaux are not needed to verify
the condition.

3.4.7 The Completeness of Connection Tableaux

Now, we wish to furnish the completeness proof of regular strong connection
tableaux, which yields as corollaries the completeness of all more general tableau
variants discussed above. In fact, something slightly stronger can be proven,
using the following notions.

Definition 3.4.8 (Essentiality, relevance, minimal unsatisfiability) An element F
of a set of formulae S is called essential in S if S is unsatisfiable and S\ {F'}
is satisfiable. An element F' of a set of formulae S is named relevant in S if
there exists an unsatisfiable subset S’ C S such that F' is essential in S’. An
unsatisfiable set of formulae S is said to be minimally unsatisfiable if each formula
in S is essential in S.

Proposition 3.4.6 (Completeness of regular strong connection tableaux) For any
finite unsatisfiable set S of proper ground clause formulae and any clause formula
¢ which is relevant in S, there exists a closed reqular strong connection tableau
for S with top clause formula c.

For the completeness proof we need an additional notion and a basic lemma.

Definition 3.4.9 (Strengthening) The strengthening of a set of clause formulae
S by a set of literals P = {Ly,...,L,}, written P 3t S, is the set of clause
formulae obtained by first removing all clause formulae from S containing literals
from P and afterwards adding the n clause formulae JL{L,..., J1L,L.

Lemma 3.4.7 (Strong mate lemma) Let S be an unsatisfiable set of ground
clause formulae. For any literal L contained in any relevant clause formula c in
S there exists a clause formula ¢’ in S such that

(i) ¢' contains ~L,

(ii) for every literal L' # L in c': its complement ~L' is not contained in c,
and

(111) ¢ is relevant in the strengthening {L} 3x S.

3.4 Connection Tableaux 133

Proof From the relevance of ¢ follows that S has a minimally unsatisfiable
subset Sy containing c¢; every formula in Sy is essential in S;. Hence, there is
an interpretation Z for Sy with J3(Sp \ {c}) = T and J(¢) = L, for the formula
assignment J of Z; J assigns L to every literal in ¢. Define Z' := (Z\ {~L})U{L}.
Its assignment J’ maps ¢ to T. The unsatisfiability of Sy guarantees the existence
of a clause formula ¢’ in Fy with 3'(¢") = L. We prove that ¢’ meets the conditions
(i) — (iii). First, the clause formula ¢’ must contain the literal ~L, since otherwise
J(c") = L, which contradicts the selection of Z, hence (i). Secondly, for any other
literal L' # L in ¢’: J(L') = 3'(L") = L. As a consequence, L' must not occur
complemented in ¢, which proves (ii). Finally, the essentiality of ¢’ in Sy entails
that there exists an interpretation Z" with 3"(Sy \ {¢'}) = T and 3"(¢') = L,
for the assignment J3” of Z". Since ~L is in ¢/, 3"(L) = T. Therefore, ¢’ is
essential in Sp U {L}, and also in its subset {L} %t Sp. From this and the fact
that {L} %t Sy is a subset of {L} %t S follows that ¢’ is relevant in {L} 3 S. O

Proof of Theorem 3.4.6 Let S be a finite unsatisfiable set of proper ground
clause formulae and ¢ any relevant clause formula in S. A closed regular strong
connection tableau T for S with top clause formula ¢ can be constructed from
the root to its leaves via a sequence of intermediate tableaux, as follows. Start
with a tableau consisting simply of ¢ as top clause formula. Then iterate the
following non-deterministic procedure, as long as the intermediate tableau is not
yet closed.

Choose an arbitrary open leaf node N in the current tableau with literal
L. Let ¢ be the tableau clause formula of N and let P = {Ly,..., L, L},
m > 0, be the set of literals on the path from the root up to the node N.
Then, select any clause formula ¢’ which is relevant in P %t S, contains
~L, is strongly connected to ¢, and does not contain literals from the path
{L,..., Ly, L}; perform an expansion step with ¢’ at the node N.

First, note that, evidently, the procedure admits solely the construction of regu-
lar strong connection tableaux, since in any expansion step the attached clause
formula contains the literal ~L, no literals from the path to its parent node (reg-
ularity), nor is a literal different from ~L in ¢’ contained complemented in c.
Due to regularity, there can be only branches of finite length. Consequently,
the procedure must terminate, either because every leaf is closed, or because no
clause formula ¢’ exists for expansion which meets the conditions stated in the
procedure. We prove that the second alternative does never occur, since for any
open leaf node N with literal L there exists such a clause formula ¢’. This will
be demonstrated by induction on the node depth. The induction base, n =1,
is evident, by the Strong Mate Lemma (3.4.7). For the step from n to n + 1,
with n > 1, let N be an open leaf node of tableau depth n 4+ 1 with literal L,
tableau clause formula ¢, and with a path set P U {L} such that ¢ is relevant in
P 3¢ S, the induction assumption. Let Sy be any minimally unsatisfiable subset
of P %* S containing ¢, which exists by the induction assumption. Then, by the

134 Propositional Calculi

Strong Mate Lemma, Sy contains a clause ¢’ which is strongly connected to ¢
and contains ~L. Since no literal in P’ = P U {L} is contained in a non-unit
clause formula of P’ 3¢ S and because N was assumed to be open, no literal in
P’ is contained in ¢’ (regularity). Finally, since Sy is minimally unsatisfiable, ¢’
is essential in Sy; therefore, ¢’ is relevant in P’ 3¢ S. O

3.5 Controlled Integration of the Cut Rule

The regular connection tableau calculus has proven successful in the practice of
automated deduction [Stickel, 1988, Letz et al., 1992], although, concerning in-
deterministic power, the calculus is extremely weak. In this section we introduce
different extensions of the calculus which attempt to remedy this weakness with-
out introducing to much additional indeterminism. All discussed extensions can
be viewed as controlled integrations of the cut rule.

It is apparent that the connectedness condition on tableaux blocks any rea-
sonable application of the tableau cut rule, as it is defined in Procedure 3.3.3
on p. 116. This is because the connectedness enforces that any application of
cut at a node N labelled with a literal L must label the two attached successor
nodes with the literals L and ~L, respectively, with the result that absolutely no
advance is made towards the closing of the tableau. The effect of the cut rule on
the shortening of tableau proofs can only be achieved for connection tableaux if
the tautology rule is used, which is a generalized form of the cut rule.

Procedure 3.5.1 (Tautology rule for clausal tableaux) Given a marked tableau
T, choose an unmarked leaf node N, select any tautological clause formula
1Ly,...,L,L, attach n new successor nodes, and label them with Lq,..., L,,
respectively.

Proposition 3.5.1 (Regular) connection tableauz with the tautology rule can
linearly simulate semantic trees and tableaux with atomic cut.

Proof Any cut step with a cut formula A at a node N labelled with a lit-
eral L can be simulated by applying the tautology rule using the clause formula
I~L, A, —AL. 0]

Corollary 3.5.2 Connection tableaux cannot polynomially simulate (regular)
connection tableaux with the tautology rule.

Proof Immediate from Proposition 3.5.1 and Proposition 3.4.2 on p. 123. 0

It is clear that the tautology rule is an inference rule of a theoretical value only,
since the uncontrolled addition of the tautology rule to the connection tableau
calculus completely destroys the good reductive properties of the calculus. The
question is whether there exist other forms of additional inference rules which are
better suited for automated deduction.

3.5 Controlled Integration of the Cut Rule 135

3.5.1 Factorization

The factorization rule was used in model elimination [Loveland, 1978] and in
the connection calculus [Bibel, 1987], Chapter II1.6. On the general level of the
(connection) tableau calculus, which permits arbitrary node selection functions,
the rule can be introduced as follows. Consider a closed tableau containing two
nodes N; and N, with the same literal as label. Furthermore, suppose that all
ancestor nodes of Ny are also ancestors of N;. Then, the closed tableau part T
below NN, could have been reused as a solution and attached to Ny, because all
expansion and reduction steps performed in T under N, are possible in 7" under
Nj, too. This observation motivates the use of factorization as an additional
inference rule. Factorization allows to label a node N; as solved in case there is
another node N, labelled with the same literal, provided that the set of ancestors
of N5 is a subset of the set of ancestors of N;. Possible candidates for NV, are all
brothers and sisters of Ny, i.e., all nodes with the same predecessor as N;, and
the brothers and sisters of its ancestors. Applied to a set of clause formulae

{Ip,qL, Ip,—qL, 1—p,qL, J=p,~qL }

which denotes an instance of Example 3.3.1 on p. 116, for n = 2, factorization
yields a shorter proof, as shown in Figure 3.16. Factorization is indicated with
an arc. Obviously, in order to preserve soundness this rule must be constrained
to prohibit solution cycles. Thus, in Figure 3.16 factorization of the node N, on
the right hand side with the node N3 with the same literal on the left hand side
is not allowed after the first factorization (node Ny with node N;) has been per-
formed, because this would involve a reciprocal, and hence unsound, employment
of one solution within the other. To avoid the cyclic application of factoriza-
tion, tableaux have to be supplied with an additional factorization dependency

relation.

- L

p V) -/ q —p (V)

Figure 3.16: Factorization step in a connection tableau for Example 3.3.1, n = 2.

Definition 3.5.1 (Factorization dependency relation) A factorization dependency
relation on a tableau T is a strict partial ordering < on the tableau nodes.

136 Propositional Calculi

Procedure 3.5.2 (Tableau factorization) Given a marked tableau T" and a fac-
torization dependency relation < on its nodes. First, select a leaf node N; with
literal L and another node Ny labelled with the same literal such that

1. Ny is dominated by a node N which has the node N, among its immediate
successors, and

2. M; £ Ny, where M is the brother node of Ny on the branch from the root
to Ny, including the latter.'®

Then, mark Ny with Ny and modify < by first adding the pair of nodes (Ny, M),
and then forming the transitive closure of the relation. We say that the node NV,
has been factorized with the node Ny. The tableau construction is started with
an empty factorization dependency relation, and all other tableau inference rules
leave the factorization dependency relation unchanged.

Applied to the example shown in Figure 3.16, when the node Nj is factorized
with the node Ny, the pair (Ny, N3) is added to the previously empty relation
<, thus denoting that the solution of the subgoal N3 depends on the solution of
the subgoal N,. After that, factorization of the node N, with the node Nj is not
possible any more, and we have to proceed with a tableau extension step at the
node Ny.

Note It is clear that the factorization dependency relation only relates brother
nodes, i.e., nodes which have the same immediate predecessor.

Similar to the case of ordinary (connection) tableaux, if the factorization rule
is added, the order in which the tableau rules are applied does not influence the
structure of the tableau.

Proposition 3.5.3 (Strong node selection independency of factorization) Any
closed (connection) tableau with factorization for a set of ground clause formulae
can be constructed with any possible selection function.

The applications of factorization at a node N; with a node N, can be subdi-
vided into two cases. Either, the node N, has been solved already, or the node
N5 or some of the nodes dominated by N, are not yet marked. In the second
case we shall speak of an optimistic application of factorization, since the node
Ny is marked as solved before it is known whether a solution exists. Conversely,
the first case will be called a pessimistic application of factorization.

Note If we are working with subgoal trees, i.e., completely remove solved parts
of a tableau, then for all depth-first selection functions solely optimistic applica-
tions of factorization can occur. Also, the factorization dependency relation may
be safely ignored, because the depth-first procedure and the removal of solved
subgoals render cyclic factorization attempts impossible. It is for this reason,
that the integration approaches of factorization into model elimination or the
connection calculus have not mentioned the factorization dependency relation.

'8Note that M; may be N; itself.

3.5 Controlled Integration of the Cut Rule 137

Figure 3.17: Linear closed connection tableau with factorization for Exam-
ple 3.3.1, for the case of n = 3.

The addition of the factorization rule increases the indeterministic power of
(connection) tableaux significantly. Thus, the critical class for tableaux given in
Example 3.3.1, for which no polynomial proof exists (see Figure 3.7 on p. 116), has
linear closed connection tableaux with factorization, as shown in Figure 3.17. In
fact, the factorization rule is a certain restricted version of the cut rule. Connec-
tion tableaux with factorization, however, cannot polynomially simulate tableaux
with atomic cut or regular connection tableaux with the tautology rule. Both re-
sults will be shown in the next subsection.

3.5.2 The Folding Up Rule

An inference rule, which is stronger than factorization concerning indeterministic
power, is the so-called folding up rule (in German: “Hochklappen”). Folding up
generalizes the C-reduction rule introduced for the model elimination format in
[Shostak, 1976]. In contrast to factorization, for which pessimistic and optimistic
application do not differ concerning deductive power, the increase in indeter-
ministic power of the folding up rule results from its pessimistic nature. The
theoretical basis of the rule is the possibility of extracting lemmata from solved
parts of a tableau, which can be used on other parts of the tableau. Folding up
represents a particularly efficient realization of this idea.

We explain the rule with an example. Given the situation displayed in Fig-
ure 3.18, where the bold arrow points to the node at which the last inference step
(a reduction step with the node 3 levels above) has been performed. With this
step we have solved the dominating subgoals labelled with the literals r and g.

138 Propositional Calculi

T

) T

P t
-p q S -t P S
—q r o s r

-r —|p

Figure 3.18: Connection tableau before folding up.

In the solutions of those subgoals the predecessor labelled with p has been used
for a reduction step. Apparently, this amounts to the derivation of two lemmata
J=r,=plL and J1—q, —plL from the underlying formula. The new lemma 1—q, —pL
could be added to the underlying set and subsequently used for extension steps
(this has already been described in [Letz et al., 1992]). The disadvantage of such
an approach is that the new lemmata may be non-unit clause formulae, as in the
example, so that extension steps into them would produce new subgoals, together
with an unknown additional search space. The redundancy brought in this way
can hardly be controlled.

With the folding up rule a different approach is pursued. Instead of adding
lemmata of arbitrary lengths, so-called context unit lemmata are stored. In the
discussed example, we may obtain two context unit lemmata:

J=rl, valid in the (path) context p, and
1=l , valid in the context p.

Also, the memorization is not done beside the tableau, but within the tableau
itself, namely, by “folding up” a solved subgoal to the edge which dominates its
solution context. More precisely, the folding up of a solved subgoal N to an edge
E means labelling F with the negation of the literal at N. Thus, in the example
above the edge F incident to the p-node on the left-hand side of the tableau is
successively labelled with the literals —r and —¢, as displayed in Figure 3.19; sets
of context-unit lemmata are depicted as framed boxes. Subsequently, the literals
in the boxes at the edges can be used for ordinary reduction steps. So, at the leaf

3.5 Controlled Integration of the Cut Rule 139

P t
AN
—'p_ q 5 —'j D s
VAN
—|i] r _f r
pd
o

Figure 3.19: Connection tableau after three times folding up.

node labelled with r a reduction step can be performed with the edge E, which
was not possible before the folding up. After that, the subgoal s could also be
folded up to the edge E, which we have not done in the figure, since after marking
that subgoal the part below E is completely solved. But now the p-subgoal on
the left is solved, and we can fold it up above the root of the tableau; since there
is no edge above the root, we simply fold up into the root. This folding up step
facilitates that the p-subgoal on the right can be solved by a reduction step.

The gist of the folding up rule is that only unit lemmata are added, so that the
additionally imported indeterminism is not too large. Over and above that, the
technique gives rise to a new form of pruning mechanism called strong regularity,
which is discussed below. Lastly, the folding up operation can be implemented
very efficiently.

In order to be able to introduce the inference rule formally, we have to slightly
generalize the notion of tableaux.

Definition 3.5.2 (Edge-labelled tableau) An edge-labelled tableau (E-tableau) is
just a tableau as defined on p. 112, with the only modifications that also the
edges are labelled by the labelling function A\, namely, with sets of literals, and
that the root is not labelled with T but with sets of literals, too.

Procedure 3.5.3 (E-tableau folding up) Given a marked E-tableau T" and a non-
leaf node N with literal L which dominates marked leaves only. Let M be the set

140 Propositional Calculi

of nodes which are markings u(N;) of the leaf nodes N; dominated by N. Obtain
the set M’ from M by removing N and all nodes dominated by N; note that all
nodes in M’ are on the path from the root to IV, excluding the latter. Now, either
M contains solely the root node, in which case the label of the root is changed
by adding the literal ~L. Or M’ contains an inner node N’ which is dominated
by all other nodes; then the label of the edge leading to N’ is changed by adding
~L.

Additionally, the reduction rule has to be extended, as follows.

Procedure 3.5.4 (E-tableau reduction) Given a marked E-tableau T, select a
leaf node N with literal L, then, either select a dominating node N’ with literal
~L and mark N with N’, or select a dominating edge or the root E with ~L €
A(E) and mark N with the node to which the edge is incident or with the root,
respectively.

The tableau and the connection tableau calculus with folding up result from
the ordinary versions by working with edge-labelled tableaux, adding the folding
up rule, substituting the old reduction rule by the new one, starting with a root
labelled with the empty set, and additionally labelling all newly generated edges
with the empty set.

It is important to emphasize that the folding up rule is properly stronger
concerning indeterministic power than the factorization rule.

Proposition 3.5.4 Connection tableauzr with factorization cannot polynomially
simulate connection tableaux with folding up.

Example 3.5.1 Consider a set S consisting of clause formulae of the structures

J_'pﬂl—a

me_'p%: . '7_'p71nL:

Ipl,—pt, . o PR L, for 1 <i<m,
1Pt =pl, L, for 1< <m,
IpiL,

Ipr L.
Proof We use the class defined in Example 3.5.1. It can easily be recognized that
any closed connection tableau for S with top clause formula J=pyL has 37 m’
leaf nodes. Also, factorization is not possible if we start with the top clause
formula J—pglL, since no two subgoals Ny, N, with identical literals occur with

N5 being a brother node of an ancestor of N;. Therefore, the example class is
intractable for connection tableau with factorization, for this specific top clause

3.5 Controlled Integration of the Cut Rule 141

—py == —pt == #ﬁp?_z #ﬁp’f_i

Py e Ty s

(matrix after n steps) —Dr, e - !
Pt py ==-pl == ==—p? ==

T

(matrix after n+m++1 steps) -pl e —pl? —p!
Pt Tt g ==l == == ==

-py e Tyt opp?

(matrix after n+m+1+ (m?—1) steps) Dy, e —pp? —pp
Py ot P T e == pl == == T ==

—p} B

(matrix after n+m+1+2(m?—1) steps) -pl e —prt —pp "

(empty matrix — after n+m+14 (n—1)(m?—1) steps)

Figure 3.20: Linear connection proof with folding up for Example 3.5.1.

formula. However, there are linear connection proofs with factorization if one of
the clause formulae
Ipr=t =plt L, 1<i<m

is taken as top clause formula. In order to obtain an unsatisfiable class which is
intractable for any selection of the top clause formula, we can apply the same
trick used in the proof of Proposition 3.4.5 on p. 130. We modify the class given
in Example 3.5.1 by adding a literal —p/ to the top clause formula I—pylL, and by
adding renamed copies of the other clause formulae where the new literals are all
consistently renamed and distinct from the old ones. For the resulting formula it
does not matter with which clause formula we start, since now in any construction
of a closed connection tableaux with factorization inevitably either —p, or —p}
must occur as a subgoal. And in the proof of this subgoal no factorization steps
are possible, so that the resulting closed subtableau is isomorphic to the large one
for the old formula class. Consequently, the new example class is intractable for
connection tableau with factorization. Both the formula class from Example 3.5.1
and the modified class have linear proofs for connection tableau with folding up,
as shown in Figure 3.20 for the initial class with J—pgL as top clause formula; in

142 Propositional Calculi

the figure, we have used the presentation framework of connection matrices. The
displayed proof needs 1+m+n+(n—1)(m?—1) inference steps, while the number
of literal occurrences in the respective clause set is 1+m+1+(n—1)(m+1)m+n =
24+m+n+(n—1)(m?+m). O

Conversely, the polynomial simulation in the other direction is possible, for a
certain class of selection functions.

Proposition 3.5.5 For arbitrary depth-first selection functions, (connection)
tableauz with folding up linearly simulate (connection) tableauzr with factorization.

folded up after

having solved N,

o ® @ 1@

L@ Solution of NV, L Solution of IV,

Figure 3.21: Simulation of factorization by folding up.

Proof Given any closed (connection) tableau T" with factorization, let < be its
factorization dependency relation. By the strong node selection independency
of factorization (Proposition 3.5.3 on p. 136), T' can be constructed with any
selection function. We consider a construction S = (Tq,...,T,,,T) of T with
a depth-first selection function ¢ which respects the partial order of the factor-
ization dependency relation <, i.e., for any two nodes Ny, N in the tableau,
N; < N, involves that Nj is selected before N,; such a selection function exists
since < solely relates brother nodes. The deduction process S can be directly
simulated by the (connection) tableau calculus with folding up, as follows. Using
the same selection function ¢, any expansion (extension) and reduction step in
S is simulated by an expansion (extension) and reduction step. But, whenever
a subgoal has been completely solved in the simulation, it is folded up. Since in
the original deduction process, due to the pessimistic application of factorization,
the factorization of a node N; with a node N, (with literal L) involves that Ny
has been solved before, in the simulation the literal L must have been folded up

3.5 Controlled Integration of the Cut Rule 143

before. Now, any solved subgoal can be folded up at least one step, namely, to
the edge E above its predecessor. Since E dominates Ny, the original factoriza-
tion step can be simulated by a reduction step. The simulation of factorization
by folding up is graphically shown in Figure 3.21. 0

Finally, we show that the folding up rule, although strictly more powerful
than factorization, is still a hidden version of the cut rule.

Proposition 3.5.6 Tableauxr with atomic cut and reqular connection tableauz
with the tautology rule linearly simulate (connection) tableaux with folding up.

K K
L ~L

Solution of L

Solution of L
Figure 3.22: Simulation of folding up by cut.

Proof We perform the simulation proof for tableaux with cut. Given a tableau
derivation with folding up, each folding up operation at a node N’ adding the
negation ~L of a solved subgoal L to the label of an edge incident to a node
N, can be simulated as follows. Perform a cut step at the node N with the
cut formula L, producing two new nodes N; and N, labelled with L and ~L,
respectively; shift the solution of L from N’ below the node N; and the part of
the tableau previously dominated by N below its new successor node N,; finally,
perform a reduction step at the node N’. Apparently, the unmarked branches
of both tableaux can be injectively mapped to each other such that all pairs
of corresponding branches contain the same sets of literals, respectively. The
simulation is graphically shown in Figure 3.22. 0]

Corollary 3.5.7 Tableaux with atomic cut and regular connection tableaux with
the tautology rule can linearly simulate (connection) tableaux with factorization.

144 Propositional Calculi

3.5.3 The Folding Down Rule

The simulation of factorization by folding up also shows how a restriction of
the folding up rule could be defined which permits an optimistic labelling of
edges. If a strict linear (dependency) ordering is defined on the successor nodes
Ny, ..., N, of any node, then it is permitted to label the edge leading to any
node N;, 1 < ¢ < m, with the set of the negations of the literals at all nodes
which are smaller than N; in the ordering. We call this operation the folding
down rule (in German: “Umklappen”). The folding down operation can also be
applied incrementally, as the ordering is completed to a linear one. The folding
down rule is sound, since it can be simulated by the cut rule, as illustrated
in Figure 3.23. The rule can be viewed as a very simple and efficient way of
implementing factorization. Over and above that, if also the literals on the edges
are considered as path literals in the regularity test, an extreme new search space
reduction can be achieved this way. It should be noted that it is very difficult to
identify this refinement in the factorization framework.

Figure 3.23: Simulation of folding down by cut.

3.5.4 Enforced Folding Up and Strong Regularity

The folding up operation has been introduced as an ordinary inference rule which,
according to its indeterministic nature, may be applied or not. Alternatively, we
could have defined versions of the (connection) tableau calculi with folding up
in which any solved subgoal must be folded up immediately after it has been
solved. It is clear that whether folding up is performed freely, as an ordinary
inference rule, or in an enforced manner, the resulting calculi are not different
concerning indeterministic power, since the folding up operation is a monotonic
operation which does not decrease the inference possibilities. But the calculi
differ with respect to their search spaces, since by treating the folding up rule

3.5 Controlled Integration of the Cut Rule 145

just as an ordinary inference rule, which may be applied or not, an additional
and absolutely useless form of indeterminism would be imported, resulting in an
unnecessary increase of the search space. Consequently, the folding up rule should
not be introduced as an additional inference rule, but as a tableau operation to
be performed immediately after the solution of a subgoal. The resulting calculi
will be called the (connection) tableau calculi with enforced folding up.

The superiority of the enforced folding up versions over the unforced ones
also holds if the regularity restriction is added, according to which no two nodes
on a branch must have the same literal as label. But apparently, the manner
in which the folding up and the folding down rules have been introduced raises
the question whether the regularity condition might be sharpened and extended
to the consideration of the literals in the labels of the edges, too. It is clear
that such an extension of regularity does not go together with folding up, since
any folding up operation makes the respective closed branch immediately violate
the sharpened regularity condition. A straightforward remedy is to apply the
sharpened condition to the subgoal trees of tableaux only.

Definition 3.5.3 (Strong regularity) An E-tableau T is called strongly regular if
it is regular and on no branch of the subgoal tree of T" a literal appears more than
once, be it as a label of a node or within the label set of an edge or the root.

When the strong regularity condition is imposed on the connection tableau
calculus with enforced folding up, then a completely new calculus is generated
which is no extension of the regular connection tableau calculus, that is, not every
proof in the regular connection tableau calculus can be directly simulated by the
new calculus. This is because after the performance of a folding up operation cer-
tain inference steps previously possible for other subgoals may become impossible
then. A folding up step may even lead to an immediate failure of the extended
regularity test, as demonstrated below. Since the new calculus is no extension
of the regular connection tableau calculus, we do not even know whether it is
complete, since the completeness result for strongly regular connection tableaux
(Theorem 3.4.6 on p. 132) cannot be applied. In fact, the new calculus is not
complete for arbitrary selection functions.

Proposition 3.5.8 There is an unsatisfiable set S of ground clause formulae
and a selection function ¢ such that there is no refutation for S in the strongly

reqular connection tableau calculus with enforced folding up.

Example 3.5.2 Consider a set of clause formulae of the structures

I=p, —s, ok, Ip,s,rL, =g, rL, 1q,—rL,
I=p,t,ul, Ip,—t, —ul, 1=q, sL, 1q, sl
J=q,tL, lq,—tL,

I=q, ul, dq, —ul.

146 Propositional Calculi

Proof Let S be the set of ground clause formulae given in Example 3.5.2, which
is minimally unsatisfiable. The non-existence of a refutation with the top clause
formula Ip,s,rL for a certain unfortunate selection function ¢ is illustrated in
Figure 3.24. 1If ¢ selects the s-node, then two alternatives exist for extension,
separated by a \/ For the one on the left-hand side, if ¢ shifts to the p-subgoal
above and completely solves it in a depth-first manner, then the enforced folding
up of the p-subgoal immediately violates the strong regularity, indicated with a
4 below the responsible =p-subgoal on the left. Therefore, only the second alter-
native on the right-hand side may lead to a successful refutation. Following the
figure, it can easily be verified that for any refutation attempt there is a selection
possibility which either leads to extension steps which immediately violate the
old regularity condition or produce subgoals labelled with —p or —r. In those
cases, the selection function always shifts to the respective p- or r-subgoal in the
top clause formula, solves it completely and folds it up afterwards, this way vi-
olating the strong regularity. Consequently, for such a selection function, there
is no refutation with the given top clause formula. The same situation holds
for any other top clause formula selected from the set. This can be verified in
a straightforward though tedious manner. Alternatively, in order to shorten the
proof, we may use the same trick employed in the proofs of Proposition 3.4.5 on
p. 130 and Proposition 3.5.4 on p. 140; by adding appropriate literals and clause
formulae to the set one can easily obtain an input set in which the incompleteness
result holds for any top clause formula. O

For depth-first selection functions, however, the new calculus is complete.

Theorem 3.5.9 (Completeness for depth-first selection functions of strongly regular
connection tableaux with enforced folding up) For any finite unsatisfiable set S of
proper ground clause formulae, any depth-first tableau node selection function,
and any clause formula ¢ which is relevant in S, there exists a refutation of S
with top clause formula ¢ in the strongly reqular connection tableau calculus with
enforced folding up.

Proof The completeness proof is very similar to the one for strongly regular
connection tableaux (Theorem 3.4.6 on p. 132). We proof that for any subgoal
N with a certain property there exists an inference step producing only subgoals
with the same property. This inherited property is that the tableau clause for-
mula determined by the position of N and its brother nodes is relevant in the
strengthening'® of S by the extended path set?® P from the root to N, excluding
the latter. Suppose that N with literal L is such a subgoal with tableau clause
formula ¢ which is relevant in P 3t S. If N is selected first for solution, either a
reduction step can be performed at N, or, by the Strong Mate Lemma 3.4.7, a

19 As introduced in definition 3.4.9 on p. 132.
20The extended path set of a path contains all literals at the nodes of the path or in the union
of the labels of the edges and the root.

3.5 Controlled Integration of the Cut Rule 147

N
—p s - q

k V

—q S —q t —q U —q r

V V V

el 7

U p —|t U -_r —|p S -r

NS

u —|p S -r

% % G G

AN

Figure 3.24: Incompleteness for some selection functions of the strongly regular
connection tableau calculus with enforced folding up.

clause formula ¢’ exists for an extension step which is relevant in (PU{L}) %* S,
and we are done. Otherwise, brother subgoals of N might have to be solved first,
leading to an increase of the context of N. The relevance of ¢ in P 3t S entails
the existence of a subset S’ of S such that ¢ is essential in P 3t S’. Now we per-
mit only solutions of the brother nodes of N using clause formulae from S’ \ {c}
for extension; such solutions exist due to the completeness of the regularity re-
striction. By the soundness of the folding up rule, during such solutions of the
brothers of N only literals can be inserted above N which are logically implied
by the satisfiable set (P %t (S’ \ {c}). Consequently, L must be relevant in the
increased context too, and the second case reduces to the first one. The success-
ful termination of any tableau construction satisfying the mentioned properties
follows from the relevance of the top clause formula ¢ in S and from the fact that
for any input set only regular tableaux of finite depths exist. O

The new calculus promises to play an important role in the practice of auto-
mated deduction. While, concerning indeterministic power, the calculus is def-

148 Propositional Calculi

initely superior to the regular connection tableaux, it may also be better off
concerning search pruning.

Combining Folding Up and Folding Down

The interesting question may be raised whether it is possible to combine the
pessimistic folding up rule with the optimistic folding down rule. We explain the
combination for depth-first selection functions. Whenever a subgoal is selected
for solution, before the solution process is started, all other unsolved brother
nodes are folded down to the edge leading to N. The additional literals on
the edge increase the number of inference possibilities, but they also increase the
possibilities for a failure of the strong regularity test, and hence achieve additional
search pruning. A naive combination of folding down with the folding up rule,
however, immediately results in an unsound calculus, as illustrated in Figure 3.25
with a “refutation” of the satisfiable set of clause formulae

{1=p,—qL, 1=p. gL, 1—q,pL }.

In the incorrect deduction, the —p-subgoal is selected first for solution. Before it is
solved the unsolved —¢g-subgoal is folded down to the edge above the —p-subgoal.
Then the latter is solved using the framed literal . Thereupon, according to the
way the reduction and folding up operations have been defined, the —p-subgoal
may be folded up to the root; this is the unsound operation. Afterwards, the
—g-subgoal can be solved using the framed literal p.

(]]

S NI 7 N

-p g -p —q -p —q

after optimistic
folding down A A /\

p —q p —q q -p

after unsound
folding up

Figure 3.25: An unsound combination of folding up and folding down.

We briefly sketch how a sound combination of folding up and folding down
could be achieved. Apparently, the literals inserted into the labels of the edges by
folding down operations need to be treated differently. The easiest solution would
be to explicitly use the simulation of folding down by cut illustrated in Figure 3.23
on p. 144. In this simulation the dependency structure of the optimistic folding
down rule is expressed in a pessimistic manner, which is compatible with the
folding up rule.

Chapter 4

First-Order Calculi

In this chapter we study and develop first-order calculi and proof procedures
which are most suited for automated deduction. In the first section the Herbrand
compactness property of first-order logic is reviewed, and proof procedures are
described that can be viewed as direct algorithmic transpositions of the compact-
ness property. Also, we introduce the notion of Herbrand complezity, which is an
important lower bound on the sizes of proofs in many calculi, termed Herbrand
calculi. The second section is devoted to proving some fundamental results on
first-order resolution. On the one hand, it is shown that, due to the possibility
of renaming lemmata, resolution is not polynomially bounded by Herbrand com-
plexity, and hence superior to Herbrand calculi concerning indeterministic power.
On the other hand, however, the renaming of lemmata destroys the polynomial
transparency of resolution, both in the strong and in the weak sense. In Section 3,
the first-order versions of connection tableau calculi are introduced, which by their
very nature are Herbrand calculi. It is shown that in the first-order case new pow-
erful pruning methods may be applied that can be implemented very efficiently
using syntactic disequation constraints. Furthermore, the reductive potential of
optimizing tableau node selection functions is exhibited. This demonstrates the
superiority of the tableau format over more restricted frameworks. In the fourth
section proof procedures based on connection tableau calculi are presented, which
are fundamentally different from resolution proof procedures. Using the matings
framework, a new important global search pruning method is developed and inte-
grated into the connection tableau format. We conclude with formally identifying
a general source of redundancy contained in any decomposition-based logic cal-
culi. This redundancy motivates the future development of additional global
search pruning methods using information coming from the proof process itself.

4.1 Herbrand Procedures

First-order logic differs from ground or propositional logic in that there are no
decision procedures for the logical status of a set of formulae, but merely semi-

150 First-Order Calculi

decision procedures. More precisely, there exist effective mechanical methods for
verifying the logical validity of first-order formulae! (or the unsatisfiability of sets
of first-order formulae) whereas, when subscribing to Church’s Thesis, the non-
validity of first-order formulae (or the satisfiability of sets of first-order formulae)
is not effectively recognizable?.

We will concentrate on the indirect case of proving the unsatisfiability of sets of
first-order formulae. Also note that we will assume throughout the whole chapter
that a definitional logical language is available and whenever (sets of) expressions
are substituted or unified, the definitional application of substitutions is to be
performed or a polynomial unification algorithm is to be used, respectively. The
existence at least of semi-decision procedures is due to a particular property of
first-order logic, namely, its compactness.

4.1.1 The Compactness Property

Definition 4.1.1 (Herbrand base ordering) A Herbrand base ordering < on a set
S of Skolem formulae is a strict linear ordering on the Herbrand base of S.

Proposition 4.1.1 For every set S of Skolem formulae there exists a Herbrand
base ordering on S.

Definition 4.1.2 (Herbrand interpretation tree) Given a Herbrand base ordering
< on a set S of Skolem formulae. The Herbrand interpretation tree T for < is
the semantic tree defined as follows. All branches in 71" have the same lengths,
namely, the cardinality of the Herbrand base of S, and the edges outgoing of
every node N are labelled with the n-th atom in < and its negation, respectively,
where n — 1 is the depth of N in T'. We say that T is a Herbrand interpretation
tree of S.

The branches of a Herbrand interpretion tree of a set S of Skolem formulae
encode precisely the Herbrand interpretations existing for S.

Theorem 4.1.2 (Compactness Theorem) Any unsatisfiable set of Skolem formu-
lae has a finite unsatisfiable subset.

Proof Let < be any Herbrand base ordering on S, and T the Herbrand in-
terpretation tree for <. A node N in T is called a failure node for S if there
exists a formula ® in S such that all Herbrand interpretations falsify & which are
corresponding to the branches with the initial segment from the root up to N.
We say that ® closes the path from the root up to N. Because of the one-to-one
correspondence between branches and Herbrand interpretations, the unsatisfia-
bility of S entails that every branch in 7" must pass through a failure node. Now,

!This result was first demonstrated by Godel in [Godel, 1930].
2Thus settling the wundecidability of first-order logic, which was proved by Church in
[Church, 1936] and Turing in [Turing, 1936].

4.1 Herbrand Procedures 151

we may cut all parts of the Herbrand interpretation tree which are dominated by
failure nodes; the resulting labelled tree T" is called the failure tree of T' for S.
By Kdnig’s Lemma [Knuth, 1968], T’ must be finite. Now, any finite subset S’
of S must be unsatisfiable which contains for any of the finitely many branches
in T a formula from S which closes the respective branch. 0]

Definition 4.1.3 (Herbrand instance) Given a formula ® with matrix F' in a set
of Skolem formulae S. A ground formula F" is called a Herbrand instance of ®
wrt S if there exist a variable substitution o into the Herbrand universe of S such
that Fo = F'.

Theorem 4.1.3 (Herbrand Instance Theorem) For any unsatisfiable set S of
Skolem formulae there exists a finite unsatisfiable set S’ of ground formulae such
that every formula in S’ is a Herbrand instance of a formula in S.

Proof Due to Proposition 1.7.8 on p. 58 and Definition 1.2.18 item 8 on p. 10,
a set S of Skolem formulae is unsatisfiable if and only if the union S’ of the sets
of Herbrand instances of its elements wrt S is unsatisfiable. By the Compactness
Theorem 4.1.2, S" must have a finite unsatisfiable subset. OJ

4.1.2 Direct Herbrand Procedures

The first attempts [Gilmore, 1960, Davis and Putnam, 1960, Davis et al., 1962]
to devise and implement proof procedures for first-order logic can be viewed as
direct mechanizations of the Herbrand Instance Theorem. Such procedures con-
sist of two relatively loosely coupled subprocedures. Given a set S of Skolem
formulae, the first subprocedure selects a set S’ of Herbrand instances of the
formulae in the input set, while the second subprocedure is simply a decision
procedure for ground formulae. When the second procedure detects the unsatis-
fiability of S’, the unsatisfiability of S has been demonstrated. When the second
procedure outputs the satisfiability of S’, however, nothing is said about the ac-
tual logical status of the input. In this case the first procedure must select another
set of Herbrand instances. In order to obtain completeness, the first subproce-
dure needs to enumerate increasing sets of ground formulae. Corresponding to
the two subprocedures, there are two types of problems which render direct Her-
brand procedures unsuccessful for automated deduction. On the one hand, the
enumeration routine either may enumerate too many satisfiable sets of Herbrand
instances before it arrives at the first unsatisfiable one, or the first encountered
unsatisfiable set of Herbrand instances may be too large. On the other hand,
the ground decison procedure may need too much time to determine the logical
status of the input sets.

4.1.3 Improved Herbrand Procedures

Originating with [Prawitz, 1960], a significant improvement of naive Herbrand
procedures could be achieved, although the approach is still subscribing to the

152 First-Order Calculi

two-step methodology. The improvement is best formulated in the framework
of matings [Bibel, 1981, Bibel, 1987, Andrews, 1981], which were introduced in
Subsection 3.3.5 on pp. 120. First, we have to generalize the matings terminology
to the first-order case. Recall that a path in a set of proper clause formulae S' is
a set of literal occurrences in S, exactly one from each clause formula in S, that
any subset of a path in S is called a subpath in S, and that a connection in S is a
two-element subpath in S whose literals have different signs and equal predicate
symbols.

Definition 4.1.4 (Unifiable connection, mate|] Given a finite set of proper clause
formulae S. A connection C = {(K,i,¢1),(L,j,c2)} in S is said to be unifiable
if there is a variable substitution o with Ko = ~Lo; C is said to be weakly
unifiable if there are variable substitutions ¢ and 7 with Ko = ~L7. The literal
occurrences in a (weakly) unifiable connection are called (weakly) unifiable mates
of each other.

Definition 4.1.5 (Unifiable mating) Given a finite set of clause formulae S. Any
set M of connections in S is called unifiable or a unifiable mating for S if there
exists a substitution o such that for every pair of two connected literals K and
Lin M: Ko =~Lo.

Definition 4.1.6 (Compound instance, multiplicity] Given a set S of clause for-
mulae, a compound instance of S is any finite set S’ whose elements are all
instances of matrices of clause formulae in S. A compound instance S’ of S is
called a multiplicity of S if all its elements are (variable-renamed) variants of
matrices of clause formulae in S.

The matings characterization of unsatisfiability for the first-order case is ex-
pressed in the following proposition.

Proposition 4.1.4 A set S of proper clause formulae is unsatisfiable if and only
if there exists a unifiable spanning mating for a multiplicity of S.

Proof Let S be an unsatisfiable set of proper clause formulae. By the Herbrand
Instance Theorem 4.1.3, there exists a finite unsatisfiable set S’ of clause formulae
which are ground instances of the matrices of the clause formulae in S. S’ is
a compound (ground) instance of S. Proposition 3.3.12 on p. 121 guarantees
the existence of a complementary spanning mating M for S’. Now, a unifiable
spanning mating for a multiplicity of S can be easily constructed from S’ and
M; obtain a multiplicity S” of S by taking, for any ground clause formula ¢ in
S’ which is a ground instance of the matrix of a clause formula ® in S’; a new
disjointly renamed variant F’ of the matrix of ®'; then, obtain the mating M’
by replacing every connection in M with the connection between the respective
renamed matrices of clause formulae in S”. Since there is a ground substitution
o which unifies M', M' is a unifiable spanning mating for S". O

4.1 Herbrand Procedures 153

For any multiplicity only finitely many matings exist, therefore, we can im-
mediately infer the following proposition.

Proposition 4.1.5 [t is decidable whether a multiplicity of a set of clause for-
mulae has a unifiable spanning mating.

This property motivates a significant improvement of the two-step method-
ology of direct Herbrand procedures. Instead of enumerating sets of Herbrand
instances, one enumerates multiplicities. Example 4.1.1 illustrates that in most
cases this approach is superior to the enumeration of ground instances.

Example 4.1.1 Given a set S containing two clause formulae of the structures

v'rl-.-V(L‘nJP(fL‘l’..-,xn,alg""an)l" and
Vyl...vynj—‘P(al,...,an,yl,...,yn)t.

For each clause formula in S there exist n™ Herbrand instances, but only one
of them (per clause formula) may contribute to a refutation. There is a low
probability that the right instances are chosen early if sets of ground instances
are enumerated blindly. In the matings approach, however, one would start with
the multiplicity consisting of the two matrices itself of the formulae in S and
obtain a unifiable spanning mating within one step.

Note It should be noted however that, according to the current state of knowl-
edge, the problem of verifying the existence of a unifiable spanning mating for a
multiplicity is more difficult than the problem of verifying the unsatisfiability of
a set of ground clause formulae. This is because the latter is a coNP-complete
problem, whereas the former is complete for the union of coNP and NP. This
is because any constraint satisfaction problem can be viewed (or polynomially
reformulated) as a problem of finding a unifiable spanning mating. Furthermore,
even the improved method is not optimally suited for the purposes of automated
deduction. The weakness is that the selection of a multiplicity and the search
for a unifiable spanning mating are separated subprograms. In order to arrive at
a successful system both subprograms need to be interleaved more closely. The
connection tableau calculi discussed later on can be viewed as such intimate in-
terleavings of the generation of multiplicities and the examination whether they
have unifiable spanning matings.

4.1.4 Herbrand Complexity and Herbrand Calculi

A fundamental property which both approaches mentioned above have in com-
mon, the direct and the improved one, is that the size of any refutation of an input
set S is bounded from below by some unsatisfiable set of Herbrand instances of
the input S.

154 First-Order Calculi

Definition 4.1.7 (Herbrand complexity) The Herbrand complezity of an unsatis-
fiable set S of Skolem formulae is the minimum of the sizes of the unsatisfiable
sets of Herbrand instances of S.?

Herbrand complexity can be used to characterize so-called Herbrand calculi.

Definition 4.1.8 (Herbrand calculus) A Herbrand calculus is any calculus for
refuting sets of Skolem formulae in which the size of any refutation D of a set S
is bounded from below by the Herbrand complexity of S.

Herbrand calculi are extremely weak concerning proof lengths if compared
with logic calculi of the traditional generative type. This is expressed in the
following proposition, which was proved in [Statman, 1979].

Proposition 4.1.6 There ezists an infinite class {S1, S, Ss, ...} of unsatisfiable
sets of formulae such that the smallest Herbrand instance S] of any set S; from
the class has a size which is not bounded by an elementary function of the size
of a proof in a first-order Frege/Hilbert or sequent system of the negation of an
appropriate translation of S;.

In the next section, we shall discuss first-order resolution, which does not
fulfill the requirement of a Herbrand calculus.

4.2 First-Order Resolution

With the advent of the resolution calculus [Robinson, 1965a], the development
of Herbrand calculi was pushed into the background until the beginning of the
eithies. While the resolution paradigm, at least in its moulding as a forward rea-
soning approach, is not suited for propositional or ground logic, the incorporation
of unification renders the calculus successful for first-order logic.*

4.2.1 Resolution with Unification and Factoring

Resolution for sets of first-order clauses is generated from ground resolution by
the incorporation of two mechanism, namely, unification and factoring.

Definition 4.2.1 (Resolution rule) Given two clauses ¢; and c¢q, and two clauses
ry={Ky,...,Ky,}and ry = {Ly,...,L,} with ry N¢; =0 and 7, N ¢y = 0. The
resolution rule has the shape:
{Kl,...,Km}Ucl {Ll,...,Ln}UCQ
(Cl U CQT)O'

3Under the assumption that the Herbrand instances are formulated using definitional
expressions.

4 Apparently, this can only be the case because the problems considered as relevant for first-
order logic are of a completely different type than the ones considered as relevant for ground
or propositional logic.

4.2 First-Order Resolution 155

where 7 is a renaming substitution which renders the variables in ry U ¢y disjoint
from the variables in r; Ucy, and o is a unifier for ryU{~Ly,...,~L,}. The clause
(¢ Uear)o is called a resolvent of ry U ey and ro U ¢y over rq and ry, and r U ¢4
and ro U ¢y are termed parent clauses of the resolvent.

Note First-order resolution is much more complex than ground resolution, par-
ticularly concerning the contained indeterminism. While in the ground case for
every pair of parent clauses at most one non-tautological resolvent exists, in the
first-order case there may be exponentially many of them, as illustrated with
the two clauses {P(z1,...,2,),Q(z1),...,Q(x,)} and {—=Q(y)}. The main rea-
son is the factoring rule, which permits to group together any unifiable subset
of a clause. Unfortunately, by omitting factoring and resolving over single lit-
erals only one loses completeness. This can be verified with the two clauses
{P(z,y), P(y,z)} and {=P(u,v),—P(v,u)}. In Subsection 4.2.6 it is shown that
the unrestricted factoring rule is responsible for the fact that resolution can never
be made polynomially transparent.

Fortunately, the complexity of a single resolution step is under control.

Proposition 4.2.1 Given any two clauses ¢y and co, the time needed for inde-
terministically computing any resolvent ¢ of ¢; and ¢y is polynomially (O(nlogn))
bounded by the size of ¢ and ¢y, and size(c) < size(cy) + size(ca) — 1, where as
the size of a clause we take the number of symbol occurrences.

Proof The time complexity of resolution is due to the complexity of the unifica-
tion operation plus the complexity of merging identical literals in the resolvent.
The size bound follows from Proposition 1.6.8 on p. 53 and the fact that resolution
remouves at least two literals from the input. O

The proof objects for first-order resolution, resolution deductions, resolution
dags, and resolution trees, are defined in analogy to the ones for the ground case
on pp. 93.

Resolution is sound and refutation-complete for finite unsatisfiable sets of
clauses.

Proposition 4.2.2 (Soundness of resolution) If there is a resolution proof of a
clause ¢ from a set of clauses S, then S = c.

Proof Similar to the one for the ground case (p. 95). O

Lemma 4.2.3 (Lifting Lemma) Given two first-order clauses ¢ and co, a ground
substitution o, and a renaming substitution T making the variables in cy disjoint
from the variables in ¢;. Then, for any ground resolvent ¢ of cio and coTo, there
exist a first-order resolvent ¢' of ¢; and ¢ and a substitution o' with ¢'c' = c.

156 First-Order Calculi

Proof Suppose cis a ground resolvent of ¢;o and cy7o. Let r; and ry be the sets
of literals in ¢; and cy7 unified by the substitution o, respectively. The existence
of a first-order resolvent ¢’ of ¢; and ¢y over r; and 75 which meets the demanded
property follows immediately from the Unification Theorem 1.5.12 on p. 40. [

Proposition 4.2.4 (Completeness of first-order resolution) For any unsatisfiable
set S of first-order clauses there exists a refutation of S by first-order resolution.

Proof By the Herbrand Instance Theorem there is an unsatisfiable set S’ of
Herbrand instances of the clauses in S. The completeness of ground resolution
guarantees the existence of a ground resolution deduction D = (¢y,...,¢,) of S’
with ¢, = . Now, an iterative application of the Lifting Lemma assures that

there is a first-order resolution deduction D' = (¢f,...,¢)) of S in which every

rn
clause ¢/, 1 < i < n, can be instantiated to ¢, respectively. Consequently, ¢,

must be the empty clause, and D’ a first-order resolution refutation of S’. O

The properties of ground purity and ground subsumption can be lifted to the
first-order case in a straightforward manner.

Definition 4.2.2 (Purity) Let L be a literal in a clause ¢ of a set of clauses S.
The literal occurrence L, is called
1. strongly pure in S if the literal ~L is not weakly unifiable® with a literal K
in a clause of S,

2. pure in S if the literal ~L is not weakly unifiable with some literal K in
another clause of S,

3. weakly pure in S if, for any subset r of ¢ containing the literal L, each
resolvent of ¢ with some other clause ¢’ in S over r and some subset of ¢’ is
tautological.

Proposition 4.2.5 (Purity deletion) Let L be a literal in a clause ¢ of an unsat-
isfiable set of clauses S. If L. is strongly pure, pure, or weakly pure in S, then
S\ {c} is unsatisfiable.

Definition 4.2.3 (Subsumption) Given two clauses ¢; and ¢;. We say that ¢
(properly) subsumes ¢y if there is a variable substitution o such that ¢;0 is a
(proper) subset of ¢,.

Properly subsumed clauses may be deleted, due to the following fact.

Proposition 4.2.6 (Subsumption reduction) If a clause c is subsumed by another
clause in a set S of clauses, then S = (S'\ {c}).

Note Although the question whether a clause subsumes another one is an NP-
complete problem [Kapur and Narendran, 1986], the subsumption problem is
much simpler than the implication problem between two clauses, which is un-
decidable.

5Two literals L and K are weakly unifiable if there are variable substitutions ¢ and 7 with
Lo =Kr.

4.2 First-Order Resolution 157

4.2.2 Refinements of Resolution

The resolution refinements of linearity, reqularity, and the tree refinement con-
sidered in Subsection 3.2.6 on p. 104 and the Davis/Putnam calculus introduced
in Subsection 3.2.5 on p. 100 can be lifted to the first-order case, resulting in
complete first-order calculi. All of those, however, are not very successful in the
practice of automated deduction. Connection graph resolution [Kowalski, 1975]
can be viewed as an interesting generalization of the Davis/Putnam calculus.
Instead of replacing a clause by all resolvents possible over a certain literal, in
connection graph resolution the connections between the literals used in a res-
olution step are deleted and the deletion information is inherited, which gives
more flexibility. Unfortunately, no practically useful strong completeness re-
sult is known for connection graph resolution. A concrete inference system
based on connection graph resolution is the Markgraf Karl Refutation Procedure
[Blésius et al., 1981, Ohlbach and Siekmann, 1991].

There are various other refinements of resolution, particularly useful in prac-
tice being hyper-resolution [Robinson, 1965b] which is a special form of semantic
resolution [Slagle, 1967]. Hyper-resolution seems to be the preferred strategy ap-
plied in the OTTER system [McCune, 1988], which is currently the most widely
used automatic theorem prover. A number of resolution refinements and dele-
tion techniques like subsumption reduction are available in the system. Due to
sophisticated implementation and indexing techniques, OTTER can handle very
large sets of clauses in an efficient way.

4.2.3 Resolution vs Herbrand Calculi

Resolution is not a Herbrand calculus according to the characterization given in
Definition 4.1.8 on p. 154, that is, there may be resolution refutations for sets S
of clauses which are significantly smaller in size than the smallest unsatisfiable
Herbrand instance of (the clause formulae in) S. In fact, this even holds for linear
resolution.

Proposition 4.2.7 There is an infinite class C' of clause sets such that, for
any element S € C, the Herbrand complexity of a set S' of clause formulae
corresponding to S is exponential in the size of a shortest (linear) resolution
refutation of the input S.

Example 4.2.1 Consider a set {S,S5,Ss,...} of sets of clauses with the fol-
lowing structures:

Ct. { P(O,,O) }a
Co: =P(x1,...,7y_1,0), P(zy,...,xq-1,1) },
C3: { _‘P(l'l,...,.fnfg,o,l), P(:rl,...,xn,g,l,O) },

First-Order Calculi

158
ce: { —P(r1,...,2,-3,0,1,1),
cn: { —P(x1,0,1,...,1),
cnr1: { —P(0,1,...,1),
it { —P(1,...,1)

al‘n

P(SEl,...

P(xlala
P(1,

—3a170a0) }7
0,...,0) 1},
0,....0) 1,

b

where P is an n-ary predicate symbol in the respective set and 0 and 1 denote

constants.

Proof We use the clause set specified in Example 4.2.1. For any set S,, in the
clause set, there exists a linear resolution refutation of 2n resolution steps, as
illustrated for the case of n = 4, i.e., for the input set:

Ct.

cr: {
Cg:
Cg:
C10:
C11.
C19.
C13:
Ci4:

[t et et Wt Wt Wt Wt

It Yt Vet Wt Wt Wenan Y

(1‘1,$2,$3,),
(l‘l,ZUQ, 0 1)
(xla 0: 17 1)
-P(0,1,1,1),
ﬁP(l, 1,1,1)

P(0,0,0,0)
P(l‘lal‘%xb’a)
P(xlax%l;)
(xlalao)

,0)

ﬁP(l‘l,l’EQ,O].) P(l‘l,l‘g,l,l) }, (02.1,03.2)
ﬂP(arl,:cg,O 0) P(xl,xQ,l,l) }, (C7 1,62.2)
-P(z1,0,1,1), P(z1,1,1,1) }, (cs.1,¢4.2)
—|P(1,0,0,0), P(l‘l,l,l,l) }, (Cg 1768-2)
-P(0,1,1,1), P(1,1,1,1) }, (c10-1,¢5.2)
'P(,0,0,0), P(],l,]_,l) }, (011.1,610.2)
_lp(,0,0,0), }, (C12.2,CG.1)
}, (C13.1,Cl.1)

where on the right we have indicated the parent clauses and literals for deducing
the respective resolvent. The smallest unsatisfiable Herbrand instance of the set
of clause formulae corresponding to the clauses in Sy, however, consists of the

following formulae:

]
1 =P(0,0,0,0),
1 =P(0,0,0,1),
1 =P(0,0,1,0),
1 -P(0,0,1,1),
1 -P(0,1,0,0),
1 =P(0,1,0,1),
1 =P(0,1,1,0),
1 -P(0,1,1,1),
1 =P(1,0,0,0),
1 =P(1,0,0,1),
1 =P(1,0,1,0),

_— _, OO)R P, OOk ~=OOoO

_ O, O, O OO O
N N e e e e e e e

el R~ lin e Naviin e Bine R e iin e Bige
e e e e e N e N L N L
mF R R o ocococococoo
OOOD)—*)—*J—‘I—‘DOOD

rr r— . r— r— r— r— r— — r— r—

4.2 First-Order Resolution 159

¢z 1-P(1,0,1,1), P(1,1,0,0) L,
¢ 1 =P(1,1,0,0), P(1,1,0,1) L,
1 aP(1,1,0,1), P(1,1,1,0) L,
&S 1 =P(1,1,1,0), P(1,1,1,1) L,
ce: 1 —P(1,1,1,1), L.

It is apparent that, for any element S,, the numbers of instances of
the input formulae ¢y, co,¢3,...,¢4-1,Cn, Cpa1,Cnro in the minimal unsatisfi-
able Herbrand instance of the corresponding set of clause formulae S, are
1,27t on=2 22 21 20 1. respectively, so that the total number of formulae
in the Herbrand instance is 2" + 1. 0]

The given exponential bound is tight, which can be recognized along the
following lines.

Proposition 4.2.8 Tree resolution is a Herbrand calculus.

Proof Given a tree resolution refutation for a set of clauses S, instantiate every
variable occurring in the clauses of the tree with the same constant from the
Herbrand universe of S. The set of clause formulae corresponding to the clauses
at the leaves of the tree constitute an unsatisfiable Herbrand instance of the set
of clause formulae corresponding to S. U

Proposition 4.2.9 Tree resolution can exponentially simulate resolution.

Corollary 4.2.10 The size of any resolution refutation of a set S of clauses is
exponentially bounded by the Herbrand complexity of the set of clause formulae
corresponding to S'.

Since resolution can maximally achieve an exponential speed-up with respect
to Herbrand complexity, it is straightforward to prove that resolution is as weak
as Herbrand calculi when compared with traditional logic calculi.

Corollary 4.2.11 There exists an infinite class {Si, S2,Ss, ...} of unsatisfiable
sets of clauses such that the smallest resolution refutation of any S; is not bounded
by an elementary function of the size of a proof in a first-order Frege/Hilbert or
sequent system of the negation of an appropriate translation of S;.

Note In [Baaz and Leitsch, 1992] it is shown that by adding appropriate new
Skolem functions a nonelementary proof length reduction for resolution can be
achieved.

The following result clarifies the relation between resolution and linear reso-
lution.

Proposition 4.2.12 Linear resolution cannot polynomially simulate resolution.

160 First-Order Calculi

Proof This can be shown by an easy modification of the class given in Exam-
ple 4.2.1, using the same trick applied several times in the last chapter. Except
for the first clause {P(0,...,0)}, augment the set with a copy of each clause in
which the predicate symbol P is renamed into another fixed predicate symbol P’.
Then, modify the first clause by adding the atom P’(0,...,0). Now, any linear
resolution deduction must first operate either in the P-part only or in the P’-part
only, until eventually it uses the modified first clause as a parent clause. Any fur-
ther deduction in the other part must inevitable generate ground instances (or
superset of ground instances) of the clauses in the other part, so that the resulting
refutation will be exponential. OJ

4.2.4 First-Order Resolution and Polynomial Trans-
parency

In all investigations of the last section we have implicitly made use of the as-
sumption that the number of inference steps of a resolution deduction give a
representative measure for the actual size of the deduction. This assumption of
the polynomial transparency of resolution was correct for the discussed examples.
In general, however, this assumption cannot be made.

Proposition 4.2.13 Resolution for first-order logic is not polynomially trans-
parent.

Example 4.2.2 Consider a set S of clauses of the structures

{=P(2)},
{P(s(x)), ~P(2)},
{P(0)},

where 0 denotes a constant.

Proof We use the set of clause given in Example 4.2.2. By performing self-
resolution on the second clause ¢y of S and then repeatedly applying self-
resolution to the deduced resolvents, in k steps one can generate a clause ¢
of size >2*. From ¢, the empty clause can be deduced in two further resolution
steps. Clearly for any polynomial p there exists a proof D = (Dy, ..., D,,) of this
type such that size(D) > p(size(S), m), that is, the size of D cannot be bounded
by any polynomial of the size of the input and the number of resolution steps. [

Consequently, in contrast to propositional logic, for first-order logic the num-
ber of resolution steps is not an adequate measure for the complexities of res-
olution derivations and proofs. The apparent reason is the following. Due to
the renaming of derived clauses, resolution violates the logp size step-reliability
(Definition 2.3.10 on p. 81).°

6Tt should be emphasized that the reason is indeed the remaming of derived clauses and not
their multiple use as parent clauses.

4.2 First-Order Resolution 161

But one may object that a resolution proof of the specified type is not an opti-
mal one, and that there exists a shorter resolution proof for S which immediately
derives the empty clause, by simply resolving the two unit-clauses {—=P(z)} and
{P(0)}. For this short proof the relation between the proof size and the proof
steps is polynomial modulo the input size.

The question is now whether at least for some short resolution proofs the sizes
and the inference steps are always polynomially related, or in our terminology,
whether weak polynomial transparency can be guaranteed for resolution. Un-
fortunately, the answer to this question is no, too. There is an infinite class of
clause sets for which every resolution proof is exponential in size with respect to
the input formula, whereas there are proofs that get by on polynomially many
resolution steps. Example 4.2.3 specifies a formula class with this property. As-
sume in the following that, for any 1 < ¢ < n, ‘I3; is the value of the ¢-th prime
number, and that s*(z) abbreviates a term of the structure s(---s(z)--).

—_—

k—times

Example 4.2.3 For any positive integer n, let .S,, denote a set of Horn clauses
of the following structure:

{=Pi(s(2)), ..., ~Pa(s())},
{Pi(s¥1(x)), =Py (x)},
{Po(s% (x)), ~Pu(z)},
{PI(O)}:

{Fa(0)}.

If in this class of Horn sets the function symbol s is interpreted as the successor
function, and if the denotation of a predicate P; is the set of natural numbers
divisible by the i-th prime number, then such a set can be used to compute
common multiples of primes. Apparently, from these considerations we can derive
the following lemma.

Lemma 4.2.14 Given a set S, of the type specified in Example }.2.3, let c0
be any ground instance of the first clause ¢ € S, such that (S, \ {c}) U {c0}
s unsatisfiable. Then the largest occurring term in ¢ must denote a common
multiple of the first n prime numbers.

Since the least common multiple of a sequence By, ..., B, of primes equals
1B, the following result gains importance.

Lemma 4.2.15 There is no polynomial p such that for every positive integer n:

p(i, Bi) > [T, B

162 First-Order Calculi

Proof Consider the chain

n n n—1 n—1 n—1 n—1

i—1 Bi 1B 1 2 2) 2 . 2n!
SR > L= 2 T~ 2 Tl > 2 Tli= 2=
i=1 Bi n- Py, no BV z:H2 Y i=1 l n 1:1_[2 n’

The only non-trivial step concerns the approximate equation. Here the famous
result from analytic number theory is used that

lim m(x) - Inx
T—00 x

=1 (%)

where 7 is the prime number function, i.e., 7(z) is the number of primes < =.
Since 7(%B;) = i, by substituting B; for z in (x) we get that JB; ~ i - In*PB;, which
is what is employed in the chain above. O

An immediate consequence of this result is that]}, 3, cannot be polynomi-
ally bounded by the size of the input formula S,,.

Lemma 4.2.16 There is no polynomial p such that for every positive integer n:
p(size(Sy,)) > 17, Bi, where S, is a set of the type specified in Example 4.2.3.

The formula class described in Example 4.2.3 is intractable for resolution.

Proposition 4.2.17 There is no polynomial p such that for every positive integer
n: p(size(S,)) is greater than the size of any resolution refutation of S,.

In the proof of this proposition we shall exploit the fact that the sets in the
class consist of Horn clauses, for which the following lemma holds.

Lemma 4.2.18 If t is a resolution refutation dag for a set of Horn clauses,
then t contains one branch b—called the negative branch—on which exactly the
negative clauses of the refutation lie, i.e., those clauses which are void of positive
literals.

Proof of Lemma 4.2.18 It suffices to notice that, on the one hand, in such
a dag no non-negative clause can dominate a negative clause, and, on the other
hand, every negative clause must be derived from a negative and a non-negative
clause. 0J

Proof of Proposition 4.2.17 Let t be an arbitrary resolution refutation dag
for a set S,,, and let b be the negative branch of ¢, which exists by Lemma 4.2.18.
Clearly, each occurrence of a negative clause on b is used only once as a parent
clause in . Consequently, replacing all clauses on the branch b by appropriate
ground instances does not alter the length of the branch, while the resulting dag
remains a refutation—of resolution with free, i.e., not necessarily most general,

4.2 First-Order Resolution 163

unification rule. If this partial instantiation is performed on ¢, the negative branch
b' of the resulting refutation dag ¢’ must contain ground instances

{=P1(s5(0)),..., = Pa(s°(0))}

of the first clause ¢ € S,. Let cg,...,c, be the clauses on the initial segment
of the branch b’ from the root labelled with ¢y (the empty clause) up to the
first instance ¢ of ¢. Obtain ¢t” by making ¢, a leaf of ¢’ (it may already be
one) plus removing the nodes and edges which are no more accessible from the
root. Apparently, " still remains a refutation dag. Since ¢ is the only instance
of ¢ in t", (S, \ {¢}) U {¢x} must be unsatisfiable. From Lemma 4.2.14 follows
that in ¢j the maximal term depth & > []7_, *B;. Consider now the non-negative
clauses s1,..., s, in the refutation ¢t” which are resolution partners of the clauses
c1,...,c, respectively—let us call those non-negative clauses the side clauses.
The structure of S,, guarantees that each side clause either has the form

{Pi(s'(2)), =P(x)}

or the form
{Pi(s'(0))}.

Consequently, if ascending the branch b’ by one step towards the root from ¢;
to ¢;_1, 1 < i < k, the clause size can only decrease by at most the size of the
respective side clause s;:

size(c¢;i_1) > size(c;) — size(s;).

Therefore,
k
size(cg) > size(cy) — Y _ size(s;).
i=1

Because size(cg) = 1, and since the side clauses have not been modified by the
partial instantiation operation, we get that

k n
size(t) > > size(s;) > size(cy) — 1 > [[Bi-
i=1

i=1

An application of Lemma 4.2.16 completes the proof. 0

The existence of intractable formula classes for resolution is nothing excep-
tional, even for the propositional case (at least since Haken’s work [Haken, 1985]).
The special property of the class considered here concerns the relation between
the proof sizes and the numbers of derivation steps. Although all resolution proofs
for the sets in the class are superpolynomial, there are short proofs in terms of
inference steps.

164 First-Order Calculi

Proposition 4.2.19 There is a polynomial p such that for every set S,, from the
class specified in Example 4.2.3 there exists a resolution refutation Dy, ..., Dy, of
Sp such that m < p(size(Sy)).

Proof Let & =[]_, *B;, i.e., the least common multiple of the primes 3;, ..., B,,.
Then a polynomial-step proof can be constructed as follows. For every clause of
the type

{Pi(s¥i(w)), 7P ()}

perform self-resolution and repeatedly apply self-resolution to the respective re-
solvents. Within k& steps this operation deduces clauses in which the number of
occurrences of the function symbol s in the positive literals successively takes the
values 93; 2,93, 22, ..., B, 2%. This is done as long as B; 2% < £. Then, after at
most k further resolution steps which use clauses from this derivation, each clause
at most once, a clause of the structure

{Pi(s*(2)), = P(2)}

can be deduced. Accordingly, for any 1 < i < n, we need at most 2log, £ steps,
which is less than 2log, &, hence for all ¢: less than 2nlog, £. Lastly, in further
2n resolution steps the empty clause can be derived by resolving these clauses
with the facts and the resulting n facts P;(s¢(0)), 1 < i < n, with the first clause.
The whole refutation takes less than 2n+ (2nlog, &) < 4nlog, £ steps. It remains
to be shown that this value is polynomially bounded by the size of S,,. For this
purpose we may just use ¢ = > i ;‘B; as a lower bound for the size of S, and
consider the chain

4nlog, H PB; < 4dnlog, (Lﬁpl> = 4n?log, ¢ < 4¢3,
n

i=1 n

The first inequality holds because of properties of the arithmetical mean, while
the others are trivial. O

The Propositions 4.2.17 and 4.2.19 have as an immediate consequence that,
even if only step-minimal proofs are considered, the number of steps of a resolution
proof may not be a representative measure for the complexity of the proof.

Theorem 4.2.20 Resolution for first-order logic is not weakly polynomially
transparent.

The violation of the logp size step-reliability turns out to be fatal, even if only
short proofs are counted.

4.2 First-Order Resolution 165

4.2.5 Improvements of the Representation of Formulae

The situation is quite instructive, because we can illustrate at the example of
resolution the three principal solution methodologies when facing the polynomial
intransparency of a transition relation .

The first approach is to weaken the transition relation - and to define a
transition relation ', for example, by taking out each pair (S, S’) which violates
the logp size step-reliability, since this may be the problematic property, like in
the case of resolution. The most radical method to perform this modification
on the resolution calculus is to forbid the renaming or even the multiple use of
lemmata. The latter results in the calculus of tree resolution.

Proposition 4.2.21 Tree resolution is polynomially transparent.

Proof Let there be a resolution tree—i.e., an upward tree—71" for a set of clauses
S with bottom clause ¢, computed with n resolution steps. The resolution tree
has n 4+ 1 leave nodes Ly, ..., L, labelled with input clauses sq,...,s,11. By
Proposition 4.2.1 on p. 155, for any clause ¢ at a node N with successor nodes NV,
and Ny labelled with parent clauses ¢; and ¢y, size(c) < size(c1) +size(cy). Due to
the tree structure of T, size(c,) < 1! size(s;) < (n+1) x size(S). Consequently,
size(T) < (n+1)? x size(9). O

Note Polynomial transparency also holds for another refinement of resolution,
namely, V-resolution [Chang and Lee, 1973]. V-resolution is more powerful than
tree resolution in that general resolution dags are permitted, but derived clauses
must not be renamed and whenever a derived clause is used as a parent clause,
then the resulting unifier must be applied to the clause and to the clauses derived
from it.

Unfortunately, such weakenings of general resolution have the unacceptable
consequence that many proofs are thrown out which are short in steps and small in
size. This holds for the short resolution deductions discussed in Subsection 4.2.3.
Also, eliminating problematic pairs from a transition relation does not work for
arbitrary transition relations. This leads to the second alternative. In order to
preserve the problem solving functionality of the relation, that is, to guarantee
that the transitive closures—or at least the provable states—of both transition
relations remain identical, in the general case, each problematic step must be
replaced by a series of computationally innocuous steps. For logic calculi, this
amounts to a redefinition of the notion of an inference step.

Both methods are relatively unappealing for the practical working with logic
calculi, since in no case the indeterministic power of a calculus is increased, ei-
ther it is weakened or it remains unchanged, and only the presentation structure
of the calculus is modified. The real importance of the notion of polynomial
transparency for the advance of science is that it can motivate research follow-
ing the third approach. The third approach is to let the general structure of a

166 First-Order Calculi

transition relation as it is, and to try to remedy the polynomial intransparency of
the transition relation. Since the typical stumble-block for attaining polynomial
transparency is the violation of the logp size step-reliability, a promising research
direction consists of improving the data structures of the elements in the tran-
sition relation in such a way that they can be represented with less space than
in the original relation, with the hope to gain polynomial transparency this way.
The advantage of such an attempt, if it succeeds, is that the distances between
the elements in the transition relation can be preserved while the real computing
cost and sizes properly decrease.

The difference between the solution methodologies is that the second approach
always succeeds, whereas the third one may fail in principle. This case will be
considered below (in Subsection 4.2.6).

Number Terms in the Object Language

Similar to the case of the unification operation, which, in order to attain the poly-
nomial time step-reliability of an inference system, has enforced the necessity to
represent logical terms as dags, one should think about the development of more
sophisticated mechanisms which would admit a notation for resolvents polyno-
mially bounded in size by the number of their derivation steps, with respect to
the input set. An obvious improvement is to integrate into the object language
the same vocabulary of upper indices we already used in our meta-language for
the purpose of polynomially specifying terms of exponential depth. It is apparent
that with the use of such number terms the transparency problems of the Exam-
ples 4.2.2 and 4.2.3 can be solved, even polynomial transparency in the strong
sense can be achieved for these examples. One can predict that number terms
will play an important role in future automated deduction systems.”

We shall not pursue further the attempt of extending the representation of
logical formulae, instead we want to present a critical example class which may
turn out to be a hard problem for the efforts to achieve polynomial transparency.
These new formulae are obtained from the previous class of Example 4.2.3 by
augmenting the arity of the function symbol s by 1. This means that the previous
formula class is just an abstraction of the new class.

Example 4.2.4 For any positive integer n, let S,, denote a set of Horn clauses
of the following structure:

{=Pi(s(z,9)),..., ~Fuls(z,9))},
{Pi(s(s(z, 1), 12). ﬂpl()}
{Pa(s(s(s(z,91),92),93)), ~Pa(7)},

"Much more than polynomial unification algorithms, which have turned out to be relatively
unimportant for the practice of deduction systems. This can be verified by observing that the
examples (particularly Example 4.2.2) for demonstrating the necessity of number terms are
much simpler and occur more frequently in practice than the ones which demand polynomial
unification techniques.

4.2 First-Order Resolution 167

{Ps(s(s(s(s(s(z,y1),Y2),Y3), ¥a), ¥s)), 7P ()},

{Pn(s(s(' ’ 's(s(x’yl)ayQ)’ o "yn—l)ayn))a_'Pn(x)}’

P —times
{F1(0)},
{Fa(0)}

In the new class the second argument of the function symbol s does not
play any role at all, the variables at these positions are just dummy variables.
Consequently, the results concerning proof steps and proof lengths carry over from
Example 4.2.3 to this example. But there is a crucial difference between both
examples, which becomes apparent when self-resolution is applied to a clause of
the mixed type in Example 4.2.4. Let us demonstrate this with the input clause
corresponding to the prime number 3:

{Pa(s(s(s(z, 91),42),93)), 7 Pa(2) }.

In its self-resolvent

{PQ(S(S(S(S(S(S(xa yl)a yQ)a y3)7 y4)a yS)a yﬁ))a _'PQ(‘T)}

the number of distinct dummy variables has doubled. In general, in any such
self-resolution step the resolvent contains 2n —1 more distinct variables than the
original clause. Accordingly, for this class of clause sets, in any polynomial-step
proof of an instance S, clauses are needed in which not only the term depth
is exponential (which could be remedied by using number terms in the object
language) but also the number of distinct variables. And to this problem no
obvious solution is in sight.®

4.2.6 The Impossibility of Resolution Transparency

Although the current data structures for resolution do not achieve the weak poly-
nomial transparency of resolution, we have no apparent reason to abandon hope
that such data structures might exist. For the case of the strong polynomial
transparency, however, according to which for every resolution deduction the in-
ference steps must provide a representative complexity measure of the deduction,
one can prove that such data structures cannot exist.

8There seems to be an interesting analogy between decidability and complexity properties
with respect to the distinction of clause formulae containing unary function symbols only from
those containing binary function symbols. While the former are decidable and permit the
successful application of number terms, the latter are undecidable and polynomial transparency
cannot be achieved using number terms.

168 First-Order Calculi

Proposition 4.2.22 (Impossibility of resolution transparency) It is impossible to
render resolution polynomially transparent without having to increase the dis-
tances in the resolution transition relation.

Example 4.2.5 Consider the set S of three clauses of the following shapes

{P(z.y),~P(z),~P(y)},
{P(0)},
{P(1)}

where 0 and 1 are constants and s.t denotes a term of the structure f(s,t), for
some binary function symbol f.

Proof The iterative application of self-resolution to the first clause in Exam-
ple 4.2.5 and to the resulting resolvents, after n steps produces a clause of the
structure

{P(l‘l A .fEQn+1), _|P(IE1), ey _|P(K’E2n+1)}.

In two further resolution steps, extensively employing factoring and using the two
other clauses in the input set, any positive unit clause of the form

{P(Cl St .CQTL_|_1)}, Ci E {O,]_}, for]_ S Z S CQn_{_l,

may be deduced. The set of unit clauses derivable in this manner can be viewed
to encode the set S of all strings of lengths conyq over the alphabet {0,1}. If a
data structure or general technique would exist rendering resolution polynomi-
ally transparent without increasing the original number of inference steps in the
calculus, then it must be possible to encode any of the strings in the set S with a
size polynomially bounded by the input size and n+2. This, however, contradicts
elementary facts of Kolmogorov complexity theory [Li and Vitdnyi, 1990]. 0

The apparent reason for the impossibility of making resolution polynomially
transparent is the factoring rule, which may render a highly regular structure
strongly irregular within a single inference step, or, in terms of Kolmogorov com-
plexity theory, factoring can turn a regular string into a random string within a
single step. Consequently, in order to remedy the intransparency of resolution,
the factoring rule need to be restricted. A further interesting open question is
whether the problems with the factoring rule also have an influence on the weak
polynomial transparency of resolution.

4.3 First-Order Connection Tableaux

In contrast to the standard way of generalizing the tableau calculus from the
ground case to the first-order case, by including different rules for quantifier
elimination [Smullyan, 1968], the working with Skolemized formulae renders the
first-order calculus significantly simpler and also facilitates the incorporation of
unification into the tableau calculus. We consider clausal first-order tableaux.

4.3 First-Order Connection Tableaux 169

4.3.1 Clausal First-Order Tableaux

Definition 4.3.1 (Clausal first-order tableau) A clausal first-order tableau for a
finite set S of proper clause formulae is a pair (¢, A\) consisting of an ordered
tree ¢ and a labelling function A on its nodes such that the root is labelled with
the verum T, and each successor set of nodes Ny, ..., N, is labelled with literals
K, ..., K, such that there exists a variable substitution ¢ and a clause formula
Vay---Vr, 1Ly, ...,L,L in S with K; = L;o, for 1 <i < n.

The notions of tableau (top) clause formula, the closedness of a tableau,
and marked tableaux can be transmitted unchanged from the ground case (Sec-
tion 3.3).

Definition 4.3.2 (First-order connection tableau) A first-order connection
tableau for a finite set S of proper clause formulae is a first-order clausal tableau
for S in which each inner node N labelled with a literal L has a leaf node N’
among its successor nodes which is labelled with the literal ~L.

The static specifications of first-order tableaux and connection tableaux put no
particular restrictions on the instantiations that may be applied to the renamed
clause formulae from the input set in their use as tableau clause formulae. The
procedural counterparts of the static deduction objects, however, shall be defined
using unification as instantiation operation, this way achieving finite branching
rates of the calculi. The two inference rules of the tableau calculus with unification
are the following straightforward generalizations of the inference rules for the
ground case. Again, we shall work with marked tableaux.

Procedure 4.3.1 (First-order tableau expansion) Given a set S of proper clause
formulae as input and a marked first-order tableau T for S, choose a leaf node N
which is not marked, select a clause formula ¢ € S, obtain a variant JLq,..., L,L
of the matrix of ¢ in which the variables are disjoint from the variables in the
literals occurring in 7' and in any predecessor tableau of T,° then attach n new
successor nodes Ny, ..., N, to N and label them with L, ..., L, respectively.

Procedure 4.3.2 (Tableau reduction with unification) Given a marked tableau
T, choose an unmarked leaf node N with literal L, select a dominating node N'
with literal L’ such that there is a most general unifier o for {~L, L'}, then apply
the substitution o to the tableau literals,'® and mark N with N'.

The connection tableau calculus with unification consists of three inference
rules, the tableau reduction rule with unification plus the following two inference
rules.

9Such renamings can easily be achieved without having to look at the tableau each time,
namely, by carrying along a counter which is incremented whenever a new clause formula is
chosen for expansion.

10 Again we presuppose the working with definitional expressions and the definitional appli-
cation of substitutions.

170 First-Order Calculi

Procedure 4.3.3 [First-order tableau start] Given a set of proper clause formulae
S as input and a one-node tree with root N and label T, simply perform a first-
order tableau expansion step.

Procedure 4.3.4 [Tableau extension with unification] Given a set of proper clause
formulae S as input and a marked connection tableau 7" for S, choose a leaf node
N with literal L which is not marked, apply a tableau expansion step at N, select
a node N’ among the immediate successors of N, perform a tableau reduction
step at N’ with the predecessor N, and mark N’ with N.

Although with the two (three) inference rules of the (connection) tableau
calculus with unification not every first-order tableau can be generated, the in-
ference rules are adequate with respect to the static specifications of first-order
(connection) tableaux, in the following manner.

Proposition 4.3.1 The first-order (connection) tableau calculus can only gen-
erate marked first-order (connection) tableauz, and conversely, given any marked
(connection) tableau T for a set of clause formulae, then, for any node selection
function, there exists a sequence of inference steps in the (connection) tableau
calculus with unification and an output tableau T which is isomorphic to T and
more general than T .1

Proof The fact that the (connection) tableau calculus with unification can only
generate first-order connection tableaux is obvious. For the converse, let T" be
a marked first-order (connection) tableau for an input set S with m marked
nodes. It is apparent that, ignoring the arguments of the literals, the respective
propositional marked (connection) tableau skeleton 7" of T can be constructed by
the propositional (connection) tableau calculus, for any selection function. From
T’ obtain a tableau T" by adding the arguments of the renamed input clauses.
By the definition of first-order (connection) tableaux, there exists a substitution
o which, when applied to the literals in T, produces T. Let ¢; = JLy,..., L,L
be a clause formula consisting of the literals at the marked nodes Ny,..., N,
respectively in T", and ¢o = JK;,..., K, the clause formula, in which, for
1 <1 < m, K; is the complement of the literal at the node by which N; is marked
in T". The substitution ¢ must be a unifier for {c;,c2}. Now, the sequence of
unification steps to be performed for any selection function in the (connection)
tableau calculus with unification in order to obtain a more general tableau than
T with the skeleton T’ can be viewed as a single unification operation of the set
{c1,c2}. The different selection functions just reflect certain different selections
of disagreement sets.!? By the Unification Theorem 1.5.12 on p. 40, any selection
function produces a unifier which is more general than o. OJ

1A tableau T' is more general than an isomorphic tableau 7T if there is a substitution o such
that for any literal L occurring at a node N in T, if L’ is the literal at the node corresponding
to N, then L = L'o.

12In fact, the existing tableau node selections functions do not even exploit the full freedom
of selection possible in the unification process.

4.3 First-Order Connection Tableaux 171

4.3.2 The Completeness of First-Order Connection
Tableaux

While the regularity restriction can be transmitted unchanged from the ground
case to the first-order case, the lifting of the strong connectedness condition (Defi-
nition 3.4.7 on p. 132), however, is a more delicate problem. A direct transmission
to the first-order case leads to incompleteness, as illustrated in Figure 4.1 with the
unsatisfiable set of clause formulae | P(z,y), P(y,z)L and 1=-P(u,v), = P(v,u)L,
for which no closed and strongly connected first-order tableau exists.

—P(z,y) —-P(y,)

Figure 4.1: The incompleteness of the strong connectedness for first-order logic.

The apparent reason for the incompleteness of the strong connectedness in the
first-order case is that a strong connection between certain instances of two clause
formulae need not be strong for the original formulae. This consideration also
shows how to weaken the strong connectedness in order to preserve completeness
for the first-order case.

Definition 4.3.3 (Potential strong connectedness) A connection {(L,1,¢y),
(K,j,c9)} is called potentially strong if there exists a substitution o such that
{(Lo,i,c10),(Koa,j,cao)} is a strong connection. A first-order tableau T is called
potentially strongly connected if T has a substitution instance which is strongly
connected.

Example 4.3.1 In two clause formulae of the form 1-Q(z),—P(y,z)L and
1Q(v), P(w,v)L the first literals in each formula are strongly connected while
the others are not.

The weaker variant of strong connectedness retains the eliminative effect on
tableaux, as shown in Figure 4.2. Thus, if the first clause from Example 4.3.1
appears as a tableau clause, then the second clause must not be attached to the
node labelled with —=P(y,z). The second clause can be attached to the node
labelled with —=Q(x) without violating the condition. Note, however, that if in
the second case a subsequent unification step enforces the variables y and w to be
unified, then the potential strong connectedness is violated too, since no strongly
connected instance of the resulting tableau exists.

172 First-Order Calculi

—Q(z)
Q(x) P(w,x

Figure 4.2: Violation (left) and satisfaction (right) of the potential strong con-
nectedness for tableaux employing the clause formulae from Example 4.3.1.

Theorem 4.3.2 (Completeness of regular strongly connected first-order tableaux)
For any finite unsatisfiable set S of proper clause formulae and any clause formula
c which is relevant in S, there exists a closed reqular strongly connected first-order
tableau for S with an instance of the matriz of c¢ as top clause formula.

Proof By the Herbrand Instance Theorem (p. 151) there exists a finite unsat-
isfiable set S’ of ground formulae such that every formula in S’ is a Herbrand
instance of a formula in S. Due to the completeness of regular strong connection
tableaux for the ground case (Theorem 3.4.6 on p.132), there exists a closed reg-
ular strong connection tableau T for S'. T is a closed regular strongly connected
first-order tableau for S. U

Corollary 4.3.3 (Completeness of the connection tableau calculus with unification
for regular potentially strongly connected tableaux) For any finite unsatisfiable set
S of proper clause formulae and any clause formula ¢ which is relevant in S,
there exists a refutation T of S in the connection tableau calculus with unification
in which ¢ is used as expansion clause in the start step and T is reqular and
potentially strongly connected.

Proof Immediate from Theorem 4.3.2 and Proposition 4.3.1. 0

It is clear that the size of a closed first-order tableau for a set of clause formulae
S is bounded from below by the Herbrand complexity of S, so that all first-order
tableau calculi are Herbrand calculi. Also, the number of inference steps in the
(connection) tableau calculus with unification is a representative measure for the
size of the deduction.

Proposition 4.3.4 The (connection) tableau calculus with unification is poly-
nomially transparent.

Proof An application of Lemma 2.3.7 on p. 81 will do. The polynomial time
step-reliability of the calculi is obvious if definitional expressions and polynomial

4.3 First-Order Connection Tableaux 173

unification techniques are used. To recognize the logp size step-reliability, we
assume that dag expressions (Definition 1.4.10 on p. 23) are used. As the size of
a tableau we take the sum of the sizes of the literal occurrences in the tableaux.
Then, every expansion step increases the tableau size at most by the size of the
largest clause formula from the input set, which is a constant increase rate for any
given input. Due to the dag format, by Proposition 1.6.8 on p. 53, a reduction
step does not change the size of a tableau. Finally, the size increase resulting
from an extensions step is the size increase of the contained expansion step. [

4.3.3 Dynamic Pruning of First-Order Tableaux

In the first-order case besides regularity interesting new useful search pruning
techniques are applicable, which have no significance in the ground case.

Tautology Elimination

Normally, it is a good strategy to eliminate certain clause formulae from the input
set which can be shown to be redundant for finding a refutation. Tautological
clause formulae are of such a sort.!® In the ground case tautologies may be
eliminated once and for ever in a preprocessing phase, before starting the actual
proof search. In the first-order case, however, it may happen that tautologies are
generated dynamically. Let us illustrate this phenomenon with the example of a
clause formula expressing the transitivity of a relation.

Example 4.3.2 (Transitivity) VaVyVYz 1=P(z,y),~P(y, 2), P(z, 2)L.

Suppose that during the construction of a tableau this clause formula is used
in an extension step—for the sake of the argument let us take the clause formula
itself and assume that the rest of the tableau be renamed. Suppose further that
after some subsequent inference steps the variables y and z are instantiated to
the same term ¢. Then a tautological instance |=P(x,t), =P(t,t), P(x,t)L of the
transitivity formula has been generated. Apparently, connection tableaux with
tautological tableau clauses need not be considered when searching for a refuta-
tion. Therefore the respective tableau and any extension of it can be disregarded.

Note Interestingly, the conditions of tautology-freeness and regularity are par-
tially overlapping. Thus the non-tautology condition, on the one hand, does cover
all occurrences of identical parent nodes, but not the more remote ancestors. The
regularity condition, on the other hand, captures all occurrences of tautological
clauses for backward reasoning with Horn clauses (i.e. with negative start clause),
but not for non-Horn clauses.

13 Although tautologies may render the basic calculus stronger concerning indeterministic
power, as shown in the last chapter.

174 First-Order Calculi

Subsumption Reduction

An essential pruning method in resolution theorem proving is subsumption re-
duction, which, during the proof process, deletes any clause that is subsumed by
another clause, and this way eliminates a lot of redundancy. Although no new
clause formulae are generated in the tableau approach, the forward variant of
subsumption reduction can be exploited in the (connection) tableau framework,
too. First, we have to say what subsumption means for clause formulae.

Definition 4.3.4 (Subsumption for clause formulae) Given two clause formulae ¢;
and c. We say that ¢; (properly) subsumes c, if there is a variable substitution
o such that the set of literals contained in ¢;o is a (proper) subset of the set of
literals contained in c5.

Similar to the dynamic generation of tautologies, it may happen, that a sub-
stitution instance of a clause formula is created which is properly subsumed by
another clause formula from the input set. To give an example, suppose the tran-
sitivity formula from above and a unit clause formula 1P(a,b)l be contained in
the input set. If now the transitivity formula is used in a tableau, and after some
inference steps the variables x and z are instantiated to a and b, respectively,
then the resulting tableau clause formula J—P(a,y), ~P(y,b), P(a,b)L is prop-
erly subsumed by 1P(a,b)L. Apparently, for any closed tableau using the former
tableau formula a smaller closed tableau exists which uses the latter instead.

Note Again, there is the possibility of a pruning overlap with the regularity and
the non-tautology conditions. It should be emphasized, however, that subsump-
tion reduction is not a pure tableau structure restriction, since a case of proper
subsumption cannot be defined by merely looking at the tableau. Additionally,
it is necessary to take the respective input set into account. Consequently, sub-
sumption reduction is not a monotonic reduction rule in the sense defined in
Subsection 3.4.6 (pp. 130).

4.3.4 Syntactic Disequation Constraints

The question may be raised whether in the first-order case it is always possible
with tenable cost to check the tableau conditions of regularity, tautology, and
subsumption-freeness after each inference step. Note that a unification operation
in one part of a tableau can produce instantiations which may lead to an irregu-
larity, tautology, or subsumed clause in another distant part of the tableau. The
structure violation can even concern a closed part of the tableau. Fortunately,
there exists a uniform and highly efficient technique for implementing all the
mentioned search pruning mechanisms, namely, syntactic disequation constraints.

Let us illustrate the technique first at the example of the dynamic tautology
elimination. Using the transitivity formula

1=P(z,y),~P(y, z), P(x, z)L

4.3 First-Order Connection Tableaux 175

from above, there are two classes of instantiations which may render instances of
the formula tautological. Either x and y are instantiated to the same term, or y
and z. Apparently, the generation of a tautological instance can be avoided if the
unification operation is constrained by forbidding that the respective variables
be instantiated to the same terms. In general, this leads to the formulation
of disequations of the form (sq1,...,s,) # (t1,...,t,), where the s; and t; are
terms. A disequation contraint is violated if every pair (s;,¢;) in the constraint
is instantiated to the same term t;, respectively. In the transitivity example
above the two disequation constraints (z) # (y) and (y) # (z) can be generated
and added to the transitivity formula. The non-tautology constraints for the
formulae of a given input set can be generated in a preprocessing phase before
starting the actual proof process. Afterwards, the tableaux construction works
with constrained clause formulae. Whenever, a constrained clause formula is
used for tableau expansion, then the formula and its constraints are consistently
renamed, the expansion is performed with the formula part and the constraints
part is integrated into a special constraint store.

Regularity can also be captured using disequation constraints. Obviously, reg-
ularity constraints have to be generated dynamically. Whenever a new renaming
¢ of a (constrained) clause formula is attached to a branch b by expansion, then
for every literal L = [~]P(sy,...,s,) contained in the formula part of ¢, dise-
quation constraints of the shape (si,...,s,) # (t1,...,t,) are generated where
the (¢1,...,t,) are the argument sequences of literals appearing on b with the
predicate symbol P and the same sign as L.

Subsumption is essentially treated in the same manner as tautology. Recall
the example from above where in addition to the transitivity formula a unit
clause formula |P(a,b)l is supposed to be contained in the input set. Then,
the disequation constraint (x,z) # (a,b) may be generated and added to the
transitivity clause. Like non-tautology constraints, non-subsumption constraints
can be computed and added to the formulae in the input set before the actual
proof process is started.'* It is apparent that constraints resulting from different
sources—tautology, regularity, or subsumption—need not be distinguished in the
tableau construction. In order to capture all cases of subsumption, however,
a new type of terms, so-called structure variables, need to be introduced. To
explain the necessity for doing this, assume that the transitivity formula and a
unit clause formula of the shape JP(f(v),g(v))L be contained in the input set.
In analogy to the other example, a disequation constraint (z,2) # (f(v), g(v))
could be added to the transitivity formula. But now in the constraint a variable
is contained which does not occur in the transitivity formula. Since formulae
are always renamed before integrated into a tableaux, the variable v will not
occur as an ordinary variable in a tableau, so that the constraint is absolutely

!4Note, however, that due to the NP-completeness of subsumption, it might be necessary not
to generate all possible non-subsumption constraints, since this could involve an exponential
preprocessing time.

176 First-Order Calculi

useless, since it can never be violated. Apparently, the case of full subsumption
cannot be captured in this manner. What the constraint mechanism should
avoid is that = and z be instantiated to terms which have the structures f(t)
and g¢(t), respectively. This can be conveniently achieved by adding structure
variables, denoted with a ‘#’ before the variable name, which are distinguished
from ordinary variables by the constraint handler. The respective disequation
constraint (x, z) # (f(#v), g(#v)) then is violated if x and z are instantiated to
terms of the structures f(s) and g(t) where s = ¢.

Note With the theorem prover SETHEO [Letz et al., 1992] it could be experi-
mentally verified that the deletion of irregular tableaux and tableaux contain-
ing tautological or properly subsumed formulae may reduce the search space by
magnitudes, although no complete constraint handling was implemented in the
system. In the new Version 3.0 (Spring 1993) of SETHEO the full constraint mech-
anism is integrated. The new system demonstrates that disequation constraint
information can be generated, stored, updated, and examined in a very efficient
way.

The keeping of the constraint information alongside the tableau in a special
constraint store also facilitates the working with subgoal trees instead of tableaux,
since all relevant structure information of the solved part of a tableau is contained
in the constraint part.

4.3.5 Search Trees and Selection Functions

There is a source of indeterminism in the discussed tableau calculi which can be
removed without any harm concerning indeterministic power, namely, the choice
of the tableau node selection function being employed when building up a tableau.
Therefore, it is reasonable to consider tableau calculi in which this indeterminism
is not contained any more.

Definition 4.3.5 (Determined tableau calculus) A determined tableau calculus is
a pair (C,¢) consisting of a tableau calculus C' and a tableau node selection
function ¢.

Any determined tableau calculus uniquely determines the search tree of a
given input set S of clause formulae.

Definition 4.3.6 ((Tableau) search tree) Let S be a set of clause formulae and
C = (C, ¢) a determined tableau calculus. The (tableau) search tree of S in C is
a tree T labelled with tableaux defined as follows.

1. The root of T is labelled with the trivial tableau, consisting of a root node
only.

4.3 First-Order Connection Tableaux 177

2. Every non-leaf node in 7 labelled with a tableau 7" has as many successor
nodes as there are successful applications of a single inference step in C'
applied to the tableau node in 7" selected by ¢, and the successor nodes are
labelled with the respective resulting tableaux.

The leaf nodes of a (tableau) search tree can be partitioned into two sets of nodes,
the ones labelled with tableaux that are marked as closed, called success nodes,
and the others which are labelled with open tableaux to which no successful
inference steps can be applied, called failure nodes.

In a pure deduction enumeration approach, according to which all possible
deductions are examined,' the part of the search tree down to the first proof can
be taken as a useful approximation of the actual cost of finding a proof using the
underlying determined calculus.

Definition 4.3.7 (Relevant part of a search tree) Let 7 be a search tree and let
n be the minimal distance of a success node from the root of 7. The relevant
part of the search tree 7T is the subtree obtained from 7 by cutting off all nodes
with a depth > n.

For any determined tableau calculus C, the complexity of the relevant part of
the search tree of a given input set S in C can be taken as the actual complexity
of the calculus C for the input S.'6 It is important to emphasize that a variation
of the selection function can dramatically change the actual complexities of the
calculus. This gives rise to the application of heuristic methods in the definition
of selection functions. Due to its greater freedom of choosing between selection
functions, the (connection) tableau format is superior to frameworks supporting
depth-first selection functions only, like connection matrices and model elimina-
tion chains. This can be demonstrated formally as follows.

Proposition 4.3.5 Let C be the regular connection tableau calculus with unifi-
cation. There ezist sets S of formulae for which the (relevant part of) the search
tree is exponential in size wrt S for any determined calculus (C, ¢) using a depth-
first selection function ¢, whereas there are search trees linear in size for some
free selection functions.

Proof We use Example 4.3.3 and start the tableau construction with the rele-
vant top clause formula |=P(z,y), 7 P(y,x)L. Any depth-first selection function
inevitable runs into the exponential search space induced by S’. Using a free
selection function, however, after the first extension step with 1P (xz,b), =R(x)L,

15Tn the next section the natural limitations of pure tableau enumeration procedures with
respect to search pruning will be investigated and the theoretical reasons will be given why with
a pure deduction enumeration method it is impossible in principle to remove all redundancies
contained in proof search.

160r at least as an interesting upper bound for the actual complexity of the calculus.

178 First-Order Calculi

one may shift to the other subgoal in the top clause formula and perform again an
extension step with 1 P(x,b), ~R(z)L. After the second step the clause formula
1R(a),®L is no more accessible and the search tree is linear. O

Example 4.3.3 Let S be a set consisting of the union of the clause formulae

1=P(z,y), ~P(y,)L,

and a set S’ containing clause formulae with connections to ® only such that the
search tree of S’ U {I®L } has exponentially many nodes with a depth < n, for
any determined (regular connection) tableau calculus.

4.3.6 Extensions of First-Order Connection Tableaux

The transmission of the factorization rule and the folding up and folding down
operations from the ground case to the first-order case is straightforward. To
obtain first-order factorization, one simply has to generalize the ground factor-
ization rule by performing unification between the respective literals. The cases
of first-order folding up and folding down are even trivial, since the ground folding
up and down need not to be changed at all; the first-order variants are achieved
by using the reduction rule with unification.

In the first-order case, however, a further significant difference appears be-
tween the folding up operation and the explicit storing of lemmata beside a
tableau (as described in [Letz et al., 1992] and [Loveland, 1978]). When a lemma
¢ which has been dynamically added to the input set is used in a subsequent
extension step, then the variables in ¢ may be soundly renamed as in any exten-
sion step using input formulae. According to the folding up operation, however, a
(unit) lemma is stored in the tableau itself, and all usages of the lemma must have
a common substitution instance, as illustrated with the following Example 4.3.4.

Example 4.3.4 1=P(x),=P(ay),...,—~P(a,)L,
Jp(x):_'Q(x)L;
1P(x), Q(x)L.

Assume that in the construction of a connection tableau we are starting with
the top clause formula |=P(x), = P(a1),...,P(a,)L, select the subgoal =P(z),
and solve it completely. Then, the folding operation puts the literal P(x) into
the label set of the root node. Now, the second subgoal P(a;) can be solved by
a reduction step using P(z). But in the reduction step z gets instantiated to
ay, so that afterwards the lemma is no more available for reduction steps from

4.3 First-Order Connection Tableaux 179

the other subgoals. The lemmata made available by the folding up operation
are just single-instance lemmata. Using a standard lemma technique, which
explicitly would add the formula Vx1P(x)L to the input set, one could solve
every other subgoal in the top clause formula with a single extension step using
different renamings of J P(x)L. So in the first-order case an additional difference
concerning proof lengths comes in, which is not present in the ground case.

Note The single-instance property of folding up guarantees that the accordingly
extended first-order (connection) tableau calculi remain polynomially transpar-
ent. Also, single-instance lemmata can be implemented in an extremely efficient
way, since no copying is necessary. The price of this restriction is that the calculi
remain Herbrand calculi, that is, the Herbrand complexity of any unsatisfiable
set of clause formulae is a lower bound to the size of any refutation in the ex-
tended first-order (connection) tableau calculi. The standard technique of ex-
plicitly adding derived lemmata to the input set, however, renders the first-order
calculi polynomially intransparent, induces higher branching rates of the search
spaces, and demands more expensive implementation techniques. On the other
hand, the sizes of refutations in those calculi are not polynomially bounded by
the Herbrand complexity of an input set, so that significantly shorter proofs may
exist than for the polynomially transparent versions. Which of the two versions
will turn out to be superior in practice depends on the examples considered as
relevant.

One could also think about a multiple-instance variant of folding up. The basic
problem to be solved in such an approach is that the renaming of the variables in
a literal folded up to an edge must be limited in certain ways in order to preserve
soundness, as demonstrated in Figure 4.3 for the satisfiable input set given in
Example 4.3.5. Referring to the figure, suppose that after two extension steps
and one reduction step the subgoal —=Q(z) is solved completely, and is folded up
to the edge above the node labelled with —=P(z). If then the unmarked subgoal
labelled with =Q)(b) is permitted to be solved with a renaming of the context
unit lemma Q(x), i.e., without instantiating the variable = to b, then the subgoal
labelled with =P (z) would have been solved in an unsound manner, correctly
it should be instantiated to P(b). Afterwards, the subgoal labelled with —=R(z)
could be solved by an extension step, which would not be possible if it be correctly
labelled with = R(b).

Example 4.3.5 Consider a satisfiable set of clause formulae of the form

1=P(z),~R(z)L,
JP({L‘), _'Q(x)a _'Q(b)L:
1P(x), Q(z)L,
IR(a)L.

180 First-Order Calculi

z) P(a) ER(a)

P(z) =Q(z) —Q(b)) =Q(a) ﬁQb R(a)
P(x T

Figure 4.3: Unsoundness of the renaming of context unit lemmata.

4.4 Connection Tableaux Procedures

In contrast to the most successful style of resolution theorem proving, which is
based on formula enumeration or saturation procedures, such an approach is
not possible in the connection tableau framework, because, unlike resolution and
unlike the tableau calculi without the connectedness condition, the connection
tableau calculi are not proof-confluent, that is, not every proof attempt can be
completed successfully. This possibility of making irreversible decisions in the
calculus demands a different organization of the proof process, namely, as a proof
enumeration instead of a formula enumeration procedure.

4.4.1 Explicit Tableau Enumeration

In Subsection 3.4.3 we have introduced the notion of subgoal formulae, according
to which every subgoal tree of a tableau can be encoded as a formula.The process
of tableau construction could therefore be viewed as the enumeration of subgoal
formulae, with the objective to derive the logical falsum, just as in the standard
formula saturation procedures using resolution calculi. Accordingly, one could
design connection tableau proof procedures just in the same manner resolution
procedures are constructed, the difference from resolution being that one would
have to handle sets of subgoal formulae instead of sets of clauses. Also, new sub-
goal formulae would not be derived by performing inference operations between
subgoal formulae but between a subgoal formula and an input clause formula.
This manifests the linear approach of connection tableau calculi. A proof proce-
dure for tableaux or subgoal formulae could be achieved by simply exploring the
search tree of a determined tableau calculus in a breadth-first manner starting
from the root.

4.4 Connection Tableaux Procedures 181

Tableau Subsumption

One important strategy to achieve search pruning in a proof enumeration setting
is to refine the calculus in such a way that the number of possible proof attempts
with a certain resource decreases, which has been our favourite pruning strategy
up to know. Another strategy is to improve the proof procedure so that infor-
mation coming from the proof search itself can be used to even eliminate proof
attempts not excluded by the calculus. This is motivated, since certain redundan-
cies in proof search can only be detected when comparing different deductions, by
considering the tableau search tree. Let N; and Ny be two nodes in a search tree
T labelled with tableaux (or subgoal trees) T} and T, respectively. In case it can
be seen that 77 can only be completed to a refutation if 75 can be completed to a
refutation, then it is possible to ignore the entire subtree dominated by N;. The
simplest application possibility of such a search tree reduction is when T} and T3
are identical. Interestingly, this very often occurs in practice, particularly when
working with subgoal trees instead of tableaux.!” This will be demonstrated on a
formal level in the next section. But over and above identity of tableaux, a more
reductive notion of redundancy between tableaux should be defined, in the spirit
of the notion of subsumption for resolution procedures. This is an important
topic for future research.

Consolution

As a matter of fact, inference operations could be performed between sub-
goal formulae, too. Such an approach is pursued with the consolution calcu-
lus [Eder, 1991], which can be viewed as a generalization both of the connection
tableau and the resolution framework. The consolution calculus manipulates spe-
cial normalized subgoal formulae, so-called consolvents, which result from simply
transforming subgoal formulae into disjunctive normal form. In terms of sub-
goal trees, a consolvent is just the disjunction of the literals on the branches of
a subgoal tree. In [Eder, 1991] a single consolution step is defined as a macro
step consisting of the following operations, which are reformulated in the tableau
framework here. Consolution takes two subgoal trees T; and Ty, renames the vari-
ables in T5, and expands T} by attaching copies of the renamed tree'® to all leaf
nodes of T1. On the resulting tree, arbitrary many reduction, factorization, and
branch shortening steps may be applied. Input clause formulae are just treated as
subgoal trees of depth 1. Resolution can then be viewed as a consolution refine-
ment manipulating subgoal trees in which all branches are shortened to length
1.

1"Note that if we are working with subgoal trees supplied with a set of disequation constraints
to be satisfied, then the constraint parts must be taken into consideration when comparing
different subgoal trees.

180ne could even attach differently renamed copies, which would result in a further strength-
ening of consolution.

182 First-Order Calculi

Consolution seems mainly useful as a framework for comparing calculi, since,
apparently, consolution is not polynomially transparent, not even in the ground
case. Thus, every unsatisfiable set of n ground clause formulae can be refuted
within n consolution steps. This shows that the calculus needs a redefinition of
what has to be counted as a single inference step, similar to the original definition
of the Davis/Putnam calculus. A further interesting question to be investigated
is whether consolution is superior to resolution concerning indeterministic power.

4.4.2 Tableau Enumeration by Backtracking

The explicit enumeration of tableaux or subgoal trees (formulae) suffers from two
disadvantages. The first one is also present in the standard resolution procedures,
namely, the extreme branching rate of the search tree, which very quickly leads
to the situation that the available memory on a computer is exhausted. For
tableaux or subgoal formulae, which are much more complex structures than
clauses, an explicit enumeration procedure may even be practically impossible.
The second disadvantage is that the cost for adding new tableaux or subgoal
formulae significantly increases during the proof process as the sizes of the proof
objects increase, which is not the case for resolution procedures. These weaknesses
give sufficient reason why in practice no-one has seriously pursued an explicit
tableau enumeration approach up to now.

Bounded Depth-First Iterative Deepening Search

A more successful paradigm is to perform tableau enumeration in an implicit
manner, using consecutively bounded depth-first iterative deepening search proce-
dures, as follows. The tableau search tree is cut by imposing conditions, called
completeness modes, on the tableaux at the nodes of the tree. These conditions
are monotonic, i.e., if a tableau T" at a node NN violates the conditions, then do all
the tableaux in the search tree dominated by N. Let us introduce completeness
modes formally.

Definition 4.4.1 (Completeness mode) A completeness mode is a total mapping
m from the set of all tableaux to the set of natural numbers satisfying the following
property. For every tableau search tree 7 and every n > 0,

1. there is a £k > 0 such that for every node N in 7 with a depth > &k:
m(T) > n, for the tableau T" at the node N, and

2. for every node N with label T in T, if m(T') < n, then for every node N’
with label T" dominating N: m(T') < n.

Apparently, given any completeness mode m, any natural number n, and any
tableau search tree 7T, there is a finite initial segment of 7 such that exactly the
nodes in this segment have labels 7" with m(7) < n. Using a completeness mode

4.4 Connection Tableaux Procedures 183

m and an initial natural number n, the proof procedure starts by completely
exploring the finite initial segment of the search tree determined by m and n.
If no success node is contained in the initial segment, n is incremented and the
larger initial segment is explored, and so forth. Since m is assumed to be total on
the set of all tableaux, it is guaranteed that eventually a proof will be found if a
success node exists in the search tree. Due to the construction process of tableaux
from the root to the leaves, many tableaux have identical or structurally identical
subparts. This motivates to explore finite initial segments in a depth-first manner,
by strongly exploiting structure sharing techniques. Accordingly, at each time
only one tableau is in memory, which is extended following the branches of the
search tree, and truncated, when a leaf node of the respective inital segment of
the search tree is reached. Although according to this methodology initial parts
of the search tree are explored multiply, no significant efficiency is lost if the
initial segments increase exponentially [Korf, 1985].

The most natural completeness modes are the number of inferences (used in
[Stickel, 1988]) and the depth of a tableau. In [Letz et al., 1992] results of an
experimental comparison between both modes are given.

4.4.3 Permutability of Tableaux and The Matings Opti-
mization

In proof procedures using a pure tableau enumeration approach a source of re-
dundancy is contained which cannot be removed by methods of refining the
tableau calculi. Calculus refinements like (strong) connectedness, (strong) reg-
ularity, tautology-, and subsumption-freeness are [ocal pruning methods in the
sense that the violation of the conditions can be determined from looking at the
respective tableau only (plus at the input formula, in the case of subsumption),
whereas reference to alternative tableaux is never needed to check the conditions.
A more global view, however, by which certain tableaux are grouped together into
equivalence classes, can reveal that it is not necessary to construct all tableaux
in such a class but only one representative of the class. A particularly interesting
notion of equivalence classes of tableaux is provided by the matings framework.
In Figure 4.4, it is shown that for one and the same spanning mating for the input
set { J=pl, Ip,ql, 1—¢q,pL } there are two closed regular connection tableaux with
the relevant formula J—plL as top clause formula. Apparently, only one of the
two tableaux need to be considered. The redundancy contained in the tableau
framework is that certain tableaux are permutations of each other corresponding
to different possible ways of traversing a set of connections.

Motivated by this observation, we propose a technique to avoid the multiple
traversal of certain matings, by restricting the applicability of reduction steps.

Proposition 4.4.1 (Matings optimization) Given any total ordering < on the
elements of an unsatisfiable set S of proper clause formulae. Starting with any
relevant clause formula in S, there is a refutation T" of S in the regular connection

184 First-Order Calculi

...................... - p . A P
Cl - N // ‘‘‘‘‘ . C’3
\ /
\ Gy ¢/
| |
RS Q -Q -~ P!
al” N\ VAN
L0 P P Q'

Figure 4.4: Two closed tableaux for one and the same spanning mating.

tableau calculus with unification satisfying the following property. Let Ny, ..., N,
be any successor set of nodes in T labelled with literals L1, ..., L, stemming from
a clause formula ¢ € S. Then, at no node N;, 1 < i < n, reduction steps with a
dominating node N are permitted at which an extension step with a clause ¢’ < ¢
has been performed.

Proof Consider an unsatisfiable set S* of Herbrand instances of S. The fact that
the mentioned restriction of reduction steps preserves completeness is demon-
strated by using the proof of Theorem 3.4.6 (pp. 132). In this proof it was
demonstrated that, for any unmarked node N labelled with a literal L and on a
branch with literal set P, an extension step can be performed with any clause
formula containing ~L from a minimally unsatisfiable subset of P %t S*. Let S’
be such a minimally unsatisfiable subset and SZ; its subset of clause formulae
containing ~L. According to the mentioned completeness proof, we can always
select a ground formula co from SL; for extension such that, for some original
formula ¢ in S of which co is a Herbrand instance: ¢ £ ¢, for all original formulae
of the ground formulae in SL;. The lifting to the first-order case is trivial. O

Applied to the example shown in Figure 4.4, the matings optimization achieves
that, for any clause ordering, one of the two tableaux is no more derivable. Since
the multiple traversal of sets of connections occurs recursively in a pure tableau
enumeration procedure, the matings optimization can result in an exponential
search space reduction for tableau procedures. This illustrates the benefit of
integrating different frameworks.

Incompatibility problems with the Strong Connectedness

Unfortunately, the matings optimization is not compatible with the strong con-
nectedness condition on regular tableaux. As a counterexample, consider Exam-
ple 4.4.1, using an ordering in which J=Q(a), PL < JP,Q(a)L.

Example 4.4.1 {1P,Q(a)L, J—-Q(a),PL, 1-P,Q(a)L, I=P,—Q(zx)L }

4.4 Connection Tableaux Procedures 185

o -P \\\ _‘Q(x)
N
/ e /\
R o Q(a) P [-P] an)
(N
' Q) P

Figure 4.5: Deduction process for Example 4.4.1.

We describe the failure of finding a refutation for a backtracking-driven
tableau procedure. If we take the fourth clause formula, which is relevant in
the set, as top clause formula, enter the first clause formula, then the second one
by extension, and finally, perform a reduction step, then the closed subtableau
on the left-hand side encodes the mating {Cy, C5, C3}. Now, any extension step
at the subgoal labelled with —=@Q(z) on the right-hand side immediately violates
the strong connectedness condition. Therefore, backtracking has to occur, up to
the state in which merely the top clause formula remains. Afterwards, only the
second clause formula may be entered, followed by an extension step into the first
one. But now the matings optimization forbids a reduction step at the subgoal
labelled with P, since it would violate the given clause ordering and produce a
closed subtableau encoding the same mating {C3, Cy, C1} as before. Since ex-
tension steps are impossible because of the regularity condition, the deduction
process would fail and incorrectly report that there exists no closed tableau with
the fourth clause formula as top clause formula.'”

Consequently, there is a certain trade-off between pruning the calculus and
pruning the proof procedure.

4.4.4 A General Limitation of Pruning the Calculus

Even if redundancies due to the permutability of proofs are eliminated, by using
methods like the matings optimization, there still remains a lot of redundancy in
the search tree which cannot be captured by local techniques. The fundamental
reason for this redundancy is contained in the very nature of the logic calculi
themselves which we are employing, namely, their methodology of separating a
problem into subproblems and solving the subproblems separately.

19Tt is even possible to construct an example in which for no clause ordering a refutation
exists.

186 First-Order Calculi

The situation can be explained best using the terminology of strengthenings
introduced in Definition 3.4.9 on p. 132. Apparently, if a set S of clause formulae
is unsatisfiable then any strengthening of S by some set of literals {Ly,..., L, } is
also unsatisfiable. Furthermore, if {L} %¢ S is a strengthening of S with L being
contained in an essential clause formula of S, then the unit clause formula JLL
is essential in the strengthening {L} %* S.

In the process of demonstrating the unsatisfiability of a set of clause formulae
using a top-down approach, for example, during the generation of a semantic
tree or a tableau, we always implicitly make use of the strengthening operation,
namely, whenever we perform the branching operation. In a bottom-up oriented
procedure like resolution, of course, the strengthening operation is applied re-
versely, just in the way semantic trees are a reversed description of resolution
trees.

We will now present a phenomenon of logic which sheds light on a problematic
property of proof search. As we have already mentioned, it is crucial for the
purposes of optimizing proof search to avoid as much redundancy as possible.
Thus we should strive for identifying a minimally unsatisfiable subset of the input
set under investigation, or, equivalently, a subset in which every relevant formula
is essential. The problematic property of logic with respect to search pruning is
that even if we have identified a minimally unsatisfiable subset of an input set,
the strengthening process may introduce new redundancies, regardless whether
it is applied in a forward or in a backward manner. Let us formulate this more
precisely.

Proposition 4.4.2 If a set of clause formulae S is minimally unsatisfiable, and
L is a literal occurring in formulae of S, then the strengthening {L} % S may
contain more than one minimally unsatisfiable subsets, or, equivalently, not every
relevant clause in {L} ¥ S may be essential.

Proof We use a set S constructed by M. Schramm, which consists of the following
propositional clause formulae

Jp) _|qL7

Ip, —r, sl
Jgq,rlL,

Jq, sL,

1=p,q, —sL,
J=p, =1, sL,
I=p,—q, rL,
I=p, —q, —r, sl .

S is minimally unsatisfiable, as shown with the table of interpretations in Fig-
ure 4.6. In the figure, overlining abbreviates negation, and writing literals side
by side denotes disjunction. Also, in order to make the distinction between truth
values more visible we have denoted the truth value T with e and the truth value

4.4 Connection Tableaux Procedures 187

1 with o. The fact that each formula is essential in the initial set is expressed
with boxes in the columns of the formulae which exclusively are falsified by the
interpretation in the respective line. In the strengthening {p} %* S the clause
formulae 1g,rL and /g, sL both are relevant but no more essential, since the new
clause formula Ipl is also falsified by the interpretations which have rendered

the formulae essential in S. O
S

Lplalr|s|lpa|prs]| ar|as|pgs|prs|par|pgrs]| p |
e o |0 |eo [o]
e e |0 |0 [o]
e e |0 |e [o]
e|le|lo|o [o]
e|lo|e|e [o]
e|lo|le|o o o
e|loflole o o
e|lololo o
ocle|e|e o o [o]
o|e|e]|oll[c] [o]
o|le|o]|el]l[c] [o]
o|le|o]|oll[c] [o]
olo|e|e [o] [o]
olo|e|o [o] o
olo|o|e [o] o
olol|lolo o | o o

{p} x5

Figure 4.6: Illustration of the proof of Proposition 4.4.2.

In more concrete terms, if we perform an expansion step with, e.g., the clause
formula Jp, ~gL of the example in question, then there are at least two minimally
unsatisfiable subsets contributing to a refutation of the extended branch on which
p lies. Or, in terms of resolution, there are two different minimal clause sets from
which the unit clause {—p} may be derived. Since any calculus uses (variants of)
the strengthening operation as inference mechanism, the existence of such exam-
ples destroys the hope that one can develop extremely restricted calculi which
guarantee for each unsatisfiable formula the existence of exactly one proof. This
observation illuminates a natural restriction of every work towards the avoidance
of redundancy using calculus restriction only: however sophisticated the efforts,
there will always remain redundancy.

Consequently, an important future research topic is to develop global pruning
techniques which extract and use information from the search process itself.

Conclusion

We conclude this work with a brief summary of its main contributions to the
advance of science, and mention the most important future research perspectives.
First, it has been demonstrated that the field of automated deduction can
benefit a lot from meta-theoretical work of the type presented in Chapter 2. The
formalization of intuitively existing abstraction ideas for deductions has produced
a number of fundamental concepts for measuring the complexities of logic calculi.
Particularly, the new notion of polynomial transparency promises to serve as a
useful and research-stimulating property of deduction systems, and of transition
relations in general. The application of the concept has provided new insights
into the inferential power of basic deduction mechanisms, like lemmata and the
renaming of formulae, and motivates the development of even more compact data
structures than the ones considered in this work. A further challenging research
perspective is to compare the difficulties of rendering certain transition relations
polynomially transparent with other problems in complexity theory.

Secondly, in this thesis a number of calculi and inference mechanisms have
been compared which play a central role in the area of automated deduction. We
have uncovered new results concerning mutual polynomial simulation between the
considered proof systems. Furthermore, the framework of connection tableaur has
been developed which turned out as an optimal environment for reformulating
and improving some of the well-known calculi like model elimination and the
connection calculus. The structural richness of this framework simplifies the
presentation of many calculi and permits more compact and elegant completeness
and simulation proofs than for some of the original formalisms. This is important
for further refinements and extensions of the systems and may help avoiding
redundant work in the different frameworks, as illustrated with a study of the
factorization and the C-reduction operations and their relation with lemmata
and the atomic cut rule. An interesting future task is a complete clarification of
all simulation possibilities between the presented systems.

Finally, we have designed proof procedures based on connection tableaux. It is
demonstrated that the developed pruning mechanisms can be implemented very
efficiently, by using a constraint technology based on syntactic term inequations.
Also, two fundamental results are given which demonstrate that local pruning
methods, i.e., methods that are restricted to the structures of deductions, are not
sufficient for avoiding all of the redundancies occurring during proof search. Ad-
ditionally, it is necessary to consider global techniques which compare deductions
with one another. Here the use of the matings framework facilitates a gain in
efficiency which cannot be achieved with the pure tableau format. In future also
the complexities of proof procedures need to be investigated, that is, the effort for
finding proofs. Since slight modifications of the control strategy can dramatically
change the behaviour of proof procedures, it is very difficult to find a reliable and
robust measure for the complexity of proof procedures.

References

[Aho et al., 1974] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms, Addison-Wesley, 1974.

[Andrews, 1981] P. Andrews. Theorem Proving via General Matings. Journal of
the Association for Computing Machinery, 28(2):193-214, 1981.

[Baaz and Leitsch, 1992] M. Baaz and A. Leitsch. Complexity of Resolution
Proofs and Function Introduction. Annals of Pure and Applied Logic, 57:181—
215, 1992.

[Beth, 1955] E. W. Beth. Semantic Entailment and Formal Derivability.
Mededlingen der Koninklijke Nederlandse Akademie van Wetenschappen,
18(13):309-342, 1955.

[Beth, 1959] E. W. Beth. The Foundations of Mathematics. North-Holland, Am-
sterdam, 1959.

[Bibel, 1981] W. Bibel. On Matrices with Connections. Journal of the ACM,
28:633-645, 1981.

[Bibel, 1985] W. Bibel. Automated Inferencing. Journal of Symbolic Computa-
tion, 1:245-260, 1985.

[Bibel, 1987] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braun-
schweig, second edition, 1987.

[Blésius et al., 1981] K. Blésius, N. Eisinger, J. Siekmann, G. Smolka, A. Herold,
and C. Walther. The Markgraf Karl Refutation Proof Procedure. In Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, pages
511-518, Vancouver, 1981.

[Boy de la Tour, 1990] T. Boy de la Tour. Minimizing the Number of Clauses
by Renaming. Proceedings of the 10th International Conference on Automated
Deduction, pages 558572, 1990.

[Buro and Kleine Biining, 1992] M. Buro and H. Kleine Biining. Report on a
SAT Competition. Technical report, Universitat Paderborn, 1992.

190 References

[Chang and Lee, 1973] C. Chang and R. Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, 1973.

[Church, 1936] A. Church. An Unsolvable Problem of Elementary Number The-
ory. American Journal of Mathematics, 58:345-363, 1936.

[Colmerauer, 1982] A. Colmerauer. Prolog and Infinite Trees. In Logic Program-
ming, K. L. Clark and S.-A. Térnlund (eds.), pages 231-251. Academic Press,
1982.

[Cook, 1971] S. A. Cook. The Complexity of Theorem-Proving Procedures. In
Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing,
Vol. 6, pages 151-58, 1971.

[Cook and Reckhow, 1973] S. A. Cook and R. A. Reckhow. Time Bounded Ran-
dom Access Machines. Journal of Computer and Systems Sciences, 7:354-375,
1973.

[Cook and Reckhow, 1974] S. A. Cook and R. A. Reckhow. On the Lengths of
Proofs in the Propositional Calculus. Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing, Seattle, Washington, pp. 135-148, 1974
(corrections are in SIGACT News 6(3):15-22, 1974).

[Corbin and Bidoit, 1983] J. Corbin and M. Bidoit. A Rehabilitation of Robin-
son’s Unification Algorithm. In Information Processing, pages 909-914. North-
Holland, 1983.

[Courcelle, 1983] B. Courcelle. Fundamental Properties of Infinite Trees. Theo-
retical Computer Science, 25:95-169, 1983.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A Computing Procedure
for Quantification Theory. Journal of the ACM, 7:201-215, 1960.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Loveland. A Machine Pro-
gram for Theorem Proving. Communications of the ACM, 5(7):394-397, 1962.

[Eder, 1985a] E. Eder. Properties of Substitutions and Unifications. Journal of
Symbolic Computation, 1:31-46, 1985.

[Eder, 1985b] E. Eder. An Implementation of a Theorem Prover based on the
Connection Method. In W. Bibel and B. Petkoff, editors, AIMSA: Artificial
Intelligence Methodology Systems Applications, pages 121-128. North—Holland,
1985.

[Eder, 1991] E. Eder. Consolution and its Relation with Resolution. Proceedings
of the 12th International Joint Conference on Artificial Intelligence (IJCAI-
91), Sydney, pages 132-136, Morgan Kaufmann, 1991.

References 191

[Eder, 1992] E. Eder. Relative Complexities of First-Order Calculi. Vieweg, 1992,

[Frege, 1879] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens, 1879. Reprinted 1964.

[Gallier, 1986] J. P. Gallier. Logic for Computer Science. Harper & Row, 1986.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.

[Gentzen, 1935] G. Gentzen. Untersuchungen iiber das logische Schliefien. Ma-
thematische Zeitschrift, 39:176-210 and 405-431, 1935. Engl. translation in
[Szabo, 1969].

[Gilmore, 1960] P. C. Gilmore. A Proof Method for Quantification Theory:
Its Justification and Realization. IBM J. Res. Develop., pages 28-35, 1960.
Reprinted in J. Siekmann and G. Wrightson (editors). Automation of Reason-
ing. Classical Papers on Computational Logic, Vol. 1, pages 151-158, Springer,
1983.

[Gddel, 1930] K. Gddel. Die Vollstandigkeit der Axiome des logischen Funktio-
nenkalkiils. Monatshefte fiir Mathematik und Physik, 37:349-360, 1930.

[Goerdt, 1989] A. Goerdt. Regular Resolution versus Unrestricted Resolution,
Universitat Duisburg, Schriftenreihe des Fachbereichs Mathematik. Technical
report, 1990, to appear in SIAM Journal of Computing.

[Haken, 1985] A. Haken. The Intractability of Resolution. Theoretical Computer
Science, 39:297-308, 1985.

[Herbrand, 1930] J. J. Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et des Lettres de Varsovie, Cl. III, math.-
phys., 33:33-160, 1930.

[Hilbert and Ackermann, 1928] D. Hilbert and W. Ackermann. Grundzige der
theoretischen Logik. Springer, 1928. Engl. translation: Mathematical Logic,
Chelsea, 1950.

[Hilbert and Bernays, 1934] D. Hilbert and P. Bernays. Grundlagen der Mathe-
matik. Vol. 1, Springer, 1934.

[Hintikka, 1955] K. J. J. Hintikka. Form and Content in Quantification Theory.
Acta Philosophica Fennica, 8:7-55, 1955.

[Hopcroft and Ullman, 1969] J. E. Hopcroft and J. D. Ullman. Formal Languages
and their Relations to Automata. Reading, Mass., 1969.

[Huet, 1976] G. Huet. Resolution d’equations dans les languages d’ordre
1,2,...,w. PhD thesis, Université de Paris VII, 1976.

192 References

[Huet, 1980] G. Huet. Confluent Reductions: Abstract Properties and Applica-
tions to Term Rewriting Systems. Journal of the Association for Computing
Machinery, 27(4):797-821, 1980.

[Jaffar, 1984] J. Jaffar. Efficient Unification over Infinite Terms. New Generation
Computing, 2:207-219, 1984.

[Kapur and Narendran, 1986] D. Kapur and P. Narendran. NP-Completeness of
the Set Unification and Matching Problems. Proceedings of the 8th Interna-
tional Conference on Automated Deduction, pages 487-495, 1986.

[Kleene, 1967] S. C. Kleene. Mathematical Logic. Wiley, New York, 1967.

[Knuth, 1968] D. E. Knuth. The Art of Computer Programming. Addison-Wesley,
Reading, Mass., 1968.

[Korf, 1985] R. E. Korf. Depth-First Iterative Deepening: an Optimal Admissible
Tree Search. Artificial Intelligence, 27:97-109, 1985.

[Kowalski and Hayes, 1969] R. A. Kowalski and P. Hayes. Semantic Trees in
Automatic Theorem Proving. Machine Intelligence, 4:87-101, 1969.

[Kowalski, 1975] R. A. Kowalski. A Proof Procedure based on Connection
Graphs. Journal of the Association for Computing Machinery, 22:572-595,
1975.

[Krivine, 1971 J.-L. Krivine. Introduction to Aziomatic Set Theory, Reidel, Dor-
drecht, 1971.

[Lassez et al., 1988] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification
Revisited. Foundations of Deductive Databases and Logic Programming (ed.
J. Minker), pages 587625, Morgan Kaufmann Publishers, Los Altos, 1988.

[Letz, 1988] R. Letz. Expressing First Order Logic within Horn Clause Logic.
Technical report FKI-96-c-88, Technische Universitat Miinchen, 1988.

[Letz et al., 1992] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO:
A High-Performance Theorem Prover. Journal of Automated Reasoning,
8(2):183-212, 1992.

[Letz, 1993a] R. Letz. The Deductive Power of the Cut Rule. Technical report,
Technische Universitat Miinchen, 1993.

[Letz, 1993b] R. Letz. On the Polynomial Transparency of Resolution. Pro-
ceedings of the 13th International Joint Conference on Artificial Intelligence
(IJCAI-93), pages 123-129, Chambery, France, Morgan Kaufmann, 1993.

References 193

[Li and Vitdnyi, 1990] M. Li and P. M. B.Vitdnyi. Kolmogorov Complexity and
its Applications. Handbook of Theoretical Computer Science (ed. J. van Leeu-
ven), Vol. A, pages 187-254, Elsevier Science Publishers, 1990.

[Lloyd, 1984] J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.
Second edition, 1987.

[Loveland, 1968] D. W. Loveland. Mechanical Theorem Proving by Model Elim-
ination. Journal of the Association for Computing Machinery, 15(2):236-251,
1968.

[Loveland, 1969] D. W. Loveland. A Simplified Format for the Model Elimina-
tion Theorem-Proving Procedure. Journal of the Association for Computing
Machinery, 16:349-363, 1969.

[Loveland, 1978] D. W. Loveland. Automated Theorem Proving: a Logical Basis.
North-Holland, 1978.

[Luckham, 1970] D. Luckham. Refinement Theorems in Resolution Theory. Sym-
posium on Automatic Demonstration, Lecture Notes on Mathematics 125,
pages 163-190, Springer, Berlin, 1970.

[Lukasiewicz and Tarski, 1930] J. Lukasiewicz and A. Tarski. Untersuchungen
iiber den Aussagenkalkiil. Comptes rendus des Séances de la Société des Sci-
ences et des Lettres de Varsovie, 23:30-50, 1930.

[Martelli and Montanari, 1976] A. Martelli and U. Montanari. Unification in Lin-
ear Time and Space: a Structured Presentation. Technical report. Internal Rep.
No. B76-16, 1976.

[Martelli and Montanari, 1982] A. Martelli and U. Montanari. An Efficient Unifi-
cation Algorithm. ACM Transactions on Programming Languages and Systems,
Vol. 4, No. 2, pages 258282, 1982.

[Mayr, 1991] K. Mayr. Personal communication, Technische Universitit Miin-
chen, 1991.

[McCarthy et al., 1962] J. McCarthy, P. W. Abrahams, D. J. Edwards,
T. P. Hart, and M. 1. Levin. The Lisp 1.5 Programmers Manual. MIT Press,
Cambridge, 1962.

[McCune, 1988] W. McCune. OTTER users’ guide. Technical report, Mathe-
matics and Computer Sci. Division, Argonne National Laboratory, Argonne,
Illinois, USA, May 1988.

[Moret, 1982] B. M. E. Moret. Decision Trees and Diagrams. ACM Computing
Surveys, 14(4):593-623, 1982.

194 References

[Ohlbach, 1991] H.-J. Ohlbach. Semantics Based Translation Methods for Modal
Logics. Journal of Logic and Computation, 1(5):691-746, 1991.

[Ohlbach and Siekmann, 1991] H.-J. Ohlbach and J. H. Siekmann. The Markgraf
Karl Refutation Proof Procedure. In Computational Logic, Essays in Honour
of John Alan Robinson, pages 41-112, MIT press, 1991.

[Paterson and Wegman, 1978] M. S. Paterson and M. N. Wegman. Linear Unifi-
cation. Journal of Computer and Systems Sciences, 16:158-167, 1978.

[Plaisted, 1990] D. A. Plaisted. A Sequent-Style Model Elimination Strategy and
a Positive Refinement. Journal of Automated Reasoning, 6(4):389-402, 1990.

[Prawitz, 1960] D. Prawitz. An Improved Proof Procedure. Theoria, 26:102-139,
1960.

[Prawitz, 1969] D. Prawitz. Advances and Problems in Mechanical Proof Pro-
cedures. In J. Siekmann and G. Wrightson (editors). Automation of Reason-
ing. Classical Papers on Computational Logic, Vol. 2, pages 285-297, Springer,
1983.

[Reckhow, 1976] R. A. Reckhow. On the Lenghts of Proofs in the Propositional
Calculus. PhD thesis, University of Toronto, 1976.

[Robinson, 1965a] J. A. Robinson. A Machine-oriented Logic Based on the Reso-
lution Principle. Journal of the Association for Computing Machinery, 12:23—
41, 1965.

[Robinson, 1965b] J. A. Robinson. Automatic Deduction with Hyper-Resolution.
International Journal Comp. Math., 1:227-234, 1965.

[Robinson, 1968] J. A. Robinson. The Generalized Resolution Principle. Machine
Intelligence, 3:77-94, 1968.

[Shannon, 1938] C. E. Shannon. A Symbolic Analysis of Relay and Switching
Circuits. Transactions of AIEFE, 57:713-723, 1938.

[Shostak, 1976] R. E. Shostak. Refutation Graphs. Artificial Intelligence, 7:51-
64, 1976.

[Siekmann and Wrightson, 1983] J. Siekmann and G. Wrightson (editors). Au-
tomation of Reasoning. Classical Papers on Computational Logic, Vol. 1 and
2, Springer, 1983.

[Slagle, 1967] J. R. Slagle. Automatic Theorem Proving with Renamable and
Semantic Resolution. Journal of the Association for Computing Machinery,
14:687-697, 1967.

References 195

[Smullyan, 1968] R. M. Smullyan. First Order Logic. Springer, 1968.

[Statman, 1979] R. Statman. Lower Bounds on Herbrand’s Theorem. In Pro-
ceedings American Math. Soc., 75:104-107, 1979.

[Stickel, 1988] M. A. Stickel. A Prolog Technology Theorem Prover: Implemen-
tation by an Extended Prolog Compiler. Journal of Automated Reasoning,
4:353-380, 1988.

[Szabo, 1969] M. E. Szabo. The Collected Papers of Gerhard Gentzen. Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1969.

[Tarski, 1936] A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen.
Studia Philosophica, 1, 1936.

[Tseitin, 1970] G. S. Tseitin. On the Complexity of Derivations in the Proposi-
tional Calculus. In A. O. Slisenko (ed.), Studies in Constructive Mathematics
and Mathematical Logic 11, pages 115125, 1970.

[Turing, 1936] A. M. Turing. On Computable Numbers, with an Application to
the Entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230-265, 1936.

[Urquhart, 1987] A. Urquhart. Hard Examples for Resolution. Journal of the
Association for Computing Machinery, 34(1):209-219, 1987.

[van Emde Boas, 1990] P. van Emde Boas. Machine Models and Simulations.
Handbook of Theoretical Computer Science (ed. J. van Leeuven), Vol. A, pages
1-66, Elsevier Science Publishers, 1990.

[van Leeuven, 1990] J. van Leeuven. Graph Algorithms. Handbook of Theoretical
Computer Science (ed. J. van Leeuven), Vol. A, pages 527-631, Elsevier Science
Publishers, 1990.

[van Orman Quine, 1955] W. van Orman Quine. A Way to Simplify Truth Func-
tions. American Mathematical Monthly, 62, 1955.

[Venturini-Zilli, 1975] M. Venturini-Zilli. Complexity of the Unification Algo-
rithm for First-Order Expressions. Technical report, Res. Rep. Consiglio
Nazionale delle Ricerche Istituto per le Applicazioni del Calcolo, Rome, 1975.

[Wallen, 1989] L. Wallen. Automated Deduction for Non-Classical Logic. MIT
Press, Cambridge, Mass., 1989.

[Warren, 1983] D. H. D. Warren. An Abstract PROLOG Instruction Set. Tech-
nical report, SRI, Menlo Park, California, USA, 1983.

