
HabilitationsschriftTableau and Connection Calculi.Structure, Complexity, ImplementationReinhold LetzDecember 27, 1999

Contents
Introduction 51 Preliminaries 91.1 Classical First-Order Logic . 91.1.1 Syntax of First-Order Logic 91.1.2 Semantics of Classical First-Order Logic 141.1.3 Variable Substitutions . 191.2 Normal Forms and Normal Form Transformations 211.2.1 Prenex and Skolem Formulae 211.2.2 Herbrand Interpretations 241.2.3 Formulae in Clausal Form 272 Tableau Systems 292.1 First-Order Sentence Tableaux . 292.1.1 Quanti�er Elimination in Unifying Notation 292.1.2 Completeness of Sentence Tableaux 332.1.3 Re�nements of Tableaux . 392.2 Free-variable Tableaux . 442.2.1 Uni�cation . 442.2.2 Generalized Quanti�er Rules 502.2.3 Completeness of Free-Variable Tableaux 542.2.4 Proof Procedures for Free-Variable Tableaux 563 Tableaux with Connections 613.1 Clausal Tableaux . 613.2 Connection Tableaux . 633.3 Proof Search in Connection Tableaux 653.3.1 Completeness Bounds for Connection Tableaux 653.4 Subgoal Processing . 683.4.1 Subgoal Reordering . 693.4.2 Subgoal Alternation . 701

2 CONTENTS4 Related Calculi and Connection Conditions 754.1 Connection Tableaux and Related Calculi 754.1.1 Model Elimination Chains 774.1.2 The Connection Method . 784.1.3 Matings-based Connection Procedures 794.2 Other Clausal Tableau Calculi . 814.2.1 Restart Model Elimination 814.2.2 Hyper Tableaux . 814.2.3 Disconnection Tableaux . 845 Search Pruning in Connection Tableaux 875.1 Structural Re�nements of Connection Tableaux 875.1.1 Regularity . 875.1.2 Tautology Elimination . 885.1.3 Tableau Clause Subsumption 885.1.4 Strong Connectedness . 895.1.5 Use of Relevance Information 905.2 Completeness of Connection Tableaux 915.3 Intertableaux Pruning . 935.3.1 Using Matings for Pruning Tableaux 945.3.2 Tableau Subsumption . 985.3.3 Failure Caching . 1006 Methods of Shortening Proofs 1056.1 Controlled Integration of the Cut Rule 1066.1.1 Factorization and Complement Splitting 1066.1.2 The Folding Up Rule . 1096.1.3 The Folding Down Rule . 1126.1.4 Enforced Folding and Strong Regularity 1136.1.5 The Bene�t of Controlled Cuts in Proof Search 1176.2 Liberalizations of the �-Rule . 1186.3 Liberalization of the Closure Rule 1196.3.1 Hyper Tableaux with Local Variables 1217 Complexities of Minimal Proofs 1237.1 Proof Complexity Measures . 1237.2 Minimal Proof Lengths in Propositional Logic 1257.2.1 Results for Cut-free Clausal Tableaux 1257.2.2 Results for Clausal Tableaux with Controlled Cuts 1297.3 Semantic Trees and Resolution . 1407.4 Results for First-Order Clausal Tableaux 143

CONTENTS 38 Complexities of Search Spaces 1478.1 Complexities of Iterative-Deepening Bounds 1478.1.1 Upper Bounds of Bounded Search Spaces 1488.1.2 Lower Bounds for a Concrete Example 1498.1.3 Completeness Results wrt. Complexity Classes 1508.2 The Reductive Power of Re�nements 1598.2.1 Free Subgoal Selection Functions 1599 Implementation of Connection Tableaux 1619.1 Basic Data Structures and Operations 1629.1.1 Uni�cation . 1629.1.2 The Connection Graph . 1669.2 Prolog Technology Theorem Proving 1679.3 Extended Warren Machine Technology 1709.3.1 The Warren Abstract Machine 1709.3.2 The SETHEO Abstract Machine 1739.4 Prolog as Implementation Language 1759.5 A Data-Oriented Architecture . 1779.5.1 The Basic Data Structures 1789.5.2 The Proof Procedure . 1819.5.3 Reuse of Clause Instances 1819.6 Existing Connection Tableaux Implementations 18310 Constraint Technology 18510.1 Reformulating Re�nements as Constraints 18510.2 Disequation Constraints . 18710.2.1 Constraint Normalization 18710.3 Implementing Disequation Constraints 18910.3.1 E�cient Constraint Generation 18910.3.2 E�cient Constraint Propagation 19010.3.3 Internal Representation of Constraints 19110.3.4 Constraint Backtracking . 19210.4 Disequation Constraints in Prolog 19310.5 Constraints for Global Pruning Methods 194Conclusion 197Bibliography 201Index 210

4 CONTENTS

IntroductionIn the last years considerable progress has been made in the development oftableau-based proof systems for automated deduction. While the tableau frame-work always was very in
uential in proof theory and in the development of logics,particularly non-classical ones, it had almost no in
uence on automated deduc-tion in classical logic. This changed about ten years ago, when it was recognizedthat it is more natural to view automated deduction calculi like model elimina-tion or the connection method as particular re�nements of the tableau calculus.The central new feature of those re�nements is the active use of connections as acontrol mechanism for guiding the proof search. In order to emphasize this, theterm "connection tableaux" was introduced. This view had a very fruitful ef-fect on the research in the area. In the meantime, many proof systems developedin automated deduction have been reformulated in tableau style. As a positiveresult of these activities, the similarities and di�erences between many calculiwith formerly unclear relations could be identi�ed. Furthermore, new calculi havebeen developed which are based on tableaux and integrate connections in di�er-ent manners. Currently, some of the most powerful theorem proving systems arebased on tableaux with connections. So, within the last decade, tableaux havebecome one of the favorite paradigms for automated deduction in classical logic,too. The crucial feature which accounts for this fact is the active integration ofconnections. In this work we will attempt to give a comprehensive presentationof the state of the art of tableau and connection calculi for classical �rst-orderlogic.The material is organized in ten chapters. The �rst chapter provides the gen-eral background on �rst-order logic with function symbols; the syntax and theclassical model-theoretic semantics of �rst-order logic are introduced and thefundamental properties of variable substitutions are described. Furthermore, wemention the most important normal forms of �rst-order logic and present basicconcepts like Herbrand interpretations.In the second chapter, we turn to the tableau system for �rst-order logic dueto Smullyan and Fitting. Using uniform notation, �rst, tableau calculi for closedformulae are developed. We prove Hintikka's Lemma and the completeness of�rst-order tableaux by using a systematic tableau procedure. Furthermore, basicre�nements of tableaux are considered like strictness, regularity and the Herbrandcondition, and the properties of con
uence and nondestructiveness are introduced,5

6 CONTENTSwhich are important for the classi�cation of tableau-based proof systems. Thenwe turn to the crucial weakness of the traditional tableau systems with respectto proof search. It lies in the nature of the standard
-rule, which enforces thatinstantiations have to be chosen too early. The standard approach to remedy thisweakness is to permit free variables in a tableau which are treated as placeholdersfor terms, as so-called "rigid" variables; the instantiation of rigid variables thenis guided by uni�cation. Unfortunately, systematic procedures for free-variabletableaux cannot be devised as easily as for sentence tableaux. Therefore, typically,tableau enumeration procedures are used instead. We analyze the consequencesof this design decision with respect to the use of tableaux as decision proceduresfor certain formula classes and concerning the possibility of model generation.Following the tableau enumeration approach of free-variable tableaux, thecrucial demand is to reduce the number of tableaux to be considered by thesearch procedure. The central such concept in clause logic is the notion of aconnection, which can be employed in various ways to guide the tableau con-struction. In Chapter 3, we incorporate connections into tableaux. From here on,we concentrate on tableaux for formulae in clausal form. Clause logic permits amore condensed representation of tableaux and hence a simpli�cation of the tab-leau rules. Two connection conditions of increasing restrictiveness are introducedwhich de�ne the so-called connection tableaux. These calculi are compared withthe previous tableau systems and with each other with respect to proof searchand the preservation of properties like con
uence and nondestructiveness.In the fourth chapter, we illustrate the relation of connection tableaux withother calculi for automated deduction like model elimination and the connectioncalculi used in the connection method. Furthermore, we consider alternative ap-proaches of integrating connections into tableaux that are preserving con
uenceand hence facilitate a limited possibility of model generation. First, we introduceand compare di�erent variants of hyper tableaux. Hyper tableau systems havethe general problem that they still need a version of the traditional problem-atic
-rule. This rule can only be avoided for a restricted class of formulae. Wealso present the so-called disconnection method, which does not su�er from thisweakness and which represents the �rst con
uent integration of uni�cation intoa tableau branch saturation procedure. Both proof systems are nondestructive.In Chapter 5, a number of re�nements of tableau procedures are discussedwhich drastically reduce the number of permitted deductions and hence increasethe suitability of the respective tableau systems for automatic proof search. Onthe one hand, we consider further restrictions on the structure of tableaux. Onthe other hand, a signi�cant problem in proof search is that typically certaindeductions are redundant in the presence of other ones. These global approachesof inter-tableau pruning form the second class of methods for redundancy elim-ination. This chapter also includes a completeness proof for structurally re�nedconnection tableaux. Since connection tableaux are both noncon
uent and de-structive, also a fundamentally di�erent technique for proving completeness hasto be used.In Chapter 6 methods are developed which can produce signi�cantly shorter

CONTENTS 7tableau proofs. The techniques can be subdivided into three di�erent classes. Themechanisms of the �rst type are centered around controlled integrations of thecut rule; these methods are also related to the use of lemmata. Second, so-calledliberalizations of the �-rule are mentioned, which may lead to even nonelementar-ily smaller tableau proofs. Finally, we consider an improvement which concernstableaux with free variables, which typically are considered as rigid. We considerconditions under which free variables may be treated as universally quanti�ed onthe respective branch. This can lead to exponentially smaller proofs.Chapter 7 contains a number of complexity results on the various calculideveloped in this work and their relation to other important proof systems. Inthis chapter, the criterion for comparing calculi is their relation concerning theminimal complexities of proofs that can be generated by the calculi. We present awealth of so-called polynomial simulation results between the considered calculiand with other calculi from automated deduction like resolution and semantictrees.As a matter of fact, the classi�cation of calculi according to polynomial simu-latability must not be the only criterion for comparing calculi, since it completelyabstracts from the problem of proof search. In Chapter 8, we concentrate onthe complexities of search spaces. Since in general the search spaces are in�nite,we study the sizes of the �nite initial segments de�ned by the di�erent types ofiterative-deepening bounds, the inference, the depth, and the multiplicity bounds.It turns out that, for all three cases, one can obtain completeness results withrespect to well-known complexity classes like NP or NEXPTIME.In Chapter 9, we turn to the implementation of deduction systems based ontableaux with connections. Here, we concentrate on the techniques developed forthe non-con
uent and destructive connection tableau systems, since those are themost successful tableau-based systems in automated deduction. When consider-ing the implementation of such systems, we have a very special situation. This isbecause such connection tableaux are very close to SLD-resolution, which is thebasic inference system of the programming language Prolog. Consequently, onecan exploit this proximity by using as much as possible from the implementationtechniques developed for Prolog. One successful such approach is to extend ab-stract machine technology from the Horn case to the full clausal case. Anotherpossibility consists in taking Prolog itself as a programming language, by whichoften reasonably e�cient implementations of connection tableaux can be obtainedwith no or only very little implementational e�ort. Both of these approaches willbe described in detail. However, both approaches su�er from some in
exibilityproblems. Therefore we also consider in detail an implementation approach whichis not directly based on Prolog. The key idea for achieving high e�ciency in thisapproach is the extensive re-use of the results of expensive operations.The development of a redundancy elimination technique is one thing, its ef-�cient implementation is another one. Fortunately, many of the re�nements de-veloped for connection tableaux may be formulated in a uniform general setting,as conditions on the instantiations of variables, so-called disequation constraints.In Chapter 10, we develop the general framework of disequation constraints in-

8 CONTENTScluding universal variables and normalization, and describe in detail how e�cientconstraint handlers may be implemented.In the Conclusion, we summarize our work and sketch promising future ex-tensions of tableau systems with connections.AcknowledgementsI would like to thank Gernot Stenz and Andreas Wolf for valuable support anddiscussions during the completion of this work.

Chapter 1Preliminaries1.1 Classical First-Order LogicThe theory of �rst-order logic is a convenient and powerful formal abstractionfrom expressions and concepts occurring in natural language, and, most signif-icantly, in mathematical discourse. In this section we present the syntax andsemantics of �rst-order logic with function symbols. Furthermore, the centralmodi�cation operation on �rst-order expressions is introduced, the replacementof variables, and some of its invariances are studied.1.1.1 Syntax of First-Order LogicPropositional logic deals with sentences and their composition, hence the alphabetof a propositional language consists of only three types of symbols, propositionalvariables, logical symbols, and punctuation symbols. First-order logic does notstop at the sentence level, it can express the internal structure of sentences. In�rst-order logic, the logical structure and content of assertions of the followingform can be studied that have no natural formalization in propositional logic.Example 1.1 If every person that is not rich has a rich father, then some richperson must have a rich grandfather.In order to express such formulations, a �rst-order alphabet has to providesymbols for denoting objects, functions, and relations. Furthermore, it must bepossible to make universal or existential assertions, hence we need quanti�ers.Altogether, the alphabet or signature of a �rst-order language will be de�ned asconsisting of six disjoint sets of symbols.De�nition 1.2 (First-order signature) A �rst-order signature is a pair � = hA; aiconsisting of a denumerably in�nite alphabet A and a partial mapping a: A �!N0 , associating natural numbers with certain symbols in A, called their arities,9

10 CHAPTER 1. PRELIMINARIESsuch that A can be partitioned into the following six pairwise disjoint sets ofsymbols.1. An in�nite set V of variables, without arities.2. An in�nite set of function symbols, all with arities such that there are in-�nitely many function symbols of every arity. Nullary function symbols arecalled constants.3. An in�nite set of predicate symbols, all with arities such that there arein�nitely many predicate symbols of every arity.4. A set of connectives consisting of �ve distinct symbols :, ^, _, !, and$, the �rst one with arity 1 and all others binary. We call : the negationsymbol, ^ is the conjunction symbol, _ is the disjunction symbol, ! is thematerial implication symbol, and $ is the material equivalence symbol,5. A set of quanti�ers consisting of two distinct symbols 8, called the universalquanti�er, and 9, called the existential quanti�er, both with arity 2.6. A set of punctuation symbols consisting of three distinct symbols withoutarities, which we denote with the symbols `(', `)', and `;'.Notation 1.3 Normally, we will denote variables and function symbols with lower-case letters and predicate symbols with upper-case letters. Preferably, we use forvariables letters from `u' onwards; for constants the letters `a', `b', `c', `d', and `e';for function symbols with arity � 1 the letters `f ', `g' and `h'; and for predicatesymbols the letters `P ', `Q' and `R'; nullary predicate symbols shall occasionallybe denoted with lower-case letters. Optionally, subscripts will be used. We do notdistinguish between symbols and unary strings consisting of symbols, the contextwill clear up possible ambiguities. We will always talk about symbols of �rst-orderlanguages and never give examples of concrete expressions within a speci�c objectlanguage.Given a �rst-order signature �, the corresponding �rst-order language is de-�ned inductively1 as a set of speci�c strings over the alphabet of the signature. Inour presentation of �rst-order languages we use pre�x notation for the representa-tion of terms and atomic formulae, and in�x notation for the binary connectives.Let in the following � = hA; ai be a �xed �rst-order signature.De�nition 1.4 (Term)1. Every variable in A is said to be a term over �.2. If f is an n-ary function symbol in A with n � 0 and t1; : : : ; tn are termsover �, then the concatenation f(t1; : : : ; tn) is a term over �.1In inductive de�nitions we shall, conveniently, omit the explicit formulation of the necessitycondition.

1.1. CLASSICAL FIRST-ORDER LOGIC 11De�nition 1.5 (Atomic formula) If P is (the unary string consisting of) an n-ary predicate symbol in A with n � 0 and t1; : : : ; tn are terms over �, then theconcatenation P (t1; : : : ; tn) is an atomic formula, or atom, over �.Notation 1.6 Terms of the form a() and atoms of the form P () are abbreviatedby writing just a and P , respectively.De�nition 1.7 (Formula)1. Every atom over � is a formula over �.2. If � and 	 are formulae over � and x is (the unary string consisting of) avariable in A, then the following concatenations are also formulae over �::�, called the negation of �,(� ^), called the conjunction of � and 	,(� _), called the disjunction of � and 	,(�!), called the material implication of 	 by �,(�$), called the material equivalence of � and 	,8x�, called the universal quanti�cation of � in x, and9x�, called the existential quanti�cation of � in x.De�nition 1.8 ((Well-formed) expression) All terms and formulae over � arecalled (well-formed) expressions over �.De�nition 1.9 (First-order language) The set of all (well-formed) expressions over� is called the �rst-order language over �.De�nition 1.10 (Complement) The complement of any negated formula :� is �and the complement of any unnegated formula � is its negation :�; we denotethe complement of a formula � with ��.De�nition 1.11 (Literal) Every atomic formula and every negation of an atomicformula is called a literal.Recalling the assertion given in Example 1.1: \if every person that is not richhas a rich father, then some rich person must have a rich grandfather," a possible(abstracted) �rst-order formalization would be the following formula.Example 1.12 8x(:R(x)! R(f(x)))! 9x(R(x) ^ R(f(f(x)))).De�nition 1.13 (Subexpression) If an expression � is the concatenation of stringsW1; : : : ;Wn, in concordance with the De�nitions 1.4 to 1.7, then any expressionamong these strings is called an immediate subexpression of �. The sequenceobtained by deleting all elements from W1; : : : ;Wn that are not expressions iscalled the immediate subexpression sequence of �. Among the stringsW1; : : : ;Wnthere is a unique string W whose symbol is a connective, a quanti�er, a functionsymbol, or a predicate symbol; W is called the dominating symbol of �. An

12 CHAPTER 1. PRELIMINARIESexpression 	 is said to be a subexpression of an expression � if the pair h	;�iis in the transitive closure of the immediate subexpression relation. Analogously,the notions of (immediate) subterms and (immediate) subformulae are de�ned.Example 1.14 According to our conventions of denoting symbols and strings, aformula of the form P (x; f(a; y); x) has the immediate subexpression sequencex; f(a; y); x; the immediate subexpressions x and f(a; y); the subexpressions x,f(a; y), a, and y; and, lastly, P as dominating symbol.We have to provide a means for addressing di�erent occurrences of symbolsand subexpressions in an expression E. One could simply address occurrences bygiving the �rst and last word positions in E. Although this way occurrences ofsymbols and subexpressions in an expression could be uniquely determined, thisnotation has the disadvantage that whenever expressions are modi�ed, e.g., byconcatenating them or by replacing an occurrence of a subexpression, then theaddresses of the occurrences may change completely. We will use a notation whichis more robust concerning concatenations of and replacements in expressions. Thisnotation is motivated by a symbol tree representation of logical expressions, asdisplayed in Figure 1.1. ��� QQQ��� QQQ��� QQQ@@�� �� @@�� @@

8x 9y Px y x :Py x

1 1 11 111
2 2 22 2 2

_ 8
Figure 1.1: Symbol tree of the formula 8x9y(P (x; y) _ 8x:P (y; x)).Each occurrence of a symbol or a subexpression in an expression can beuniquely determined by a sequence of natural numbers that encodes the edgesto be followed in the symbol tree. Formally, tree positions can be de�ned asfollows.De�nition 1.15 (Position) For any expression E,1. if s is the dominating symbol of an expression E, then the position both ofE and of the dominating occurrence of s in E is the empty sequence ;.

1.1. CLASSICAL FIRST-ORDER LOGIC 132. if E1; : : : ; En is the immediate subexpression sequence of E and if p1; : : : ; pnis the position of an occurrence of an expression or a symbol W in Ei,1 � i � n, then the position of that occurrence of W in E is the sequencei; p1; : : : ; pn.An occurrence of a symbol or an expression W with position p1; : : : ; pn in anexpression E is denoted with p1;:::;pnW .For example, the occurrences of the variable x in the formula 8x9y(P (x; y) _8x:P (y; x)) are 1x, 2;2;1;1x, 2;2;2;1x, and 2;2;2;2;1;2x. Since it is essential to as-sociate variable occurrences in an expression with occurrences of quanti�ers, weneed the concept of the scope of a quanti�er occurrence.De�nition 1.16 (Scope of a quanti�er occurrence) If p1;:::;pmQ is the occurrenceof a quanti�er in a formula �, then the occurrence of the respective quanti�cationp1;:::;pmQx	 is called the scope of p1;:::;pmQ in �; every occurrence of the structurep1;:::;pm;pm+1;:::;pnW (m � n) of symbols or expressions in � is said to be in thescope of p1;:::;pmQ in �.Referring to the formula in Figure 1.1, the occurrence 2;2;1P (x; y) is in thescope of only one quanti�er occurrence, namely, ;8, whereas 2;2;2;2;1P (y; x) is inthe scope of both occurrences of the universal quanti�er.De�nition 1.17 (Bound and free variable occurrence) If an occurrence of a vari-able p1;:::;pm;pm+1;:::;pnx, m < n, in an expression � is in the scope of a quanti�eroccurrence p1;:::;pmQ, then that variable occurrence is called a bound occurrenceof x in �; the variable occurrence is said to be bound by the rightmost such quan-ti�er occurrence in the string notation of �, i.e., by the one with the greatestindex m < n. A variable occurrence is called free in an expression if it is notbound by some quanti�er occurrence in the expression.Accordingly, the rightmost occurrence 2;2;2;2;1;2x of x in the formula in Fig-ure 1.1 is bound by the universal quanti�er at position 2; 2; 2. Note that everyoccurrence of a variable in a well-formed expression is bound by at most onequanti�er occurrence in the expression.De�nition 1.18 (Closed and ground expression, sentence) If an expression doesnot contain variables, it is called ground, and if it does not contain free variables,it is termed closed. Closed formulae are called sentences.De�nition 1.19 (Closures of a formula) Let � be a formula and fx1; : : : ; xng theset of free variables of �, then the sentence 8x1 � � � 8xn� is called a universalclosure of �, and the sentence 9x1 � � � 9xn� is called an existential closure of �.Notation 1.20 In order to gain readability, we shall normally spare brackets. Asusual, we permit to omit outermost brackets. Furthermore, for arbitrary binaryconnectives �1; �2, any formula of the shape � �1 (�2 �) may be abbreviated by

14 CHAPTER 1. PRELIMINARIESwriting just � �1 	 �2 � (right bracketing). Accordingly, if brackets are missing,the dominating in�x connective is always the leftmost one.1.1.2 Semantics of Classical First-Order LogicNow we are going to present the classical model-theoretic semantics of �rst-orderlogic due to [Tarski, 1936]. In contrast to propositional logic, where it is su�cientto work with Boolean valuations and where the atomic formulae can be treatedas the basic meaningful units, the richer structure of the �rst-order languagerequires a �ner analysis. In �rst-order logic the basic semantic components arethe denotations of the terms, a collection of objects termed universe.De�nition 1.21 (Universe) Any non-empty collection2 of objects is called a uni-verse.The function symbols and the predicate symbols of the signature of a �rst-order language are then interpreted as functions and relations over such a uni-verse.Notation 1.22 For every universe U , we denote with UF the collection of mappingsSn2N0 Un �! U , and with UP the collection of relations Sn2N0 P(Un) withP(Un) being the power set of U . Note that any nullary mapping in UF is fromthe singleton set f;g to U , and hence, subsequently, will be identi�ed with thesingle element in its image. Any nullary relation in UP is just an element of thetwo-element set f;; f;gg (= f0; 1g, according to the Zermelo-Fraenkel de�nitionof natural numbers). We call the sets ; and f;g truth values, and abbreviate themwith ? and >, respectively.This way the mapping of atomic formulae to truth values as performed forthe case of propositional logic is captured as a special case by the more generalframework developed now. In the following, we denote with L a �rst-order lan-guage, with V , F , and P the sets of variables, function symbols, and predicatesymbols in the signature of L, respectively, and with T and W the sets of termsand formulae in L, respectively.De�nition 1.23 (First-order structure, interpretation) A (�rst-order) structure isa pair hL;Ui consisting of a �rst-order language L and a universe U . An inter-pretation for a �rst-order structure hL;Ui is a mapping I: F [P �! UF [UPsuch that1. I maps every n-ary function symbol in F to an n-ary function in UF .2. I maps every n-ary predicate symbol in P to an n-ary relation in UP .2Whenever the term `collection' will be used, no restriction is made with respect to thecardinality of an aggregation, whereas the term `set' indicates that only denumerably manyelements are contained.

1.1. CLASSICAL FIRST-ORDER LOGIC 15Since formulae may contain free variables, the notion of variable assignmentsis be needed.De�nition 1.24 (Variable assignment) A variable assignment from a �rst-orderlanguage L to a universe U is a mapping A: V �! U .Once an interpretation and a variable assignment have been �xed, the meaningof any term and any formula in the language is uniquely determined.De�nition 1.25 (Term assignment) Let I be an interpretation for a structurehL;Ui, and let A be a variable assignment from L to U . The term assignment ofI and A is the mapping IA: T �! U de�ned as follows.1. For every variable x in V : IA(x) = A(x).2. If f is a function symbol of arity n � 0 and t1; : : : ; tn are terms, thenIA(f(t1; : : : ; tn)) = I(f)(IA(t1); : : : ; IA(tn)):Finally, we come to the assignment of truth values to formulae, which is de�nedby simultaneous induction.De�nition 1.26 (Formula assignment) Let I be an interpretation for a structurehL;Ui, and let A be a variable assignment from L to U . The formula assignmentof I and A is the mapping IA: W �! f>;?g de�ned as follows. Let � and 	denote arbitrary formulae of L.1. For any nullary predicate symbol P in the signature of L: IA(P) = I(P).2. If P is a predicate symbol of arity n > 0 and t1; : : : ; tn are terms, thenIA(P (t1; : : : ; tn)) = � > if hIA(t1); : : : ; IA(tn)i 2 I(P)? otherwise.3. IA((� _)) = � > if IA(�) = > or IA() = >? otherwise.4. IA(:�) = � > if IA(�) =?? otherwise.5. IA((� ^)) = IA(:(:� _ :)):6. IA((�!)) = IA((:� _)):7. IA((�$)) = IA(((�!) ^ (! �))):

16 CHAPTER 1. PRELIMINARIES8. A variable assignment is called an x-variant of a variable assignment if bothassignments di�er at most in the value of the variable x.IA(8x�) = � > if IA0(�) = > for all x-variants A0 of A? otherwise.9. IA(9x�) = IA(:8x:�):We extend the de�nition to sets S of formulae by setting IA(S) = > if and onlyif IA(�) =>, for all formulae � 2 S.Particularly interesting is the case of interpretations for sentences, i.e., closedformulae. From the de�nition of formula assignments (items 8 and 9) it followsthat, for any sentence and any interpretation I, the respective formula assign-ments are all identical, and hence do not depend on the variable assignments.Consequently, for sentences, we shall speak of the formula assignment of an inter-pretation I, and write it I, too. Possible ambiguities between an interpretationand the corresponding formula assignment will be clari�ed by the context.To comprehend the manner in which formula assignments give meaning to ex-pressions, see Example 1.27. The example illustrates how formulae are interpretedin which an occurrence of a variable is in the scopes of di�erent quanti�er oc-currences. Loosely speaking, De�nition 1.26 guarantees that variable assignmentsobey \dynamic binding" rules (in terms of programming languages), in the sensethat a variable assignment to a variable x for an expression � is overwritten bya variable assignment to the same variable x in a subexpression of �.Example 1.27 Two sentences � = 8x(9xP (x) ^ Q(x)) and 	 = 8x9x(P (x) ^Q(x)). Given a universe U = fu1; u2g, let an interpretation I(P) = I(Q) = fu1g.Then I(�) =? and I() = >.The central semantic notion is that of a model.De�nition 1.28 (Model) Let I be an interpretation for a structure hL;Ui, A acollection of variable assignments from L to U , and � a �rst-order formula. We saythat I is an A-model for � if IA(�) =>, for every variable assignment A 2 A; ifI is an A-model for � and A is the collection of all variable assignments, then I iscalled a model for �. If I is an (A-)model for every formula in a set of �rst-orderformulae S, then we also call I an (A-)model for S.The notions of satis�ability and validity abstract from the consideration ofspeci�c models.De�nition 1.29 (Satis�ability, validity) Let � be a (set of) formula(e) of a �rst-order language L (and A a collection of variable assignments). The set � is called(A-)satis�able if there exists an (A-)model for �. We call � valid if every inter-pretation is a model for �.

1.1. CLASSICAL FIRST-ORDER LOGIC 17De�nition 1.30 (Implication, equivalence) Let � and � be two (sets of) �rst-orderformulae.1. We say that � implies �, written � j= �, if every model for � is a modelfor �; obviously, if � = ;, then � is valid, and we simply write j= �.2. � strongly implies � if, for every universe U and every variable assignmentA from L to U : every fAg-model for � is an fAg-model for �.If � and � (strongly) imply each other, they are called (strongly) equivalent.Note that according to this de�nition any �rst-order formula is equivalent toany-one of its universal closures. Obviously, for (sets of) sentences, implicationand strong implication coincide. Furthermore, the notion of material (object-level) implication and the strong (meta-level) implication concept of �rst-orderformulae are related as follows.Theorem 1.31 (Implication Theorem) Given two �rst-order formulae � and 	,� strongly implies 	 if and only if the formula �! 	 is valid.Proof For the \if"-part, assume �! 	 be valid. LetA be any variable assignmentand I an arbitrary fAg-model for �. By De�nition 1.26, IA(�) =? or IA() =>. By assumption, IA(�) = >; hence IA() = >, and I is an fAg-modelfor 	. For the \only-if"-part, suppose that � strongly implies 	. Let A be anyvariable assignment and I an arbitrary interpretation. Now, either IA(�) = ?;then, by De�nition 1.26, IA(� !) = >. Or, IA(�) = >; in this case, byassumption, I() = >; hence IA(� !) = >. Consequently, in either case Iis an fAg-model for �! 	. 2It is obvious that strongly equivalent formulae can be substituted for eachother in any context without changing the meaning of the context.Lemma 1.32 (Replacement Lemma) Given two strongly equivalent formulae Fand G and any formula � with F as subformula, if the formula 	 can be obtainedfrom � by replacing an occurrence of F in � with G, then � and 	 are stronglyequivalent.Another more subtle useful replacement property is the following.Lemma 1.33 If j= F ! G, then j= 8xF ! 8xG.Proof Assume j= F ! G. Let I be any interpretation and A any variable assign-ment with IA(8xF) = >. Then, for all x-variants A0 of A: IA0 (F) = > and, byassumption, IA0(G) = >. Consequently, IA(8xG) = > . 2The subsequently listed basic strong equivalences between �rst-order formulaecan also be demonstrated easily.

18 CHAPTER 1. PRELIMINARIESProposition 1.34 Let F , G, and H be arbitrary �rst-order formulae. All formulaeof the following structures are valid.(1) ::F $ F(2) :(F ^G)$ (:F _ :G) (De Morgan law for ^)(3) :(F _G)$ (:F ^ :G) (De Morgan law for _)(4) (F _ (G ^H))$ ((F _G) ^ (F _H)) (_-distributivity)(5) (F ^ (G _H))$ ((F ^G) _ (F ^H)) (^-distributivity)(6) :9xF $ 8x:F (98-conversion)(7) :8xF $ 9x:F (89-conversion)(8) 8x(F ^G)$ (8xF ^ 8xG) (8^-distributivity)(9) 9x(F _G)$ (9xF _ 9xG) (9_-distributivity)We conclude this part with proving a technically useful property of variableassignments.De�nition 1.35 Two variable assignments A and B are said to overlap on a setof variables V if for all x 2 V : A(x) = B(x).Notation 1.36 For any mapping3 f , its modi�cation by changing the value of xto u, i.e., (f n fhx; f(x)ig) [fhx; uig, will be denoted with fxu .Proposition 1.37 Let � be a formula of a �rst-order language L with V beingthe set of free variables in �, and U a universe. Then, for any two variableassignments A and B from L to U that overlap on V :(1) IA(�) = IB(�), and(2) if � = 9x	, then fu 2 U j IAxu() = >g = fu 2 U j IBxu() =>g.Proof (1) is obvious from De�nition 1.26 of formula assignments. For (2), consideran arbitrary element u 2 U with IAxu() = >. Since Axu and Bxu overlap onV [fxg, by (1), IBxu() = >, which proves the set inclusion in one direction.The reverse direction holds by symmetry. 23Mappings are considered as sets of ordered pairs.

1.1. CLASSICAL FIRST-ORDER LOGIC 191.1.3 Variable SubstitutionsThe concept of variable substitutions, which we shall introduce next, is the ba-sic modi�cation operation performed on logical expressions. Let in the followingdenote T the set of terms and V the set of variables of a �rst-order language.De�nition 1.38 ((Variable) substitution) A (variable) substitution is any map-ping � : V �! T where V is a �nite subset of V and x 6= �(x), for every x in thedomain of �. A substitution is called ground if no variables occur in the terms ofits range.De�nition 1.39 (Binding) Any element hx; ti of a substitution, abbreviated x=t,is called a binding . We say that a binding x=t is proper if the variable x does notoccur in the term t.Now, we consider the application of substitutions to logical expressions.De�nition 1.40 (Instance) If � is any expression and � is a substitution, then the�-instance of �, written ��, is the expression obtained from � by simultaneouslyreplacing every occurrence of each variable x 2 domain(�) that is free in � bythe term �(x). If � and 	 are expressions and there is a substitution � with	 = ��, then 	 is called an instance of �. Similarly, if S is a (collection of)set(s) of formulae, then S� denotes the (collection of the) set(s) of �-instances ofits elements.As a matter of fact, bound variable occurrences are not replaced. Furthermore,we are interested in substitutions which preserve the models of a formula. In orderto preserve modelhood for arbitrary logical expressions, the following property issu�cient.De�nition 1.41 (Free substitution) A substitution � is said to be free for anexpression � provided, for every free occurrence sx of a variable in �, all variableoccurrences in sx� are free in ��.While no bound variable occurrence can vanish when a substitution is applied,for free substitutions, no additional bound variable occurrences are imported. Thismeans that the following proposition holds.Proposition 1.42 A substitution � is free for an expression � if and only if anyvariable occurs bound at the same positions in � and in ��.Bringing in additional bound variables can lead to unsoundness, as shownwith the following example.Example 1.43 Consider a formula � of the form 9x(P (x; y; z) ^ :P (y; y; z)) andthe substitutions �1 = fy=zg and �2 = fy=xg. While �1 is free for � and� j= ��1 = 9x(P (x; z; z) ^ :P (z; z; z)), �2 is not, and indeed � 6j= ��2 =9x(P (x; x; z) ^ :P (x; x; z)).

20 CHAPTER 1. PRELIMINARIESThe following fundamental result relates substitutions and interpretations.Notation 1.44 If I is an interpretation, A a variable assignment, and � = fx1=t1;: : : ; xn=tng a substitution, then the variable assignment Ax1IA(t1) � � � xnIA(tn) (usingNotation 1.36) will be denoted with A�I . If the underlying interpretation is clearfrom the context, we will sometimes omit the subscript and simply write A�.Lemma 1.45 If � is a substitution that is free for a �rst-order expression E, then,for any interpretation I and any variable assignment A: IA(E�) = IA�(E).Proof The proof is by induction on the structural complexity of the expressionE. First, for any term, the result is immediate from the De�nition 1.25 of termassignments. The cases of quanti�er-free formula are also straightforward fromitems (1) { (7) of the De�nition 1.26 of formula assignments. We consider thecase of a universal formula 8xF in more detail. IA(8xF�) = > if and only if (byitem (8) of formula assignment) for all x-variants A0 of A: > = IA0 (F�) = (bythe induction hypothesis) IA0�(F) i� (since � is assumed to be free for F) forall x-variants A�0 of A�: IA�0 (F) = > i� (by item (8) of formula assignment)IA�(8xF) = >. The existential case is similar. 2Now we can state a very general soundness result for the application of substi-tutions to logical expressions. Let V denote the set of variables of the underlying�rst-order language.Proposition 1.46 (Substitution soundness) Given a �rst-order formula � and asubstitution � = fx1=t1; : : : ; xn=tng that is free for �, let V � V be any set ofvariables containing x1; : : : ; xn and A any collection of all variable assignmentsthat overlap on V n V . If an interpretation I is an A-model for �, then I is anA-model for ��.Proof Consider an arbitrary variable assignment A 2 A. Now, by assumption, Acontains all variable assignments that overlap on V n V where V is any supersetof fx1; : : : ; xng. Therefore, A� 2 A and hence IA(��) = >. Since � is free for�, Lemma 1.45 can be applied which yields that IA�(�) = IA(��) = >. 2As a special instance of this proposition we obtain the following corollary(simply set V = V and A will be the collection of all variable assignments).Corollary 1.47 For any formula � and any substitution � which is free for � :� j= ��.De�nition 1.48 (Composition of substitutions) Assume � and � to be substitu-tions. Let � 0 be the substitution obtained from the set fhx; t�i j x=t 2 �g byremoving all pairs for which x = t� , and let � 0 be that subset of � which containsno binding x=t with x 2 domain(�). The substitution � 0[� 0, written �� , is calledthe composition of � and � .

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 21Proposition 1.49 Let �, � and � be arbitrary substitutions and � any logical ex-pression such that � is free for �.1. �; = ;� = �, for the empty substitution ;.2. (��)� = �(��).3. (��)� = �(��).Proof (1) is immediate. For (2) consider any free occurrence sx of a variable xin �. We distinguish three cases. First, x =2 domain(�) and x =2 domain(�); thens(x�)� = sx = sx(��). If, secondly, x =2 domain(�) but x 2 domain(�), thens(x�)� = sx� = sx(��). Lastly, assume x 2 domain(�); as � was assumed freefor �, no variable occurrence in sx� is bound in ��, therefore s(x�)� = sx(��).Since sx was chosen arbitrary and only free variable occurrences were modi�ed,we have the result for �. For (3) let x be any variable. The repeated applicationof (2) yields that x((��)�) = (x(��))� = ((x�)�)� = (x�)(��) = x(�(��)). Thismeans that the substitutions (��)� and �(��) map every variable to the sameterm, hence they are identical. 2Summarizing these results, we have that ; acts as a left and right identity forcomposition; (2) expresses that under the given assumption substitution applica-tion and composition permute; and (3), the associativity of substitution compo-sition, permits to omit parentheses when writing a composition of substitutions.As a consequence of (1) and (3), the set of substitutions with the compositionoperation forms a semi-group.1.2 Normal Forms and Normal Form Transfor-mationsA logical problem for a �rst-order language consists in the task of determiningwhether a relation holds between certain �rst-order expressions. For an e�cientsolution of a logical problem, it is very important to know whether it is possibleto restrict attention to a proper sublanguage of the �rst-order language. Thisis because certain sublanguages permit the application of more e�cient solutiontechniques than available for the full �rst-order format. For classical logic, thiscan be strongly exploited by using prenex and Skolem forms.1.2.1 Prenex and Skolem FormulaeDe�nition 1.50 (Prenex form) A �rst-order formulae � is said to be a prenexformula or in prenex form if it has the structure Q1x1 � � �QnxnF , n � 0, wherethe Qi, 1 � i � n, are quanti�ers and F is quanti�er-free. We call F the matrixof �.Proposition 1.51 For every �rst-order formula � there is a formula in prenexform which is strongly equivalent to �.

22 CHAPTER 1. PRELIMINARIESProof We give a constructive method to transform any formula � over the connec-tives :, ^, and _ into prenex form|by the de�nition of formula assignment, theconnectives $ and ! can be eliminated before, without a�ecting strong equiva-lence. If Q is any quanti�er, 8 or 9, with �Q we denote the quanti�er 9 respectively8. Now, for any formula which is not in prenex form, one of the following twocases holds.1. � has a subformula of the structure :QxF ; then, by Proposition 1.34(6) and(7), and the Replacement Lemma (Lemma 1.32), the formula 	 obtainedfrom � by substituting all occurrences of :QxF in � by �Qx:F is stronglyequivalent to �.2. � has a subformula 	 of the structure (QxF � G) or (G � QxF) where �is ^ or _; let y be a variable not occurring in �, then, clearly 	 and 	0 =Qy(Ffx=yg �G) or Qy(G � Ffx=yg), respectively, are strongly equivalent;therefore, by the Replacement Lemma, the formula obtained by replacingall occurrences of 	 in � by 	0 is strongly equivalent to �.Consequently, in either case one can move quanti�ers in front without a�ectingstrong equivalence, and after �nitely many iterations prenex form is achieved. 2It is obvious that, except for the case of formulae containing $, the timeneeded for carrying out this procedure is bounded by a polynomial in the size ofthe input, and the resulting prenex formula has less than double the size of theinitial formula. The removal of $, however, can lead to an exponential increaseof the formula size (see [Reckhow, 1976]).De�nition 1.52 (Skolem form) A �rst-order formula � is said to be a Skolemformula or in Skolem form if it has the form 8x1 � � � 8xnF and F is quanti�er-free.The possibility of transforming any �rst-order formula into Skolem form isfundamental for the �eld of automated deduction. This is because the removal ofexistential quanti�ers facilitates a particularly e�cient computational treatmentof �rst-order formulae. Furthermore, the single step in which an existential quan-ti�er is removed, occurs as a basic component of any calculus for full �rst-orderlogic.De�nition 1.53 (Skolemization) Let S be a set of formulae containing a formula� with the structure 8y1 � � � 8ym9yF , m � 0, and x1; : : : ; xn the variables thatare free in 9yF . If f is an n-ary function symbol not occurring in any formula ofS (we say that f is new to S), then the formula 8y1 � � � 8ym(Ffy=f(x1; : : : ; xn)g)is named a Skolemization of � wrt. S.We have introduced a general form of Skolemization which is applicable toarbitrary, not necessarily closed, sets of �rst-order formulae in prenex form. Thisis necessary for the free-variable tableau systems developed in Section 4. When

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 23moving to a Skolemization of a formula, for any variable assignment A, the col-lection of fAg-models does not increase.Proposition 1.54 Given a formula � of a �rst-order language L, if 	 is a Skolem-ization of � wrt. a set of formulae S, then 	 strongly implies �.Proof Let � = 8y1 � � � 8ym9yF . First, we show that, for any term t, the sub-formula 9yF of � is strongly implied by F 0 = Ffy=tg. Let A be any variableassignment and I any fAg-model for F 0. By Lemma 1.45, IAfy=tg(F) = >. SinceAfy=tg is an y-variant of A, by the de�nition of formula assignments, IA(9yF) =>. Then, a repeated application of Lemma 1.33 yields that 	 = 8y1 � � � 8ymF 0strongly implies �. 2When moving to a Skolemization of a formula, the collection of models maydecrease, however. Consequently, for the transformation of formulae into Skolemform, equivalence must be sacri�ced, but the preservation of A-satis�ability canbe guaranteed, for any collection A of variable assignments.Proposition 1.55 Let 	 be a Skolemization of a formula � wrt. a set of formulaeS and A any collection of variable assignments. If S is A-satis�able, then S[f	gis A-satis�able.Proof By assumption, � 2 S has the structure 8y1 � � � 8ym9yF (m � 0); 	 hasthe form 8y1 � � � 8ymF 0 where F 0 = Ffy=f(x1; : : : ; xn)g; f is an n-ary functionsymbol new to S; and x1; : : : ; xn are the free variables in 9yF . Now let A be anycollection of variable assignments that has an A-model I for S. I need not be anA-model for 	, but we show that with a modi�cation of merely the meaning ofthe function symbol f an A-model for S [f	g can be speci�ed. First, we de�nea total and disjoint partition P on the collection of variable assignments A bygrouping together all elements in A that overlap on the variables x1; : : : ; xn. ByProposition 1.37, for any two variable assignments B and C in any element ofP : fu 2 U j IByu(F) = >g = fu 2 U j ICyu(F) = >g, i.e., for any element ofthe partition P , the collection of objects \with the property" F is unique; weabbreviate with Uu1;:::;un(F) the collection of objects determined by the variableassignments that map x1; : : : ; xn to the objects u1; : : : ; un, respectively. By theassumption of I being an A-model for �, none of these collections of objects isempty. In order to be able to identify elements in those possibly nondenumer-able collections, which is necessary to de�ne a mapping, we have to assume theexistence of a well-ordering4 � on U . For any collection M � U , let �M de-note the smallest element modulo �. Now we can de�ne a total n-ary mapping f:Un �! U by setting f(u1; : : : ; un) = �Uu1;:::;un(F) and an interpretation I	 = Iff(using Notation 1.36). Since the symbol f does not occur in any formula of S,4A total ordering � on a collection of objects S is a well-ordering on S if every non-emptysubcollection M of objects from S has a smallest element modulo �. Note that supposing theexistence of a well-ordering amounts to assuming the axiom of choice (for further equivalentformulations of the axiom of choice, consult, for example, [Krivine, 1971]).

24 CHAPTER 1. PRELIMINARIESI	 is an A-model for S. To realize that I	 is an A-model for 	, too, consideran arbitrary variable assignment A 2 A. Clearly, IA	 (9yF) = >. Let PA bethe element of the partition P that contains A. De�ne the variable assignmentA0 = Ayf(A(x1);:::;A(xn)). IA0	 (F) = > and hence IA0	 (Ffy=f(x1; : : : ; xn)g) = >.Now A and A0 are identical except for the value of y, but y does not occur freein Ffy=f(x1; : : : ; xn)g, therefore, IA	 (Ffy=f(x1; : : : ; xn)g) = >. 2Theorem 1.56 (Skolemization Theorem) Given a formula � of a �rst-order lan-guage L, let 	 be a Skolemization of � wrt. a set of formulae S and A anycollection of variable assignments. S is A-satis�able if and only if S [f	g isA-satis�able.Proof Immediate from the Propositions 1.54 and 1.55. 2Concerning the space and time complexity involved in a transformation intoSkolem form, the following estimate can be formulated.Proposition 1.57 Given a prenex formula � of a �rst-order language L, if 	 is aSkolem formula obtained from � via a sequence of Skolemizations, then size(),i.e., the length of the string 	, is smaller than size(�)2, and the run time of theSkolemization procedure is polynomially bounded by the size of �.Proof Every variable occurrence in � is bound by exactly one quanti�er occur-rence in �, and every variable occurrence in an inserted Skolem term is boundby a universal quanti�er. This entails that, throughout the sequence of Skolem-ization steps, whenever a variable occurrence is replaced by a Skolem term, thenno variable occurrence within an inserted Skolem term is substituted afterwards.Moreover, the arity of each inserted Skolem function is bounded by the numberof free variables in � plus the number of variables in the quanti�er pre�x of �.Therefore, the output size is quadratically bounded by the input size. Since inthe Skolemization operation merely variable replacements are performed, any de-terministic execution of the Skolemization procedure can be done in polynomialtime. 2Prenexing and Skolemization only work for classical logic, but not for intu-itionistic or other logics. In those cases, more sophisticated methods are neededto encode the nesting of the connectives and quanti�ers. Some of those are con-sidered in [Wallen, 1989], [Ohlbach, 1991].1.2.2 Herbrand InterpretationsThe standard theorem proving procedures are based on the following obviousproposition.Proposition 1.58 Given a set of sentences � and a sentence F , � j= F if andonly if � [f:Fg is unsatis�able.

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 25Accordingly, the problem of determining whether a sentence is logically im-plied by a set of sentences can be reformulated as an unsatis�ability problem.Demonstrating the unsatis�ability of a set of formulae of a �rst-order languageL, however, means to prove, for any universe U , that no interpretation for hL;Uiis a model for the set of formulae. A further fundamental result for the e�cientcomputational treatment of �rst-order logic is that, for formulae in Skolem form,it is su�cient to examine only the interpretations for one particular domain, theHerbrand universe of the set of formulae. Subsequently, let L denote a �rst-orderlanguage and aL a �xed constant in the signature of L.De�nition 1.59 (Herbrand universe) Let S be (a set of) formula(e) of L. WithSC we denote the set of constants occurring in (formulae of) S. The constantbase of S is SC if SC is non-empty, and the singleton set faLg if SC = ;. Thefunction base SF of S is the set of function symbols occurring in (formulae of)S with arities > 0. Then the Herbrand universe of S is the set of terms de�nedinductively as follows.1. Every element of the constant base of S is in the Herbrand universe of S.2. If t1; : : : ; tn are in the Herbrand universe of S and f is an n-ary functionsymbol in the function base of S, then the term f(t1; : : : ; tn) is in theHerbrand universe of S.De�nition 1.60 (Herbrand interpretation) Given a (set of) formula(e) S of a �rst-order language L with Herbrand universe U . A Herbrand interpretation for S isan interpretation I for the pair hL;Ui meeting the following properties.1. I maps every constant in SC to itself.2. I maps every function symbol f in SF with arity n > 0 to the n-ary functionthat maps every n-tuple of terms ht1; : : : ; tni 2 Un to the term f(t1; : : : ; tn).Proposition 1.61 For any (set of) �rst-order formulae S in Skolem form, if S hasa model, then it has a Herbrand model.Proof Let I 0 be an interpretation with arbitrary universe U 0 which is a modelfor S, and let U denote the Herbrand universe of S. First, we de�ne a mappingh: U �! U 0, as follows.1. For every constant c 2 U : h(c) = I 0(c).2. For every term f(t1; : : : ; tn) 2 U :h(f(t1; : : : ; tn)) = I 0(f)(h(t1); : : : ; h(tn)).Next, we de�ne a Herbrand interpretation I for S.3. For every n-ary predicate symbol P , n � 0, and any n-tuple of objectsht1; : : : ; tni 2 Un: ht1; : : : ; tni 2 I(P) if and only if hh(t1); : : : ; h(tn)i 2I 0(P).

26 CHAPTER 1. PRELIMINARIESNow let A be an arbitrary variable assignment A from L to U . With A 0 we denotethe functional composition ofA and h. It can be veri�ed easily by induction on theconstruction of formulae that I 0A0(S) = > entails IA(S) = >. The inductionbase is evident from the de�nition of I, and the induction step follows fromDe�nition 1.26. Consequently, I is a model for S. 2For formulae in Skolem form, the Herbrand universe is always rich enough tobe used as a representative for any other universe, and the question whether amodel exists can always be solved by restricting attention to Herbrand interpreta-tions. For formulae that are not in Skolem form, this does not work, as illustratedwith the following simple example.Example 1.62 The formula 9x(P (x)^:P (a)) is satis�able, but it has no Herbrandmodel.The fact that Herbrand interpretations are su�cient for characterizing mod-elhood in the case of Skolem formulae can be used for proving the L�owenheim-Skolem theorem.Theorem 1.63 (L�owenheim-Skolem theorem) Every satis�able (set of) �rst-orderformula(e) S has a model with a countable universe.Proof Given any satis�able (set of) �rst-order formula(e) S, let S 0 be a (setof) �rst-order formula(e) obtained from S by prenexing and Skolemization.5 ByPropositions 1.51 and 1.55, S 0 must be satis�able, too. Then, by Proposition 1.61,there exists a Herbrand model I for S 0 with a countable Herbrand universe, sinceobviously every Herbrand universe is countable. By Propositions 1.51 and 1.54,I must be a model for S. 2Working with Herbrand interpretations has the advantage that interpretationscan be represented in a very elegant manner.De�nition 1.64 (Herbrand base) Given a (set of) formula(e) S of a �rst-orderlanguage L with Herbrand universe U . The predicate base SP of S is the set ofpredicate symbols occurring in (formulae of) S. The Herbrand base of S, writtenBS , is the set of all atomic formulae P (t1; : : : ; tn), n � 0, with P 2 SP and ti 2 U ,for every 1 � i � n.Notation 1.65 Every Herbrand interpretation H of a (set of) formula(e) S canbe uniquely represented by a subset H of the Herbrand base BS of S by de�ningH(L) = � > if L 2 H? otherwisefor any ground atom L 2 BS . We shall exploit this fact and occasionally usesubsets of the Herbrand base for denoting Herbrand interpretations.5If S is an in�nite set of formulae and the Herbrand universe of S already contains almost allfunction symbols of a certain arity, then it may be necessary to move to an extended �rst-orderlanguage L 0 that contains enough function symbols of every arity.

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 271.2.3 Formulae in Clausal FormAfter prenexing and Skolemizing a formula, it is a standard technique in auto-mated deduction to transform the resulting formula into clausal form.De�nition 1.66 (Clause) Any formula c of the form 8x1 � � � 8xn(L1 _ � � � _ Lm),with m � 1 and the Li being literals, is a clause. Each literal Li is said to be(contained) in c.De�nition 1.67 (Clausal form)1. Any clause is in clausal form.2. If F is in clausal form and c is a clause, then c ^ F is in clausal form.Proposition 1.68 For any �rst-order formula � in Skolem form there exists astrongly equivalent formula 	 in clausal form.Proof Let F be the matrix of a �rst-order formula � in Skolem form. We performthe following four equivalence preserving operations. First, by items 7 and 6 ofDe�nition 1.26 of formula assignment, successively, the connectives $ and !are removed. Secondly, the negation signs are pushed immediately before atomicformulae, using recursively Proposition 1.34(1) and de Morgan's laws (2) and (3).Finally, apply _-distributivity from left to right until no conjunction is dominatedby a disjunction. The resulting formula is in clausal form. 2It can easily be veri�ed that, even for matrices not containing $, the giventransformation may lead to an exponential increase of the formula size. In fact,there exists no equivalence preserving polynomial transformation of a matrixinto clausal form, even if $ does not occur in the matrix (see [Reckhow, 1976]).But there are polynomial transformations if logical equivalence is sacri�ced (see[Eder, 1985, Plaisted and Greenbaum, 1986, Boy de la Tour, 1990]). Those trans-formations are satis�ability and unsatis�ability preserving, and the transformedformula logically implies the source formula, so that the typical logical problems|unsatis�ability detection or model �nding if possible|can be solved by consider-ing the transformed formula.

28 CHAPTER 1. PRELIMINARIES

Chapter 2Tableau Systems2.1 First-Order Sentence TableauxThe tableau method was introduced by Beth in [Beth, 1955, Beth, 1959] and elab-orated by Hintikka in [Hintikka, 1955] and others, but the most in
uential stan-dard format was given by Smullyan in [Smullyan, 1968] (cf. Section 2 in the �rstchapter of this book). Therefore, the tableau calculus for closed �rst-order for-mulae, which is developed in this section, will be essentially Smullyan's.2.1.1 Quanti�er Elimination in Unifying NotationThe tableau method for propositional logic exploits the fact that all proposi-tional formulae that are not literals can be partitioned into two syntactic types,a conjunctive type, called the �-type, or a disjunctive type, named the �-type.Accordingly, only two inference rules are needed, the �- and the �-rule. Thisuniformity extends to the �rst-order language, in that just two more syntactictypes are needed to capture all �rst-order formulae, the universal type, calledthe
-type, and the existential type, named the �-type. Likewise, just two furtherinference rules will be needed, called the
- and the �-rule.Altogether, this results in the following classi�cation and decomposition sche-ma for �rst-order sentences|arbitrary �rst-order formulae containing free vari-ables will be treated in the next section. To any �rst-order sentence F of anyconnective type (� or �) a sequence of sentences di�erent from F will be as-signed, called the �- or �-subformulae sequence of F , respectively, as de�ned inTable 2.1, for all formulae over the connectives :, _, ^ and !. Note that, by ex-ploitation of the associativity of the connectives _ and ^, we permit subformulaesequences of more than two formulae. This straightforward generalization speedsup the decomposition of formulae.While the subformula sequence and hence the decomposition of any formulaof a connective type is always �nite, this cannot be achieved in general. A �rst-order sentence F of any quanti�cation type (
 or �) has possibly in�nitely many29

30 CHAPTER 2. TABLEAU SYSTEMSConjunctive Disjunctive� �-subformulae � �-subformulaesequence sequence::F FF1 ^ � � � ^ Fn F1; : : : ; Fn F1 _ � � � _ Fn F1; : : : ; Fn:(F1 _ � � � _ Fn) :F1; : : : ;:Fn :(F1 ^ � � � ^ Fn) :F1; : : : ;:Fn:(F ! G) F;:G F ! G :F;GTable 2.1: Connective types and �-, �-subformulae sequences.
- or �-subformulae, respectively, as de�ned in Table 2.2 where t ranges over theset of ground terms and c over the set of constants of a �rst-order language.Universal Existential

-subformulae � �-subformulae8xF Ffx=tg 9xF Ffx=cg:9xF :Ffx=tg :8xF :Ffx=cgTable 2.2: Quanti�cation types and
-, �-subformulae.De�nition 2.1 Any �-, �-,
-, or �-subformula F 0 of a formula F is named animmediate tableau subformula of F . A formula F 0 is called a tableau subformulaof F if the pair hF 0; F i is in the transitive closure of the immediate tableausubformula relation.Obviously, the decomposition schema guarantees that all tableau subformulaeof a sentence are sentences. Moreover, the decomposition rules have the followingfundamental proof-theoretic property.De�nition 2.2 (Formula complexity) The formula complexity of a formula F isthe number of occurrences of formulae in F .Proposition 2.3 Every tableau subformula of a formula F has a smaller formulacomplexity than F .This assures that there can be no in�nite decomposition sequences.Notation 2.4 We shall often use suggestive meta-symbols for naming formulae ofa certain type. Thus, a formula of the �- or �-type will be denoted with `�' or`�', and the formulae in its subformula sequence with `�1',. . . ,`�n' or `�1',. . . ,`�n',respectively; for a formula of the
- or �-type and its subformula wrt a term t,we will write `
' or `�' and `
(t)' or `�(t)', respectively.As in the propositional case, �rst-order tableaux are particular formula trees,i.e, ordered trees with the nodes labelled with formulae. We do not formally intro-duce trees, and we permit trees to be in�nite. Trees will be viewed as downwardly

2.1. FIRST-ORDER SENTENCE TABLEAUX 31growing from the root. As the depth of a tree or a tableau we take the maximalnumber of edges on a branch. Furthermore, the following abbreviations will beused.De�nition 2.5 If a formula is the label of a node on a branch B of a formula treeT , we say that F appears or is on B and in T . With B�F1 j � � � j Fn we mean theresult of attaching n > 0 new successor nodes N1; : : : ; Nn, in this order, fanningout of the end of B and labelled with the formulae F1; : : : ; Fn, respectively. Anysuch sequence N1; : : : ; Nn is termed a node family in T . We shall often treat thebranch B of a formula tree as the set of formulae appearing on B. All nodesabove a node N on a branch are called its ancestors, the ancestor immediatelyabove N is termed its predecessor. If two nodes in a tableau are labelled withcomplementary formulae, we shall also call the nodes complementary.Based on the developed formula decomposition schema, �rst-order tableauxfor sentences are de�ned inductively.De�nition 2.6 (Sentence tableau) (inductive) Let S be any set of sentences of a�rst-order language L.� Every one-node formula tree labelled with a formula from S is a sentencetableau for S.� If B is a branch of a sentence tableau T for S, then the formula treesobtained from the following �ve expansion rules are all sentence tableauxfor S:(�) B � �i, if �i is an �-subformula of a formula � on B,1(�) B��1 j � � � j �n, if �1; : : : ; �n is the �-subformula sequence of a formula� on B,(
) B �
(t), if t is a ground term and a formula
 occurs on B,(�) B � �(c), if c is a constant new to S and to the formulae in T , and aformula � appears on B,(F) B � F , for any formula F 2 S.If T is a sentence tableau for a singleton set f�g, we also say that T is a sentencetableau for the formula �. When a decomposition rule is performed on a formulaF at a node N , we say that F or N is used.Obviously, if the input set contains just one formula, the formula rule denotedwith (F) can be omitted. The inference rules of sentence tableaux for formulaeare summarized in Figure 2.1.1Note that this rule is slightly more
exible than the standard �-rule as presented in[Smullyan, 1968] according to which B has to be modi�ed to B � �1 � � � � � �n in a singleinference step. The need for this will become clear at the end of the section when we introducethe regularity re�nement.

32 CHAPTER 2. TABLEAU SYSTEMS��i ��1 j � � � j �n

(t)for any groundterm t ��(c)for any newconstant cFigure 2.1: Inference rules of sentence tableaux for formulae.De�nition 2.7 (Closed tableau) A branch B of a tableau is called (atomically)closed if an (atomic) formula F and its negation appear on B, otherwise thebranch is termed (atomically) open. Similarly, a node N is called (atomically)closed if all branches through N are (atomically) closed, and (atomically) openotherwise. Finally, a tableau is termed (atomically) closed if its root node is(atomically) closed, otherwise the tableau is called (atomically) open.
������� XXXXXXX

(1) :9x(8y8zP (y; f(x; y; z))! (8yP (y; f(x; y; x)) ^ 8y9zP (g(y); z)))
(3) 8y8zP (y; f(a; y; z))(4) :(8yP (y; f(a; y; a)) ^ 8y9zP (g(y); z))(5) :8yP (y; f(a; y; a))(7) :P (b; f(a; b; a))(8) 8zP (b; f(a; b; z))(9) P (b; f(a; b; a))
(8)
(10)

(12)
�(6)�(5)

�(2)�(2)�(4)

(3)
(3)

(2) :(8y8zP (y; f(a; y; z))! (8yP (y; f(a; y; a)) ^ 8y9zP (g(y); z)))
(1)

(11) :P (g(b); f(a; g(b); a))(12) 8zP (g(b); f(a; g(b); z))(13) P (g(b); f(a; g(b); a))
(6) :8y9zP (g(y); z)(10) :9zP (g(b); z)

Figure 2.2: An atomically closed sentence tableau.In Figure 2.2, a larger sentence tableau for a �rst-order sentence is displayedthat illustrates the application of each tableau rule. For every tableau expansionstep, the respective type of tableau expansion rule and the used ancestor nodeare annotated at the connecting vertices. Note that all branches of the tableau

2.1. FIRST-ORDER SENTENCE TABLEAUX 33are atomically closed. A closed sentence tableau for a set of sentences S repre-sents a correct proof of the unsatis�ability of S. The correctness of the tableauapproach as a proof method for �rst-order sentences is based on the fact that thedecomposition rules are satis�ability preserving.Proposition 2.8 Let S be any satis�able set of �rst-order sentences.(1) If � 2 S, then S [f�ig is satis�able, for every �-subformula �i of �.(2) If � 2 S, then S [f�ig is satis�able, for some �-subformula �i of �.(3) If
 2 S, then S [f
(t)g is satis�able, for any ground term t.(4) If � 2 S, then S [f�(c)g is satis�able, for any constant c that is new to S.Proof Items (1) and (2) are immediate from the de�nition of formula assign-ment; (3) is a consequence of the soundness of substitution application (Propo-sition 1.46); lastly, since � is assumed as closed and c is new to S, �(c) is aSkolemization of � wrt S, hence (4) follows from Proposition 1.55. 2Proposition 2.9 (Soundness of sentence tableaux) If a set of sentences S is satis-�able, then every sentence tableau for S has an open branch.Proof We use the following notation. A branch of a tableau for a set of formulaeS is called satis�able if S [B is satis�able where B is the set of formulae onthe branch. Clearly, every satis�able branch must be open. We prove, by induc-tion on the number of tableau expansion steps, that every sentence tableau for asatis�able set of sentences S has a satis�able branch. The induction base is evi-dent. For the induction step, consider any tableau T for S generated with n+1expansion steps. Let T 0 be a tableau for S from which T can be obtained by asingle expansion step. By the induction assumption, T 0 has a satis�able branchB. Now, either T contains B, in which case T 0 has a satis�able branch. Or B isexpanded; in this case, Proposition 2.8 guarantees that one of the new branchesin T 0 is satis�able. 2A fundamental proof-theoretic advantage of the tableau method over syn-thetic proof systems like axiomatic calculi [Hilbert and Ackermann, 1928] is theanalyticity of the decomposition rules. The formulae in a tableaux are in there
exive-transitive closure of the tableau subformula relation on the input set.For certain formula classes, this permits the generation of decision proceduresbased on tableaux, which will be discussed below.2.1.2 Completeness of Sentence TableauxFirst-order logic di�ers from propositional logic in that there are no decisionprocedures for the logical status of a set of formulae, but merely semi-decisionprocedures. More precisely, there exist e�ective mechanical methods for verifying

34 CHAPTER 2. TABLEAU SYSTEMSthe unsatis�ability of sets of �rst-order formulae (or the logical validity of �rst-order formulae2), whereas, when subscribing to Church's Thesis, the satis�abilityof sets of �rst-order formulae (or the non-validity of �rst-order formulae) cannotbe e�ectively recognized.3The tableau calculus represents such an e�ective mechanical proof method. Inthis part, we will provide a completeness proof of sentence tableaux. An essentialconcept used in this proof is that of a downward saturated set of sentences.De�nition 2.10 (Downward saturated set) Let S be a set of �rst-order sentencesand U the Herbrand universe of S. The set S is called downward saturated pro-vided:1. if S contains an �, then it contains all its �-subformulae,2. if S contains a �, then it contains at least one of its �-subformulae,3. if S contains a
, then it contains all
(t) with t 2 U ,4. if S contains a �, then it contains a �(c) with c being a constant in U .De�nition 2.11 (Hintikka set) By an (atomic) Hintikka set we mean a downwardsaturated set which does not contain an (atomic) formula and its negation.Lemma 2.12 (Hintikka's Lemma) Every atomic Hintikka set (and hence everyHintikka set) is satis�able.Proof Let S be an atomic Hintikka set. We show that some Herbrand interpre-tation for S is a model for S. Let H denote the set of ground atoms in S, whichde�nes a Herbrand interpretationH, using Notation 1.65. We prove, by inductionon the formula complexity, that H is a model for all formulae in S. The inductionbase is evident. For the induction step, assume that H(F) = >, for all formulaeF in S with formula complexity < n. First, since S does not contain an atomicformula and its negation, H is a model for all literals in S. Now consider anynon-literal formula F 2 S with formula complexity n. The formula complexity ofevery tableau subformula of F is < n.1. If F is an �, then, by the de�nition of downward saturation, every �i is inS. Since, by the induction assumption, H(�i) =>, H(F) =>.2. If F is a �, then, again by the de�nition of downward saturation, some �iis in S. By the induction assumption, H(�i) = >, therefore, H(F) =>.3. If F is a
 = 8xF 0, by the downward saturatedness of S and the inductionassumption, H(
(t)) = >, for any term t in the Herbrand universe U of S.Since U is the universe of H and since H (being a Herbrand interpretation)maps every term t to itself, for all variable assignments A to U , HA(F 0) =H(F 0fx=A(x)g) =>. Therefore, H(F) = >.2This result was �rst demonstrated by G�odel in [G�odel, 1930].3Thus settling the undecidability of �rst-order logic, which was proved by Church in[Church, 1936] and Turing in [Turing, 1936].

2.1. FIRST-ORDER SENTENCE TABLEAUX 354. Finally, if F is a �, by downward saturation and the induction assumptionH(�(c)) = >, for some constant c 2 T , therefore H(F) =>. 2After these preliminaries, we can come back to tableaux. The tableau calculusis indeterministic, i.e., many possible expansion steps are possible in a certainsituation. We are now going to demonstrate that the tableau construction canbe made completely deterministic and yet it can be guaranteed that the tableauwill eventually close if the set of input formulae is unsatis�able. Such tableauxare called systematic tableaux . In order to make the expansion deterministic, wehave to determine,1. from where the next formula has to be taken, and2. for the case of the quanti�er rules, to which closed term the respectivevariable has to be instantiated.Furthermore, since systematic tableaux shall be introduced for the most generalcase in which the set of input formulae may be in�nite, we have to provide meansfor making sure that any formula in the set will be taken into account in thetableau construction, if necessary.For the node selection, we equip the nodes of tableaux with an additionalnumber label, expressing whether the formula at the node can be used for atableau expansion step or not. If a node carries a number label, then the formulaat the node will be a possible candidate for a tableau expansion step, otherwisenot.De�nition 2.13 (Usable node) If a tableau T contains nodes with number labels,then from all the nodes labelled with the smallest number the leftmost one withminimal tableau depth is called the usable node of T ; otherwise T has no usablenode.For the term selection needed in the quanti�er rules, we employ a total or-dering on the set of closed terms. Both selection functions together can be usedto uniquely determine the next tableau expansion steps. Concerning the fairnessproblem in case the set of input formulae be in�nite, we use an additional totalordering on the formulae.De�nition 2.14 (Systematic tableau (sequence)) (inductive) Let � be a mappingfrom N0 onto the set of ground terms and � a total ordering on the set of for-mulae of a �rst-order language L, respectively, and S any set of closed �rst-orderformulae. The systematic tableau sequence of S wrt � and � is the followingsequence T of tableaux for S. Let � be the smallest formula in S modulo �.� The one-node tableau T0 with root formula � and number label 0 is the�rst element of T .

36 CHAPTER 2. TABLEAU SYSTEMS� If Tn is the n-th element in T and has nodes with number labels, let N bethe usable node of Tn with formula F and number k. Furthermore, if someformula in S is not on some branch passing through N , let G denote thesmallest such formula modulo �. Now expand each open branch B passingthrough N to:1. B [�G] ��1�� � ���n, if F is of type � with �-subformula sequence�1; : : : ; �n,2. B [�G] ��1 j � � � j �n, if F is of type � with �-subformula sequence�1; : : : ; �n,3. B [�G] �
(�(k)), if F is of type
,4. B [�G] ��(c) if F is of type � and c is the smallest constant modulo� not occurring in T .Then give every newly attached node the number label 0 if its formula labelis not a literal. Next, remove the number labels from all nodes that havebecome atomically closed through the expansion steps. Finally, if F is notof type
, remove the number label from N ; otherwise change the number kat N to k+1. The tableau resulting from the entire operation is the n+1-stelement of the sequence T .� If Tn has no usable node, it is the last element of T .In Figure 2.3, a closed systematic tableau is shown with �(0) = a and �(1) = b.The following structural property of sentence tableaux plays an important role.We formulate it generically, for any system of tableau inference rules.De�nition 2.15 (Nondestructiveness) A tableau calculus C is called nondestruc-tive if, whenever a tableau T can be deduced from a tableau T 0 according tothe inference rules of C, then T 0 is an initial segment of T ; otherwise C is calleddestructive.Since obviously the calculus of sentence tableaux is nondestructive, one canform the (tree) union of all the tableaux in a systematic tableau sequence.De�nition 2.16 (Saturated systematic tableau) Let T be a systematic tableau se-quence for a set of �rst-order formulae S. With T � we denote the smallest formulatree containing all tableaux in T as initial segments; T � is called a saturated sys-tematic tableau of S.Proposition 2.17 For any (atomically) open branch B of a saturated systematictableau, the set of formulae on B is a(n atomic) Hintikka set.Proof Let B be any (atomically) open branch of a saturated systematic tableau.According to the de�nition of systematic tableau, it is guaranteed that the branchB satis�es the following condition: for any formula F on B,

2.1. FIRST-ORDER SENTENCE TABLEAUX 37

������� XXXXXXX

�(1)�(2)
(3)�(4)�(4)�(6)
(3)�(9)

(1) 9y9z8x(P (x;y) ^ (P (z; x)! :P (y; y)))(2) 9z8x(P (x;a) ^ (P (z; x)! :P (a; a)))(3) 8x(P (x;a) ^ (P (b; x)! :P (a; a)))(4) (P (a; a) ^ (P (b; a)! :P (a; a)))(5) P (a; a)(6) (P (b; a)! :P (a; a))(7) :P (b; a) (8) :P (a; a)
(10) P (b; a)(9) (P (b; a) ^ (P (b; b)! :P (a; a)))�(9)(11) (P (b; b)! :P (a; a))Figure 2.3: An atomically closed systematic tableau.1. if F is of type �, then all �-subformulae of F must be on B.2. if F is of type �, then some �-subformula of F must be on B.3. if F is of type
, then all
-subformulae of F must be on B.4. if F is of type �, then some �-subformulae of F must be on B.So the set S of formulae on B is downward saturated. Since B is (atomically)open, no (atomic) formula and its negation are in S, hence S is a(n atomic)Hintikka set. 2Now the refutational completeness of tableaux is straightforward.Theorem 2.18 (Completeness of sentence tableau) If S is an unsatis�able set of�rst-order sentences, then there exists a �nite atomically closed sentence tableaufor S.

38 CHAPTER 2. TABLEAU SYSTEMSProof Let T be a saturated systematic tableau for S. First, we show that T mustbe atomically closed. Assume, indirectly, that T contains an atomically openbranch B. Then, by Proposition 2.17, there would exist an atomic Hintikka setfor the set S 0 of formulae on B and, by Hintikka's Lemma, a model I for S 0.Now, by the de�nition of saturated systematic tableau, S � S 0, hence I wouldbe a model for S, contradicting the unsatis�ability assumption. This proves thatevery branch of T must be atomically closed. In order to recognize the �nitenessof T , note that the closedness of any branch of a systematic tableau entails thatit cannot have a branch of in�nite length. Since the branching rate of any tableauis �nite, (by K�onig's Lemma) T must be �nite. 2The generality of our systematic tableau procedure permits an easy proof ofa further fundamental property of �rst-order logic.Theorem 2.19 (Compactness Theorem) Any unsatis�able set of �rst-order sen-tences has a �nite unsatis�able subset.Proof Let S be any unsatis�able set of �rst-order sentences. By Theorem 2.18,there exists a �nite closed tableau T for S. Let S 0 be the set of formulae inS appearing in T . S 0 is �nite and, by the soundness of tableaux, S 0 must beunsatis�able. 2Sentence tableaux can also be used to illustrate the basic Herbrand-type prop-erty of �rst-order logic that with any unsatis�able set of prenex formulae one canassociate unsatis�able sets of ground formulae as follows.De�nition 2.20 A tableau is called quanti�er preferring if on any branch all ap-plications of quanti�er rules precede applications of the connective rules. Such atableau begins with a single branch containing only quanti�er rule applicationsup to a node N below which only connective rules are applied; the set of formulaeon this branch up to the node N is called the initial set of the tableau, and theset of ground formulae in the initial set is termed the initial ground set of T .It is evident that we can reorganize any tableau for a set of prenex formulae insuch a way that it is quanti�er preferring, without increasing its size or a�ectingits closedness. None of those properties is guaranteed to hold for sets containingformulae which are not in prenex form.Proposition 2.21 If T is a closed quanti�er preferring tableau for a set S of �rst-order formulae, then the initial ground set of T is unsatis�able.Since, for any unsatis�able set S of prenex formulae, a closed quanti�er pre-ferring tableau exists, we can associate with S the collection of the initial groundsets of all closed quanti�er preferring sentence tableaux for S. The sets in thiscollection, in particular the ones with minimal complexity, play an important rôleas a complexity measure.

2.1. FIRST-ORDER SENTENCE TABLEAUX 39De�nition 2.22 (Herbrand complexity) The Herbrand complexity of an unsatis�-able set S of prenex formulae is the minimum of the complexities4 of the initialground sets of all closed quanti�er preferring sentence tableaux for S.Since the quanti�er rules of tableaux are not speci�c to the tableau calcu-lus, the Herbrand complexity can be used as a calculus-independent refutationcomplexity measure for unsatis�able sets of formulae. This measure may also beextended to formulae which are not in prenex form, by working with transforma-tions of the formulae in prenex form (see also [Baaz and Leitsch, 1992]).Next, we come to an important proof-theoretic virtue of sentence tableaux,which we introduce generically for any system of tableau rules.De�nition 2.23 (Con
uence) A tableau calculus C is called proof con
uent orjust con
uent (for a class of formulae) if, for any unsatis�able set S of formulae(from the class), from any tableau T for S constructed with the rules of C aclosed tableau for S can be constructed with the rules of C.Loosely speaking, a con
uent (tableau) calculus does never run into deadends.5Proposition 2.24 Sentence tableaux are con
uent for �rst-order sentences.Proof Let T be any sentence tableau generated for an unsatis�able set of sentencesS. By the completeness of sentence tableaux, for any branch B in T , there existsa closed sentence tableau TB for S [B. At the leaf of any branch B of T , simplyrepeat the construction of TB . 2In the subsequent sections, we shall introduce tableau calculi and proceduresthat are not con
uent and for which no systematic procedures of the type pre-sented in this section exist. Noncon
uence may have strong consequences on thetermination behaviour and the functionality of a calculus, particularly, when oneis interested in decision procedures or in model generation for (sublanguages of)�rst-order logic. As we shall see, the lack of con
uence may also require com-pletely di�erent approaches towards proving completeness.2.1.3 Re�nements of TableauxThe calculus of sentence tableaux permits the performance of certain inferencesteps that are redundant in the sense that they do not contribute to the closingof the tableau. In order to avoid such redundancies, one can restrict the tableaurules and/or impose conditions on the tableau structure. First, we discuss thenotion of strictness which is a re�nement of the tableau rules. Adapted to ourframework, it reads as follows.4As the complexity of a set of formulae one may take the cardinality of the set plus thenumber of occurrences of symbols in the elements of the set.5Note that the notion of con
uence used here slightly di�ers from its de�nition in the areaof term rewriting (see, e.g., [Huet, 1980].

40 CHAPTER 2. TABLEAU SYSTEMSDe�nition 2.25 (Strict tableau) A tableau construction is strict if� every �- and �-node is used only once on a branch and� for any �-node, any occurrence of an �i in � is used only once a branch.The strictness condition is motivated by the de�nition of systematic tab-leaux, since obviously any systematic tableau construction is strict. Consequently,the strictness condition is completeness-preserving. Strictness can also be imple-mented very e�ciently by simply labelling nodes (or occurrences of tableau sub-formulae at nodes) as already used on a branch. But strictness does not performoptimal redundancy elimination, since it does not prevent that one and the sameformula may appear twice on a branch. This is particularly detrimental if it hap-pens in a �-rule application where new branches with new proof obligations areproduced, which obviously is completely useless. A stronger tableau restrictionconcerning the connective rules is achieved with the following structural condi-tion.De�nition 2.26 (Regularity) A formula tree is called regular if on no branch aformula appears more than once.The main reason why regularity has not been used in the traditional presen-tation of tableaux lies in the di�erent de�nition of the �-rule here and there.We permit that only one �-subformula can be attached, whereas the traditionalformat requires to append all �-subformulae at once, one below the other. Itis straightforward to realize that regularity is not compatible with the tradi-tional de�nition of the �-rule. An obvious example is the unsatis�able formula(p ^ q) ^ (p ^ :q), for which no closed regular tableau exists if the traditional�-rule is used. Since (wrt. the connective rules) the regularity condition is a morepowerful mechanism of avoiding suboptimal proofs than the strictness condition,we have generalized the �-rule in order to achieve compatibility with regular-ity.6 The following demonstrates that tableaux which are irregular can be safelyignored.Procedure 2.27 (Removal of irregularities) Given any tableau T , repeat the fol-lowing operation, until the resulting formula tree is regular.� Select a node N in T with an ancestor node N 0 such that both nodesare labelled with the same literal. Remove the edges originating in thepredecessor N 00 of N and replace them with the edges originating in N .Proposition 2.28 Every closed sentence tableau of minimal size7 is regular.6This is an interesting illustration of the fact that an unfortunate presentation of inferencerules can block certain obvious pruning mechanisms.7A precise measure for the size of a tableau is given in De�nition 7.3. But this result iscompatible with any reasonable measure.

2.1. FIRST-ORDER SENTENCE TABLEAUX 41Proof We show the contraposition, i.e., that every closed irregular sentence tab-leau T is not minimal in size. Let T be any closed irregular sentence tableau fora set S. Obtain a formula tree T 0 by performing Procedure 2.27 on T . Clearly,T 0 is a sentence tableau for S, it is smaller than T , and it is closed. 2In order to integrate the �-rule restriction of strictness, we call a tableaustrictly regular if it is strict and regular. The regularity restriction can easily beintegrated into systematic tableaux, by simply omitting the attachment of nodesB � F1 j � � � j Fn if one of the Fi is already on the branch B.A further fundamental re�nement of sentence tableau concerns the
-rule.De�nition 2.29 (Herbrand tableau) Herbrand tableaux are de�ned like sentencetableaux, but with the
-rule replaced by the Herbrand
-rule:(
H)

(t) where t is from the Herbrand universe of the branch.The Herbrand restriction on the
-rule may signi�cantly improve the termi-nation behaviour of sentence tableaux, as illustrated with the formula F givenin Example 2.30. The formula is satis�able. But unfortunately, in�nitely largesentence tableau can be constructed for F , as shown in Figure 2.30, since the
-rule can be applied again and again using the formula (4). Any strict Herbrandtableau construction terminates, since the number of ground terms that can beselected for (4) is �nite.Example 2.30 F = :8x(9yP (x; y)! 9yP (y; x))The Herbrand restriction on tableaux is as reasonable as regularity, since itpreserves minimal proof size.Proposition 2.31 For every (atomically) closed sentence tableau T for a set S,there exists a(n atomically) closed Herbrand tableau T 0 for S with less or equalsize than T .Proof Without increasing the size, we can rearrange T in such a way that allformula rule applications are performed �rst. Now consider any
-step in thetableau that is not Herbrand, attaching a formula
(t) to the leaf N of a branchB. Replace any occurrence of t below N with a constant from the Herbranduniverse of B. Obviously, the modi�ed formula tree is (atomically) closed anddoes not increase in size. It is straightforward to recognize that the formula treeis a sentence tableau for S. Finitely many applications of this operation producea(n atomically) closed Herbrand tableau T 0 for S equal or smaller in size thanT . 2Proposition 2.32 Strictly regular Herbrand tableaux are con
uent for �rst-ordersentences.

42 CHAPTER 2. TABLEAU SYSTEMS

(4)

(1) :8x(9yP (x; y)! 9yP (y;x))

(8) :P (c; a)...

�(1)�(2)�(2)�(3)
(4)
(4)
(2) :(9yP (a; y)! 9yP (y; a))(4) :9yP (y; a)(3) 9yP (a; y)(5) P (a; b)(6) :P (a; a)(7) :P (b; a)

(1) :8x(9yP (x; y)! 9yP (y;x))�(1)�(2)�(2)�(3)
(2) :(9yP (a; y)! 9yP (y; a))(4) :9yP (y; a)(3) 9yP (a; y)(5) P (a; b)(6) :P (a; a)(7) :P (b; a)
H(4)
H(4)all Herbrand termsselected for (4)Figure 2.4: Sentence and Herband tableau for Example 2.30.Proof Let T be any strictly regular Herbrand tableau for an unsatis�able setof sentences S. By the completeness of sentence tableaux, there exists a closedsentence tableau T 0 for S. Simply repeat the construction of T 0, at any leafof T . Now modify the resulting sentence tableau, as described in the proofs ofPropositions 2.28 and 2.31. The procedure results in a closed strictly regularHerbrand tableaux T 00 for S. Since the modi�cation operation is performed fromthe leaves towards the root, it does not a�ect the inital tree T , hence T 00 is asdesired. 2The Herbrand tableau rule also has an e�ect on the systematic tableau con-struction. Since the Herbrand universe may increase during branch expansion,the enumeration of ground terms must be organized di�erently.De�nition 2.33 (Systematic Herbrand tableau) Systematic Herbrand tableaux arede�ned like systematic tableaux except that the
-rule application is controlleddi�erently. Whenever a
 at a node N is selected, for any atomically open branchB through N , select the smallest term t (modulo the ordering �) from the Her-brand universe of B that has not been selected at N on B; if all terms from theHerbrand universe of B have already been selected at N on B,
 cannot be usedfor expanding the current leaf of B.In particular, this entails that, for di�erent branches, di�erent Herbrand termsmay be selected in the systematic tableau construction. Imposing the Herbrand

2.1. FIRST-ORDER SENTENCE TABLEAUX 43restriction on systematic tableaux preserves completeness, since Proposition 2.17also holds for Herbrand tableaux.Proposition 2.34 Every (atomically) open branch B of a saturated regular sys-tematic Herbrand tableau is a(n atomic) Hintikka set, moreover, the set of atomson B de�nes a Herbrand model for B.Proof See the proof of Proposition 2.17. 2Herbrand tableaux provide a higher functionality than sentence tableaux,since a larger class of �rst-order formulae can be decided.De�nition 2.35 (Weak Skolem, datalogic form) A sentence � is said to be in weakSkolem form if � has no tableau subformula of type
 that has a tableau sub-formula of type �. A sentence � is said to be in (weak) datalogic form if � is in(weak) Skolem form, respectively, and � has no function symbol of arity > 0.The set of weak datalogic formulae is a generalization of the Bernays-Sch�on�n-kel class [Bernays and Sch�on�nkel, 1928].Proposition 2.36 Every strictly regular Herbrand tableau for any �nite set S ofweak datalogic formulae is �nite.Proof The formula structure and the tableau rules guarantee that only �-formulaecan appear on a branch which occur as subformulae in the elements of S. Since Sis assumed as �nite, this entails that the number of �-formulae on any branch mustbe �nite. Because of the strictness condition on the �-rule, only �nitely many newconstants can occur on a branch. Since no function symbols of arity > 0 occur inthe elements of S, the Herbrand universe of any branch must be �nite, and hencethe set of formulae occurring on a branch. Regularity then assures that also thelength of any branch must be �nite. 2Both properties demonstrate that Herband tableaux are decision proceduresfor the class.Proposition 2.37 Given any �nite set S of weak datalogic formulae, any regularsystematic Herbrand tableau construction terminates,� either with a closed tableau if S is unsatis�able,� or with an open branch which de�nes a Herbrand model for S.

44 CHAPTER 2. TABLEAU SYSTEMS2.2 Free-variable TableauxThe tableau approach is traditionally useful as an elegant format for present-ing proofs. With the increasing importance of automatic deduction, however,the question arises whether the tableau paradigm is also suited for proof search.In principle, systematic tableau procedures could be used for this purpose. Butsystematic procedures, even regular Herbrand ones, are still too ine�cient fora broad application. As an illustration, see the tableau displayed in Figure 2.2,which is not systematic. A systematic tableau would be much larger. The essen-tial di�erence concerns the applications of the
-rule. Consider, e.g., the
-stepfrom node (10) :9zP (g(b); z) to node (11) :P (g(b); f(a; g(b); a)) in which the"right" substitution fz=f(a; g(b); a))g has been selected. Since a systematic pro-cedure has to enumerate all (Herbrand) instances in a systematic and therefore"blind" manner, it would normally perform the substitution fz=f(a; g(b); a))gmuch later. The obvious weakness of the
-rule is that it enforces to performground instantiations too early, at a time when it is not clear whether the sub-stitution will contribute to the closing of a branch. The natural approach forovercoming this problem is to postpone the term selection completely by permit-ting free variables in a tableau and to determine the instances later when theycan be used to immediately close a branch. The free variables are then treated ina rigid manner, i.e., they are not being considered universally quanti�ed but asplaceholders for arbitrary (ground) terms. This view of free variables dates backto work of Prawitz [Prawitz, 1960], was applied by Bibel [Bibel, 1981] and An-drews [Andrews, 1981], and incorporated into tableaux, for example, by Fitting[Fitting, 1990] (see also [Reeves, 1987]). In this section, we will investigate thisapproach. Closure of a branch means producing two complementary formulae,i.e., a formula and its negation, on the branch. Since we can con�ne ourselvesto atomic closures, the problem can be reduced to �nding a substitution � suchthat for two literals K and L on the branch: K� = �L�. So one has to integrateuni�cation into the tableau calculus.2.2.1 Uni�cationUni�cation is one of the most successful advances in automated deduction, be-cause it permits to make instantiation optimal with respect to generality. Uni�ca-tion will be introduced here for arbitrary �nite sets of quanti�er-free expressions.De�nition 2.38 (Uni�er) For any �nite set S of quanti�er-free expressions andany substitution �, if jS�j = 1,8 then � is called a uni�er for S. If a uni�er existsfor a set S, then S is called uni�able.Subsequently, we will always assume that S denotes �nite sets of quanti�er-free expressions. The general notion of a uni�er can be subclassi�ed in certainuseful ways.8With jM j we denote the cardinality of a set M .

2.2. FREE-VARIABLE TABLEAUX 45De�nition 2.39 (Most general uni�er) If � and � are substitutions and there isa substitution � such that � = ��, then we say that � is more general than � .A uni�er for a set S is called a most general uni�er , mgu for short, if � is moregeneral than any uni�er for S.Most general uni�ers have the nice property that any uni�er for two atoms canbe generated from a most general uni�er by further composition. This quali�esmgus as a useful instantiation vehicle in many inference systems. The centraluni�er concept in automated deduction, however, is the following.De�nition 2.40 (Minimal uni�er) If a uni�er � for a set S has the property thatfor every uni�er � for S: j�j � j� j, then we say that � is a minimal uni�er for S.For a minimal uni�er the number of substituted variables is minimal.Example 2.41 Given the set of terms S = fx; f(y)g, the two substitutions � =fy=x; x=f(x)g and � = fx=f(y)g are both mgus for S, but only � is a minimaluni�er.In fact, every minimal uni�er is a most general uni�er, as will be shown inthe Uni�cation Theorem (Theorem 2.50) below. How can we a �nd a minimaluni�er for a given set? For this purpose, the procedurally oriented concept of acomputed uni�er will be developed.De�nition 2.42 (Disagreement set) Let S be a �nite set of quanti�er-free expres-sions. A disagreement set of S is any two-element set fE1; E2g of expressions suchthat the dominating symbols of E1 and E2 are distinct and E1 and E2 occur atthe same position as subexpressions in two of the expressions in S.Example 2.43 The set of terms S = fx; g(a; y; u); g(z; b; v)g has the followingdisagreement sets: fa; zg, fy; bg, fu; vg, fx; g(a; y; u)g, fx; g(z; b; v)g.Obviously, a set of expressions S has a disagreement set if and only if jSj > 1.The following facts immediately follow from the above de�nitions.Proposition 2.44 If � is a uni�er for a set S and D is a disagreement set of S,then � uni�es D, each member of D is a term, and D contains a variable whichdoes not occur in the other term of D.The last item of the proposition expresses that any binding formed from anydisagreement set of a uni�able set must be a proper binding. Operationally, theexamination whether a binding is proper is called the occurs-check. A particularlyuseful technical tool for proving the Uni�cation Theorem below is the Decompo-sition Lemma.Lemma 2.45 (Decomposition Lemma) Let � be a uni�er for a set S with jSj > 1and let fx; tg be any disagreement set of S with x 6= x�. If � = � n fx=x�g, then� = fx=tg� .

46 CHAPTER 2. TABLEAU SYSTEMSProof First, since � uni�es any disagreement set of S, x� = t�. By Proposi-tion 2.44, x does not occur in t, which gives us t� = t� . Consequently, x� = t�and x 6= t� . Furthermore, x =2 domain(�), and by the composition of substitu-tions, fx=tg� = fx=t�g [� . Putting all this together yields the chain fx=tg� =fx=t�g [� = fx=x�g [� = �. 2Now we shall introduce a concept which captures the elementary operationperformed when making a set of expressions equal by instantiation. It works byeliminating exactly one variable x from all expressions of the set and by replacingthis variable with another term t from a disagreement set fx; tg of S providedthat x does not occur in t.De�nition 2.46 (Variable elimination) If S is a �nite set of expressions such thatfrom the elements of one of its disagreement sets a proper binding x=t can beformed, then Sfx=tg is said to be obtainable from S by a variable elimination wrtx=t.Proposition 2.47 Let S be any �nite set of quanti�er-free expressions and let VSbe the set of variables occurring in S.1. If S is uni�able, so are all sets obtainable from S by a variable elimination.2. Only �nitely many sets can be obtained from S by a variable elimination.3. If S 0 has been obtained from S by a variable elimination wrt a bindingfx=tg and VS0 is the set of variables occurring in S 0, then jS 0j � jSj andVS0 = VS n fxg.4. The transitive closure of the relationfhS 0; Si j S 0 can be obtained from S by a variable elimination stepgis well-founded where S and S 0 are arbitrary �nite sets of quanti�er-freeexpressions, i.e., there are no in�nite sequences of successive variable elim-ination steps.Proof For the proof of (1), let S 0 = Sfx=tg be obtained from S by a variableelimination wrt to the binding x=t composed from a disagreement set of S, andsuppose � uni�es S. Since � uni�es every disagreement set of S, it follows that x�= t�. Let � = � nfx=x�g. By the Decomposition Lemma (Lemma 2.45), we havefx=tg� = �. Therefore, S(fx=tg�) = (Sfx=tg)� = S 0� . Hence � uni�es S 0. For(2) note that since there are only �nitely many disagreement sets of S and eachof them is �nite, only �nitely many proper bindings are induced, and hence only�nitely many sets can be obtained by a variable elimination. To recognize (3), letS 0 = Sfx=tg be any set obtained from S by a variable elimination. Then S 0 is theresult of replacing any occurrence of x in S by the term t. Therefore, jS 0j � jSj,and, since x=t is proper and t already occurs in S, we get VS 0 = VS n fxg. Lastly,(4) is an immediate consequence of (3). 2

2.2. FREE-VARIABLE TABLEAUX 47Now we are able to introduce the important notion of a computed uni�er,which is de�ned by induction on the cardinality of the uni�er.De�nition 2.48 (Computed uni�er) (inductive)1. ; is a (the only) computed uni�er for any singleton set of quanti�er-freeexpressions.2. If a substitution � of cardinality n is a computed uni�er for a �nite set S 0and S 0 can be obtained from S by a variable elimination wrt a binding x=t,then the substitution �[fx=t�g = fx=tg� of cardinality n+1 is a computeduni�er for S.The de�nition of a computed uni�er can be seen as a declarative speci�cationof an algorithm for really computing a uni�er for a given set of expressions, whichwe will present now using a procedural notation. The procedure is a generalizationof the algorithm given by Robinson in [Robinson, 1965].9De�nition 2.49 (Uni�cation algorithm) Let S be any �nite set of quanti�er-freeexpressions. �0 = ;, S0 = S, and k = 0. Then go to 1.1. If jSkj = 1, output �k as a computed uni�er for S. Otherwise select adisagreement set Dk of Sk and go to 2.2. If Dk contains a proper binding, choose one, say x=t; then set �k+1 =�kfx=tg, set Sk+1 = Skfx=tg, increment k by 1 and go to 1. Otherwiseoutput "not uni�able".Note that the uni�cation algorithm is a nondeterministic procedure. This isbecause there may be several di�erent choices for a disagreement set and for abinding. Evidently, the uni�cation procedure can be directly read o� from thede�nition of a computed uni�er: it just successively performs variable eliminationoperations, until either there are no variable elimination steps possible, or theresulting set is a singleton set. Conversely, the notion of a computed uni�er is anadequate declarative speci�cation of the uni�cation algorithm. It follows immedi-ately from Proposition 2.47 (1) and (4) that each uni�er output of the uni�cationalgorithm is indeed a computed uni�er and that the procedure terminates, re-spectively.We shall demonstrate now that the notions of a minimal and a computeduni�er coincide, and that both of them are most general uni�ers.Theorem 2.50 (Uni�cation Theorem) Let S be any uni�able �nite set of quanti�er-free expressions.1. If � is a minimal uni�er for S, then � is a computed uni�er for S.2. If � is a computed uni�er for S, then � is a minimal uni�er for S.9Historically, the �rst uni�cation procedure was given by Herbrand in [Herbrand, 1930].

48 CHAPTER 2. TABLEAU SYSTEMS3. If � is a computed uni�er for S, then � is an mgu for S.Proof We will prove (1) to (3) by induction on the cardinalities of the respectiveuni�ers. First, note that ; is the only minimal and computed uni�er for anysingleton set of quanti�er-free expressions S and that ; is an mgu for S. Assumethe result to hold for any set of expressions with minimal and computed uni�ersof cardinalities � n. For the induction step, suppose S has only minimal orcomputed uni�ers of cardinality > n � 0. Let � be an arbitrary uni�er for S andx=t any proper binding from a disagreement set of S with x 6= x� (which exists byProposition 2.44). Let S 0 = Sfx=tg and set � = � n fx=x�g, which is a uni�er forS 0, by the Decomposition Lemma (Lemma 2.45). For the proof of (1), let � be aminimal uni�er for S. We �rst show that � is minimal for S 0. If � 0 is any minimaluni�er for S 0, then � = fx=tg� 0 is a uni�er for S and all variables in domain(� 0)occur in S 0. Therefore, the Decomposition Lemma can be applied yielding that� 0 = � n fx=x�g. And from the chain j� 0j = j�j � 1 � j�j � 1 = j� j it follows that� is a minimal uni�er for S 0. Since j� j � n, by the induction assumption, � is acomputed uni�er for S 0. Hence, by de�nition, � = fx=tg� is a computed uni�erfor S. For (2) and (3), let � be a computed uni�er for S. Then, by de�nition, � isa computed uni�er for S 0. Let � be an arbitrary uni�er for S. Since x is in somedisagreement set of S, either x 2 domain(�) or there is a variable y and y=x 2 �.De�ne � = � � if x 2 domain(�)�fx=yg otherwise.Since x 2 domain(�), the Decomposition Lemma yields that if � 0 = � n fx=x�g,then fx=tg� 0 = �, and � 0 is a uni�er for S 0. The minimality of � can be recognizedas follows. By the induction assumption, � is minimal for S 0. Then consider thechain j�j = j�j = j� 0j+ 1 � j� j+ 1 = j�j:For (3), note that � is an mgu for S 0, by the induction assumption, i.e., there isa substitution
: � 0 = �
. On the other hand, � = �fx=ygfy=xg, hence there is asubstitution �: � = ��. This gives us the chainS� = S�� = Sfx=tg� 0� = Sfx=tg�
� = S�
�demonstrating that � is an mgu for S. This completes the proof of the Uni�cationTheorem. 2Concerning terminology, notions are treated di�erently in the literature (see[Lassez et al., 1988] for a comparison). We have chosen a highly indeterministicpresentation of the uni�cation algorithm, it is even permitted to select betweenalternative disagreement sets. Furthermore, we have stressed the importance ofminimal uni�ers. Therefore our Uni�cation Theorem is stronger than normallypresented, it also states that each minimal uni�er indeed can be computed by theuni�cation algorithm.

2.2. FREE-VARIABLE TABLEAUX 49Polynomial uni�cationUni�cation is the central ingredient applied in all advanced proof systems for�rst-order logic. As a consequence, the complexity of uni�cation is a lower boundfor the complexity of each advanced calculus. While the cardinality of a mostgeneral uni�er � for a set of expressions S is always bounded by the number ofvariables in S, the range of the uni�er may contain terms with a size exponentialin the size of the initial expressions. Of course, this would also entail that S�contains expressions with an exponential size. The following class of examplesdemonstrates this fact.Example 2.51 If P is an (n + 1)-ary predicate symbol and f a binary functionsymbol, then, for every n > 1, de�ne Sn as the set containing the atomic formulaeP (x1; x2; : : : ; xn; xn); andP (f(x0; x0); f(x1; x1); : : : ; f(xn�1; xn�1); xn).Obviously, any uni�er for an Sn must contain a binding xn=t such that thenumber of symbol occurrences in t is greater than 2n. As a consequence, we havethe problem of exponential space and, therefore, also of exponential time, whenworking with such structures. Di�erent solutions have been proposed for doinguni�cation polynomially. In [Paterson and Wegman, 1978], a linear uni�cation al-gorithm is presented. Furthermore, a number of \almost" linear algorithms havebeen developed, for example, in [Huet, 1976] and [Martelli and Montanari, 1976,Martelli and Montanari, 1982]. Similar to the early approach in [Herbrand, 1930],all of the mentioned e�cient algorithms reduce the uni�cation problem to theproblem of solving a set of equations. However, all of those procedures|particular-ly the one in [Paterson and Wegman, 1978]|need sophisticated and expensiveadditional data structures, which render them not optimal for small or averagesized expressions. Therefore, Corbin and Bidoit rehabilitated Robinson's expo-nential algorithm by improving it with little additional data structure up to aquadratic worst-case complexity [Corbin and Bidoit, 1983, Letz, 1993a]. This al-gorithm turns out to be very e�cient in practice.We cannot treat polynomial uni�cation in detail here, but we give the essentialtwo ideas contained in any of the mentioned polynomial uni�cation algorithms.1. The representation of expressions has to be generalized from strings or treesto directed acyclic graphs, dags for short. This way, the space complex-ity can be reduced from exponential to linear, as shown with the directedacyclic graph representing the term xn� in the example above:f �!�! f �!�! : : :f �!�!| {z }n�times x02. In order to reduce the time complexity|which may still be exponential evenif graphs are used, since there may be exponentially many paths through agraph|, the following will work. One must remember

50 CHAPTER 2. TABLEAU SYSTEMS� which pairs of expressions have already been uni�ed in the graph (e.g.,during the uni�cation of xn� with itself at the last argument positionsof the atoms),� and in occurs-checks: for which expressions the occurrence of the re-spective variable was already checked (e.g., during the check whetherxn occurs in f(xn�1; xn�1)� at the n-th argument positions of theatoms),and one must not repeat those operations. How sophisticated this is or-ganized determines whether the worst-case complexity can be reduced tolinear or just to quadratic time.2.2.2 Generalized Quanti�er RulesUsing the uni�cation concept, the
-rule of sentence tableaux can be modi�edin such a way that instantiations of
-formulae are delayed until a branch canbe immediately closed. Two further modi�cations have to be performed. On theone hand, since now free variables occur in the tableau, one has to generalize the�-rule to full Skolemization in order to preserve soundness.Example 2.52 Consider the satis�able formula 9y(:P (x; y)^P (x; x)). An appli-cation of the �-rule of sentence tableaux would result in an unsatis�able formula:P (x; a) ^ P (x; x).One the other hand, substitutions have to be applied to the formulae in atableau. With T� we denote the result of applying a substitution � to the formulaein a tableau T . Before de�ning tableau with uni�cation, we introduce a tableausystem in which arbitrary substitutions can be applied. This system will serve asa very general reference system, which also subsumes sentence tableaux,De�nition 2.53 (General free-variable tableau) General free-variable tableaux arede�ned as sentence tableaux are, but with the
- and the �-rule replaced by thefollowing three rules. Let B be (the set of formulae on) the actual tableau branchand S the set of input sentences of the current tableau T .(
�)

(t) where t is any term of the language Land fx=tg is free for
(x)(�+) ��(f(x1; : : : ; xn)) where f is new to S and T , andx1; : : : ; xn are the free variables in �,(S) Modify T to T� where � is free for all formulae in T .The �+-rule [H�ahnle and Schmitt, 1994, Fitting, 1996] we use here is alreadyan improvement of the original �-rule used in [Fitting, 1990]. The di�erence be-tween both rules will be discussed in Section 6.2. The additional substitution rule

2.2. FREE-VARIABLE TABLEAUX 51denoted with (S), which is now needed to achieve closure of certain branches,di�ers strongly from the tableau rules presented up to now. While all those ruleswere conservative in the sense that the initial tableau was not modi�ed but justexpanded, the substitution rule is destructive. This has severe consequences onfree-variable tableaux, both proof-theoretically and concerning the functionalityof the calculus, which will be discussed below.But how do we know that the calculus of general free-variable tableau producescorrect proofs? It is clear that the method of proving the correctness of sentencetableaux (using Proposition 2.8) will not work. In free-variable tableaux, branchescannot be treated separately, because they may share free variables. As an exam-ple, consider a tableau T with the two branches P (x)�:P (a) and Q(x)�:Q(b)which cannot be closed using the rules of general free-variable tableaux, althoughboth branches are unsatis�able. The notion of satis�ability is too coarse for free-variable tableaux. What will work here is the following �ner notion which wasdeveloped in [H�ahnle and Schmitt, 1994] and also used in [Fitting, 1996].De�nition 2.54 (8-satis�ability)) A collection C of sets of �rst-order formulae iscalled 8-satis�able if there is an interpretation I such that, for every variableassignment A, I is an fAg-model for some element of C.It is evident that, for closed �rst-order formulae, 8-satis�ability of a collectioncoincides with ordinary satis�ability of some element of the collection. In order toillustrate the di�erence of this concept for formulae with free variables, considerthe tableau T mentionend above. The collection consisting of the two sets offormulae fP (x);:P (a)g and fQ(x);:Q(b)g is 8-satis�able (set, e.g., U = f0; 1g,I(P) = f0g, I(Q) = f1g, I(a) = 1, and I(b) = 0).We now give a generalized version of Proposition 2.8 which can be used toprove correctness of both sentence tableaux and general free-variable tableaux.Proposition 2.55 Let C 0 = C [fSg be a 8-satis�able collection of sets of �rst-order formulae.1. If � 2 S, then C [fS [f�igg is 8-satis�able, for every �-subformula �i of�.2. If � 2 S, then C [fS[f�1g; : : : ; S[f�ngg is 8-satis�able where �1; : : : ; �nis the �-subformula sequence of �.3. If 8xF =
 2 S, then C [fS [f
(t)gg is 8-satis�able, for any term t ofthe language L provided fx=tg is free for F .4. If � 2 S, then C [fS [f�(t)gg is 8-satis�able for any Skolemization �(t)of � wrt SC 0.5. C 0� is 8-satis�able, for any substitution � which is free for all formulae inSC 0.

52 CHAPTER 2. TABLEAU SYSTEMSProof By the de�nition of 8-satis�ability, there is an interpretation I such that,for every variable assignment A, I is an fAg-model for some member of C 0. Thenon-trivial case for proving items (1) to (4) is the one in which S is fAg-satis�edby I and no element of C is. Let A be the collection of all variable assignments, forwhich this holds. Items (1) and (2) are immediate from the de�nition of formulaassignment. For (3), let A be an arbitrary element from A. Then, be item (8)of formula assignments, IA0(F) = >, for all x-variants of A. Since A� is an x-variant of A, IA�(F) = >. Now � is free for F , therefore, Lemma 1.45 can beapplied yielding that IA(F�) = IA�(F). Item (4): since �(t) is a Skolemization of� wrt SC 0, by Proposition 1.55, there exists an A-model I 0 for S[f�(t)g which isidentical to I except for the interpretation of the new function symbol f in �(t).Since f does not occur in C, for all variable assignment A =2 A, some element ofC is fAg-satis�ed by I 0. Consequently, I 0 is a 8-model for C [fS [f�(t)gg. For(5), let A be any variable assignment. Consider its modi�cation A�. Since C 0 isassumed as 8-satis�able, IA�(S0) = >, for some S0 2 C 0. Now � is free for F ,therefore, again by Lemma 1.45, IA(S�) = IA�(S). 2Proposition 2.56 (Soundness of general free-variable tableaux) If a set of formu-lae S is satis�able, then every general free-variable tableau for S has an openbranch.Proof First, note that the satis�ability of a set of formulae S entails the 8-satis-�ability of the collection fSg. Then the proof is by induction on the number ofinference steps, using Proposition 2.55 on the collection of the sets of formulaeon the branches of a general free-variable tableau. 2The completeness of general free-variable tableaux is trivial, because the cal-culus is obviously a generalization of the calculus of sentence tableaux. So generalfree-variable tableaux are only relevant as a common framework but not as a cal-culus supporting the �nding of proofs. What we are interested in is to apply asubstitution only if this immediately leads to the closure of a branch, and we willeven restrict this to an atomic closure.De�nition 2.57 (Free-variable tableau) Free-variable tableaux with atomic closure,or just free-variable tableaux, are de�ned as general free-variable tableaux, butwith the following two modi�cations. The
�-rule is replaced with the weaker
0-rule and the substitution rule (S) is replaced with the weaker closure rule (C)(
 0)

(x) where x is a variable new to S and T ,(C) Modify T to T� if two literals K and L are on a branchsuch that � is a minimal uni�er for fK;�Lg.Note that the applied substitution will be automatically free for the formulaein the tableau. This is because the
 0-rule guarantees that no variable occurs

2.2. FREE-VARIABLE TABLEAUX 53
������� XXXXXXX

(1) :9x(8y8zP (y; f(x; y; z))! (8yP (y; f(x; y; x)) ^ 8y9zP (g(y); z)))�(2)�(2)�(4)

 0(1)

� 0(5)
 0(3)
 0(8) (10) :9zP (g(b); z)� 0(6)
 0(10)
 0(3)
 0(12)
(6) :8y9zP (g(y); z)
(11) :P (g(b); z2)

(3) 8y8zP (y; f(x1; y; z))(4) :(8yP (y; f(x1; y; x1)) ^ 8y9zP (g(y); z))
�1 = fy1=h(x1); z1=x1g (13) P (y2; f(x1; y2; z3))�2 = fy2=g(b); z2=f(x1; g(b); z3)g(12) 8zP (y2; f(x1; y2; z))

(7) :P (h(x1); f(x1; h(x1); x1))(5) :8yP (y; f(x1; y; x1))
(2) :(8y8zP (y; f(x1; y; z))! (8yP (y; f(x1; y; x1)) ^ 8y9zP (g(y); z)))

(8) 8zP (y1; f(x1; y1; z))(9) P (y1; f(x1; y1; z1))
Figure 2.5: Closed free-variable tableau.

bound and free in formulae of the tableau and, since K and L are quanti�er-free,the minimal uni�er � has only free variables in the terms of its range.Let us now consider an example. It is apparent that the destructive modi-�cations render it more di�cult to represent a free-variable tableau deduction.We solve this problem by not applying the substitutions �1; : : : ; �n explicitly tothe tableau T , but by annotating them below the nodes at the respective leaves.The represented tableau then is T�1 � � ��n. In Figure 2.5, a free-variable tableaufor the same �rst-order sentence is displayed for which in Figure 2.2 a sentencetableau is displayed. Comparing both tableaux, we can observe that it is mucheasier to �nd the closed free-variable tableau than the closed sentence tableau.The substitutions that close the branches need not be blindly guessed, they canbe automatically computed from the respective pairs of literals to be uni�ed, viz.(7) and (9) on the left and (11) and (13) on the right branch.

54 CHAPTER 2. TABLEAU SYSTEMS2.2.3 Completeness of Free-Variable TableauxThe completeness of free-variable tableaux is not di�cult to prove for formulaein Skolem or weak Skolem form10, since the construction of any atomically closedsentence tableau can be simulated step by step by the calculus of free-variabletableaux. This is evident, because only the
-rule has a di�erent e�ect for this classof formulae. The simulation then proceeds by simply delaying the instantiationsof
-formulae and performing the substitutions later by using the closure rule.Unfortunately, for general formulae, no identical simulation of sentence tableauxis possible, as becomes clear when comparing Figure 2.5 with Figure 2.2. Theproblem is that more complex Skolem functions may be necessary in free-variabletableaux. But modulo such a modi�cation, a so-called Skolem variant, a tree-isomorphic simulation exists.De�nition 2.58 (Skolem variant of a sentence tableau) (inductive)1. Any sentence tableau T is a Skolem variant of itself.2. If c is a constant introduced by a �-rule application on a branch B of aSkolem variant T 0 of a sentence tableau T and t is any ground term whosedominating function symbol is new to B, then the formula tree obtainedfrom replacing any occurrence of c in T 0 by t is a Skolem variant of T .It is clear that Skolem variants preserve the closedness of a formula tree.Lemma 2.59 Any Skolem variant of a(n atomically) closed sentence tableau is(atomically) closed.Another problem is that the order in which a free-variable tableau is con-structed can in
uence the arity of the Skolem functions in �+-rules. Consider, forexample, a tableau consisting of a left branch P (x) � :P (a) and a right branch9y(Q(x; y)^:Q(a; y)). If we decide to close the left branch �rst using the uni�erfx=ag, then the performance of the �+-rule on the instantiated right branch willproduce a Skolem constant. If the right branch is selected �rst, then we have tointroduce a complex Skolem term f(x), since x is still free. So, in the presence of�-formulae, di�erent orders of constructing a free-variable tableau can make a dif-ference in the �nal tableau, as opposed to sentence tableaux which are completelyindependent of the construction order. As a matter of fact, we want complete-ness of free-variable tableaux independent of the construction order. The orderof construction is formalized with the notion of a (branch) selection function.De�nition 2.60 (Selection function) A (branch) selection function � is a mappingassigning an open branch to every tableau T which is not atomically closed. Let� be a branch selection function and let T1; : : : ; Tn be a sequence of successivetableaux, i.e., each Ti+1, can be obtained from Ti by a tableau inference step. Thetableau Tn is said to be (constructed) according to � if each Ti+1 can be obtainedfrom Ti by performing an inference on the branch �(Ti).10I.e., in which no tableau subformula of type
 has a tableau subformula of type �.

2.2. FREE-VARIABLE TABLEAUX 55Lemma 2.61 Let T 0 be any atomically closed sentence tableau. Then, for anybranch selection function �, there exists an atomically closed free-variable tableauT for S constructed according to � such that T is more general than a Skolemvariant of T 0; and if every formula F 2 S is in weak Skolem form, then T iseven more general than T 0.Proof Let T 0 be any atomically closed sentence tableau and � any branch se-lection function. We de�ne sequences T1; : : : ; Tm of free-variable tableaux whichcorrespond to initial segments of T 0 as follows. T1 is the one-node initial tableauof T 0. Let Ti be the i-th element of such a sequence T1; : : : ; Tm, 1 � i < m, and Bthe inital segment of the branch in T 0 which corresponds to the selected branch�(Ti) in Ti, i.e., B and �(Ti) are paths from the root to the same tree position.1. If B is atomically open, then some expansion step has been performed inthe construction of T 0 to expand B. Ti+1 is the result of performing acorresponding free-variable tableau expansion step on �(Ti).2. If B is atomically closed (and �(Ti) is atomically open), then two comple-mentary literals must be on B. Let K and L be the corresponding literalson �(Ti). Ti+1 is the result of applying a minimal uni�er of fK;�Lg to Ti.We show by induction on the sequence length that any of the tableaux in such asequence is more general than an initial segment of some Skolem variant of T 0.The induction base is evident. For the induction step, let Ti be more general thanan initial segment TSki of a Skolem variant of T 0. For case (1), we consider �rstthe subcase in which B is not expanded by a �-step. Then an expansion of �(Ti)corresponding to the sentence tableau expansion of B is possible and produces atableau Ti+1 that is more general than the respective expansion of TSki , which isan initial segment of some Skolem variant of T 0. The subcase of �-expansion isthe problematic one, since one (possibly) has to move to another Skolem variantof T 0. Let �(f(x1; : : : ; xn)), n � 0, be the formula by which Ti was expanded.Each variable xj , 1 � j � n, has been introduced in Ti by a
 0-step using anode Nj . If t1; : : : ; tn are the respective ground terms at the same term positionsin TSki , then let TSki+1 be the formula tree obtained by expanding the branchcorresponding to B with �(f(t1; : : : ; tn)). By construction, Ti+1 is more generalthan TSki+1, which is an initial segment of a Skolem variant of T 0. In case (2), �(Ti)is atomically open, but B is atomically closed. By the induction assumption, Ti ismore general than TSki , which has the branch atomically closed. Therefore, thereexists a minimal uni�er for the literals K and the complement of L on �(Ti), andTi+1 = Ti� is more general than TSki . Now any such sequence T1; : : : ; Tm mustbe of �nite length, since in each simulation step a di�erent node position of T iseither expanded or closed, i.e., m is less or equal to the number of nodes of T 0.Consequently, T = Tm is an atomically closed free-variable tableau for S that ismore general than a Skolem variant of T 0. Finally, if S is in weak Skolem form, nofree variable can occur in a �-formula in a free-variable tableau for S. In this case,one can always use the same Skolem constants in the construction of T and T 0

56 CHAPTER 2. TABLEAU SYSTEMSand never has to move to a proper Skolem variant of T 0. Then T is more generalthan T 0. 2From this lemma immediately follows the refutational completeness of free-variable tableaux.Theorem 2.62 (Free-variable tableau completeness) If S is an unsatis�able set of�rst-order sentences, then there exists a �nite atomically closed free-variable tab-leau for S.2.2.4 Proof Procedures for Free-Variable TableauxWe have proven the completeness of free-variable tableaux via a simulation ofsentence tableaux instead of providing an independent completeness proof. Theadvantage of this approach is that we are assured that, for any atomic sentencetableau proof, there is a free-variable tableau proof of the same tree size. Thedisadvantage of this completeness proof, however, is that it is proof-theoreticallyweaker than the one given for sentence tableaux, since we do not specify how tosystematically construct a closed free-variable tableau, as it is done with the sys-tematic sentence tableau procedure. The simple reason for this is the following.Since the calculus of free-variable tableaux is destructive, in general, the (tree)union of the tableaux in a successive tableau sequence cannot be performed. Thefundamental proof-theoretic di�erence from sentence tableaux is that with theapplication of substitutions to tableaux the paradigm of saturating a branch (pos-sibly up to a Hintikka set) is lost. A notion of saturated systematic free-variabletableau can only be de�ned for the fragment of the calculus without the closurerule. Completeness could then be shown in the standard way by using any one-to-one association between the set of variables and the set of all ground terms whichis then applied to the saturated tableaux at the end (cf. p. 195 in [Fitting, 1996]).This is proof-theoretically possible, but useless for e�cient proof search, becausethe employment of a �xed association between variables and ground terms de-grades free-variable tableaux to sentence tableaux. The question is whether thereexists a systematic procedure for free-variable tableaux of the same type andfunctionality as for sentence tableaux but with variable instantiations guided byuni�cation? The problem can at best be recognized with an example.Consider the formula on top of Figure 2.6. Since the formula is a satis�abledatalogic formula, any regular Herbrand tableau construction will terminate withan open branch which is a Hintikka set. Let us contrast this with the behaviour offree-variable tableaux. Referring to the �gure, after eight steps we have producedthe displayed two-branch tableau. What shall we do next? If we close the leftbranch by unifying :P (x1; y1; v1) and the complement of :P (c; a; b), the applieduni�er blocks the immediate closure of the right branch. We could proceed andtry another four
 0-steps, producing a similar situation than before. Since alwaysnew free variables are imported by the
 0-rule, the procedure never terminates,even if we only permit regular tableaux. How do we know when to stop andhow can we produce a model? In fact, no systematic procedure for free-variable

2.2. FREE-VARIABLE TABLEAUX 57
������ XXXXXX

�(1)�(1)�(1)(4) 8x8y8v8w(P (x;y; v)! P (y; x; w))...4�
 0(9) :P (x1; y1; v1) (10) P (y1; x1; w1)�(8)
(3) P (c; a; b)(8) P (x1; y1; v1)! P (y1; x1; w1)
(2) :P (a; b; c)(1) :P (a; b; c) ^ P (c; a; b) ^ 8x8y8v8w(P (x;y; v)! P (y; x; w))

Figure 2.6: Free-variable tableau for a datalogic formula (see De�nition 2.35).tableaux has been devised up to now that both is guided by uni�cation andhas the same functionality as sentence tableaux. It was only very recently thatsuch a procedure has been proposed for the restricted class of formulae in clausalform [Billon, 1996]. This procedure, which is based on a nondestructive variantof free-variable tableaux, is described in Section 4.2.3.But we will further pursue the destructive line and discuss a radically di�erentparadigm of searching for tableau proofs. Instead of saturation of a single tab-leau, one considers all tableaux that can be constructed. If all existing tableauxare enumerated in a fair manner, for any unsatis�able input sentence, one willeventually �nd a closed free-variable tableau. The fair enumeration is facilitatedby the fact that the set of all existing tableaux can be organized in the form of atree.De�nition 2.63 (Search tree) Let S be a set of sentences, C a tableau calculus,and � a branch selection function. The search tree of C and � for S is a tree Twith its non-root nodes labelled with tableaux de�ned as follows.1. The root of T consists of a single unlabelled node.2. The successors of the root are labelled with all single-node tableaux for S.3. Every non-leaf nodeN in T labelled with a tableau T has as many successornodes as there are successful applications of a single inference step in Capplied to the branch in T selected by �, and the successor nodes of N inT are labelled with the respective resulting tableaux.If the input set is �nite, the search tree branches �nitely, and a fair enu-meration can be achieved by simply inspecting the search tree levelwise fromthe top to the leaves. Any closed tableau will eventually be found after �nitelymany steps. In practice, this could be implemented as a procedure which explic-itly constructs competitive tableaux and thus investigates the search tree in a

58 CHAPTER 2. TABLEAU SYSTEMSbreadth-�rst manner. The explicit enumeration of tableaux, however, su�ers fromtwo severe disadvantages. The �rst one is that, due to the branching rate of thesearch tree, an enormous amount of space is needed to store all tableaux. Thesecond disadvantage is that the cost for adding new tableaux increases duringthe proof process as the sizes of the proof objects increase. In contrast, for reso-lution procedures mainly the number of new proof objects (clauses) is generallyconsidered the critical parameter. These weaknesses give su�cient reason why inpractice no-one has succeeded with an explicit tableau enumeration approach upto now.The customary and successful paradigm therefore is to perform tableau enu-meration in an implicit manner, using iterative deepening search procedures. Withthis approach, iteratively increasing �nite initial segments of a search tree are ex-plored. Although, according to this methodology, initial parts of the search treeare explored several times, no signi�cant e�ciency is lost if the initial segmentsincrease exponentially [Korf, 1985]. Due to the construction process of tableauxfrom the root to the leaves, many tableaux have identical or structurally identicalsubparts. This motivates one to explore �nite initial segments of the search treein a depth-�rst manner by strongly exploiting structure sharing techniques andbacktracking. Using this approach, at each time only one tableau is kept in mem-ory, which is extended following the branches of the search tree, and truncatedwhen a leaf node of the respective initial segment of the search tree is reached.The advantage is that, due to the application of Prolog techniques, very highinference rates can be achieved this way (see [Stickel, 1988], [Letz et al., 1992], or[Beckert and Posegga, 1994]). The respective initial segments are determined byso-called completeness bounds.De�nition 2.64 (Completeness bound) A size bound is a total mapping s assign-ing to any tableau T a nonnegative integer n, the s-size of T . A size bound s iscalled a completeness bound for a tableau calculus C if, for any �nite set S offormulae and any n � 0, there are only �nitely many C-tableaux with s-size lessor equal to n.The �niteness condition quali�es completeness bounds as suitable for iterativedeepening search. Given a completeness bound s and an iterative deepening levelwith size limit n, an implicit deduction enumeration procedure works as follows.Whenever an inference step is applied to a tableau, it is checked whether thes-size of the new tableau is � n, otherwise backtracking is performed. A commonmethodology of developing completeness bounds for the strict (or strictly regular)free-variable tableau calculus C is to limit the application of
0-steps in certainways (see also [Fitting, 1996]). We give three concrete examples. First, one maysimply limit the application of
0-steps permitted in the tableau (1) or on eachbranch of the tableau (2). Another variant (3) is the so-called multiplicity boundwhich has also been used in other frameworks [Prawitz, 1960] and [Bibel, 1987].The natural de�nition of this bound is for �nite sets S of formulae in Skolemform and for tableaux in which every F 2 S is used in the tableau only once at

2.2. FREE-VARIABLE TABLEAUX 59the beginning. Then, with multiplicity n, to each
-node in the tableau, at mostn
0-steps are permitted.It is obvious that all mentioned size bounds are completeness bounds for thetableau calculus C, that is, for any �nite input set of formulae S: for every n,there are only �nitely many C-tableaux of size n for S, and if S is unsatis�able,then, for some n, there is a closed C-tableau with size n.Interestingly, one can make complexity assessments about the problem of de-termining whether a tableau with a certain limit exists. For example, for thebounds (1) and (3), one can demonstrate that, for some �nite input set S,the recognition problem of the existence of a closed tableau for S with a cer-tain limit is complete for the complexity class �p2 in the polynomial hierarchy[Garey and Johnson, 1979]. We will consider this topic later in Chapter 8.A general disadvantage of completeness bounds of the
-type is that they aretoo uniform to be useful in practice. Normally, the �rst initial segment of thesearch tree containing a closed tableau with size n may have an astronomic size,with the obvious consequence that in practice a proof will not be found. In thenext section, we shall mention completeness bounds in which normally the �rstproof is in a much smaller initial segment.We conclude this section with mentioning an obvious method for reducingthe e�ort for �nding closed free-variable tableaux. In fact, it is not necessary toconsider all free-variable tableaux in an initial segment of a search tree. Since onlythe closure rule is destructive, we can work with the following re�ned calculuswhich, at least concerning the tableau expansion rules, is deterministic, similarto the systematic tableau procedures.De�nition 2.65 (Expansion-deterministic free-variable tableau) Expansion-deter-ministic free-variable tableaux are de�ned like systematic sentence tableaux, butwith the respective free-variable rules plus the closure rule.So the only way indeterminism can occur in this calculus is by the applicationof closure steps. In order to minimize the search e�ort, one should even preferthe closure rule (if applicable) to all expansion rules. The completeness of thisre�nement of free-variable tableaux immediately follows from Lemma 2.61, sincethe calculus can simulate the construction of any systematic sentence tableau.As a �nal remark of this section, it should be emphasized that, from a search-theoretic perspective, tableau enumeration procedures are not optimally suitedfor con
uent calculi (like the ones mentioned so far). This is because, for con
uenttableau calculi, on any branch of the search tree there must be a closed tableauif the input set is unsatis�able. A tableau enumeration procedure, however, doesnot take advantage of this proof-theoretic virtue of the calculus.

60 CHAPTER 2. TABLEAU SYSTEMS

Chapter 3Tableaux with Connections3.1 Clausal TableauxThe e�orts in automated deduction for classical logic have been mainly devotedto the development of proof procedures for formulae in clausal form. This has tworeasons. First, as discussed in Section 2, in classical logic, any �rst-order formulacan be transformed into clausal form without a�ecting the satis�ability status andwith only a polynomial increase of the formula size. Since, for formulae in clausalform, the tableau rules can be reduced and presented in a more condensed form,simpler and more e�cient proof procedures can be achieved this way. Second andeven more important, due to the uniform structure of formulae in clausal form,it is much easier to detect additional re�nements and redundancy eliminationtechniques than for the full �rst-order format. This section will provide plenty ofevidence for this fact.Since in clause logic negations are only in front of atomic formulae, only atomicbranch closures can occur. Accordingly, when a closed free-variable tableau fora set of clauses S is to be constructed and a clause in S has been selected forbranch expansion, one can deterministically decompose it to the literal level.Such a macro step consists of a formula rule application, a sequence of
 0-stepsand possibly a �-step. It is convenient to ignore the intermediate formulae andreformulate such a sequence of inference steps as a single condensed tableauexpansion rule. In order to simplify the presentation, we consider only clauseswithout quanti�er pre�xes. This is no restriction, since every clause is logicallyequivalent to its universal closures.De�nition 3.1 (Renaming, variant) Let F be a formulae, S a set of formulae,and � = fx1=y1; : : : ; xn=yng a substitution such that all y1; : : : ; yn are distinctvariables new to S. F� is called a renaming or variant of x1; : : : ; xn in F wrt S.Clausal tableaux are trees labelled with literals (and other control informa-tion) inductively de�ned as follows. 61

62 CHAPTER 3. TABLEAUX WITH CONNECTIONSDe�nition 3.2 (Clausal tableau) Let S be any set of clauses. A tree consisting ofjust one unlabelled node is a clausal tableau for S. The single branch of this treeis considered as open. If B is a branch of a clausal tableau T for S, then theformula trees obtained from the following two inference rules are clausal tableauxfor S:(E) B � L1 j � � � j Ln where L1 _ � � � _ Ln is a renaming of the free variables ina clause of S wrt the formulae in T ; the rule (E) is called clausal expansionrule or just expansion rule. The new branches are considered as open. Itsleaf nodes are called subgoals.(C) the closure rule of free-variable tableaux, also called reduction rule. Nowthe respective branch is considered as closed.De�nition 3.3 (Tableau clause) For any non-leaf node N in a clausal tableau, theset of nodes N1; : : : ; Nm immediately below N is called the node family below N ;if the nodes N1; : : : ; Nm are labelled with the literals L1; : : : ; Lm, respectively,then the clause L1 _ � � � _ Lm is named the tableau clause below N ; The tableauclause below the root node is called the start or top clause of T .
������ ������XXXXXX

XXXXXX������
������ XXXXXX

XXXXXXR(f(x)):R(x) :R(f(f(x)))R(f(f(x))):R(f(x))
R(f(x))

:R(f(f(f(x)))):R(f(f(f(f(x)))))R(f(f(f(f(x)))))R(x) :R(f(f(x)))R(f(f(x)))R(f(f(f(x)))) R(f(f(f(x))))Figure 3.1: Closed clausal tableau.In Figure 3.1, a closed clausal tableau is displayed. Here the uni�ers of closuresteps were already applied. The input is the set of clauses 8x(R(x) _ R(f(x)))and 8x(:R(x) _ :R(f(f(x)))) corresponding to the negation of the formula Fpresented in Example 1.12. So we have demonstrated that F is valid. The formatof clausal tableaux provides a relatively concise representation of tableau proofscontaining all relevant information. Note that a full free-variable tableau proofincluding all intermediate inference steps would have more than twice the size.In general, variables in clausal tableaux are considered as rigid, i.e., just asplaceholders for arbitrary ground terms. In Section 6.3, it will be shown thatthis condition can be relaxed for certain variables. The example also shows thenecessity of renaming variables. Without renaming it would be impossible to unifythe second literal in the �rst clause with the complement of the second literal in

3.2. CONNECTION TABLEAUX 63the second clause, which is done, for example, in the second closure step on theleft. Furthermore, multiple copies of the same input clauses are needed.Let us make some remarks on the peculiarities of this de�nition as comparedwith the more familiar de�nition of tableaux used before. On the one hand, wecarry the input set or formula S alongside the tableau and do not put its mem-bers at the beginning of the tableau. Instead we leave the root unlabelled. Thisfacilitates the comparison of tableaux for di�erent input sets. For example, onetableau may be an instance of another tableau, even if their input sets di�er.Second, a branch is considered as closed only if the closure rule was explicitlyapplied to it, all other branches are considered as open, even when they are com-plementary. This precaution simpli�es the presentation, in particular, the proofof the Lifting Lemma (Lemma 5.9), and does more adequately re
ect the actualsituation when implementing tableaux.The completeness and con
uence of clausal tableaux for clause formulae followimmediately from the fact that clausal tableaux can simulate free-variable tab-leaux, by simply omitting formula steps, �-steps, and
 0-steps, and by performingclausal expansion steps in place.Clausal tableaux provide a large potential for re�nements, i.e., for impos-ing additional restrictions on the tableau construction. For instance, one canintegrate ordering restrictions (see [Klingenbeck and H�ahnle, 1994]) as they aresuccessfully used in resolution-based systems. The most important structural re-�nement of clausal tableau concerning automated deduction, however, is to uselinks or connections to guide the proof search.3.2 Connection TableauxA closer look at the clausal tableau displayed in Figure 3.1 reveals an interestingstructural property. In every node family below the start clause, at least one nodehas a complementary ancestor. This property can be formulated in two variants,a weaker and a stronger one.De�nition 3.4 (Path connectedness, connectedness)1. A clausal tableau is said to be path connected or called a path connectiontableau if, in every family of nodes except the start clause, there is one nodewith a complementary ancestor.2. A clausal tableau is said to be (tightly) connected or called a (tight) con-nection tableau if, in every family of nodes except the start clause, there isone node with a complementary predecessor.With the connection conditions, every clause has a certain relation with thestart clause. This allows a goal-oriented form which may be used to guide theproof search. In Figure 3.2 the di�erence between the two notions is illustratedwith a closed path connection tableau and a closed connection tableau for theset of propositional clauses p, :p _ q, r _ :p, and :p _ :q. It is obvious that

64 CHAPTER 3. TABLEAUX WITH CONNECTIONS��� QQQ��� QQQ��� QQQ
��� QQQ��� QQQp p:p :p :p:p :q :qq q:prFigure 3.2: A path connection and a connection tableau.the tight connection condition is properly more restrictive, since there exists noclosed connection tableau which uses the redundant clause r _ :p.Let us make some brief historical remarks on the rôle of connections in tab-leaux. The notion of a connection is a central concept in automated deduc-tion whereas tableau calculi, traditionally, have no reference to connections|as an illustration, note that the notion does not even occur in [Fitting, 1996].On the other hand, it was widely not noticed in the area of automated deduc-tion and logic programming that calculi like model elimination [Loveland, 1968,Loveland, 1978], SLD-resolution [Kowalski and Kuehner, 1970], or the connec-tion calculi [Bibel, 1987] are proof-theoretically better viewed as tableau calculi.This permits, for instance, to view the calculi as cut-free proof systems. The rela-tion of these calculi to tableaux has not been recognized, although, for example,the original presentation of model elimination [Loveland, 1968] is clearly in tab-leau style. The main reason for this may be that until recently both communities(tableaux and automated deduction) were almost separated. As a further illustra-tion of this fact, note that uni�cation was not really used in tableaux before theend ot the eighties [Reeves, 1987, Fitting, 1990]. In Chapter 4, we will expoundthe relation of connection tableaux with model elimination, SLD-resolution, andthe connection method.In order to satisfy the connection conditions, for every tableau expansionstep except the �rst one, the closure rule has to be applied to one of the newlyattached nodes. This motivates to amalgamate both inference rules into a newmacro inference rule.De�nition 3.5 ((Path) extension rule) The (path) extension rule is de�ned as fol-lows: perform a clausal expansion step immediately followed by a closure stepunifying one of the newly attached literals, say L, with the complement of theliteral at its predecessor node (at one of its ancestor nodes); the literal L and itsnode are called entry or head literal respectively entry or head node.The building of such macro inference rules is a standard technique in auto-mated deduction to increase e�ciency. With these new rules the clausal tableaucalculi may be reorganized.

3.3. PROOF SEARCH IN CONNECTION TABLEAUX 65De�nition 3.6 ((Path) connection tableau calculus) The (path) connection tableaucalculus consists of the following three inferences rules:� the (path) extension rule,� the closure or reduction rule,� and the start rule, which is simply the expansion rule, but restricted to onlyone application, namely the attachment of the start clause.A fundamental proof-theoretic property of the two connection tableau calculiis that they are not proof con
uent, as opposed to the general clausal tableaucalculus. This can easily be recognized, for instance, by considering the unsatis-�able set of unit clauses S = fp; q;:qg. If we select p as start clause, then thetableau cannot be completed to a closed tableau without violating the (path)connectedness condition. In other terms, using the (path) connectedness condi-tion, one can run into dead ends. The important consequence to be drawn fromthis fact is that, for those tableau calculi, systematic branch saturation proce-dures of the type presented before do not exist. Since an open connection tableaubranch that cannot be expanded does not guarantee the existence of a model,connection tableaux are therefore not suited for model generation. Weaker con-nection conditions that are compatible with model generation were developed in[Manthey and Bry, 1988, Billon, 1996, Baumgartner, 1998] and will be consideredin Section 4.2.3.3 Proof Search in Connection TableauxWhen using non-con
uent deduction systems like the connection tableau calculi,in order to �nd a proof, in general, all possible deductions have to be enumeratedin a fair manner until the �rst proof is found. It is important to emphasize thatthe search spaces of tableau calculi cannot be represented as familiar and-or-trees in which the and-nodes represent the tableau clauses and the or-nodes thealternatives for expansion. Such a more compact representation is not possiblein the �rst-order case, because the branches in a free-variable tableau cannot betreated independently.In Figure 3.3, the complete connection tableau search tree for a set of clausesis given. For this simple example, the search tree is �nite. Note that the searchspace of the general clausal tableau calculus (without a connection condition) isin�nite for S. This is but one illustration of the search pruning e�ect achieved bythe connection conditions.3.3.1 Completeness Bounds for Connection TableauxIn contrast to the completeness bounds typically used for general tableaux, whichare based on limitations of
-rule applications, for connection tableaux, di�erentcompleteness bounds are favourable.

66 CHAPTER 3. TABLEAUX WITH CONNECTIONS
��@@ ��@@P (a)��@@

��@@ P (a)
��@@P (a)��@@ ��@@��@@����� XXXXX��@@

��@@
��@@��� QQ((((((((hhhhhhhhhhTT

:P (f(a)):P (f(f(a))) :P (f(a)) :P (f(a)):P (f(f(a))) P (f(a)):P (a):P (f(a)):P (a)P (a) :P (f(a))
:P (f(a)):P (a)P (a) P (f(a))

:P (a):P (f(a))P (f(a))
:P (x):P (f(x))

:P (a) :P (f(a))P (a) P (f(a)) :P (f(a)):P (a) :P (f(a)):P (a)P (f(a))
P (f(a))P (f(a))

P (f(a)) P (a)
P (f(a)) dead enddead end �

�
�:P (a)����

� � � � �� �Figure 3.3: The connection tableau search tree for the set S consisting of thethree clauses :P (x) _ :P (f(x)), P (a), and P (f(a)).Inference boundThe most natural completeness bound is the so-called inference bound whichcounts the number of inference steps that are needed to construct a closed tableau.Using the inference bound, the search tree is explored level-wise; that is, for size n,the search tree is explored until depth � n. The search e�ort can be reducedby using look-ahead information as follows. As soon as a clause is selected forattachment, its length is taken into account for the current inference number,since obviously, for every subgoal of the clause at least one inference step isnecessary to solve it. This enables us to detect as early as possible when thecurrent size limit is exceeded. For example, considering the search tree given inFigure 3.3, with inference limit 2, one can avoid an expansion step with the �rstclause :P (x)_:P (f(x), since any closed tableau with this clause as start clausewill at least need 3 inference steps. This method was �rst used in [Stickel, 1988].Depth boundA further simple completeness bound is the depth bound, which limits the length ofthe branches of the tableaux considered in the current search level. In connectiontableaux, one can relax this bound so that it is only checked when non-unit clausesare attached. This implements a certain unit preference strategy. An experimentalcomparison of the inference bound and the relaxed depth bound is contained in[Letz et al., 1992].Both of the above bounds have certain de�ciencies in practice. Brie
y, theinference bound is too optimistic, since it implicitly assumes that subgoals which

3.3. PROOF SEARCH IN CONNECTION TABLEAUX 67are not yet processed may be solved with just one inference step. The weaknessof the depth bound, on the other hand, is that it is too coarse in the sense thatthe number of tableaux in a search tree with depth � n+1 is usually much largerthan the number of tableaux with depth � n. In fact, in the worst case, the in-crease function is doubly exponential whereas, in the case of the inference bound,the increase function is exponential. Furthermore, both bounds favour tableauxof completely di�erent structures. Using the inference bound, trees containingfew long branches are preferred, whereas the depth bound prefers symmetricallystructured trees.A divide-and-conquer optimization of the inference boundIn [Harrison, 1996], the following method was applied for avoiding some of thede�ciencies of the inference bound. In order to comprehend the essence of themethod, assume N1 and N2 be two subgoals (among others) in a tableau andlet the number of remaining inferences be k. Now it is clear that one of thetwo subgoals must have a proof of � k=2 inferences in order to respect the sizelimit. This suggests the following two-step algorithm. First, select the subgoalN1 and attempt to solve it with inference limit k=2; if this succeeds, solve therest of the tableau with whatever is left over from k. If this has been done forall solutions of the subgoal N1, repeat the entire process for N2. The advantageof this method is that the exploration of N1 and N2 to the full limit k is oftenavoided. Its disadvantage is that pairs of solutions of the subgoals with size �k=2 will be found twice, which increases the search space. In order to avoid abreaking down of this method in the recursive case, methods of failure caching aspresented in Section 5.3.3 are needed. In practice, this method performs betterif instead of k=2 smaller limits like k=3 or k=4 are used, although those do notguarantee that all proofs on the respective iterative-deepening level can be found.A possible explanation for this improved behavior is that the latter methods tendto prefer short or unit clauses which is a generally successful strategy in automateddeduction (see also Section 3.4.2 where a similar e�ect may be achieved with amethod based on a di�erent idea).Clause dependent depth boundsOther approaches aim at improving the depth bound. The depth bound is typi-cally implemented as follows. For a given tableau depth limit, say k, every nodein the tableau is labelled with the value k � d where d is the distance from theroot node. If this value of a node is 0, then no tableau extension is permittedat this node. Accordingly, one may call this value of a node its resource. Thisapproach permits a straightforward generalization of the depth bound. Instead ofgiving the open successors N1; : : : ; Nm of a tableau node N with resource i theresource j = i� 1, the resource j of each of N1; : : : ; Nm is the value of a functionr of two arguments, the resource i of N and the number m of new subgoals in theattached clause. We call such bounds clause dependent depth bounds. With clausedependent depth bounds a smoother increase of the iterative deepening levels can

68 CHAPTER 3. TABLEAUX WITH CONNECTIONSbe achieved. Two such clause dependent depth bounds have been used in practice,one de�ned by r(i;m) = i �m (this bound is available in the system SETHEOsince version V.3 [Goller et al., 1994]) and the other by r(i;m) = (i� 1)=m (thisbound was called sym in [Harrison, 1996]).Weighted depth boundsAlthough with clause dependent depth bounds, a higher
exibility can be ob-tained, these bounds are all in the spirit of the pure depth bound in the sensethat the resource j of a node is determined at the time the node is attached tothe tableau. In order to increase the
exibility and to permit an integration offeatures of the inference bound, the so-called weighted depth bounds have beendeveloped. The main idea of the weighted depth bounds is to use a bound likethe clause dependent depth bound as a basis, but to take the inferences intoaccount when eventually allocating the resource to a subgoal. In detail, this iscontrolled by three parameterized functions w1, w2, w3 as follows. When enteringa clause with m subgoals from a node with resource i, �rst, the maximally avail-able resource j for the new subgoals is computed according to a clause dependentdepth bound, i.e., j = w1(i;m). Then, the value j is divided into two parts, aguaranteed part jg = w2(j;m) and an additive part ja = j � jg . Whenever asubgoal is selected, the additive part is modi�ed depending on the inferences �iperformed since the clause was attached to the tableau,1 i.e., j0a = w3(ja;�i).The eventually allocated resource for a selected subgoal then is jg + j0a.Depending on the parameter choices for the functions w1, w2, w3, the respec-tive weighted depth bound can simulate the inference bound (w1(i;m) = i�m,w2(j;m) = 0, w3(ja;�i) = ja��i) or the (clause dependent) depth bound(s) orany combination of them.A parameter selection which represents a simple new completeness boundcombining inference and depth bound is, for example, w1(i;m) = 1, w2(j;m) =j�(m�1), w3(ja;�i) = ja=(1+�i). On problems with equality, this bound turnedout to be much more successful than each of the other bounds [Moser et al., 1997].One reason for the success of this strategy that it also performs a unit preferencestrategy.3.4 Subgoal ProcessingThere is a source of indeterminism in the clausal tableau calculi presented sofar that can be removed without any harm. This indeterminism concerns theselection of the next subgoal at which an expansion, extension, or closure step isto be performed.1We assume that the look-ahead optimization is used, according to which reduction stepsand extension steps into unit clauses do not increase the current inference value. This impliesthat �i = 0 if no extension steps in non-unit clauses have been performed on subgoals of thecurrent clause.

3.4. SUBGOAL PROCESSING 69Most complete re�nements and extensions of clausal tableau calculi developedto date are independent of the subgoal selection, i.e., the completeness holds forany subgoal selection function (for an exception see Section 6.1.4). If a calculus hasthis property, then one can decide in advance for one subgoal selection function� and ignore all tableaux in the search tree that are not constructed accordingto �. This way the search e�ort can be reduced signi�cantly. As an illustration ofthis method of search pruning, consider the search tree displayed in Figure 3.3.For this simple tree, one can only distinguish two subgoal selection functions �1and �2. �1 selects the right subgoal and �2 the left subgoal in the start clause.When deciding for �1, the three leftmost lower boxes will vanish from the searchtree. In case of �2, only two boxes will be pruned away.For the clausal tableau calculi presented up to this point, even the followingstronger independence property holds.Proposition 3.7 (Strong independence of the subgoal selection) Given any closed(path) (connection) tableau T 0 for a set of clauses S constructed with n inferencesteps, then for any subgoal selection function �, there exists a sequence T0; : : : ; Tnof (path) (connection) tableaux constructed according to � such that Tn is closedand T 0 is an instance of Tn.In case a calculus is strongly independent of the subgoal selection, not onlycompleteness is preserved, but even minimal proof lengths. Furthermore, if a com-pleteness bound of the sort described above is used, then the iterative-deepeninglevel on which the �rst proof is found is always the same, independently of thesubgoal selection. Note that the strong independence of the subgoal selection (andhence minimal proof lengths) will be lost for certain extensions of the clausal tab-leau calculus like folding up [Letz et al., 1994] and the local closure rule which isstudied below.One particularly useful form of choosing subgoals is depth-�rst selection, i.e.,one always selects the subgoal of an open branch with maximal length in thetableau. Depth-�rst left-most/right-most selection always chooses the subgoal onthe left-most/right-most open branch (which automatically has maximal depth).Depth-�rst left-most selection is the built-in subgoal selection strategy of Prolog.Depth-�rst selection has a number of advantages, the most important being thatthe search is kept relatively local. Furthermore, very e�cient implementationsare possible.3.4.1 Subgoal ReorderingThe order of subgoal selection has in
uences on the size of the search space, asillustrated with the search tree above. This is because subgoals normally sharevariables and thus the solution substitutions of one subgoal have an in
uence onthe solution substitutions of the other subgoals.A general least commitment paradigm is to prefer subgoals that produce fewersolutions. In order to identify a non-closable connection tableau as early as possi-ble, the solutions of a subgoal should be exhausted as early as possible. Therefore,

70 CHAPTER 3. TABLEAUX WITH CONNECTIONSsubgoals for which probably only few solutions exist should be selected earlierthan subgoals for which many solutions exist. This results in the fewest-solutionsprinciple for subgoal selection.2Depth-�rst selection means that all subgoal alternatives stem from one clauseof the input set. Therefore, the selection order of the literals in a clause can bedetermined statically, i.e., once and for all before starting the proof search, asin [Letz et al., 1992]. But subgoal selection can also be performed dynamically,whenever the literals of the clause are handled in a tableau. The static versionis cheaper (in terms of performed comparisons), but often an optimal subgoalselection cannot be determined statically, as can be seen, for example, whenconsidering the transitivity clause P (x; z)_:P (x; y)_:P (y; z). Statically, none ofthe literals can be preferred. Dynamically, however, when performing an extensionstep entering the transitivity clause from a subgoal :P (a; z), the �rst subgoal:P (x; y) is instantiated to :P (a; y). Since now it contains only one variable,is should be preferred according to the fewest-solutions principle. Entering thetransitivity clause from a subgoal :P (x; a) leads to preference of the secondsubgoal :P (y; a).3.4.2 Subgoal AlternationWhen a subgoal in a tableau has been selected for solution, a number of comple-mentary uni�cation partners are available, viz. the connected path literals andthe connected literals in the input clauses. Together they form the so-called choicepoint of the subgoal. One common principle of standard backtracking search pro-cedures in connection tableaux (and in Prolog) is that, whenever a subgoal hasbeen selected, its choice point must be completely �nished, i.e., when retractingan alternative in the choice point of a subgoal, one has to stick to the subgoaland try another alternative in its choice point. This standard methodology hasan interesting search-theoretic weakness.This can be illustrated with the following generic example, variants of whichoften occur in practice. Given the subgoals :P (x; y) and :Q(x; y) in a tableau,assume the following clauses be in the input.(1) P (a; a),(2) P (x; y) _ :P 0(x; z) _ :P 0(y; z),(3) P 0(ai; a); 1 � i � n,(4) Q(ai; b); 1 � i � n.Suppose further we have decided to select the �rst subgoal and perform depth-�rst subgoal selection. The critical point, say at time t, is after unit clause (1)in the choice point was tried and no compatible solution instance for the othersubgoal was found. Now we are forced to enter clause (2). Obviously, there aren2 solution substitutions (uni�cations) for solving clause (2) (the product of thesolutions of its subgoals). For each of those solutions, we have to perform nuni�cations with the Q-subgoal, which all fail. Including the uni�cations spent2A special case of the fewest-solutions principle is the �rst-fail principle.

3.4. SUBGOAL PROCESSING 71...:P (x; y)P (x; y) :P 0(x; z)P 0(ai; a), 1 � i � n :P 0(y; z)P 0(aj ; a), 1 � j � n :Q(x; y)n3 failuresFigure 3.4: E�ort in case of standard subgoal processing....:P (x; y)P (x; y) :P 0(x; z)n2 failures :P 0(y; z) :Q(x; y)Q(ai; b), 1 � i � nFigure 3.5: E�ort when switching to another subgoal.in clause (2), this amounts to a total e�ort of 1 + n + n2 + n3 uni�cations (seeFigure 1). Observe now what would happen when at time t we would not haveentered clause (2), but would switch to the Q-subgoal instead. Then, for eachof the n solution substitutions Q(ai; b), one would jump to the P -subgoal, enterclause (2) and perform just n failing uni�cations for its �rst subgoal. This sumsup to a total of just n+ n(1 + n) = 2n+ n2 uni�cations (see Figure 2).It is apparent that this phenomenon has to do with the fewest-solutions prin-ciple. Clause (2) generates more solutions for the subgoal :P (X;Y) than theclauses in the choice point of the subgoal :Q(X;Y). This shows that taking theremaining alternatives of all subgoals into account provides a choice which canbetter satisfy the fewest-solution principle. The general principle of subgoal al-ternation is that one always switches to that subgoal with a next clause thatprobably produces the fewest solutions.One might object that with a di�erent subgoal selection, selecting the Q-subgoal �rst, one also could avoid the cubic e�ort. But it is apparent that theexample could be extended such that the Q-subgoal would additionally have alonger clause as alternative, so that the total number of its solutions would beeven larger than that of the P -subgoal. In this case, with subgoal alternation onecould jump back to the P -subgoal and try clause (2) next, in contrast to standardsubgoal selection. Another possibility of jumping to the Q-subgoal after having

72 CHAPTER 3. TABLEAUX WITH CONNECTIONSstandard backtracking subgoal alternationA1 B2 A1 B2A1 B4 A1 B4A1 B6 A1 B6A3 B2 \[B2 A3A3 B4 B2 A5A3 B6 \[A3 B4A5 B2 A3 B6A5 B4 \[B4 A5A5 B6 \[A5 B6Table 3.1: Order of tried clauses for subgoals A and B with clauses of lengths 1,3,5and 2,4,6 in their choice points, respectively. \[indicates subgoal alternations.entered clause (2) would be free subgoal selection. In fact, subgoal alternationunder depth-�rst subgoal selection comes closer to standard free subgoal selection,but both methods are not identical.The question is, when it is worthwhile to stop the processing of a choice pointand switch to another subgoal? As a matter of fact, it cannot be determined inadvance, how many solutions a clause in the choice point of a subgoal produces forthat subgoal. A useful criterion, however, is the shortest-clause principle, since,in the worst case, the number of subgoal solutions coming from a clause is theproduct of the numbers of solutions of its subgoals.3In summary, subgoal alternation works as follows. The standard subgoal se-lection and clause selection phases are combined and result in a single selectionphase that is performed before each derivation step. The selection yields the sub-goal for which the most suitable uni�cation partner exists wrt. the number ofsolutions probably produced. For this, the uni�cation partners of all subgoalsare compared with each other using, for instance, the shortest-clause principle. Ifmore than one uni�cation partner is given the mark of best, their correspondingsubgoals have to be compared due to the principles for standard subgoal selection,namely the �rst-fail principle and the fewest-solutions principle.In order to compare the working of subgoal alternation (using the shortest-clause principle) with the standard non-alternating variant, consider two subgoalsA and B with clauses of lengths 1,3,5 and 2,4,6 in their choice points, respectively.Table 1 illustrates the order in which clauses are tried.Subgoal alternation has a number of interesting e�ects when combined withother methods in connection tableaux. First note that the method leads to thepreference of short clauses. A particularly bene�cial e�ect of preferring shortclauses, especially the preference of unit clauses, is the early instantiation of vari-ables. Unit clauses are usually more instantiated than longer clauses, because3Also, the number of variables in the calling subgoal and in the head literal of a clausematter for the number of solutions produced.

3.4. SUBGOAL PROCESSING 73they represent the "facts" of the input problem, whereas longer clauses in gen-eral represent the axioms of the underlying theory. Since normally variables areshared between several subgoals, the solution of a subgoal by a unit clause usu-ally leads to instantiating variables in other subgoals. These instantiations reducethe number of solutions of the other subgoals and thus reduce the search spaceto be explored when selecting them. Advantage is also taken from subgoal al-ternation when combined with local failure caching considered in Section 5.3.3.Failure caching can only exploit information from closed sub-tableaux, thus alarge number of small subproofs provides more information for caching than asmall number of large sub-tableaux that cannot be closed. Since subgoal alter-nation prefers short clauses and hence small subproofs, the local failure cachingmechanism is supported.Subgoal alternation leads to simultaneously processing several choice points.This provides the possibility of computing look-ahead information concerningthe minimal number of inferences still needed for closing a tableau. A simpleestimation of this inference value is the number of subgoals plus the number ofall subgoals in the shortest alternative of each subgoal. In general, when usingstandard subgoal selection, every choice point except the current one containsconnected path literals and connected unit clauses, that is, the number of sub-goals with the shortest alternative for each subgoal equals zero. Using subgoalalternation, at several choice points the reduction steps and the extension stepswith unit clauses have already been tried, so that only the uni�cation partnerswith subgoals are left in the choice points of several subgoals. Thus, one obtainsmore information about the needed inference resources than in the standard pro-cedure. This look-ahead information can be used for search pruning, wheneverthe number of inferences has an in
uence on the search bound.However, under certain circumstances alternating between subgoals may bedisadvantageous. If a subgoal cannot be solved at all, switching to another sub-goal may be worse than sticking to the current choice point, since this may earlierlead to the retraction of the whole clause. Obviously, this is important for groundsubgoals, because they have maximally one solution substitution in the Horncase. Since ground subgoals do not contain free variables, they normally cannotpro�t from early instantiations achieved by subgoal alternation, i.e., switching tobrother subgoals and instantiating their free variables cannot lead to instantia-tions within a ground subgoal. Therefore, when processing a ground subgoal, thefewest-solutions principle for subgoal selection becomes more important than theshortest-clause principle for subgoal alternation. For this reason, subgoal alter-nation should not be performed when the current subgoal is ground.

74 CHAPTER 3. TABLEAUX WITH CONNECTIONS

Chapter 4Related Calculi andConnection ConditionsIn this chapter, we illustrate that connection tableaux can be used to captureother calculi from automated deduction and we discuss calculi with weaker con-cepts of connectedness.4.1 Connection Tableaux and Related CalculiDue to the fact that tableau calculi work by building up tree structures whereasother calculi derive new formulae from old ones, the close relation of tableaux withother proof systems is not immediately evident. There exist similarities of tableauproofs to deductions in other calculi. In order to clarify the interdependencies, itis helpful to reformulate the process of tableau construction in terms of formulageneration procedures. There are two natural formula interpretations of tableauxwhich we shall mention and which both have their merits.De�nition 4.1 The branch formula of a formula tree T is the disjunction of theconjunctions of the formulae on the branches of T .Another �ner view is preserving the underlying tree structure of the formulatree.De�nition 4.2 (Formula of a formula tree (inductive))1. The formula of a one-node formula tree labelled with the formula F issimply F .2. The formula of a complex formula tree with root N (with label F) andimmediate formula subtrees T1; : : : ; Tn, in this order, is F ^ (F1 _ � � � _ Fn)(or simply F1 _ � � � _ Fn if N is unlabelled) where Fi is the formula of Ti,for every 1 � i � n. 75

76 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONSEvidently, the branch formula and the formula of a formula tree are equivalent.Futhermore, it is clear that the following proposition holds, from which, as acorollary, also follows the soundness of the method of clausal tableaux.Proposition 4.3 If F is the (branch) formula of a clausal tableau for a set ofclauses S, then F is a logical consequence of S.With the formula notation of tableaux, one can identify a close correspondenceof tableau deductions to calculi of the generative type. This way, the relation oftableaux with Gentzen's sequent system was elaborated in [Smullyan, 1968] usingso-called block tableaux. We are interested in recognizing similarities to calculifrom the area of automated deduction. For this purpose, it is helpful to onlyconsider the open parts of tableaux, which we call goal trees.De�nition 4.4 (Goal tree) The goal tree of a tableau T is the formula tree ob-tained from T by cutting o� all closed branches.The goal tree of a tableau contains only the open branches of a tableau.Obviously, for the continuation of the refutation process, all other parts of thetableau may be disregarded without any harm.De�nition 4.5 (Goal formula)1. The goal formula of any closed tableau is the falsum ?.2. The goal formula of any open tableau is the formula of the goal tree of thetableau.Using the goal formula interpretation, one can view the tableau constructionas a linear deduction process in which always a new goal formula is deduced fromthe previous one until eventually the falsum is derived. In Example 4.6, we givea goal formula deduction that corresponds to a construction of the tableau inFigure 3.1, under a branch selection function � that always selects the right-mostbranch.Example 4.6 (Goal formula deduction) The set of clauses S = fR(x) _ R(f(x)),:R(x) _ :R(f(f(x)))g has the following goal formula refutation.:R(x) _ :R(f(f(x))):R(x) _ (:R(f(f(x))) ^ R(f(f(f(x))))):R(x) _ (:R(f(f(x))) ^ R(f(f(f(x)))) ^ :R(f(x))):R(x) _ (:R(f(f(x))) ^ R(f(f(f(x)))) ^ :R(f(x)) ^ R(f(f(x)))):R(x):R(f(x)) ^ R(f(f(x))):R(f(x)) ^ R(f(f(x))) ^ :R(x):R(f(x)) ^ R(f(f(x))) ^ :R(x) ^ R(f(x))?Proposition 4.7 The goal formula of any clausal tableau T is logically equivalentto the formula of T .

4.1. CONNECTION TABLEAUX AND RELATED CALCULI 774.1.1 Model Elimination ChainsUsing the goal tree or goal formula notation, one can easily identify a close sim-ilarity of connection tableaux with the model elimination calculus as presentedin [Loveland, 1978], which we will discuss in some more detail. Originally, modelelimination was introduced as a tree-based procedure with the full generality ofsubgoal selection in [Loveland, 1968], although the deductive object of a tableau isnot explicitly used in this paper. As Don Loveland has pointed out, the linearizedversion of model elimination presented in [Loveland, 1969, Loveland, 1978] wasthe result of an adaptation to the resolution form. Here, we treat a subsystem ofmodel elimination without factoring and lemmata, called weak model eliminationin [Loveland, 1978], which is still refutation-complete. The fact that weak modelelimination is indeed a specialized subsystem of the connection tableau calculusbecomes apparent when considering the goal formula deductions of connectiontableaux. The weak model elimination calculus can be viewed as that re�nementof the connection tableau calculus in which the selection of open branches is per-formed in a depth-�rst right-most or left-most manner, i.e., always the right-most(left-most) open branch has to be selected. We decide here for the right-most vari-ant. Due to this restriction of the subgoal selection, a one-dimensional \chain"representation of goal formulae is possible in which no logical operators are nec-essary. The transformation from goal formulae with depth-�rst right-most selec-tion function to model elimination chains works as follows. To any goal formulagenerated with a depth-�rst right-most selection function, apply the following op-eration: replace every conjunction L1 ^ � � � ^Ln ^ F with [L1 � � �Ln]F and deleteall disjunction symbols.In a model elimination chain, the occurrences of bracketed literals denote thenon-leaf nodes and the occurrences of unbracketed literals denote the subgoals ofthe goal tree of the tableau. For every subgoal N corresponding to an occurrenceof an unbracketed literal L, the bracketed literal occurrences to the left of Lencode the ancestor nodes of N . The model elimination proof corresponding tothe goal formula deduction given in Example 4.6 is depicted in Example 4.8.Example 4.8 (Model elimination chain deduction) The set consisting of the twoclauses R(x) _R(f(x)) and :R(x) _ :R(f(f(x))) has the following model elimi-nation chain refutation.:R(x) :R(f(f(x))):R(x) [:R(f(f(x)))] R(f(f(f(x))))):R(x) [:R(f(f(x))) R(f(f(f(x))))] :R(f(x))):R(x) [:R(f(f(x))) R(f(f(f(x)))) :R(f(x)))] R(f(f(x))):R(x)[:R(f(x))] R(f(f(x)))[:R(f(x)) R(f(f(x)))] :R(x)[:R(f(x)) R(f(f(x))) :R(x)] R(f(x))?It is evident that weak model elimination is a re�nement of the connection

78 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONStableau calculus. Viewing chain model elimination as a tableau re�nement hasvarious proof-theoretic advantages concerning generality and the possibility ofde�ning extensions and re�nements of the basic calculus. Also the soundness andcompleteness proofs of chain model elimination are immediate consequences ofthe soundness and completeness proofs of connection tableaux, which are veryshort and simple if compared with the rather involved proofs in [Loveland, 1978].Subsequently, we will adopt the original and more general view of model elimina-tion as intended by Don Loveland [Loveland, 1968] and use the terms connectiontableaux and model elimination synonymously.It is straightforward to recognize that SLD-resolution, although traditionallyintroduced as a resolution re�nement, can also be viewed as a restricted form ofmodel elimination, in which simply reduction steps are omitted. If the underlyingformula is a Horn formula, i.e., contains only Horn clauses, then it is obvious thatthis restriction on model elimination preserves completeness.4.1.2 The Connection MethodAnother framework in automated deduction which is related with tableaux is theconnection method. Based on work by Prawitz [Prawitz, 1960, Prawitz, 1969],the connection method was introduced by Andrews [Andrews, 1981] and Bibel[Bibel, 1981, Bibel, 1987]|we shall use Bibel's terminology as reference point.In contrast to the tableau framework, the kernel of the connection method isnot a deductive system, but a declarative syntactic characterization of logicalvalidity or inconsistency. While, in the original papers, the connection methodrepresents logical validity directly, we work with the dual variant representinginconsistency, which makes no di�erence concerning the employed notions andmechanisms. Furthermore, we work on the clausal case only. It is essential for thepresentation of this method that di�erent occurrences of a literal in a clause anda formula can be distinguished. Occurrences of literals in a clausal formula aredenoted with triples hL; i; ji where L is the literal with unique identi�er i in theclause cj in F .De�nition 4.9 (Path, connection, mating, spanning) Given a set of clauses S =fc1; : : : ; cng, a path through S is a set of n literal occurrences in S, exactly one fromeach clause in S. A connection in S is a two-element subset fhK; i; ki; hL; j; lig ofa path through S such that K and L are literals with the same predicate symbol,one negated and one not. Any set of connections M in S is called a mating in S;the pair hM;Si is termed a connected formula. A matingM is said to be spanningfor S if every path through S is a superset of a connection in M .A set of propositional clauses S is unsatis�able if and only if there is a spanningmating for S. In the �rst-order case, the notions of multiplicities and uni�cationcome into play.De�nition 4.10 (Multiplicity, uni�able connection, mating) First, amultiplicity isjust a mapping � : N �! N0 which is then extended to clausal formulae, as

4.1. CONNECTION TABLEAUX AND RELATED CALCULI 79follows. Given a multiplicity � and two sets of clauses S = fc1; : : : ; cng andS0 = fc11; : : : ; c�(1)1 ; : : : ; c1n : : : ; c�(n)n g where every cki is a variable-renamed vari-ant of ci, we call S0 a (�-)multiplicity of S. A connection fhK; i; ki; hL; j; lig istermed uni�able if the atoms of K and L are. A mating is uni�able if there is asimultaneous uni�er for all its connections.Theorem 4.11 A set of clauses S is unsatis�able if and only if there is a uni�ablespanning mating for a multiplicity of S. [Bibel, 1987]Obviously, it is decidable whether a set of clauses has a uni�able and spanningmating. In Chapter 8 we will consider the complexity of this decision problem.4.1.3 Matings-based Connection ProceduresThe just mentioned decidability suggests a two-step methodology of iterative-deepening proof search, as performed with the connection tableau procedures.The outer loop is concerned with increasing the multiplicity whereas the innerprocedure explores the �nite search space determined by the given multiplicity.Although there are di�erent methods for identifying a uni�able and spanningmating for some multiplicity of a formula, one of the most natural ways is exem-pli�ed with a procedure which is similar to the connection tableau calculi, butwithout a renaming of the clauses in the given multiplicity.De�nition 4.12 ((Path) connection tableau calculus without renaming) The two cal-culi are the same as the ones given in De�nition 3.6 except that1. they work on a multiplicity S0 of the input set,2. no renaming is permitted in a (path) extension step, and3. the computed substitution � is also applied to the clauses in S0.How are the matings concepts related with tableaux? This is obvious forthe calculi without renaming, since the clause copies to be used in a tableauare determined in advance. Whenever a (path) extension or a reduction step isperformed in the construction of a tableau for a multiplicity S0 which involvestwo tableau nodes N and N 0 with corresponding literal occurrences hK; i; ki andhL; j; li, respectively, then we say that the connection fhK; i; ki; hL; j; lig in S0is used in the tableau. With the mating of a tableau for S0 we mean the set ofconnections in F 0 used in the construction of the tableau. For connection tableaucalculi with renaming, one can also de�ne the mating of a tableau, the onlydi�erence being that the set of clause copies may increase during the tableauconstruction.The connection procedure C11 on pages 108f. in [Bibel, 1987], for example, isbased on the path connection tableau calculus without renaming. However, thereis a fundamental di�erence between the two types of calculi, the ones with andthe ones without renaming. For the calculi without renaming, it is guaranteed

80 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONSthat there are only �nitely many regular or strict (path) connection tableauxfor each multiplicity of the input formula|in terms of the connection calculus,strictness means that no literal occurrence appears more than once on a branchin the tableau. As a consequence, no additional limit on the tableau complexityhas to be given to assure termination of the tableau search procedure for a givenmultiplicity.The crucial di�erence of this type of tableau calculi from the ones of theprevious section is that with multiplicity-based bounds static complexity limitsare put on the input multiplicity whereas the tableau complexity is not directlybounded. As a matter of fact, when using strictness or regularity, also the depth ofthe tableaux is bounded, viz. by the number of clauses in the input multiplicity.But one may safely conjecture that the use of the pure multiplicity bound ismuch too coarse in order to be successful in practice (think of a multiplicitywith hundreds of clauses). Instead one may limit the cardinality of the matingsto be considered or the number of clauses in a multiplicity, which should workbetter in practice. Another drawback of multiplicity-based bounds is that certainsearch pruning techniques and extensions of the calculus are not as e�ective asfor completeness bounds based on tableau complexity. This will be discussed atthe end of Section 5.3.3 and Section 6.1.5.��� HHH��� HHH��� HHH
��� HHH��� HHH��� HHH

:P (a):Q(y1)Q(b) Q(a):Q(y2)P (x1)P (x2)c12 :c22 : c3 :fx1=agc1 : :P (a)Q(b) Q(a)c3 :c1 :
c12 :c22 :P (x2)P (x1)fx2=agfx1=ag

:Q(y2):Q(y1)fy2=agfy1=bgfy1=agfx2=ag fy2=bgFigure 4.1: Multiplicity-based duplication of connection tableaux.Furthermore, in the multiplicity-based case, there is a source of redundancywhich has directly to do with the use of multiplicities. Consider the clausal formulaF = :P (a) ^ (P (x) _ :Q(y)) ^ (Q(a) _Q(b)):In Figure 4.1, two closed connection tableaux for the multiplicity F 0 = c1 ^ c12 ^c22^c3 of F are displayed; also, the attached clause variants and the substitutionsto be applied in the inference steps are given. It is evident that the two tableauxare variants of each other obtainable by exchanging the positions of the clauses c12and c22. A naive procedure would simply generate both tableaux. Fortunately, thisobvious redundancy can be avoided by using the proviso that any variant ck+1i ,k > 0, of an initial clause ci can be selected for extension only if the clause variantcki in the multiplicity was already used in the tableau. This way the redundanttableau on the right cannot be constructed any more.

4.2. OTHER CLAUSAL TABLEAU CALCULI 814.2 Other Clausal Tableau CalculiIn this section, we will review the most important other re�nements of clausaltableaux developed so far. After a short exposition of the so-called restart variantsof model elimination, we describe in some more detail two con
uent and nonde-structive restrictions of clausal tableaux. Both calculi permit non-enumerativeproof search methods like in the systematic tableau procedures, but with theinstantiation rule more or less guided by uni�cation. Both calculi are nondestruc-tive and hence permit the application of methods for branch saturation. There arealso very recent initiatives of developing non-enumerative proof search methodsfor con
uent but destructive clausal tableau calculi [Baumgartner et al., 1999],for which it is too early to give an assessment of their suitability for automateddeduction.4.2.1 Restart Model EliminationIn connection tableaux, a clause can be entered at any literal in an extension step,and at any node an extension step can be applied. The restart model eliminationcalculi [Loveland, 1991, Baumgartner and Furbach, 1998] restrict this possibility.In the basic version of restart model elimination, at positive literals no extensionsteps are permitted. In order to restore completeness, an alternative inferencepossibility is needed. This is the so-called restart step. A restart step is simply atableau expansion step applied at subgoals with positive literals. This asymmetrictreatment of literals is motivated by arguments from logic programming, whereclauses also have a procedural reading. Disallowing extension steps at positiveliterals means disallowing the entering of a clause at a negative literal. This �tswith the view that procedures with negated predicates seem not to make sense.Here only the suitability for automated proof search is of interest. The weak pointof restart model elimination is that it is not compatible with regularity, only ablockwise regularity condition between two restart steps can be used.Restart model elimination can even be sharpened to the extent that, for ev-ery clause, one can distinguish exactly one positive literal (if present) at whichthe clause may be entered. Further re�nements of restart model elimination aredescribed in [Baumgartner and Furbach, 1998]. The head selection function caneven be generalized to arbitrary literals, but this requires a further weakening ofthe connection condition and that more clauses have to be employed for restartsteps [H�ahnle and Pape, 1997].The competitiveness of all those approaches for automated deduction has notyet been demonstrated convincingly.4.2.2 Hyper TableauxBeginning with the �rst paper [Manthey and Bry, 1988], in which the term "tab-leau" was not used, a number of hyper tableau calculi have been developed inthe last years [Baumgartner, 1998]. A common characteric of all those systems isthat they are based on a macro inference rule of the following form.

82 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONSDe�nition 4.13 (Hyper extension rule) The hyper extension rule is just an expan-sion step immediately followed by reduction steps at all newly attached nodes thatare labelled with negative literals.It is important to note that such an inference step is possible only if really allnegative literals in the attached clause can be closed by reduction steps. First,we formulate a very general version of a hyper tableau calculus, which will bespecialized subsequently.De�nition 4.14 (General hyper tableaux) The general hyper tableau calculus con-sists just of the hyper extension rule.This calculus is complete and compatible with the regularity restriction. Incontrast to the connection tableau calculi, however, the calculus is also con
uentand so will be all versions of hyper tableaux considered later on. Recall thatcon
uence means that no proof enumeration is necessary, since any proof attemptcan eventually be completed to a closed tableau. The problem of the general hypertableau calculus, however, is to �nd a closed tableau without performing tableauenumeration, i.e., to �nd a strategy of applications of the general hyper extensionrule which guarantees the generation of a closed tableau for any unsatis�ableclause set. As we will see, there are di�erent solutions to this end.Historically, the hyper tableau calculus was designed for sets of range restrictedclauses only [Manthey and Bry, 1988].De�nition 4.15 (Range restrictedness) A clause is called range restricted if everyvariable occurring in a positive literal of the clause occurs in a negative literal ofthe clause.Example 4.16 P (a) _Q(b);:P (x) _ P (f(x)) _Q(f(x));:Q(x) _ P (x) _ R(x);:P (b);:R(a);:P (f(x));:P (x) _ :Q(f(x)):In Figure 4.2, a general hyper tableau for a set of range restricted clauses isgiven. Observe that the tableau is open, but no further hyper extension step canbe applied without violating the regularity condition, i.e., the tableau is saturated.Consequently, by the completeness and the con
uence of the calculus, the inputset must be satis�able. This shows the reductive power of the calculus, whichrenders it promising for proof search.A further important property illustrated with the given example is that, inany hyper extension step, the attached clause is ground. This property is anobvious consequence of the range restrictedness of the input clauses, which hasthe followed further consequence.

4.2. OTHER CLAUSAL TABLEAU CALCULI 83(((((((((hhhhhhhhh������ PPPPPPPPPP ����� XXXXXX��� ��P (a) Q(b):P (a) Q(f(a)) :Q(f(a)) :Q(b) P (b) R(b):P (b):P (f(a))P (f(a)) :P (a)� � � � � � step possibleno furtherFigure 4.2: Saturated hyper tableau for Example 4.16.Proposition 4.17 For sets of range restricted clauses, the general hyper tableaucalculus is nondestructive.The importance of the nondestructiveness of a tableau calculus has alreadybeen emphasized in Section 2.1. It permits the de�nition of a saturated system-atic tableau. Evidently, the general hyper tableau clauses becomes destructivefor clauses which are not range restricted. Consider, for example, the clause setfP (x; y)_ P (y; x);:P (a; a)g. In order to generate a closed tableau, the variablesin the top clause have to be instantiated. The problem is what to do with clauseslike fP (x; y) _ P (y; x) that are not range restricted. The original proposal wasto just use the original
-rule of sentence tableau on all variables remaining in aclause after a hyper extension step. As a matter of fact, only terms of the Herbanduniverse of the input clause set need to be used [Bry and Yahya, 1996].1De�nition 4.18 (Hyper tableaux) The hyper tableau calculus consists of the hyperextension rule which is augmented in the following manner: immediately aftereach hyper extension step the variables in the new clause have to be instantiatedto ground terms from the Herbrand universe of the input set.It is clear that, with this modi�cation, the hyper extension rule loses a lot ofits attractiveness for automated proof search, since, in general, the rule permitsin�nitely many applications for any clause that is not range restricted. Yet, hypertableaux have some interesting properties. For example, we have the followingresult.Proposition 4.19 If S is a �nite set of clauses without functions symbols of arity> 0, then every hyper tableau for S is �nite.This means that hyper tableaux provide a decison procedure for the class ofdatalogic formulae and for the Bernays-Sch�on�nkel class, i.e., the set of prenexformulae of the form 9�8�� where � is quanti�er-free and contains no functionsymbols.1One can also transform any clause set containing clauses which are not range restricted intoa range restricted clause set by introducing a new domain predicate [Manthey and Bry, 1988].But this transformation just amounts to encoding the
-rule in the input set in a data-orientedfashion.

84 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONSFor formulae containing proper function symbols, however, the instantiationproblem is more or less similar to the one for sentence tableaux. This accountsfor the fact that, for general �rst-order theorem proving, hyper tableaux arenot generally successful. This weakness can be remedied to a certain extent byexploiting the technique of local variables which is developed in Section 6.3.4.2.3 Disconnection TableauxThe disconnection tableau calculus was developed in [Billon, 1996]. In order tocomprehend the method, it is helpful to �rst describe the clause linking mecha-nism [Lee and Plaisted, 1992], a method which is in the spirit of the �rst theoremproving procedures developed in the sixties. Historically, the �rst theorem provingsystems where direct applications of Herbrand's approach to proving the com-pleteness of �rst-order logic (see [Davis and Putnam, 1960]). Such Herbrand pro-cedures consist of two subprocedures, a generator for sets of ground instances anda propositional decision procedure. For some decades this methodology was notpursued in automated deduction, mainly because no e�cient method of groundinstance generation existed. The linking mechanism, and particularly its hyperlinking variant [Lee and Plaisted, 1992], represents an ingenious method of inte-grating uni�cation into the process of ground instantiation.De�nition 4.20 (Linking instance) Given a set of clauses S, let L be a literal in aclause c 2 S and K a renaming wrt. c of another literal in a clause of S. If thereexists a uni�er � for L and �K, then the clause c� is called a linking instance ofc wrt. S.Instead of guessing arbitrary ground instances of clauses as in the theoremproving procedures of the sixties, one can iteratively form linking instances of theclause set.2 Since this process will not automatically result in ground clauses, onehas to slightly generalize the traditionally used propositional decision procedures.De�nition 4.21 (Ground satis�ability) Given a set S of clauses and a ground termt, let S(t) denote the set of clauses obtained by replacing every variable in S uni-formly with the term t. S is called ground satis�able wrt. t if S(t) is propositionallysatis�able.The clause linking method simply consists in forming linking instances of thecurrently generated set of clauses and, from time to time, testing the current set Sfor ground satis�ability wrt. some arbitrary ground term t. If the satis�ability testfails, i.e., if S(t) is propositionally unsatis�able, then this obviously demonstratesthe unsatis�ability of the original set of clauses. And when the term t is takenfrom the Herbrand universe of S, then every clause in the �nal propositional setS(t) is a Herbrand instance of a clause in the original clause set. This methodis complete, i.e., for any unsatis�able clause set S0 and for any ground term t2The hyper linking variant requires that each literal in the clause c is uni�ed with therenaming of some literal from the clause set.

4.2. OTHER CLAUSAL TABLEAU CALCULI 85(not necessarily occurring in S0), there is a �nite sequence of clause linking stepsproducing a clause set S such that S(t) is propositionally unsatis�able. In orderto �nd such a clause set S it su�ces to require that the linking instances begenerated in a fair manner. Fairness simply means that, for any generated clauseset S and every clause c 2 S, every linking instance of c wrt. S will eventually begenerated if no ground satis�ability tests are performed.An important property of the linking method is that only one variant of aclause c needs to be kept, all other clauses which are renamings of c may bedeleted. With this powerful deletion strategy, the method decides the class ofdatalogic formulae and hence the Bernays-Sch�on�nkel class.One remaining weakness of the clause linking method is that the propositionaldecision procedure is completely separated from the generation of the linking in-stances. And the interfacing problem between the two subroutines may lead totremendous ine�ciencies. This has motivated the development of the discon-nection method, which provides an intimate integration of the two subroutines[Billon, 1996]. The integration is achieved by embedding the linking process intoa tableau guided control structure. As a further result of this embedding, thenumber of linking instances of clauses can be signi�cantly reduced.De�nition 4.22 (Disconnection tableau calculus) Given an initial set S of clauses,the disconnection tableau calculus has two inference rules for tableau construction:� the expansion rule applicable to clauses in S.� the path linking rule which consists in the following operation. Let B be atableau branch containing two nodes N and N 0 labelled with literals K andL, respectively, such that there is a uni�er � for K and a variant of �L wrt.the tableau clause c of N , then attach the tableau clause c� at the leaf ofB.A tableau T is ground closed for some ground term t if the tableau T� is closedwhere � maps any variable appearing in T to the term t.A disconnection tableau refutation of a clause set S is a pair hT; ti consistingof a disconnection tableau for S and a ground term t such that T� is closed.This calculus is also compatible with the variant restriction, i.e., one can requirethat no two clauses which are variants of each other must occur on a branch. Letus illustrate the reductive power of this calculus with an example also used in[Billon, 1996]. Given the satis�able set of the two clausesP (x) _Q(x) and :P (f(y)) _ :Q(y);one can apply the expansion rule twice resulting in the tableau shown on theleft-hand side of Figure 4.3. Now, to the left-most branch only one path linkingstep can be applied, resulting in the tableau on the right-hand side of the �gurein which the left-most branch is now ground closed. The new branch with theleaf literal Q(f(z)) can no more be expanded under the variant restriction and

86 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONSwe can terminate. Since the tableau is not ground closed, the input formula mustbe satis�able. The other tableau calculi considered so far do not terminate forthis input set. Also, saturation based procedures like resolution do not terminateunless ordering restrictions are used. ��� HHH��� HHH��� HHHP (x) Q(x):P (f(y)) :Q(y)P (f(y)) Q(f(y))�
��� HHH��� HHHP (x) Q(x):P (f(y)) :Q(y)

Figure 4.3: Saturated disconnection tableau for fP (x)_Q(x);:P (f(y))_:Q(y)g.

Chapter 5Search Pruning inConnection TableauxThe pure calculus of connection tableaux is only moderately successful in au-tomated deduction. This is because the corresponding search trees are still fullof redundancies. In general, there are two di�erent paradigms for reducing thee�ort of tableau search procedures. On the one hand, one may attempt to �ndfurther completeness-preserving restrictions on the individual proof objects, thetableaux. On the other hand, one may work on the level of the search space andtry to demonstrate the redundancy of a certain tableau T , not because T hascertain structural de�ciencies, but because of the existence of another (better)tableau in the search space.5.1 Structural Re�nements of Connection Tab-leauxFirst, we consider methods which attempt to restrict the tableau calculus, that is,disallow certain inference steps if they produce tableaux of a certain structure|note that the connection condition is such a structural restriction on generalclausal tableaux. The e�ect on the tableau search tree is that the respective nodestogether with the dominated subtrees can be ignored so that the branching rateof the tableau search tree decreases. These structural methods of redundancyelimination are local pruning techniques in the sense that they can be performedby looking at single tableaux only.5.1.1 RegularityA fundamental structural re�nement of connection tableaux is the so-called reg-ularity condition, which was already introduced in Section 2.1. Recall that a87

88 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXtableau is regular if no literal occurs more than once on a branch. The term "reg-ular" has been introduced to emphasize the analogy to the de�nition of regularresolution [Tseitin, 1970]. Imposing the regularity restriction has some impor-tant unexpected consequences. As opposed to general clausal tableaux, whereregularity preserves minimal proof lengths, minimal closed connection tableauxmay not be regular. In Chapter 7 it will be shown that regular connection tab-leaux cannot even polynomially simulate connection tableaux. Nevertheless, awealth of experimental results clearly shows that this theoretical disadvantageis more than compensated for by the strong search pruning e�ect of regularity[Letz et al., 1992], so that this re�nement is indispensable for any practical proofprocedure based on connection tableaux.5.1.2 Tautology EliminationNormally, it is a good strategy to eliminate certain clauses from the input setwhich can be shown to be redundant for �nding a refutation. Tautological clausesare of such a sort.1 In the ground case, tautologies may be identi�ed once and forever in a preprocessing phase and can be eliminated before starting the actualproof search. In the �rst-order case, however, it may happen that tautologiesare generated dynamically. Let us illustrate this phenomenon with the exampleof the clause :P (x; y) _ :P (y; z) _ P (x; z) which expresses the transitivity of arelation. Suppose that during the construction of a tableau this clause is usedin an extension step (for simplicity renaming is neglected). Assume further thatafter some subsequent inference steps the variables y and z are instantiated tothe same term t. Then a tautological instance :P (x; t) _:P (t; t) _ P (x; t) of thetransitivity formula has been generated. Since no tautological clause is relevant ina set of formulae, connection tableaux with tautological tableau clauses need notbe considered when searching for a refutation. Therefore the respective tableauand any extension of it can be disregarded.Interestingly, the conditions of tautology-freeness and regularity are partiallyoverlapping. Thus the non-tautology condition, on the one hand, does cover alloccurrences of identical predecessor nodes, but not the more remote ancestors.The regularity condition, on the other hand, captures all occurrences of tauto-logical clauses for backward reasoning with Horn clauses (i.e. with negative startclauses only), but not for non-Horn clauses.5.1.3 Tableau Clause SubsumptionAn essential pruning method in resolution theorem proving is subsumption dele-tion, which during the proof process deletes any clause that is subsumed byanother clause, and this way eliminates a lot of redundancy. Although no newclauses are generated in the tableau approach, a restricted variant of clause sub-1Although tautologies may facilitate the construction of smaller tableau proofs, since theycan be used to simulate the cut rule. But one certainly wants to avoid an uncontrolled use ofcuts.

5.1. STRUCTURAL REFINEMENTS OF CONNECTION TABLEAUX 89sumption reduction can be exploited in the tableau framework, too. First, weshortly recall the de�nition of subsumption between clauses.De�nition 5.1 (Subsumption for clauses) Given two clauses c1 and c2, we saythat c1 subsumes c2 if there is a variable substitution � such that the set ofliterals contained in c1� is a subset of the set of literals contained in c2.Similar to the dynamic generation of tautologies, it may happen, that a clausewhich has been attached in a tableau step during the tableau construction processis instantiated and then subsumed by another clause from the input set. To givean example, suppose the transitivity clause from above and a unit clause P (a; b)be contained in the input set. If now the transitivity clause is used in a tableauand after some inference steps the variables x and z are instantiated to a andb, respectively, then the resulting tableau clause :P (a; y) _ :P (y; b) _ P (a; b) issubsumed by P (a; b). Obviously, for any closed tableau using the former tableauclause a closed tableau exists which uses the latter instead.Again there is the possibility of a pruning overlap with the regularity and thenon-tautology conditions. Note that, strictly speaking, the avoidance of tableauclause subsumption is not a pure tableau structure restriction, since a case ofsubsumption cannot be de�ned by merely looking at the tableau. Additionally,it is necessary to take the respective input set into account.5.1.4 Strong ConnectednessWhen employing an e�cient transformation from the general �rst-order for-mat to clausal form, one has sometimes to introduce new predicates which areused to abbreviate certain formulae [Eder, 1985, Plaisted and Greenbaum, 1986,Boy de la Tour, 1990]. Assume, for instance, we have to abbreviate a conjunctionof literals a ^ b with a new predicate d by introducing a biconditional d$ a ^ b.This rewrites to the three clauses �a _ �b _ d, a _ �d, and b _ �d. Interestingly,every resolvent between the three clauses is a tautology. Applied to the tableauconstruction, this means that whenever one of these clauses is immediately belowanother one, then a hidden form of a tautology has been generated as shown inFigure 5.1. This example also illustrates that with de�nitions one can simulatethe e�ect of the cut rule. ����� PPPPP��� QQQ�a �b d�dbFigure 5.1: Hidden tautologies in tableaux.Interestingly, certain cases of such hidden tautologies may be avoided. For thispurpose, in [Letz, 1993a] the notion of connectedness was strengthened to strong

90 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXconnectedness.De�nition 5.2 (Strong connectedness) Two clauses c1 and c2 are strongly con-nected if there is a substitution � such that the union of the sets of literals inc1� and c2� contains exactly two complementary literals, i.e., c1 and c2 have anon-tautological resolvent.It is evident that strong connectedness is a sharpening of the method of tau-tology elimination from one to two tableau clauses. In Section 5.2, it will beproven that, for all pairs of adjacent tableau clauses, strong connectedness maybe demanded without losing completeness. However, is is essential that the twoclauses be adjacent, i.e., one must be located immediately below the other. Formore distant pairs of tableau clauses one dominated by the other, the conditionthat they be strongly connected is not compatible with the condition of regularity.A straightforward counter-example is the set of the four clausesf:p _ :q;:p _ q; p _ :q; p _ qg:Regardless with which clause we start, we always need a "tautological" connec-tion. This holds even when additional inference rules like factorization or foldingup (see Section 6.1) are available.5.1.5 Use of Relevance InformationBy using relevance information, the set of possible start clauses can be minimized.De�nition 5.3 (Essentiality, relevance, minimal unsatis�ability) A formula F iscalled essential in a set S of formulae if S is unsatis�able and SnfFg is satis�able.A formula F is named relevant in S if F is essential in some subset of S. Anunsatis�able set of formulae S is said to be minimally unsatis�able if each formulain S is essential in S.As will be shown in Section 5.2, the connection tableau calculus is complete inthe strong sense that, for every relevant clause in a set S, there exists a closed con-nection tableau for S with this clause as start clause. Since in any unsatis�able setof clauses, some negative clause is relevant, by default one may start with negativeclauses only. The application of this default pruning method achieves a signi�-cant reduction of the search space. In many cases, however, one has even moreinformation concerning the relevance of certain clauses. Normally, a satis�ablesubset of the input is well-known to the user, namely, the clauses specifying thetheory axioms and the hypotheses. Such relevance information is also provided inthe TPTP library [Sutcli�e et al., 1994]. A goal-directed system can enormouslypro�t from the relevance information by considering only those clauses as startclauses that stem from the conjecture. As an example, consider an axiomatiza-tion of set theory containing the basic axiom that the empty set contains no set,which is normally expressed as a negative unit clause. Evidently, it is not veryreasonable to start a refutation with this clause.

5.2. COMPLETENESS OF CONNECTION TABLEAUX 91It is important to note, however, that when relevance information is beingemployed, then all conjecture clauses have to be tried as start clauses and notonly the all-negative ones. Relevance information is normally more restrictivethan the default method except when all negative clauses are stemming from theconjecture, in which case obviously the default mode is more restrictive.5.2 Completeness of Connection TableauxLet us turn now to the completeness proof of connection tableaux incorporatingthe structural re�nements of regularity, strong connectedness, and the use ofrelevance information. The possibility of eliminating tautologies and subsumedtableau clauses is evident and will not be considered explicitly. Since the pathconnectedness condition is properly less restrictive, it su�ces to consider the fullconnection condition. Unfortunately, we cannot proceed as in the case of free-variable tableaux where a direct simulation of sentence tableaux was possible,just because of the lacking con
uence. Instead, an entirely di�erent approach forproving completeness will be necessary. The proof we give here consists of twoparts. In the �rst part, we demonstrate the completeness for the case of groundformulae|this is the interesting part of the proof. In the second part, this resultis lifted to the �rst-order case by a simulation technique similar to the one usedin the proof of Lemma 2.61. Beforehand, we need some additional terminology.De�nition 5.4 (Strengthening) The strengthening of a set of clauses S by a set ofliterals P = fL1; : : : ; Lng, written P B S, is the set of clauses obtained by �rstremoving all clauses from S containing literals from P and afterwards adding then unit clauses L1; : : : ; Ln.Example 5.5 For the set of propositional clauses S = fp_q; p_s;:p_q;:qg, thestrengthening fpg B S is the set of clauses fp;:p _ q;:qg.Clearly, every strengthening of an unsatis�able set of clauses is unsatis�able,too. In the ground completeness proof, we will make use of the following furtherproperty.2Lemma 5.6 (Strong Mate Lemma) Let S be an unsatis�able set of ground clauses.For any literal L contained in any relevant clause c in S there exists a clause c0in S such that(i) c0 contains �L,(ii) every literal in c0 di�erent from �L does not occur complemented in c, and(iii) c0 is relevant in the strengthening fLg B S.2In terms of resolution, it expresses the fact that, for any literal L in a clause c that is relevantin a clause set S, there exists a non-tautological resolvent \over" L with another relevant clausein S.

92 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXProof From the relevance of c follows that S has a minimally unsatis�able subsetS0 containing c; every formula in S0 is essential in S0. Hence, there is an Herbrandinterpretation H for S0 with H(S0 n fcg) = > and H(c) = ?, i.e., H assigns ?to every literal in c, hence H(L) = ?. De�ne another Herbrand interpretationH0 = � H [fLg if L is an atomic formulaH n f�Lg otherwiseusing Notation 1.65 introduced on Page 26. By construction, H0(c) = >. Theunsatis�ability of S0 guarantees the existence of a clause c0 in S0 with H0(c0) =?.We prove that c0 meets the conditions (i) { (iii). First, the clause c0 must containthe literal �L and not the literal L, since otherwise H(c0) =?, which contradictsthe selection of H, hence (i). Secondly, for any literal L0 in c0 di�erent from �L:H(L0) = H0(L0) =?. As a consequence, L0 cannot occur complemented in c, sinceotherwise H(c) = >; this proves (ii). Finally, the essentiality of c0 in S0 entailsthat there exists an interpretation H00 with H00(S0 n fc0g) = > and H00(c0) = ?.Since �L is in c0, H00(L) = >. Therefore, c0 is essential in S0[fLg and also in itsunsatis�able subset fLg B S0. From this and the fact that fLg B S0 is a subsetof fLg B S follows that c0 is relevant in fLg B S.Proposition 5.7 (Completeness of regular strong connection tableaux) For any �-nite unsatis�able set S of ground clauses and any clause c which is relevant in S,there exists a closed regular strong connection tableau for S with top clause c.Proof Let S be a �nite unsatis�able set of ground clauses and c any relevant clausein S. A closed regular strong connection tableau T for S with top clause c can beconstructed from the root to its leaves via a sequence of intermediate tableaux,as follows. Start with a tableau consisting simply of c as top clause. Then iteratethe following non-deterministic procedure as long as the intermediate tableau hasa branch whose leaf node has no complementary ancestor.Choose an arbitrary such leaf node N in the current tableau with literal L.Let c be the tableau clause of N and let P = fL1; : : : ; Lm; Lg, m � 0, bethe set of literals on the path from the root up to the node N . Then, selectany clause c0 which is relevant in P B S, contains �L, is strongly connectedto c, and does not contain literals from the path fL1; : : : ; Lm; Lg; performan expansion step with c0 at the node N .First, note that, evidently, the procedure admits solely the construction of regu-lar strong connection tableaux, since in any expansion step the attached clausecontains the literal �L, no literals from the path to its parent node (regularity),nor is a literal di�erent from �L in c0 contained complemented in c. Due to reg-ularity, there can be only branches of �nite length. Consequently, the proceduremust terminate, either because every leaf node has a complementary ancestor,or because no clause c0 exists for expansion which meets the conditions stated inthe procedure. We prove that the second alternative does never occur, since forany open leaf node N with literal L there exists such a clause c0. This will be

5.3. INTERTABLEAUX PRUNING 93demonstrated by induction on the node depth. The induction base, n = 1, is evi-dent, by the Strong Mate Lemma (5.6). For the step from n to n+ 1, with n � 1,let N be an open leaf node of tableau depth n+ 1 with literal L, tableau clausec, and with a path set P [fLg such that c is relevant in P B S, the inductionassumption. Let S0 be any minimally unsatis�able subset of P B S containing c,which exists by the induction assumption. Then, by the Strong Mate Lemma, S0contains a clause c0 which is strongly connected to c and contains �L. Since noliteral in P 0 = P [fLg is contained in a non-unit clause of P 0 B S and because Nwas assumed to be open, no literal in P 0 is contained in c0 (regularity). Finally,since S0 is minimally unsatis�able, c0 is essential in S0; therefore, c0 is relevant inP 0 B S. 2The second half of the completeness proof is a standard lifting argument.De�nition 5.8 (Ground (instance) set) Let S be a set of clauses and S0 a set ofground clauses. If, for any clause c0 2 S0, there exists a clause c 2 S such that c0is a substitution instance of c, then S0 is called a ground (instance) set of S.Lemma 5.9 Let T 0 be a closed regular strong connection tableau for a ground setS0 of a set of clauses S. Then, for any branch selection function �, there exists aclosed regular strong connection tableau T for S constructed according to � suchthat T is more general than T 0.Proof The proof is exactly as the proof of Lemma 2.61 except that here it ismuch simpler, since no �-rule applications can occur. Whenever an expansion orextension step is performed in the construction of T 0 with a clause c0, then a clausec 2 S is selected with c0 being a ground instance of c and a respective expansionor extension step with c is performed in the construction of T . Furthermore, asin the proof of Lemma 2.61, it may be necessary to perform additional closuresteps, which obviously are not needed in the ground proof. 2Theorem 5.10 (Completeness of regular connection tableaux) For any unsatis�ableset of clauses, any clause c that is relevant in S, and any branch selection function�, there exists a closed regular strong connection tableau constructed according to� and with a top clause that is an instance of c.Proof Immediate from Proposition 5.7 and Lemma 5.9. 25.3 Intertableaux PruningIn this section, we consider the second main paradigm of improving proof searchin enumerative tableau procedures. Here the basic idea is to work on the level ofthe entire search space. As will be demonstrated with a number of examples, it isoften possible to identify a certain tableau T as redundant, because there existsanother, better tableau T 0 in the search space. A natural de�nition of T 0 beingbetter than T could be that the tableau T can be closed only if the tableau T 0can be closed.

94 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX5.3.1 Using Matings for Pruning TableauxAs already mentioned in Section 4.1.2, one can associate a mating, i.e., a set ofconnections, with any clausal tableau. Interestingly, this mapping is not injectivein general. So one and the same mating may be associated with di�erent tableaux.This means that the matings concept provides a more abstract view on the searchspace and enables us to group tableaux into equivalence classes. Under certaincircumstances, it is not necessary to construct all tableaux in such a class butonly one representative. In order to illustrate this, let us consider the set ofpropositional clausesf:P1 _ :P2;:P1 _ P2; P1 _ :P2; P1 _ P2g:As shown in Figure 5.2, the set has 4 closed regular connection tableaux with all-negative start clause :P1 _:P2. If, however, the involved sets of connections areinspected, it turns out that the tableaux all have the same mating consisting of 6connections. The redundancy contained in the tableau framework is that certaintableaux are permutations of each other corresponding to di�erent possible waysof traversing a set of connections. Obviously, only one of the tableaux in such anequivalence class has to be considered.!!! aaa��@@��@@ ��@@��@@!!! aaa��@@��@@ ��@@��@@ !!! aaa��@@��@@ ��@@��@@
!!! aaa��@@��@@ ��@@��@@:P1 :P1

:P1:P1
:P2 :P2

:P2:P2P1 P1
P1 P1P1

P1 P1
P1

P2:P2 :P2P2P2 P2
P2 P2

P2P2 P2
P2P2

P2
:P1
:P1

P1
P1P1 :P1

P1 :P1:P2:P2Figure 5.2: Four closed connection tableaux for the same spanning mating.The question is, how exactly this redundancy can be avoided. A general lineof development would be to store all matings that have been considered duringthe tableau search procedure and to ignore all tableaux which encode a matingwhich was already generated before. This approach would require an enormousamount of space. Based on preliminary work in [Letz, 1993a], in [Letz, 1998b] amethod was developed which can do with very little space and avoid the formof duplication shown in Figure 5.2. To comprehend the method, note that, inthe example above, the source of the redundancy is that a certain connectioncan be used both in an extension step and in a reduction step. This causes thecombinatorial explosion. The idea is now to block certain reduction steps by

5.3. INTERTABLEAUX PRUNING 95using an ordering � on the occurrences of literals in the input set which has to berespected during the tableau construction, as follows. Assume, we want to performa reduction step from a node N to an ancestor node N 0. Let N1; : : : ; Nn be thenode family below N 0. The nodes N1; : : : ; Nn were attached by an extension step"into" a node complementary to N 0, say Ni. Now we simply do not permit thereduction step from N to N 0 if Ni � N where the ordering � is inherited fromthe literal occurrences in the input set to the tableau nodes. As can easily beveri�ed, for any total ordering, in the example above only one closed tableau canbe constructed with this proviso. As shown in detail in [Letz, 1998b], with thismethod one may achieve a superexponential reduction of the number of closedtableaux in the search space with almost no overhead.On the other hand, there may be problems when combining this method withother search pruning techniques.Matings Pruning and Strong ConnectednessFor instance, the method is not compatible with the condition of strong connect-edness presented in Section 5.1.4. As a counterexample, consider the set of thefour clauses given in Example 5.11.Example 5.11 fP _Q(a), P _ :Q(a), :P _Q(a), :P _ :Q(x)g.
���� AAA���� AAA ���� AAA������� PPPPPPP:P :Q(x)P Q(a) Q(a)� [:P]P:Q(a) P

C1C2 C3
Figure 5.3: Deduction process for Example 5.11.If we take the fourth clause, which is relevant in the set, as top clause, enter the�rst clause, then the second one by extension, and �nally perform a reduction step,then the closed subtableau on the left-hand side encodes the mating fC1; C2; C3g.Now, any extension step at the subgoal labelled with :Q(x) on the right-hand sideimmediately violates the strong connection condition. Therefore, backtracking hasto occur, up to the state in which only the top clause remains. Afterwards, thesecond clause must be entered, followed by an extension step into the �rst one. Butnow the mating pruning forbids a reduction step at the subgoal labelled with P ,since it would produce a closed subtableau encoding the same mating fC3; C2; C1gas before. Since extension steps are impossible because of the regularity condition,

96 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXthe deduction process would fail and incorrectly report that there exists no closedtableau with the fourth clause as top clause.This is but one example of an incompatibility between di�erent pruning meth-ods, here a structural one (strong connectedness) with a global one (avoiding therepetition of matings). And in this case there is no reasonable reconciliation ofboth pruning methods. It depends on the particular input formula which one ofthe techniques is more e�ective for search pruning.Minimal MatingsA further potential of using matings for pruning tableaux is by exploiting theminimality of matings.De�nition 5.12 (Minimal mating) A mating M is called minimal for a set ofclauses S if, for each connection C in M , there is a path through S containing Cand no other connection from M .Proposition 5.13 A set of clauses S is unsatis�able if and only if there is a uni�-able minimal spanning mating for a multiplicity of S.Proof If a set of clauses S is unsatis�able, then, by Theorem 4.11, there existsa uni�able spanning mating M for a multiplicity S0 of S. Assume M be notminimal for S0. Then, some connection C in M can be removed without a�ectingthe spanning property. This way, after �nitely many steps, a minimal spanningmating for S0 is obtained. 2The general motivation for developing complete re�nements of matings is toachieve redundancy elimination in the �rst-order case. In contrast to the propo-sitional case, where always the full set of connections in a formula can be taken,in the �rst-order case, with every connection that is added to a mating, an addi-tional uni�cation problem has to be solved. The restriction to minimal matingskeeps the simultaneous uni�cation problem as easy as possible.In [Letz, 1999b], it was proven that, for any minimal mating for a set of clausesS, there exists a closed strict connection tableau for S. Unfortunately, this doesno more hold when strictness is replaced by regularity. In fact, the restriction tominimal matings is not compatible with the regularity condition.Proposition 5.14 There is an unsatis�able set of clauses for which there exists noclosed regular (path) connection tableau with a minimal mating.Proof Let S be the set consisting of the following 7 propositional clauses(1):p _ :s; (2) p _ :q; (3) p _ r _ q; (4):r _ :s; (5) s _ :r; (6) s _ :q; (7):p _ q:We prove that, when taking the �rst clause :p _ :s as start clause, then thereis no closed regular connection tableau with a minimal mating. For illustration,consider Figure 5.4. First, it is straightforward to recognize that any regular

5.3. INTERTABLEAUX PRUNING 97��� HHH��� ��� ��� HHH���
HHHHHH

��� HHH��� HHH�� @@
������ HHH...

...

...

...

...........
...
...
........... .. �� @@�� @@

:sp :q s :q
s :s:r :r :pqrp q qp r:s:p

:p qs :rqp r
T1 T1 ss :q:qFigure 5.4: The incompatibility of minimal matings and regularity.solution of the :p-subgoal in the top clause has the following mating consistingof the six connections (with upper indices giving the clause numbers):f:p1; p2g; f:p1; p3g; f:q2; q3g; fr3;:r4g; fr3;:r5g; f:s2; q3g:Now, the top :s-subgoal can either be extended with the �fth or the sixth clause.Let us start with the case of the latter clause s _ :q, which is shown on theleft-hand side of the �gure. The remaining :q-subgoal can only be extended byattaching the clause :p _ q and afterwards the clause p _ r _ q, or the otherway round. When the respective q-subgoal is solved by a reduction step, a sub-goal labelled with r remains. At this stage, the tableau has the additional fourconnections: f:s1; s6g; f:q6; q7g; f:p7; p3g; f:q6; q3g:Although the tableau is still open, the ten connections of the tableau are minimaland spanning for S. In order to extend the r-subgoal in a regular way, only theclause s _ :r can be used. This does not increase the set of connections. Butnow the remaining s-subgoal must be solved by a reduction step using the top:s-subgoal. This requires the additional connection f:s1; s5g and renders themating of the tableau nonminimal. The other main case is elaborated on theright-hand side of the �gure. Here the redundant connection f:s1; s5g is used�rst. It is straightforward to recognize that the other four connections are stillessential for closing this tableau in a regular manner, so that the minimality ofthe mating cannot be achieved. It is easy to verify that the more general case ofpath connection tableaux is also captured by this example.In order to have an example where the incompatibility of minimal matings andregularity holds for any start clause, we may use the following duplication trick.We duplicate the clause set by using consistently renamed predicate symbols andafterwards replace the top clause c = :p_:s and its renamed version c0 = :p0_:s0by the new clause c_c0. For the resulting clause set, it does not matter with whichclause we start. Whenever the clause c_ c0 is entered from a subgoal for the �rst

98 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXtime on a branch, then the (path) connection condition guarantees that eitherno literals from the original or no literals from the renamed part appear on thebranch up to this extension step. This means that, for the respective new part,say, c0, we can proceed as if c0 would be a top clause. 2In summary, this means that either we have to give up regularity or we cannotuse the minimality restriction on matings. This is a second severe incompatibilitybetween a structural and a global pruning technique, and again there seems tobe no reasonable remedy.5.3.2 Tableau SubsumptionA much more powerful application of the idea of subsumption between inputclauses and tableau clauses consists in generalizing subsumption between clausesto subsumption between entire tableaux. For a powerful concept of subsumptionbetween formula trees, the following notion of formula tree contractions proveshelpful.De�nition 5.15 ((Formula) tree contraction) A (formula) tree T is called a con-traction of a (formula) tree T 0 if T 0 can be obtained from T by attaching n(formula) trees to n non-leaf nodes of T , for some n � 0.��� AAA ��� AAA ��� AAA��� AAA ��� AAA��� AAAFigure 5.5: Illustration of the notion of tree contractions.In Figure 5.5, the tree on the left is a contraction of itself, of the second andthe fourth tree but not a contraction of the third one. Furthermore, the thirdtree is a contraction of the fourth one, which exhausts all contraction relationsamong these four trees. Now subsumption can be de�ned easily by building onthe instance relation between formula trees.De�nition 5.16 (Formula tree subsumption) A formula tree T subsumes a for-mula tree T 0 if some formula tree contraction of T 0 is an instance of T .Since the exploitation of subsumption between entire tableaux has not enoughpotential for reducing the search space, we favour the following form of subsump-tion deletion.De�nition 5.17 (Subsumption deletion) For any pair of di�erent nodes N and N 0in a tableau search tree T , if the goal tree of the tableau at N subsumes the goaltree of the tableau at N 0, then the whole subtree of the search tree with root N 0is deleted from T .

5.3. INTERTABLEAUX PRUNING 99With subsumption deletion, a further form of global redundancy elimination isachieved which is complementary to the tableau structural pruning methods likeregularity. Note also that the case of tableau clause subsumption is trivially sub-sumed by this method. In [Letz et al., 1992] it is shown that, for many formulae,cases of goal tree subsumption inevitably occur during proof search. Since thistype of redundancy cannot be identi�ed with tableau structure re�nements likeconnectedness, regularity, or allies, methods for avoiding tableau subsumptionseem to be essential for achieving a well-performing tableau search procedure.Tableau subsumption vs. regularitySimilar to the case of resolution where certain re�nements of the calculus, i.e.,restrictions of the resolution inference rule, become incomplete when combinedwith subsumption deletion, such cases also occur for re�nements of tableau cal-culi. Formally, the compatibility with subsumption deletion can be expressed asfollows.De�nition 5.18 (Compatibility with subsumption) A tableau calculus is said to becompatible with subsumption if any of its search trees T has the following property.For arbitrary pairs of nodes N , N 0 in T , if the goal tree S of the tableau T at Nsubsumes the goal tree S0 of the tableau T 0 at N 0 and if N 0 dominates a successnode, then N dominates a success node.The (connection) tableau calculus is compatible with subsumption, but theintegration of the regularity condition, for example, poses problems.Proposition 5.19 The regular connection tableau calculus is incompatible with sub-sumption.
�� @@�� @@�� @@
"""bbbClauses:P (x; y) _ :Q(x; y)Q(x; y) _ :Q(y; x)Q(z; z)

Tableau:
:Q(y; x)P (x; y)Q(x; y)Q(y; x)

:P (x; y) :Q(x; y):Q(x; y):P (x; y) _ :Q(x; y)
P (x; y)Q(y; x) _ P (x; y)

Figure 5.6: The incompatibility of subsumption and regularity.Proof We use the unsatis�able set of clauses displayed on the left of Figure 5.6.Taking the �rst clause as top clause and employing the depth-�rst left-most se-lection function, the �rst subgoal N labelled with :P (x; y) can be solved by

100 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXdeducing the tableau T depicted on the right of the �gure. Since N has beensolved optimally, i.e., without instantiating its variables, the goal tree of T sub-sumes the goal trees of all other tableaux working on the solution of N . Hence,all tableaux competing with T can be removed by subsumption deletion. But Tcannot be extended to a solved tableau, due to the regularity condition, the cru-cial impediment being that an extension step into Q(z; z) is not permitted, sinceit would render the already solved subtableau on the left irregular. To obtain aformula in which subsumption is fatal for any top clause, one can employ theduplication trick used in the proof of Proposition 5.14. 2With the same example, one can also show the incompatibility of tableausubsumption and tautology deletion. Exactly in the situation when the tableaubecomes irregular (when x is uni�ed with y), the tableau clause Q(x; y)_:Q(y; x)becomes tautological. The obvious problem with regularity and tautology deletionis that it considers the entire tableau whereas tableau subsumption considers onlythe goal trees of the tableau. A straightforward solution therefore is to restrict thestructural conditions to goal trees, too. The respective weakening of regularity iscalled goal tree regularity.5.3.3 Failure CachingThe observation that cases of subsumption inevitably will occur in practice sug-gests to organize the enumeration of tableaux in such a manner that cases ofsubsumption can really be detected. This could be achieved with a proof proce-dure which explicitly constructs competitive tableaux and thus investigates thesearch tree in a breadth-�rst manner. However, as already mentioned, the explicitenumeration of tableaux or goal trees is practically impossible. But when per-forming an implicit enumeration of tableaux by using iterative-deepening searchprocedures, at each time only one tableau is in memory. This renders it verydi�cult to implement subsumption techniques in an adequate way. A restrictedconcept of subsumption deletion, however, can be achieved using so-called "failurecaching" methods. The idea underlying this approach is to avoid the repetitionof subgoal solutions which apply the same or a more special substitution to therespective branch. There are two approaches, one is using a permanent cache[Astrachan and Loveland, 1991], the other a temporary one [Letz et al., 1992].We describe the latter method, which might be called "local failure caching" inmore detail, because it turned out to be more successful in practice. Subsequently,we assume that only depth-�rst branch selection functions are used.De�nition 5.20 (Solution -, failure substitution) Given a tableau search tree Tfor a tableau calculus and a depth-�rst branch selection function, let N be anode in T , T the tableau at N and N the selected subgoal in T .1. If N 0 with tableau T 0 is a node in the search tree T dominated by N suchthat all branches through N in T 0 are closed, let �0 = �1 � � ��n be thecomposition of substitutions applied to the tableau T on the way from N

5.3. INTERTABLEAUX PRUNING 101to N 0. Then the substitution � = fx=x�0 2 �0 : x occurs in Tg, i.e., the setof bindings in �0 with domain variables occurring in the tableau T , is calleda solution (substitution) of N at N via N 0.2. If T 0 is an initial segment of the search tree T containing no proof at N 0or below it, then the solution � is named a failure substitution for N at Nvia N 0 in T 0.Brie
y, when a solution of a subgoal N with a substitution � does not permitto solve the rest of the tableau under a given size bound, then this solutionsubstitution is a failure substitution. We describe how failure substitutions canbe applied in a search procedure which explores tableau search trees in a depth-�rst manner employing structure sharing and backtracking.De�nition 5.21 (Generation, application, and deletion of a failure substitution)Let T be a �nite initial segment of a tableau search tree.1. Whenever a subgoal N selected in a tableau T at a search node N in Thas been closed via (a sub-refutation to) a node N 0 in the search tree, thenthe computed solution � is stored at the tableau node N . If the tableau atN 0 cannot be completed to a closed tableau in T 0 and the proof procedurebacktracks over N 0, then � is turned into a failure substitution.2. In any alternative solution process of the tableau T below the search nodeN , if a substitution � = �1 � � � �m is computed with one of the failure sub-stitutions stored at N being more general than � , then the proof procedureimmediately backtracks.3. When the search node N (at which the tableau node N was selected forsolution) is backtracked, then all failure substitutions at N are deleted.In order to comprehend the mechanism, we show the method at work on anexample, Example 5.22. The search process is documented in Figure 5.7. Assume,we start with the �rst clause in S and explore the corresponding tableau searchtree using a depth-�rst left-to-right branch selection function, just like in Prolog.Accordingly, in inference step 1, the subgoal :P (x) is solved using the clauseP (a). With this substitution, the remaining subgoals cannot be solved. Therefore,when backtracking step 1, the failure substitution fx=ag is stored at the subgoal:P (x). The search pruning e�ect of this failure substitution shows up in inferencestep 5 when the failure substitution is more general than the computed tableausubstitution, i.e., the tableau T5 is subsumed by the tableau T1. Without thispruning method, the steps 2 to 4 would have to be repeated.Note also that one has to be careful to delete failure substitutions under certaincircumstances, as expressed in item 3 of the procedure. This provision applies,for example, to the failure substitution fy=ag generated at the subgoal :Q(y)after the retraction of inference step 2. When the choice point of this subgoal iscompletely exhausted, then fy=ag has to be deleted. Otherwise, it would preventthe solution process of the tableau when, in step 7, this subgoal is again solvedusing the clause Q(a).

102 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXExample 5.22 Let S be the set of the �ve clauses:P (x) _ :Q(y) _ :R(x); P (a); P (z) _ :Q(z); Q(a); Q(b); R(b):action subgoals substitution fail.subs.T0 start step :P (x);:Q(y);:R(x) ; ;T1 P (a) entered :Q(y);:R(a) fx=ag ;T2 Q(a) entered :R(a) fx=a; y=ag ;uni�cation failure :R(a) fx=a; y=ag ;retract step 2 :Q(y);:R(a) fx=ag fy=agT3 Q(b) entered :R(a) fx=a; y=bg fy=aguni�cation failure :R(a) fx=a; y=ag fy=agretract step 3 :Q(y);:R(a) fx=ag fy=agretract step 1 :P (x);:Q(y);:R(x) ; fx=agT4 P (x) _ :Q(x) entered :Q(x);:Q(y);:R(x) fz=xg fx=agT5 Q(a) entered :Q(y);:R(a) fz=a; x=ag fx=agT5 T5 subsumed by T1 :Q(y);:R(a) fz=a; x=ag fx=agretract step 5 :Q(x);:Q(y);:R(x) fz=xg fx=agT6 Q(b) entered :Q(y);:R(b) fz=b; x=bg fx=agT7 Q(a) entered :R(b) fz=b; x=b; y=ag fx=agT8 R(b) entered fz=b; x=b; y=ag fx=agFigure 5.7: Proof search using failure substitutions.As already noted in the example, when the failure substitution fx=ag at :P (x)is more general than an alternative solution substitution of the subgoal, then thegoal tree of the former tableau subsumes the one of the tableau generated later.The described method preserves completeness, for certain completeness bounds.Proposition 5.23 Let T be the initial segment of a (connection) tableau search treede�ned by some branch selection function and the depth bound (Section 3.3.1) orsome clause-dependent depth bound (Section 3.3.1) with size limitation k. Assumea failure substitution � has been generated at a node N selected in a (connection)tableau T at a search node N in T via a search node N 0 according to the procedurein De�nition 5.21. If Tc is a closed (connection) tableau in the search tree Tbelow the search node N and � is the composition of substitutions applied whengenerating Tc from T , then the failure substitution � is not more general than � .Proof Assume indirectly, that � is more general than � , i.e., � = ��. Let Sc and Sbe the subtableaux with root N in Tc respectively in the tableau at N 0. Then, re-placing Sc in Tc with S� results in a closed (connection) tableau T 0c. Furthermore,it is clear that T 0c satis�es size limitation k of the respective completeness bound.Since the (connection) tableau calculus is strongly independent of the selectionfunction, a variant of T 0c must be contained in the tree T below the search nodeN 0. But this contradicts the assumption of � being a failure substitution. 2

5.3. INTERTABLEAUX PRUNING 103The failure caching method described above has to be adapted when com-bined with other completeness bounds. While, for the (clause-dependent) depthbounds, exactly the described method can be used, one has to be careful not tolose completeness when using the inference bound. It may happen that a subgoalsolution with solution substitution � exhausts almost all available inferences sothat there are not enough left for the remaining subgoals, and there might existanother, smaller solution tree of the subgoal with the same substitution whichwould permit the solution of the remaining subgoals. Then the failure substitu-tion � would prevent this. Accordingly, in order to guarantee completeness, thenumber of inferences needed for a subgoal solution has to be attached to a failuresubstitution, and only if the solution tree computed later is greater or equal tothe one associated with �, � may be used for pruning.When performing iterative-deepening according to the multiplicity bound,however, the situation is more di�cult. In order to preserve completeness, not onlythe solution substitution of a subgoal N (and its branch) has to be considered,but also the substitutions applied to all clauses used in the subrefutation of N .This renders failure caching practically useless for the multiplicity-based calculi.Furthermore, when using failure caching together with structural pruningmethods like regularity, tautology deletion, or tableau clause subsumption, phe-nomena like the one discussed in Section 5.3.2 (Proposition 5.19) may lead toincompleteness. A remedy is to restrict the structural conditions to the goal treeof the current tableau. But even if this condition is complied with, completenessmay be lost, as demonstrated with the following example.Example 5.24 Let S be the set of the seven clauses:P (x; b) _ :Q(x); P (x; b) _ :R(x) _ :P (y; b); P (a; z); P (x; b); R(a); R(x); Q(a):Using the �rst clause as start clause and performing a Prolog-like search strat-egy, the clause P (x; b) _ :R(x) _ :P (y; b) is entered from the subgoal :P (x; b).Solving the subgoal :R(x) with the clause R(a) leads to a tableau structureviolation (irregularity or tautology) when :P (y; b)fx=ag is solved with P (a; z).This triggers the creation of a failure substitution fx=ag at the subgoal :R(x).The alternative solution of :R(x) (with R(x)) and of :P (y; b) (with P (a; z))succeeds, so that the subgoal :P (x; b) in the top clause is solved with the emptysubstitution ;. The last subgoal :Q(x) in the top clause, however, cannot besolved using the clause Q(a) due to the failure substitution fx=ag at :R(x). Thisinitiates backtracking, and the solution substitution ; at the subgoal :P (x; b) isturned into a failure substitution. As a consequence, any alternative solution ofthis subgoal will be pruned, so that the procedure does not �nd a closed tableau,although the set is unsatis�able. The problem is that the �rst encountered tab-leau structure violation has mutated to a failure substitution fx=ag. One possiblesolution is to simply ignore the fatal failure substitution fx=ag when the respec-tive node :P (x; b) is solved. In general, this suggests the following modi�cationof De�nition 5.21.

104 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUXDe�nition 5.25 (Failure caching with structural conditions) Items 1 and 3 are asin De�nition 5.21, item 2 has to replaced with the following.2'. In any alternative solution process of the subgoal N (instead of the entiretableau T) below the search node N , if a substitution � = �1 � � � �m iscomputed with one of the failure substitutions stored at N being moregeneral than � , then the proof procedure immediately backtracks.In other terms, the failure substitutions at a subgoal have to be deactivatedwhen the subgoal has been solved. This restricted usage of failure substitutionsfor search pruning preserves completeness. It would be interesting to investigatewhich weaker restrictions on failure caching and the structural tableau conditionswould guarantee completeness. With the failure caching procedure described inDe�nition 5.25 a signi�cant search pruning e�ect can be achieved, as con�rmedby a wealth of experimental results [Letz et al., 1994, Moser et al., 1997].Comparison with other methodsThe caching technique proposed in [Astrachan and Stickel, 1992] stores the solu-tions of subgoals independently of the path contexts in which the subgoals ap-pear. Then, cached solutions can be used for solving subgoals by lookup insteadof search. In the special case in which no solutions for a cached subgoal exist,the cache acts in the same manner as the local failure caching mechanism. Forpropositional Horn sets, this method results in a polynomial decision procedure[Plaisted, 1994, Plaisted and Zhu, 1997]. One di�erence is that failure substitu-tions take the path context into account and hence are compatible with goal treeregularity whereas the mentioned caching technique is not. On the other hand,permanently cached subgoals without context have more cases of application thanthe temporary and context-dependent failure substitutions. The main disadvan-tage of the context-ignoring caching technique, however, is that its applicabilityis restricted to the Horn case. Note that the �rst aspect of the mentioned cachingtechnique, namely, replacing search by lookup, cannot be captured with a tempo-rary mechanism as described above, since lookup is mainly e�ective for di�erentsubgoals whereas failure substitutions are merely used on di�erent solutions ofone and the same subgoal.In [Loveland, 1978] a di�erent concept of subsumption was suggested formodel elimination chains. Roughly speaking, this concept is based on a prooftransformation which permits to ignore certain subgoals if the set of literals atthe current subgoals is subsumed by an input clause. Such a replacement is possi-ble, for example, if the remaining subgoals can be solved without reduction stepsinto their predecessors. In terms of tableaux, Loveland's subsumption reduces thecurrent goal tree while our approach tries to prune it.

Chapter 6
Methods of ShorteningProofs
The analytic tableau approach has proven successful, both proof-theoreticallyand in the practice of automated deduction. It is well-known, however, since thework of Gentzen [Gentzen, 1935] that the purely analytic paradigm su�ers from afundamental weakness, namely, the poor deductive power. That is, for very simpleexamples, the smallest tableau proof may be extremely large if compared withproofs in other calculi. In this section, we shall review methods which can remedythis weakness and lead to signi�cantly shorter proofs.The methods we mention are of three completely di�erent types. First, wepresent mechanisms that amount to adding additional inference rules to tableausystems. The mechanisms are all centered around the (backward) cut rule, which,in its full form, may lead to nonelementarily smaller tableau proofs. Those mech-anisms have the widest application, since they already improve the behaviour oftableaux for propositional logic. Second, we consider so-called liberalizations ofthe �-rule which may also lead to nonelementarily smaller tableau proofs. Theirapplication, however, is restricted to formulae that are not in Skolem form. Sincein automated deduction normally a transformation into Skolem form is performed,the techniques seem mainly interesting as an improvement of this transformation.Finally, we consider in some more detail a line of improvement which is �rst-orderby its very nature, since it can only be e�ective for free-variable tableaux. It ismotivated by the fact that free variables in tableaux need not necessarily betreated as rigid by the closure rule. The generalization of the rule results in acalculus in which the complexity of proofs can be signi�cantly smaller than theHerbrand complexity of the input formula, which normally is a lower bound tothe length of any analytic tableau proof.105

106 CHAPTER 6. METHODS OF SHORTENING PROOFS6.1 Controlled Integration of the Cut RuleGentzen's sequent calculus [Gentzen, 1935] contains the cut rule which in thetableau format can be formulated as follows.De�nition 6.1 (Tableau) cut rule) The (tableau) cut rule is the following tableauexpansion rule(Cut) F j :F where F is any �rst-order formula.The formula F is called the cut formula of the cut step. If F is an atomic formula,we speak of an atomic cut step.The cut rule is logically redundant, i.e., whenever there exists a closed tableauwith cuts for an input set S, then there exists a closed cut-free tableau for S. Eventhe following stronger redundancy property holds. For this, note that the e�ect ofthe cut rule can be simulated by adding, for every applied cut with cut formula F ,the special tautological formula F _ :F to the input set, since then the cuts canbe performed by using the �-rule on those tautologies. So in a sense the powerof the cut can already be contained in an input set if the right tautologies arecontained. That tautologies need not be used as expansion formulae in a tableauis evident from the fact that, for every interpretation and variable assignment,one of the tableau subformulae of a tautology will become true.Although tautologies and therefore the cut rule are redundant, they can leadto nonelementary reductions of the proof length [Orevkov, 1979, Statman, 1979].While this quali�es the cut rule as one of the fundamental methods for represent-ing proofs in a condensed format, obviously, the rule has the disadvantage thatit violates the tableau subformula property. Consequently, from the perspectiveof proof search, an unrestricted use of the cut rule is highly detrimental, since itblows up the search space.6.1.1 Factorization and Complement SplittingThe problem therefore is to perform cuts in a controlled manner. A controlledapplication of the cut rule can be achieved, for instance, by performing a cut incombination with the �-rule only.De�nition 6.2 (�-rule with cut) Whenever a �-step is to be applied, �rst, performa cut step with one of the formulae �1 or �2, afterwards perform the �-step onthe new right branch. The entire operation is displayed in Figure 6.1.Since one of the new branches is closed, only two open branches have beenadded, like in the standard �-rule, but one of the branches has one more for-mula on it which can additionally be used for closure steps. The �-cut ruleful�ls the weaker tableau subformula property that any formula in a tableauis either a tableau subformula or the negation of a tableau subformula in the

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 107��� QQQ��� QQQ ��� QQQ��� QQQ�2�1�1 :�1� �2�1��2 :�2Figure 6.1: �-rule with cut.input set. This property su�ces for guaranteeing that there exist no in�nite de-composition sequences. In �rst-order logic, even a nonelementary proof lengthreduction can be achieved with this method, as demonstrated in [Egly, 1997]. Inthe clausal case, which we consider here, this mechanism may lead to a reduc-tion from exponential to linear proof length even in the propositional case. Thiswill be considered in detail in Section 7.2.2. A number of di�erent names havebeen used for this technique like "(Prawitz) reduction" [Prawitz, 1960], "foldingdown" [Letz et al., 1994], "lemmas" [d'Agostino, 1999] or "complement splitting"[Bry and Yahya, 1996]. We prefer the folding down format introduced later, sincethis will permit a closer relation with other techniques.This method is also closely related with factorization, which we considernext. The factorization rule was introduced to the model elimination formatin [Kowalski and Kuehner, 1971] (see also [Loveland, 1972]) and used in the con-nection calculus [Bibel, 1987], Chapter III.6, but, due to format restrictions, fordepth-�rst selection functions only. On the general level of the tableau calculus,which permits arbitrary branch selection functions, the rule can be motivated asfollows. Consider a closed tableau containing two nodes N1 and N2 labelled withthe same literal. Furthermore, suppose that all ancestor nodes of N2 are also an-cestors of N1. Then, the closed tableau part T below N2 could have been reusedas a solution and attached to N1, because all expansion and reduction steps per-formed in T under N2 are possible in T under N1, too. This observation leadsto the introduction of factorization as an additional inference rule. Factorizationpermits to mark a subgoal N1 as solved if its literal can be uni�ed with the literalof another node N2, provided that the set of ancestors of N2 is a subset of theset of ancestors of N1; additionally, the respective substitution has to be appliedto the tableaux. Reasonable candidates for N2 are all brothers and sisters of N1,i.e., all nodes with the same predecessor as N1, and the brothers and sisters ofits ancestors. In Figure 6.2, with an arrow such a factorization step is displayed.Obviously, in order to preserve soundness the rule must be constrained to pro-hibit solution cycles. Thus, in Figure 6.2 factorization of the subgoal N4 on theright-hand side with the node N3 with the same literal on the left-hand side isnot permitted after the �rst factorization (node N1 with node N2) has been per-formed, because this would involve a reciprocal, and hence unsound, employmentof one solution within the other. To avoid the cyclic application of factoriza-tion, tableaux have to be supplied with an additional factorization dependencyrelation.

108 CHAPTER 6. METHODS OF SHORTENING PROOFS
��� @@@m mmm ������ HHHHHH�������*��� @@@:p :qp q :p:qN3 N4N1 N2

Figure 6.2: Factorization step in a connection tableau.De�nition 6.3 (Factorization dependency relation) A factorization dependency re-lation on a tableau T is a strict partial ordering � on the tableau nodes (N1 � N2means that the solution of N2 depends on the solution of N1).De�nition 6.4 (Tableau factorization) Given a tableau T and a factorization de-pendency relation � on its nodes. First, select a subgoal N1 with literal L andanother node N2 labelled with a literal K such that1. there is a minimal uni�er �: L� = K�,2. N1 is dominated by a node N which has the node N2 among its immediatesuccessors, and3. N3 6� N2, where N3 is the brother node of N2 on the branch from the rootdown to and including N1.1A factorization step consists in the following operation. Modify � by �rst addingthe pair of nodes hN2; N3i and then forming the transitive closure of the relation;then, apply the substitution � to the tableau; �nally, consider the branch withleaf N1 as closed. We say that the subgoal N1 has been factorized with the nodeN2. The tableau construction is started with an empty factorization dependencyrelation, and all other tableau inference rules leave the factorization dependencyrelation unchanged.Applied to the example shown in Figure 6.2, when the subgoalN1 is factorizedwith the node N2, the pair hN2; N3i is added to the previously empty relation�, thus denoting that the solution of the node N3 depends on the solution ofthe node N2. After that, factorization of the subgoal N4 with the node N3 is notpossible any more.It is clear that the factorization dependency relation only relates brothernodes, i.e., nodes which have the same immediate predecessor. Furthermore, theapplications of factorization at a subgoal N1 with a node N2 can be subdividedinto two cases. Either, the nodeN2 has been solved or one of the branches throughN2 is open, In the second case we shall speak of an optimistic application of fac-torization, since the node N1 is marked as solved before it is known whether a1Note that N3 may be N1 itself.

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 109solution exists. Conversely, the �rst case will be called a pessimistic applicationof factorization. It is obvious that in the pessimistic case no cyclic factorizationsmay occur, therefore a factorization dependency relation is not needed.Similar to the case of ordinary (connection) tableaux, if the factorization ruleis added, the order in which the tableau rules are applied does not in
uence thestructure of the tableau.Proposition 6.5 (Strong selection independency of factorization) Any closed (con-nection) tableau with factorization for a set of clauses constructed with one selec-tion function can be constructed with any other selection function.Switching from one selection function to another may mean that certain opti-mistic factorization steps become pessimistic factorization steps and vice versa. Ifwe are working with goal trees, i.e., completely remove solved parts of a tableau,as done in the chain format of model elimination, then for all depth-�rst selec-tion functions solely optimistic applications of factorization can occur. Also, thefactorization dependency relation may be safely ignored, because the depth-�rstprocedure and the removal of solved nodes render cyclic factorization attemptsimpossible. It is for this reason, that the integration approaches of factorizationinto model elimination or into the connection calculus have not mentioned theneed for a factorization dependency relation. Note also that if factorization isintegrated into the chain format of model elimination, then the mentioned strongnode selection independency does not hold, since pessimistic factorization stepscannot be performed.The addition of the factorization rule increases the deductive power of (con-nection) tableaux signi�cantly. In fact, the factorization rule is equivalent to themethod of complement splitting, as considered in Section 7.2.2.6.1.2 The Folding Up RuleAn inference rule which, for connection tableaux, is stronger than factoriza-tion concerning deductive power, is the so-called folding up rule (in German:\Hochklappen"). Folding up generalizes the c-reduction rule introduced to themodel elimination format in [Shostak, 1976]. In contrast to factorization, forwhich pessimistic and optimistic application do not di�er concerning deductivepower, the shortening of proofs achievable with folding up results from its pes-simistic nature. The theoretical basis of the rule is the possibility of extractingbottom-up lemmata from solved parts of a tableau, which can be used on otherparts of the tableau (as described in [Loveland, 1968] and [Letz et al., 1992], or[Astrachan and Loveland, 1991]). Folding up represents a particularly e�cientrealization of this idea.We explain the rule with an example. Given the tableau displayed on the leftof Figure 6.3, where the arrow points to the node at which the last inferencestep (a reduction step with the node 3 levels above) has been performed. Withthis step we have solved the dominating nodes labelled with the literals r andq. In the solutions of those nodes the predecessor labelled with p has been used

110 CHAPTER 6. METHODS OF SHORTENING PROOFS
���� QQQQ���@@@��� ���� QQQQ���@@@���@@@
��� PPPPPPP
����

@@@���
� @@@

��� PPPPPPP
����

@@@���:p q
:r:q r r:ss st
� ��� �:p

pEl :t� p :p q
:r:q r r:ss st
� ��� �:p

:pp :t� p:r;:q

Figure 6.3: Connection tableau before and after three times folding up.for a reduction step. Obviously, this amounts to the derivation of two lemmata:r_:p and :q_:p from the underlying formula. The new lemma :q_:p couldbe added to the underlying set and subsequently used for extension steps (thishas already been described in [Letz et al., 1992]). The disadvantage of such anapproach is that the new lemmata may be non-unit clauses, as in the example,so that extension steps into them would produce new subgoals, together withan unknown additional search space. The redundancy brought in this way canhardly be controlled.With the folding up rule a di�erent approach is pursued. Instead of addinglemmata of arbitrary lengths, so-called context unit lemmata are stored. In thediscussed example, we may obtain two context unit lemmata::r, valid in the (path) context p, and:q, valid in the context p.Also, the memorization of the lemmata is not done by augmenting the inputformula but within the tableau itself, namely, by \folding up" a solved node tothe edge which dominates its solution context. More precisely, the folding up of asolved node N to an edge E means labelling E with the negation of the literal atN . Thus, in the example above the edge E above the p-node on the left-hand sideof the tableau is successively labelled with the literals :r and :q, as displayedon the right-hand side of Figure 6.3; lists of context-unit lemmata are depictedas framed boxes. Subsequently, the literals in the boxes at the edges can be usedfor ordinary reduction steps. So, at the subgoal labelled with r a reduction stepcan be performed with the edge E, which was not possible before the folding up.After that, the subgoal s could also be folded up to the edge E, which we have notdone in the �gure, since after solving that subgoal the part below E is completelysolved. But now the p-subgoal on the left is solved, and we can fold it up above

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 111the root of the tableau; since there is no edge above the root, we simply fold upinto the root. This folding up step facilitates that the p-subgoal on the right canbe solved by a reduction step.The gist of the folding up rule is that only unit lemmata are added, so that theadditionally imported indeterminism is not too large. Over and above that, thetechnique gives rise to a new form of pruning mechanism called strong regularity,which is discussed below. Lastly, the folding up operation can be implementedvery e�ciently, since no renaming of variables is performed, as in a full lemmamechanism.In order to be able to formally introduce the inference rule, we have to slightlygeneralize the notion of tableaux.De�nition 6.6 (Edge-labelled tableau, path set) An edge-labelled tableau (E-tableau)is just a clausal tableau as introduced in De�nitions 3.2 with the only modi�ca-tions that also the edges and the root node are labelled, namely, with lists ofliterals. Additionally, in every extension and reduction step, the closed branchis marked with the respectively used ancestor literal. The path set of a non-rootnode N in an E-tableau is the union of the sets of literals at the nodes dominat-ing N and in the lists at the root and at the edges dominating the immediatepredecessor of N .De�nition 6.7 (E-tableau folding up) Let T be an E-tableau, N a non-leaf nodewith literal L which dominates a closed subtree. The insertion position of theliteral �L is computed as follows. From the markings of all leaf nodes dominatedby N , select the set M of nodes which dominate N (M contains exactly thepredecessor nodes on which the solution of N depends).If M is empty or contains the root node only, then add the literal �L tothe list of literals at the root.Otherwise, let N 0 be the deepest path node in M . Add the literal �L tothe list of literals at the edge immediately above N 0.2As an illustration, consider Figure 6.3, and recall the situation when the `q'-node N on the left has been solved completely. The markings of the branchesdominated by N are the `r'-node below N and the `p'-node above N . Conse-quently, :q is added to the list at the edge E.Additionally, the reduction rule has to be extended, as follows.De�nition 6.8 (E-tableau reduction) Given a marked E-tableau T , select a sub-goal N with literal L, then1. either select a dominating node N 0 with literal K and a minimal uni�er �for L and �K, and mark the branch with N 0,2The position of the inserted literal exactly corresponds to the C-point in the terminologyused in [Shostak, 1976].

112 CHAPTER 6. METHODS OF SHORTENING PROOFS2. or select a literal K contained in the list at some dominating edge or at theroot with a minimal uni�er � for L and �K; then mark the branch withthe node immediately below the edge or with the root, respectively.Finally, apply the substitution � to the literals in the tableau and close the branch.The tableau and the (path) connection tableau calculus with folding up resultfrom the ordinary versions by working with edge-labelled tableaux, adding thefolding up rule, substituting the old reduction rule by the new one, starting witha root labelled with the empty list, and additionally labelling all newly generatededges with the empty list. Subsequently, we will drop the pre�x `E-' and simplyspeak of `tableaux', the context will clear up possibly ambiguities.The soundness of the folding up operation is expressed in the following propo-sition.Proposition 6.9 (Soundness of folding up) Let N be any subgoal with literal L ina tableau T , P the path set of N , and S a set of clauses. Suppose T 0 is any tableaudeduced from T using folding up steps and employing only clauses from S in theintermediate extension steps. Then, for the new path set P 0 of N in T 0: P [Slogically implies P 0.Proof The proof is by induction on the number n of folding up steps betweenT and T 0. The base case for n = 0 is trivial, since P 0 = P . For the inductionstep, let P 0 = Pn be the path set of N after the n-th folding up step inserting aliteral, say L0, into the path above N . This step was the consequence of solvinga literal �L0 with clauses from S and path assumptions from Pn�1, i.e., the pathset of N before the n-th folding up step. This means that Pn�1 [S [f�L0g isunsatis�able. Now, by the induction assumption, P [S j= Pn�1. Consequently,P [S j= Pn�1 [fL0g = P 0. 2In Section 7.2.2, it is proven that, for connection tableaux, the folding up ruleis properly stronger concerning deductive power than complement splitting or thefactorization rule.6.1.3 The Folding Down RuleThe simulation of factorization by folding up also shows how a restriction ofthe folding up rule could be de�ned which permits an optimistic labelling ofedges. If a strict linear (dependency) ordering � is de�ned on the successor nodesN1; : : : ; Nm of any node, then it is permitted to label the edge leading to anynode Ni, 1 � i � m, with the set of the negations of the literals at all nodeswhich are smaller than Ni in the ordering. We call this operation the foldingdown rule (in German: \Umklappen"). The folding down operation can also beapplied incrementally, as the ordering is completed to a linear one.It is obvious that folding down is just Prawitz reduction or complement split-ting in a slightly di�erent format. The folding down rule can also be viewed as a

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 113very simple and e�cient way of implementing factorization. Over and above that,if also the literals on the edges are considered as path literals in the regularitytest, an additional search space reduction called strong regularity can be obtainedthis way, which is di�cult to identify in the factorization framework.6.1.4 Enforced Folding and Strong RegularityThe folding up operation has been introduced as an ordinary inference rule which,according to its indeterministic nature, may be applied or not. Alternatively, wecould have de�ned versions of the (connection) tableau calculi with folding up inwhich any solved node must be folded up immediately after it has been solved.It is clear that whether folding up is performed freely, as an ordinary inferencerule, or in an enforced manner, the resulting calculi are not di�erent concerningdeductive power, since the folding up operation is a monotonic operation whichdoes not decrease the inference possibilities. But the calculi di�er with respectto their search spaces, since by treating the folding up rule just as an ordinaryinference rule, which may be applied or not, an additional and absolutely uselessform of indeterminism is imported. Consequently, the folding up rule should notbe introduced as an additional inference rule, but as a tableau operation to beperformed immediately after the solution of a subgoal. The resulting calculi willbe called the (connection) tableau calculi with enforced folding up.The superiority of the enforced folding up versions over the unforced ones alsoholds if the regularity restriction is added, according to which no two nodes ona branch can have the same literal as label. But the manner in which the foldingup and the folding down rules have been introduced raises the question whetherthe regularity condition might be sharpened and extended to the considerationof the literals in the labels of the edges, too. It is clear that such an extension ofregularity does not go together with folding up, since any folding up operationmakes the respective closed branch immediately violate the extended regularitycondition. A straightforward remedy is to apply the extended condition to thegoal trees of tableaux only.De�nition 6.10 (Strong regularity) A tableau T is called strongly regular if it isregular and no literal at a subgoal N of T is contained in the path set of N .When the strong regularity condition is imposed on the connection tableaucalculus with enforced folding up, then a completely new calculus is generatedwhich is no extension of the regular connection tableau calculus, that is, not everyproof in the regular connection tableau calculus can be directly simulated by thenew calculus. This is because after the performance of a folding up operation cer-tain inference steps previously possible for other subgoals may become impossiblethen. A folding up step may even lead to an immediate failure of the extendedregularity test, as demonstrated below. Since the new calculus is no extensionof the regular connection tableau calculus, we do not even know whether it iscomplete, since the completeness result for regular connection tableaux cannotbe applied. In fact, the new calculus is not complete for every selection function.

114 CHAPTER 6. METHODS OF SHORTENING PROOFSProposition 6.11 There is an unsatis�able set S of ground clauses and a selectionfunction � such that there is no refutation for S in the strongly regular connectiontableau calculus with enforced folding up.Example 6.12 The set S consisting of the clauses:p _ :s _ :r, p _ s _ r, :q _ r, q _ :r,:p _ t _ u, p _ :t _ :u, :q _ s, q _ :s,:q _ t, q _ :t,:q _ u, q _ :u.Proof Let S be the set of clauses given in Example 6.12, which is minimallyunsatis�able. The non-existence of a refutation with the top clause p _ s _ r fora certain unfortunate selection function � is illustrated in Figure 6.4. If � selectsthe s-node, then two alternatives exist for extension, separated by a _. For theone on the left-hand side, if � shifts to the p-subgoal above and completely solvesit in a depth-�rst manner, then the enforced folding up of the p-subgoal imme-diately violates the strong regularity, indicated with a `�' below the responsible:p-subgoal on the left. Therefore, only the second alternative on the right-handside may lead to a successful refutation. Following the �gure, it can easily be ver-i�ed that for any refutation attempt there is a selection possibility which eitherleads to extension steps which immediately violate the old regularity condition orproduce subgoals labelled with :p or :r. In those cases, the selection function al-ways shifts to the respective p- or r-subgoal in the top clause, solves it completelyand folds it up afterwards, this way violating the strong regularity. Consequently,for such a selection function, there is no refutation with the given top clause.The same situation holds for any other top clause selected from the set. This canbe veri�ed in a straightforward though tedious manner. Alternatively, in order toshorten the proof, we may use the duplication trick as used in the proof of Propo-sition 5.13. We duplicate the clause set by using consistently renamed predicatesymbols and afterwards replace the top clause c and its renamed version c0 bythe new clause c _ c0. For the new clause set, the incompleteness result holds forany top clause. 2This result demonstrates that there is a trade-o� between optimal selectionfunctions and structural restrictions on tableaux. It would be interesting to in-vestigate under which weakenings of the strong regularity the completeness forarbitrary selection functions might be obtained. If we restrict ourselves to depth-�rst selection functions, however, the calculus is complete, as shown next.We are now going to present completeness proofs of two calculi, namely, ofstrongly regular connection tableaux with enforced folding up, for depth-�rstselection functions, and of strongly regular connection tableaux with enforcedfolding down, for arbitrary selection functions. The completeness proofs are basedon the following non-deterministic procedure for generating connection tableauxwhich is similar to the one used in the proof of Proposition 5.7 However, in thefollowing procedure as an additional control structure a mapping � is carried

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 115aaaaaa!!!!!!���� QQQQ ���� QQQQ
���� ��� ���� ������� ��� ��� ������ ���� ��� ��� @@@

HHHHH
HHHHHHHHHH QQQQ QQQQ

 ��� �������
!!!!!! aaaaaa

��� XXXXXXXXXX���QQQQ����� ����������
SSS SSS

r
p s r:s q :s:r:p _t:q :q u _:s

s:q :q
:u:tp :rq:uq:u:tp:tq

:st:p:r:s:put:p :r:pu
:r:p_

�

� �
�_ _

_

_�
� � �

�
�Figure 6.4: Incompleteness for free selection functions of the strongly regularconnection tableau calculus with enforced folding up.along which, upon selection of a subgoal N , associates with N a speci�c subset�(N) of the input clauses.De�nition 6.13 Let S0 be a �nite unsatis�able set of ground clauses, c0 any clausewhich is relevant in S0, and � any subgoal selection function. First, perform astart step with the clause c0 at the rootN0 of a one-node tableau, select a subset Sof S0 with c0 being essential in S, and set �(N0) = S. Then, as long as applicable,iterate the following procedure.Let N be the subgoal selected by �, P the path set of N , L the literaland c the tableau clause at N , and S = �(N 0) where N 0 is the immediatepredecessor node of N .{ If �L 2 P , perform a reduction step at N .{ Otherwise, perform an extension step at N with a clause c0 in S suchthat c0 is relevant in (P [fLg) B S, select a subset S0 of S with c0being essential in the set (P [fLg) B S0, and set �(N) = S0.

116 CHAPTER 6. METHODS OF SHORTENING PROOFSAdditionally, depending on the chosen extension of the calculus, enforcedfolding up or folding down operations need to be applied.It su�ces to perform the completeness proofs for the ground case, since thelifting to the �rst-order case is straightforward, using the Lifting Lemma (5.9)from Page 93.Theorem 6.14 (Completeness for enforced folding up) For any �nite unsatis�ableset S0 of ground clauses, any depth-�rst branch selection function, and any clausec0 which is relevant in S0, there exists a refutation of S0 with top clause c0 in thestrongly regular connection tableau calculus with enforced folding up.Proof Let S0 be a �nite unsatis�able set of ground clauses, c0 any relevant clausein S0, and � any depth-�rst branch selection function. We demonstrate that anydeterministic execution of Procedure 6.13 including enforced folding up opera-tions leads to a refutation in which only strongly regular connection tableaux areconstructed. We start with a tableau consisting simply of c0 as top clause, andlet � map the root to any subset S of S0 in which c0 is essential. Then we proveby induction on the number of inference steps needed for deriving a tableau that(i) any generated tableau T is strongly regular, and(ii) an inference step can be performed at the subgoal �(T) according to Pro-cedure 6.13.The induction base, n=0, is evident. For the induction step, let T be a tableaugenerated with n > 0 inference steps, N = �(T) with literal L and path set P ,c the tableau clause at N , N 0 the immediate predecessor of N , and �(N 0) = S.Two cases may be distinguished.Case 1. Either, the last node selected before N was N 0. In this case, by theinduction assumption and the fact that Procedure 6.13 only permits extension(or start) steps with clauses not containing literals from the path set P , it isguaranteed that T is strongly regular, hence (i). By the induction assumption, cis essential in P B S. Consequently, due to the Strong Mate Lemma, at N aninference step according to the procedure can be performed, therefore (ii).Case 2. Or, the last inference step before the selection of N completely solveda brother node of N . In this case, after having entered the clause c, additionalliterals may have been inserted by intermediate folding up operations. We showthat the resulting tableau is still strongly regular. For this, let Ni be an arbitrarysubgoal in T , Li the literal and ci the clause at Ni, Pi its (extended) path set in T ,and N 0i the immediate predecessor of Ni. With Si we denote the clause set �(N 0i).Let, furthermore, T ? be the former tableau resulting from the extension step atN 0into the clause c, and P ?i the path set of Ni in T ?. By the induction assumption,Li is not contained in P ?i . According to Procedure 6.13, in the solutions of brothernodes of Ni only clauses from the set Si n fcig are permitted for extension steps.Due to the depth-�rst selection function, the solution process of brother nodesof N is a subprocess of the solution process of brother nodes of Ni. Therefore,

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 117by the soundness of the folding up rule (Proposition 6.9), the set of literals Kiinserted into P ?i during the derivation of T from T ? is logically implied by thesatis�able set Ai = (P ?i [Si)nfcig. Since, by the induction assumption, Ai[fcigis unsatis�able, Ai [fLig is unsatis�able, too. Consequently, Li =2 Ki, and henceLi =2 Pi. Since this holds for all subgoals of T , T must be strongly regular, whichproves (i). Furthermore, all ci remain essential in the sets Pi [Si. Therefore, bythe Strong Mate Lemma, at the subgoal N in T an inference step according toProcedure 6.13 can be performed, hence (ii).Now we have proven that the procedure produces only strongly regular connectiontableaux and whenever the procedure terminates, it must terminate with a closedtableau. Finally, the termination of the procedure follows from the fact that, forany �nite set of ground clauses, only strongly regular tableaux of �nite depthexist. 2Theorem 6.15 (Completeness for enforced folding down) For any �nite unsatis�-able set S0 of ground clauses, any subgoal selection function, and any clause c0which is relevant in S0, there exists a refutation of S0 with top clause c0 in thestrongly regular connection tableau calculus with enforced folding down.Proof The structure of the proof is the same as the one for folding up, viz., byinduction on the number of inference steps, the two properties given above haveto be shown. Therefore, only the induction step is carried out. Suppose a subgoalN is selected with literal L, tableau clause c, path set P , and �(N 0) = S forthe immediate predecessor N 0 of N . The enforced folding down operation insertsthe negations of the literals at the unsolved brother nodes of N into the edgeleading to N before the subgoal N is solved. First, we prove that such steps al-ways preserve the strong regularity condition. Clearly, folding down operationscan only violate this condition for tautological tableau clauses. Since no tau-tological clause can be relevant in a set and Procedure 6.13 only permits theuse of relevant clauses, no tautological clause can occur in a generated tableau.It remains to be shown that any selected subgoal can be extended in concor-dance with Procedure 6.13. By the induction assumption, c is essential in P B S.Hence, there is an interpretation I with I(c) = ? and I((P B S) n fcg) = >.We prove that any folding down operation preserves the essentiality of the clausec. Let P 0 = f�K1; : : : ;�Kng be the set of literals inserted above N in a foldingdown operation on the literals K1; : : : ;Kn at the other subgoals in c. Clearly,I(�Ki) = >, for all literals in P 0. Therefore, c is essential in P 0 [(P B S) andhence also in its unsatis�able subset (P 0 [P) B S. 26.1.5 The Bene�t of Controlled Cuts in Proof SearchExcept for the case of strong regularity, all tableau calculi with controlled variantsof the cut rule increase the inferential possibilities. This means that also thesearch space increases in general. So how can one pro�t from these methods inproof search? The crucial point is that the search for closed connection tableauxis performed by employing iterative-deepening procedures. Since the size of the

118 CHAPTER 6. METHODS OF SHORTENING PROOFSsearch space is normally exponential or even doubly exponential wrt. the appliedtableau completeness bound (e.g., the inference or the depth bound), the realbene�t of using variants of the cut rule is when this way the �rst proof canbe found on an earlier level of the iterative-deepening search. This is possibleand frequently happens in practice for tableau size bounds like the inference orthe depth bound. Interestingly, such a gain is not possible for the multiplicity-based bounds. This is one explanation for the observation that multiplicity-basediterative-deepening procedures are relatively unsuccessful in practice.6.2 Liberalizations of the �-RuleOur completeness proof of free-variable tableaux has revealed that, for any atomicsentence tableau proof, there is a free-variable tableau proof of the same tree size.Interestingly, the converse, does not hold. The reason lies in the use of the �+-rulein free-variable tableaux taken from [H�ahnle and Schmitt, 1994, Fitting, 1996],which can lead to signi�cantly shorter tableau proofs [Baaz and Ferm�uller, 1995].Example 6.16 Any closed sentence tableau for the formula 8x(P (x) ^ 9y:P (y))requires two applications of the
-rule whereas there is a closed free-variabletableau with only one application of the
0-rule.3Interestingly, in the �rst edition of Fitting's book [Fitting, 1990], a more re-strictive variant of the �+-rule was given, in which the new Skolem term had tocontain all variables on the branch and not only the ones contained in the re-spective �-formula. Liberalization of the �-rule means mainly reducing the num-ber of variables to be considered in the respective Skolem term. So, the �+-ruleintroduced in Section 2.2 is already a liberalization of the original �-rule in free-variable tableaux. In a sense, however, this older version of free-variable tableauxis conceptually cleaner with respect to the \rigid" treatment of free-variables.The original idea of a rigid interpretation of the free variables in a tableau is thatthey may stand for arbitrary ground terms. Accordingly, the notion of groundsatis�ability was introduced [Fitting, 1990].De�nition 6.17 (Ground satis�ability) A collection C of sets of formulae is groundsatis�able if every ground instance of C has a satis�able element.Evidently, 8-satis�ability (as de�ned on Page 51) entails ground satis�ability,but the converse does not hold. As an example consider the ground satis�ablecollection ffP (x); 9y:P (y)gg which is not 8-satis�able. The di�erence betweenthe old and the new �+-rule is that the old one preserves ground satis�ability,but the new one does not. The closure rule (C), however, preserves ground sat-is�ability and hence subscribes to a rigid interpretation of the free variables. So,3On should mention, that this weakness has already been recognized in [Smullyan, 1968],who identi�ed a condition under which a Skolem term in a �-rule application need not be new.With this liberalization, shorter sentence tableau proofs can be constructed.

6.3. LIBERALIZATION OF THE CLOSURE RULE 119the system of free-variable tableaux (De�nition 2.57) introduced in Section 2.2 issomewhat undecided in its treatment of free variables. One may argue, however,that with the new system, smaller tableau proofs can be formulated, and this iswhat counts. In the next subsection, we will therefore draw the consequence andalso liberalize the closure rule in such a manner that ground satis�ability is nomore preserved. The gain is that with the new rule an additional size reductionof tableau proofs may be achieved.The �+-rule is by far not the \best" Skolemization rule, in the sense thatit includes a minimal number of variables in the Skolem term. Consider, forexample, the �-formula 9x(P (y) ^ P (x)). With the �+-rule a unary Skolem termf(y) has to be used. But it is evident that y is irrelevant and a Skolem constanta could be used instead. There are a number of improvements of the �+-rulewhich shall brie
y be mentioned here. In [Beckert et al., 1993], it is shown thatfor each �-formula stemming from the same formula occurrence in the inputset and each number n of free variables in �, always the same Skolem functionsymbol fn� may be used without a�ecting the soundness of the rule. The thusimproved �-rule is named �++ . In [Baaz and Ferm�uller, 1995], this method isfurther liberalized by identifying a relevant subset of the free variables in � andexcluding the other variables from the Skolem term. This method can identifythe irrelevancy of the variable y in the aforementioned example. Furthermore, thenotion of relevancy de�ned there can be decided in linear time. The correspondingrule is called ��. In the paper, a pairwise comparison between the four mentionedSkolemization methods (the one in [Fitting, 1990], �+, �++ , and ��) is madewrt. the proof shortening e�ect that may be obtained. Interestingly, for each ofthe improvements, there are examples for which a nonelementary proof lengthreduction can be achieved wrt. the previous rule in the sequence.Note that, in general, there is no notion of relevant free variables in a �-formula which is both minimal and can be computed e�ciently. This can beillustrated with the following simple consideration. Consider a �-formula of theform 9y(F ^ G) containing a free variable x in G but not in F . Suppose furtherthat 9y(F^G) be strongly equivalent to F^9yG. Then, obviously, the variable x isnot relevant, but this might only be identi�able by proving the strong equivalenceof two formulae, which is undecidable in general. So the constraint for any notionof relevant variables is that it be e�ciently computable.6.3 Liberalization of the Closure RuleThe �nal improvement of the tableau rules that we investigate is again of aquanti�cational nature. It deals with the problem that the rigid interpretation offree variables often leads to an unnecessary lengthening of tableau proofs.De�nition 6.18 (Local variable) A variable x occurring free on an open tableaubranch is called local (to the branch) if x does not occur free on other openbranches of the tableau.

120 CHAPTER 6. METHODS OF SHORTENING PROOFSIf a variable is local to a branch, then any formula containing x can be treatedas universally quanti�ed4 in x, i.e., the universal closure of the formula wrt. thevariable could be added to the branch. Let us formulate this as a tableau rule.De�nition 6.19 (Generalization rule) The generalization rule is the following ex-pansion rule which can be applied to any open branch of a tableau(G) F8xF where x is a local variable.Proposition 6.20 The generalization rule preserves 8-satis�ability.Proof Given a tableau T with a local variable x, assume F is any formula on anopen branch B of T and T 0 is the tableau obtained by adding the formula 8xFto B. We work with the coincidence between 8-satis�ability and the satis�abilityof the open branch formula of a tableau. Let B = B1 _ � � � _ B _ � � � _ Bn be theopen branch formula of T with B = F1 ^ � � � ^ F ^ � � � ^ Fm. Then the formulaB1 _ � � � _ (B ^ 8xF) _ � � � _ Bn is the open branch formula B 0 of T 0. Now B isequivalent to 8xB. Since x does occur free in B only, 8xB is strongly equivalentto B0. Consequently, the satis�ability of B entails the satis�ability of B0. 2It is apparent that the generalization rule does not preserve ground satis�a-bility. As a matter of fact, the generalization rule is just of a theoretical interest,since it violates the tableau subformula property. Since we are mainly interestedin calculi performing atomic branch closure, it is clear that the new universalformula will be decomposed by the
 0-rule, thus producing a renaming of x in F .And, as instantiations are only performed in closure steps, we would perform thegeneralization implicitly, exactly at that moment. This naturally leads to a localversion of the closure rule.De�nition 6.21 (Local closure rule) Let T be a tableau and S the set of formulaein T . Suppose K and L are two literals in the path set of a branch of T . Let K�be a renaming of all local variables in K wrt. S, and L� a renaming of all localvariables in L wrt. S [fK�g. Then, the local closure rule is the following rule.(CL) Modify T to T� if � is a minimal uni�er for fK�;�L�gand consider the branch as closed.The soundness of the local closure rule follows from the fact that its e�ect canbe simulated by a number of applications of the generalization rule, the
 0-rule,and the ordinary closure rule.Using the local closure rule instead of the standard closure rule, one canachieve a signi�cant shortening of proofs, as illustrated with the following tableauwhich is smaller than the one given in Figure 3.1. Assume the tableau constructionis performed using a right-most branch selection function. The crucial di�erencethen occurs when the right part of the tableau is closed and a tableau clause of4In [Beckert and H�ahnle, 1998], the term universal variable was used for a similar notion.

6.3. LIBERALIZATION OF THE CLOSURE RULE 121������ XXXXXX������
������ XXXXXX

XXXXXX
8x(R(x)_R(f(x))) ^ 8x(:R(x)_ :R(f(f(x)))):R(f(f(x)))R(f(f(x))) R(f(f(f(x)))):R(f(x)) :R(f(f(f(x))))R(f(x)) R(f(f(x)))
:R(x)R(y) R(f(y))

Figure 6.5: Closed clausal tableau with local reduction rule.the form R(y)_R(f(y)) is attached on the left. Since the variable x is now local,it can be renamed and the two remanining branches can be closed using the localclosure rule.Although the displayed tableau has no unsatis�able ground instance, thesoundness of the local reduction rule assures that we have indeed refuted theinput set. Note also that tableau calculi containing the generalization rule or thelocal reduction rule are not independent of the branch selection function. As longas the right part of the tableau is not closed, the variable x is not local on the leftbranch and a renaming of x is not permitted. Consequently, the order in whichbranches are selected can strongly in
uence the size of the �nal tableau. Thegain, however, is that the local reduction rule permits to build refutations thatare signi�cantly smaller than the Herbrand complexity of the input, as shown inSection 7.4.Another interesting side-e�ect of having local variables in a tableau is thatthe regularity condition can be sharpened.De�nition 6.22 (Regularity wrt. local variables) A tableau is called regular wrt.local variables if, for no two formulae � and 	 on a branch of the tableau, thereis a substitution � on the local variables of � such that �� = 	.So with the use of local variables, which permit more inferential possibilitiesand hence broaden the search space at �rst sight, one also obtains a signi�cantlymore powerful notion of regularity. In total, this may even lead to a reduction ofthe size of the search space.6.3.1 Hyper Tableaux with Local VariablesThe use of local variables is particularly bene�cial on hyper tableaux. Recall that,in hyper tableaux, every newly attached clause has to be instantiated to a groundinstance. It is straightforward to see that local variables need not be instantiated.De�nition 6.23 (Hyper tableaux with local variables) The calculus is the same asthe hyper tableau calculus except that the local variables are not instantiated

122 CHAPTER 6. METHODS OF SHORTENING PROOFSafter a hyper extension step.The hyper tableau calculus with local variables is complete and compatiblewith the structural condition of regularity wrt. local variables [Baumgartner, 1998].A particular interesting example is the re
exivity clause P (x; x) contained, forexample, in the axioms of equality. The re
exivity clause is fatal for the stan-dard hyper tableau calculus, since all Herbrand instances of the clause have tobe used. In the local variant and in the presence of the sharpened regularity con-dition, no other instance of P (x; x) need to be considered in the entire tableau.When using local variables, it is obvious that Horn clauses never have to be in-stantiated after a Hyper extension step, since all remaining variables occur inthe single positive literal and hence are automatically local. As a result, Hypertableaux with local variables performs on Horn clauses just as positive hyper reso-lution [Chang and Lee., 1973], which is known as a particular successful strategyin Horn clause logic.

Chapter 7Complexities of MinimalProofsWhen assessing the general usefulness of a proof procedure for automated de-duction, the main criterion is the ability to �nd proofs for as many problems aspossible in some given time. A proof procedure consists of a proof system, i.e.,a calculus with certain re�nements, and a search strategy that controls in whichorder the inferences have to be applied. Because of the complex structure of proofprocedures, it is very di�cult to compare such procedures mathematically.A wealth of analytical results, however, exist concerning the relative complex-ities of minimal proofs in di�erent proof systems. Since those results completelyignore issues of proof search, they must not be taken as the only quality criterionof proof systems. However, if, for some interesting class of problems, one proofsystem permits only very long proofs whereas minimal proofs in another proofsystem are short, then this is useful information, since the complexities of minimalproofs are lower bounds to the complexities of the respective search spaces.7.1 Proof Complexity MeasuresIn this chapter we will give a comprehensive list of relative complexity resultsof this type for re�nements of tableau calculi and some other important proofsystems for clause logic, namely, truth tables, semantic trees, and some re�ne-ments of resolution. Such results have a long tradition in logic beginning with theresults of Gentzen [Gentzen, 1935] on the e�ect of cut elimination. The �rst com-prehensive systematic such analysis of many di�erent propositional calculi wasby Cook and Reckhow [Cook, 1971, Cook and Reckhow, 1974]. Cook introducedthe highly in
uential notion of polynomial simulation which compares calculi byabstracting from polynomial di�erences.De�nition 7.1 (Polynomial simulation) A calculus C1 polynomially simulates acalculus C2 if there is a polynomial p and, for every formula F and every proof123

124 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSP2 of (the inconsistency of) F in C2 with complexity k, there exists a proof P1of (the inconsistency of) F in C1 with a complexity smaller than p(k).There are a number of possibilities of measuring the complexities of proofs.In [Letz, 1993a, Letz, 1993b], three natural paradigms of decreasing precision areintroduced, which we will shortly review. The �nest and therefore most reliablemeasure charges the computation cost needed in a basic machine model to carryout a proof. This could be, for example, the number of con�gurations in a non-deterministic Turing machine or some other realistic machine model. Since sucha measure is normally too detailed to be useful on a more abstract level, twoother coarser measures were developed. The second measure abstracts from theactual cost of constructing the proof and simply considers the size of the proofobject. In order for such a measure to be reliable, it is necessary that the chosensize measure is polynomially related to the actual computation cost. This wascalled polynomial size-transparency in [Letz, 1993a, Letz, 1993b]). On the high-est abstraction level, one even disregards the sizes of proofs and only considersthe number of inference steps needed to carry out a proof. Again, in order to beuseful, this measure must be polynomially related to the actual computation cost.This property was called polynomial transparency in [Letz, 1993a, Letz, 1993b]).As shown there, some of the most important proof systems like resolution lackthis property, even if only the minimal proofs of a formula are considered. Belowwe will also sketch the inadequacy of this measure for tableau systems with localuni�cation.As a consequence of these results, we will not use the number of inferences asa proof complexity measure, but the proof size. A na��ve size measure of a tableauwould be the sum of the symbol sizes of all occurrences of formulae in the tableau.However, the investigations of the complexity of uni�cation have shown that evenin one uni�cation step the symbol size may increase exponentially. So the symbolsize is not interesting, since one can do much better by using dags (directed acyclicgraphs) for representing terms. In Figure 7.1, the symbol tree and the minimalsymbol dag of a term are shown. We also permit that a set of formulae can berepresented by a single symbol dag, so that, for example, the size of a clause setis properly de�ned. ����+ ZZZ~���	 ���	 @@@R@@@R ���� CCCW�������� CCCW CCCW ���� CCCWgg ggg g g
a a a aa a a a ??????a

gggFigure 7.1: Symbol dags of a term g(g(g(a; a); g(a; a)); g(g(a; a); g(a; a))).

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 125De�nition 7.2 The size of a symbol dag is the number of its edges plus the numberof its leaf nodes.It is clear that this size measure is realistic, i.e., polynomially related with thelength of an appropriate string representation of the dag.De�nition 7.3 (Tableau size) The size of a tableau or a general graph labelledwith formulae T is the number of edges and leaf nodes of T plus the size of theminimal symbol dag for the set of formulae appearing in T .It is straightforward to recognize that this complexity measure is polynomi-ally size-transparent for the considered tableau calculi provided techniques forpolynomial uni�cation are used. Furthermore, this measure easily applies to tab-leaux with folding up and folding down where the edges are labelled with lists offormulae.7.2 Minimal Proof Lengths in Propositional Logic7.2.1 Results for Cut-free Clausal TableauxWe start with results for propositional clause logic. The most primitive approachto determining the satis�ability status of a propositional formula is the well-known truth table method. If n is the number of atoms occurring in a formula,an evaluated truth table always contains n+1 columns and 2n lines. The �rst ncolumns in each line encode the truth assignments for the atoms in the formula,and the last column contains the truth value of the formula under this assignment.Proposition 7.4 (Tableaux vs. truth tables) The method of truth tables cannot poly-nomially simulate tableaux and vice versa.Proof For the nonsimulation of tableaux by truth tables, consider the class ofclause sets fp0;:p0 _ p1; : : : ;:pn�1 _ pn;:pngwhich have exponential truth tables but obviously closed tableaux of linear size.For the other direction, we may use the class of clause sets given in Example 7.5.A truth table for an Sn has 2n lines of length n+1 and hence a refutation of linearsize. In the tableau calculus, however, in any depth k at most k�1 branches of atableau clause can be closed. Therefore, any minimal closed tableau has the treestructure as shown in Figure 7.2, for n = 3. Consequently, taking the numberof nodes with maximal depth in such a tableau Tn as a lower bound of its size,we obtain that the number of nodes of Tn is greater than n � n! while the sizeof Sn is of the order O(n � 2n). So the complexity of Tn is exponential in thecomplexity of Sn. 2Example 7.5 For any set fp1; : : : ; png of distinct propositional atoms, let Sndenote the set of all 2n clauses of the shape L1 _ : : : _ Ln where Li = pi orLi = :pi, 1 � i � n.

126 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS
CC�� ### CC�� ### CC�� ### CC��### CC���� AA �� AA �� AA �� AA�� AA �� AA ### CC���������XXXXXXX�� �� ����� QQQ ��� QQQ ��� QQQFigure 7.2: Tree structure of a minimal closed tableau for Example 7.5, n = 3.The reason why tableaux can be inferior to truth tables for certain formulaeis that the branching in the standard tableau systems does not partition the setof interpretations, i.e., the same interpretation may appear on di�erent branches.When using forms of the cut like factorization or folding up, such a partitioningis guaranteed and hence these formulae become harmless for tableaux.Next we consider re�nements of tableaux like connectedness, regularity, andtheir combination. Nonsimulation results when adding such re�nements may beobtained by using an obvious property of the cut rule. The cut rule may be termeda data-oriented inference rules in the sense that it can be simulated by addingtautologies to the input formulae. This is heavily exploited in the subsequentproofs. First, we consider the weak connection condition of path connectedness,which requires that every tableau clause below the top clause be connected tosome ancestor literal.Proposition 7.6 Path connection tableaux cannot polynomially simulate clausaltableaux.Proof The following simple modi�cation of Example 7.5 will do, namely, the classpresented in Example 7.7. The additional tautologies1 can be used to polynomiallysimulate the atomic cut rule in the clausal tableau calculus, hence permittingshort proofs for this example. But in path connection tableaux, except for thestart step, the tautologies do not help, since any path extension step at a nodeN with literal L using the tautology L _ �L just lengthens the respective pathby a node labelled with the same literal L. Therefore, the size of any closed pathconnection tableau for an input set Sn is greater than 2n� (n� 1)! while the sizeof Sn is of the order O(n� 2n). 2Example 7.7 For any set fp1; : : : ; png of distinct propositional atoms, let Sndenote the set of clauses given in Example 7.5, augmented with n tautologies ofthe shape pi _ :pi, 1 � i � n.Next, we consider the relation of the three connection conditions. In contrastto path connectedness, the tight connectedness requires that every tableau clausebelow the top clause be connected to its predecessor node.1That these formula are actually tautologies is not essential for the argument. We couldequally well replace every tautology pi _:pi with two clauses pi _:qi and qi _:pi with the qibeing n new distinct propositional atoms.

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 127Proposition 7.8 Connection tableaux cannot polynomially simulate path connec-tion tableaux.Proof For this result we use another modi�cation of Example 7.5, which is givenin Example 7.9. The elements of this class have linear closed path connectiontableaux, since the additional clauses permit the linear simulation of the atomiccut rule by starting with p0 as top clause and successively attaching the clausespi_:pi_:p0, before nontautological clauses are used. It is clear that the tautolo-gies do help only if entered at the literal �p0. In a connection tableau, however,except for the start step (or for the second inference if we start with the clausep0) this is not possible. Therefore, the size of any closed connection tableau foran input set Sn is greater than 2n� (n� 1)! while the size of Sn is of the orderO(n� 2n). 2Example 7.9 For any set fp1; : : : ; png of distinct propositional atoms, let Sndenote the set of clauses given in Example 7.5, augmented with the new atom p0and n tautologies of the shape pi _ :pi _ :p0, 1 � i � n.In order for the strong connection condition to be satis�ed, recall that it isnecessary that adjacent tableau clauses have a non-tautological resolvent.Proposition 7.10 Strong connection tableaux cannot polynomially simulate con-nection tableaux.Proof Again a modi�cation of Example 7.5 will do, which is given in Exam-ple 7.11. The new tautologies can be used successively in the connection tableaucalculus, and hence permit a linear closed connection tableaux. The strong con-nection condition, however, completely excludes the use of tautological clauses,since any resolvent using a tautological clause will be tautological, too. 2Example 7.11 For any set fp1; : : : ; png of distinct propositional atoms, let Sndenote the set of clauses given in Example 7.5, augmented with 2n�1 tautologies,viz., the clause p1 _:p1 and, for 1 � i � n�1, the two clauses :pi _ pi+1 _:pi+1and pi _ pi+1 _ :pi+1.The next re�nement to be considered is regularity, which requires that noliteral occurs more than once on a branch. First, we know already from Propo-sition 2.28 that regularity is a must for general clausal tableaux, since minimalproofs are always regular. This also holds for the path connectedness condition.Proposition 7.12 Every minimal closed path connection tableau is regular.Proof We show the contraposition, i.e., that every closed irregular path connec-tion tableau T is not minimal in size. Let T be such a tableau for a set S. Obtaina formula tree T 0 by performing Procedure 2.27 (Page40) on T . Clearly, T 0 issmaller than T and it is closed. Finally, the preservation of path connectednesscan be realized by a simple induction on the number of iterations performed in

128 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSProcedure 2.27. For the induction step, consider the situation before the n-thiteration. Let N be the respective node with an ancestor N 0 both labelled withthe same literal. Since, by the induction assumption, the current tableau is pathconnected, every tableau clause in the subtableau below N must be connected tosome ancestor node. The critical case is the one in which the respective ancestoris N , which is missing after the n-th step. But since N 0 is labelled with the sameliteral, the respective tableau clauses are connected to N 0, too, which guaranteesthat the property of path connectedness is preserved. 2Corollary 7.13 Connection tableaux cannot polynomially simulate regular pathconnection tableaux.Proof Immediate from the Propositions 7.8 and 7.12. 2Now we come to the interesting result that the regularity condition may beharmful for the deductive power of tableaux when using the tight connectioncondition. The problem is that the removal of irregularities is not guaranteedto preserve the connectedness. In order to restore connectedness, a global reor-ganization of the tableau may be necessary which can lead to a signi�cant sizeincrease of the tableau.Proposition 7.14 Regular connection tableaux cannot polynomially simulate con-nection tableaux.Proof For this result we use another modi�cation of Example 7.5, which is given inExample 7.15. The elements of this class have linear closed connection tableaux,since the additional clauses permit the linear simulation of the atomic cut rule, asillustrated in Figure 7.3, for the case of n = 3; to gain readability, pi is abbreviatedwith i and :pi with i in the �gure. These connection proofs are highly irregular.In order to obtain short proofs, it is necessary to attach the mediating two-literalclauses of the shape pi_p0 and :pi_p0 again and again. In regular proofs, however,on each branch such mediating clauses can be used at most once. Consequently,on each branch tautological clauses can be attached at most twice. Therefore, thesize of any closed regular connection tableau for an Sn is greater than 4n�(n�2)!while the size of Sn is of the order O(n� 2n). 2Example 7.15 For any set fp1; : : : ; png of distinct propositional atoms, let Sndenote the set of clauses given in Example 7.5, augmented with the new atom p0and1. n tautologies of the shape pi _ :pi _ :p0, 1 � i � n,2. n clauses of the structure pi _ p0, 1 � i � n, and3. n clauses of the structure :pi _ p0, 1 � i � n.

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 129
ccc HHHHH###SSS������� SSS����������������� ����� �������� SSSccc ��� SSSccc��� AAA ��� AAA��� AAA ��� AAA ��� AAA ��� AAA ��� AAA ��� AAA

�������PPPPPPP```````````̀ HHHHH
��� ���SSSccc SSSccc

11 01 0 1 0 02 20 02 22 22 20 0 0 03 3 3 30 0 0 03 3 3 3 321321321321321321321321

�����

Figure 7.3: Polynomial closed connection tableau for Example 7.15, n = 3.Furthermore, it is evident from all these results, that the various variants ofcut-free clausal tableau calculi cannot be simulated by the respective calculi withtautology elimination. Additionally, for connection tableaux, even the deletionof subsumed tableau clauses may be fatal, as can be proven using the sameExample 7.15. Note that all mediating clauses of the form L _ p0 are subsumedby the unit clause p0 and must be deleted. This blocks the construction of a shortproof.In summary, the presented results illustrate the complementarity of improvingdeductive and reductive power for cut-free tableau calculi.7.2.2 Results for Clausal Tableaux with Controlled CutsNext, we will come to the classi�cation of clausal tableau systems which incorpo-rate the atomic cut rule in some form. As a matter of fact, the more powerful fullcut rule cannot be used, since it contradicts the clausal format. We will see thatsome of those calculi are much more robust than the cut-free ones concerningthe addition of structural restrictions. But �rst, we will consider the unrestrictedatomic cut rule and show that, with respect to minimal proof lengths, the atomiccut rule has an egalitarian e�ect on the clausal tableau calculi. For this purpose,we will introduce a certain pathological form of tableaux with cut.De�nition 7.16 (Cut normal form) A clausal tableau with cut is in cut normalform if on each branch only the last tableau clause is not attached by a cut step.

130 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS��� HHH����� PPPPP�� @@ �� @@ �� @@ �� @@:p p:q :q:q :q:p :ppp q q q qFigure 7.4: Tableau in cut normal form for fp _ q; p _ :q;:p _ q;:p _ :qg.Proposition 7.17 For any closed clausal tableau with cut for a set S there is aclosed regular connection tableau with cut for S in cut normal form such that thesizes of the tableaux are linearly related.Proof We show how any tableau inference step can be cast into cut normal form.Cut and reduction steps are trivial. Any tableau expansion step using a clauseof length n can be linearly simulated by n atomic cuts, an extension step, and nreduction steps, as shown in Figure 7.5. Finally, regularity may be achieved bypruning the resulting tree using Procedure 2.27 from Page 40. 2
�� @@��� HHHp1 pn

�� @@��� HHH... ...p1 pn p1 �p1...pn �pn� � �
�� � � �Figure 7.5: Casting tableau expansion into cut normal form.Proposition 7.18 Every minimal closed clausal tableau T in cut normal form is aregular connection tableau with atomic cut.Proof By Proposition 2.28, T must be regular. Now consider any tableau clausec not resulting from a cut inference. Assume, indirectly, that c be not connectedto its predecessor node. Since, by the cut normal form, all literals in c occurcomplemented on the branch from the root up to N , one could prune T bydeleting the cut step above c and shifting c one level up and the tableau wouldstill be closed. This contradicts the minimal size assumption for T . 2So, with uncontrolled atomic cut, the tableau calculi are equally powerful.More interesting is the investigation of controlled versions of the cut rule likefactorization, folding up, and folding down.

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 131Proposition 7.19 Tableaux with atomic cut can linearly simulate tableaux withfactorization.Proof Given a closed tableau with factorization, each factorization step of a nodeN1 with a node N2, both labelled with a literal L, can be simulated as follows.First, perform a cut step with �L and L at the ancestor N of N2, producingnew nodes N4 and N5; thereupon, move the tableau part formerly dominatedby N below N4; then, remove the tableau part underneath N2 and attach it toN5; �nally, perform reduction steps at N1 and N2. The simulation is graphicallyshown in Figure 7.6. 2
������ AAAAAAL ������ AAAAAAL

mm m mm m mm
��� QQQQQ ������ AAA

QQQQQ������ AAAAAA ������ AAAAAA�������
MK L M�LK L L

Solution of L Solution of L?N2 N3 N4 N3 N5N2
N1N1

Figure 7.6: Simulation of factorization by cut.Proposition 7.20 (Regular) (path) (connection) tableaux with folding down (orPrawitz reduction or complement splitting) and (regular) (path) (connection) tab-leaux with factorization linearly simulate each other.Proof For the part of the linear simulation of factorization by folding down,consider any closed tableau T with factorization and either of the given structuralconditions. Let � be the factorization dependency relation of T . Now we constructa tableau T 0 by simply using � as dependency ordering for folding down, asfollows. Whenever a clause is attached, for every new node Ni, we label thecorresponding edge with the literals at all brother nodes Nj which are smallerthan Ni in �. This permits that any factorization step of a node N with a nodeN 0 in T can be simulated by a reduction step at N in T 0, since the literal at N 0was before folded down to the branch above N . The other direction is similar, byjust taking the dependency ordering on the node families used for folding downas factorization dependency relation. 2

132 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSProposition 7.21 Clausal tableaux cannot polynomially simulate regular strongconnection tableaux with factorization.Proof We may again use Example 7.5, which has only exponential closed clausaltableaux. For this class a closed regular strong connection tableaux of linearsize can be constructed using a Prolog style branch selection function. Whenevera subgoal with literal L in a tableau clause c is extended, then one uses theclause which is identical to c except for the sign of the literal L. This guaranteesstrong connectedness. On the other hand, this also permits that the subgoalsin c to the right of L can be used for factorization of the subgoals in the newclause, as illustrated in Figure 7.7. It is straightforward to recognize that thisway every input clause is needed at most once as a tableau clause. By the strongindependence of the selection function, the same proof can be constructed by anyother selection function. 2
��� @@@��� @@@ ��� @@@��� @@@

��� @@@p1 :p2 :p3 ��� @@@p1 :p2 p3
XXXXXXXXXXX����� QQQQQaaaaaaa
����������������*��������������:���7 ������*�������*

:p3:p2p2 :p3:p1p1 p2 :p3 :p1 p3:p2 p3
p1 p3p2:p1 p2

:p1

Figure 7.7: Closed regular strong connection tableau with factorization of linearsize for Example 7.5, for the case of n = 3.Next, we come to the folding up rule. While it is an open problem whetherclausal tableaux with factorization can polynomially simulate clausal tableauxwith folding up or atomic cut, for connection tableaux, the folding up rule isproperly stronger concerning deductive power than the factorization rule.Proposition 7.22 Path connection tableaux with factorization cannot polynomiallysimulate connection tableaux with folding up.Proof We use the formula class speci�ed in Example 7.23. The size of any suchclause set is of the order O((m+n)3). It can easily be recognized that any closedpath connection tableau for an instance of this class hasPni=1mi branches whenwe start with the top clause :p11 _ � � � _ :p1m. Also, factorization is not possibleunder this assumption, since no two subgoals N1 and N2 with identical literals

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 133������ XXXXXX������ XXXXXX(((((((((������ XXXXXX���(((((((((������ HHH
��� �� HHH ��� �� HHH��� �� HHHp11 :p21 :p11 :p1m� :pim:pnmpnm

...pi�11 :pi1 � � �pn�11 :pn1pn1� � � � �� � � � � � �
�

� � � �p2m� � � � � �� �:p31 :p3m:p2m p1m :p21 :p2m
:pi+11 :pi+1m�pim� � � � �...

Figure 7.8: Linear connection tableau with folding up for Example 7.23.can occur where N2 is a brother node of (an ancestor of) N1. Therefore, theexample class is intractable for path connection tableaux with factorization, forthis speci�c top clause. However, there exist closed connection tableaux withfactorization of linear size if, e.g., one of the clausespn�1i _ :pn1 _ � � � _ :pnm; 1 � i � mis taken as top clause. In order to obtain an unsatis�able class which is intractablefor any selection of the top clause, we can apply the same duplication trick asused in the proof of Proposition 5.14. We modify the class given in Example 7.23by adding m literals :q11 , . . . , :q1m to the top clause, and by adding consistentlyrenamed copies (replace p with q) of the other clauses. For the resulting clauseset, it does not matter with which clause we start, since now in any minimalclosed path connection tableau a subtableau must occurs which is isomorphic tothe entire closed tableau for the initial clause set. Consequently, the new exampleclass is intractable for path connection tableau with factorization.On the other hand, any formula from the class has a linear closed connec-tion tableau with folding up with the �rst clause as top clause, as illustrated inFigure 7.8. Since never reduction steps are needed (the clause set is Horn), theliteral of any solved node can be folded up to the root and used for E-reductionsteps afterwards. This involves that the resulting proof tree contains every inputclause exactly once as a tableau clause. 2Example 7.23 For any two natural numbers m;n, let Snm denote the following setof clauses: :p11 _ � � � _ :p1m,p1i _ :p21 _ � � � _ :p2m, for 1 � i � mpn�1i _ :pn1 _ � � � _ :pnm, for 1 � i � mpni , for 1 � i � m.

134 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSIn fact, path connection tableaux with factorization cannot even polynomiallysimulate pure clausal tableaux (without atomic cut), which at �rst sight is a verysurprising result.Proposition 7.24 Path connection tableaux with factorization cannot polynomiallysimulate clausal tableaux.Proof Any clause set Snm speci�ed in Example 7.23 is a Horn clause set. It is well-known that, for any unsatis�able Horn set, there is a unit hyper resolution refu-tation [Chang and Lee., 1973] of linear complexity [Dowling and Gallier, 1984].By Proposition 7.47, in propositional logic clausal tableaux can linearly simulateunit hyper resolution. Consequently, the class Snm has closed clausal tableaux oflinear size. 2Next, we come to the consideration of the folding up rule. Although morepowerful than factorization, folding up is still a hidden form of the cut rule.Proposition 7.25 Clausal tableaux with atomic cut linearly simulate clausal tab-leaux with folding up.
������ AAAAAASolution of L������ AAAAAA ��� @@@

��� @@@
!!!!!!!!N�
��

Solution of L

�L
LnL1 L N0�
��� � � LnL1 L N0�
��......

� � �� � � � � ��
L N1�
�� N�
���L N2�
��

Figure 7.9: Simulation of folding up by cut.Proof Given a tableau derivation with folding up, each folding up operation at anode N0 adding the complement �L of the literal L at a solved node to the labelof an edge above a node N (or to the root), can be simulated as follows. Performa cut step at the node N with the atom of L as cut formula, producing two newnodes N1 and N2 labelled with L and �L, respectively; shift the solution of L

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 135from N0 below the node N1 and the part of the tableau previously dominated byN below its new successor node N2; �nally, perform a reduction step at the nodeN0. It is apparent that the open branches of both tableaux can be injectivelymapped to each other such that all pairs of corresponding branches contain thesame leaf literals and the same sets of path literals, respectively. The simulationis graphically shown in Figure 7.9. 2Corollary 7.26 Regular connection tableaux with atomic cut can linearly simulateclausal tableaux with folding up.Proof Immediate from the Propositions 7.25, 7.18, and 7.17. 2The possibility of a linear simulation in the other direction, atomic cut byfolding up, is also quite straightforward for the case of clausal tableaux withoutconnection conditions. When the connection condition is added, then the simu-lation in the other direction is very hard to prove. There is a proof sketch of thisresult in [Mayr, 1993]. It uses involved intermediate calculi and is very di�cultto follow. Here we give a simpler proof which employs no additional concepts.The gist of this method is that we strongly exploit the fact that the proof size ispreserved for any selection function, as long as it is a depth-�rst one.Proposition 7.27 If T is a closed clausal, path connection, or connection tableauwith folding up for a set of clauses S and � is any depth-�rst subgoal selectionfunction, then there exists a closed clausal, path connection, or connection tab-leau, respectively, with folding up for S with the same top clause and constructedaccording to � such that T and T 0 have the same size.Proof The key notion used in the proof is the following generalization of theconcept introduced in De�nition 2.60. Given any selection function �, we say thata tableau T is constructed according to � up to inference n if, for any inferencei � n, the node selected in T at inference i is identical to the one selected by �.We proof the existence of the desired tableau T 0 by induction on the number n.The induction base is trivial. For the induction step, assume that there exists atableau Tn with the desired properties which is constructed according to � up toinference n.1. If the subgoal selected in inference n+1 is the same as the one selected by�, then Tn+1 = Tn.2. Otherwise, let N with literal L be the subgoal selected by �. In case, inTn, at the subgoal N later an expansion, path extension, extension, or anordinary reduction step is performed, then we simply give priority to thisinference and let the rest unchanged. The resulting tableau Tn+1 obviouslysatis�es the desired properties.3. The remaining critical case is the one in which, in Tn, N is solved later byan E-reduction step with a literal folded up after inference n+1, since this

136 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSE-reduction step is not yet possible at inference n + 1. According to thede�nition of folding up, to this folding up step there corresponds a closedsubtableau in Tn with root, say, N 0 and literal L. This involves that thesubtableau below N 0 must be completely closed before N is selected. Now� is a depth-�rst selection function and, by the induction assumption, Tn isconstructed according to � up to inference n. Therefore,N 0 must be selectedin Tn after inference n. This enables that we can modify the tableau Tn bydetaching the tree below N 0 and attaching it to N while preserving the sizeof the tableau, as depicted in Figure 7.10. As the next inference step, weperform now the respective extension step at N . Furthermore, we delay theselection of N 0 until the complete closure of N , and the folding up of itsliteral L to the same path position as in Tn. This enables that N 0 can besolved by an E-reduction step later. The resulting tableau Tn+1 satis�es thedesired properties.In all three cases, Tn+1 has the same size and Tn+1 is constructed according to� up to inference n+1. 2��������� ���SSS SSSSSSS
SS��� CCC

��������� ���CCC ���SSS SSSSSSS
SS��� CCCNN 0NTn Tn+1N 0Figure 7.10: Possible modi�cation when changing the selection function.The other ingredient for proving the linear simulation of atomic cut by foldingup is the following important property of connection tableaux.Lemma 7.28 (1-level clause lifting) If T is a closed connection tableau with fold-ing up containing a tableau clause c at depth n > 0, then there exists a closedconnection tableau with folding up T 0 in which c occurs at depth n�1, and T andT 0 have the same size.Proof The proof is by a transformation of the initial tableau into one with thedesired properties. In order to structure the proof, we perform the transforma-tion in two steps. In the �rst step, we modify T by using a depth-�rst selectionfunction which satis�es a certain condition. In the second step, we perform the�nal modi�cation on this tableau.Step 1. Let c occur at depth n on a branch B in the given tableau T . Letfurther p1; : : : ; pn be the literals at the nodes of B and c1; : : : ; cn the sequence oftableau clauses along B, i.e., c1 is the top clause in T and cn = c. By Proposi-tion 7.27, one may modify T to a tableau T 00 of the same size by any depth-�rstselection function. We use the same transformation procedure as in the proof

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 137AAAAA ZZZZZZAAAAA ZZZZZZAAAAA ZZZZZZAAAAA ZZZZZZ
������

T1T2Tn�1Tn�pn�1
p1p2...pn�1��p1
��pn�2�

AAAAA ZZZZZZAAAAA ZZZZZZAAAAA ZZZZZZ
���
PPPPPPP��� JJJJJ

AAAAA ZZZZZZ
AAAAA ZZZZZZ
PPPPPPPAAAAA ZZZZZZ

 EEEEE eeeee���(a)

T2Tn�1Tn�pn�1
p2...pn�1��

�p1�p1
(b)

T1�pn�2 T 02
Tn�pn�1

p2
�

�p1�...... T 0i
(c) p1� T 01� pi�pi

p1 inserted after T 01
NT1

Figure 7.11: 1-level clause lifting in connection tableaux with folding up.of this proposition and a depth-�rst selection function which, in every tableauclause ci (1 � i < n), selects the pi-node �rst. Accordingly, after the start step,we successively perform n�1 extension steps at the pi-nodes using the clausesci+1, respectively. Afterwards, the subtableaux Tn; : : : ; T1 are solved, in this order.The structure of the tableau T 00 is illustrated in Figure 7.11 (a).Step 2. From T 00 a tableau T 0 with cn at depth n�1 may be constructedas follows. First, instead of c1 we attach c2 as top clause. Then we perform thesame n�2 extension steps as in T 0. Afterwards we extend the �p1-subgoal in thenew top clause c2 using c1. Finally, we attach the subtableaux T1; : : : ; Tn at therespective nodes, as shown in Figure 7.11 (b), and assume that the subtableauxare solved in the order Tn; : : : ; T1, as in T 00. It is clear that this leads to a closedtableau only if the p1-path node is not used for a reduction step in one of theT2; : : : ; Tn.Otherwise, we have to repair the current tableau. Let Ti be the subtableaucontaining the �rst encountered subgoal NT1 to be solved by a reduction stepusing the p1-path node. Now we simply shift the subtableau below the �p1-nodebelow NT1 . Afterwards, we attempt to replay the construction of T1 as in T 00.This is easily possible except for subgoals which were solved by E-reduction stepsusing literals folded up to the root before the solution of T1 in T 00, since thoseliterals may not yet be available. Whenever such a subgoal N with literal L isencountered, we restructure the current tableau. To L there corresponds a closedsubtableau TL with root N 0 outside T1. Since, by assumption, after solving N 0 inT 00, its literal L was folded up to the root, the solution of TL did not use any pathliterals between the root and N 0 for reduction steps. Now, in the solution of Ti inT 00, the p1-node was used. So N 0 cannot be one of the nodes between the root and

138 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSthe pi�1-node at the root of Ti. Therefore, N 0 must be in one of the subtableauxTi�1; : : : ; T2, and we can modify the current subtableau below NT1 by shiftingTL from N 0 to N without increasing the tableau size. Then we continue withthe next subgoal in TL. After we have completely solved N , we fold it up tothe root. This permits that N 0 can afterwards be solved by an E-reduction step.The replay of TL may require further such modi�cation steps, since the orderin which folded up literals are needed may be di�erent from the order in whichtheir solutions were generated in T 00. But this will cause no problems, since in thereplay of TL no literals between the the root and the root of TL are needed. If kis the number of literals folded up to the root of T 00 before T1 was tackled, thenit is clear that after at most k such modi�cations we have completely solved thenode NT1 . Afterwards, we fold up its literal �p1 to the root. This permits thatall subsequently encountered subgoals needing p1 as a path literal can be solvedby an E-reduction step. The process is exemplarily illustrated in Figure 7.11 (c).Since all modi�cations preserve the tableau size and the connectedness condition,the resulting tableau T 0 is as desired. 2Proposition 7.29 (Clause lifting) If c occurs as a tableau clause in a closed con-nection tableau T with folding up, then there exists a closed connection tableauT 0 with folding up with top clause c such that T and T 0 have the same size.Proof If n is the minimal depth of c in T , then n�1 applications of Lemma 7.28will do. 2It is obvious that this lifting possibility also holds for any subtableau T of atableau T 0, i.e., any clause c in T may be moved on top of T while preserving thesize of T and the connection conditions inside T , and without a�ecting the restof the tableau T 0 (of course, the connectedness to the root of T may be lost). Thisrobustness concerning the reversion of tableaux does not hold without folding up.Theorem 7.30 (Cut elimination for connection tableaux) If T is a closed connec-tion tableau with folding up and atomic cut for a set of clauses S, then there existsa closed connection tableau with folding up T 0 for S such that the size of T 0 isless or equal to the size of T .Proof The proof is by induction on the number of cuts performed in T , whichwe call the cut degree of T . The induction base, for cut degree 0, is trivial. Forthe induction step, assume the result to hold for any tableau of cut degree n.Now consider any tableau T with cut degree n+1. First, by Proposition 7.27,we may transform the tableau into a tableau of the same size and constructedwith a depth-�rst selection function (the case of cuts is also captured by thisproposition, since one may simulate atomic cuts by simply adding the respectivetautological clauses). We show how the last cut performed in this tableau may beeliminated. Let N with literal K be the node at which this cut step is performed,L the cut literal, and T1 and T2 the subtableaux dominated by the two cut nodes,respectively. For an illustration, consider Figure 7.12. Our aim is to �nd a tableau

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 139
����� AAAAA����� AAAAA�L
...K
...
T2

T 01����� PPPPP����� AAAAA ����� AAAAA
K...

T1 T2L �L
Figure 7.12: Cut elimination in connection tableaux with folding up.clause c below N containing the literal �K, in order to permit an extension stepin place of the cut. Obviously, the interesting situation is the one in which T1and/or T2 are complex subtableaux, since otherwise cut elimination is trivial.Pruning. First, we consider the case in which �K does neither occur in T1 norin T2. Then, we prune the tableau by canceling out the tableau clause of the nodeN and attach the entire subtableau dominated by N to the predecessor of N . Theproblem occurs that in the unpruned tableau one may have folded up K or someliterals occuring during the solution of brother nodes of N , and one may haveused the resulting path literals for E-reduction steps on later selected subgoalsNi. Obviously, after the pruning these folded up literals are no more available.This can be captured as follows. Whenever such a subgoal Ni is selected and therespective folded up literal is not yet available, then we simply replay the solutionof this literal in the pruned part, in the same manner as in Step 2 of the proofof the 1-level clause lifting lemma (Lemma 7.28). It is obvious that this way thesize of the resulting tableau decreases just by the size of the node family of N .This pruning step is repeated until it is no more applicable.Cut elimination. Afterwards, either the cut has moved up to the top of thetableau or the literal �K 0 at the node N 0 above the cut does occur in one of thesubtableaux T1 or T2.1. In the former case, instead of performing the cut at the root, we attach thetableau T 01 = T1, which corresponds to a start step.2. Otherwise, we may assume w.r.g. that �K 0 occurs in some tableau clausec of T1 and that the L-node is selected before the �L-node (otherwise wewould simply switch to an appropriate selection function including the re-spective modi�cations). Now, by Proposition 7.29 (the subtableau variant),we may revert the subtableau T1 and bring c on top. Next, instead of per-forming the cut at the K 0-node we attach the reverted tableau T 01, whichcorresponds to an extension step.Obviously, some branches in T 01 may be open now, namely, the branches whosenodes were closed by a reduction step with the cut literal L, which is now missing

140 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSin the path. Let NL be the �rst such encountered node. We attach the subtableauT2 at NL, which corresponds to an extension step, since, by assumption, there isno cut in T2. Afterwards we replay the construction of T2 as usual, i.e., possiblyincluding further modi�cations as in Step 2 of the proof of Lemma 7.28. After thesolution of T2, the literal L may be folded up at least to the edge above the nodeN 0 or to the root in case T 01 is immediately below the root. This enables that anylater selected subgoal in T 01 with literal L may be solved by an E-reduction stepusing the respective path literal. The result of the entire operation is a connectiontableau with folding up and cut for S with cut degree n and a size that is properlysmaller than the size of T .Consequently there exists a closed cut-free connection tableau with folding upT 0 for S which is not larger than T . 2Corollary 7.31 Connection tableaux with folding up can linearly simulate clausaltableaux with cut.Proof Immediate from Theorem 7.30 and Proposition 7.17. 27.3 Semantic Trees and ResolutionBeside the relation of tableau re�nements with each other, it is also importanthow tableaux are related with other proof systems. We consider two families ofcalculi, resolution systems and semantic tree procedures. Both families operatewith a single inference rule, namely, a condensed variant of the atomic cut rule.The di�erence between both families is that resolution systems work by a forwardapplication of the cut rule whereas semantic tree procedures use the cut rule ina backward manner.First, we consider the method of semantic trees, which is a natural improve-ment of truth tables. Semantic trees [Robinson, 1968, Kowalski and Hayes, 1969]are typically used as a representation tool for analyzing �rst-order proof pro-cedures of the resolution type. A binary version of semantic trees turns out tobe an excellent basis for propositional proof procedures of the Davis, Putnam,Loveland, Logemann (DPLL) type [Davis et al., 1962]. The simple motivationfor the method is that a formula can often be given a de�nite truth value onthe basis of merely a partial interpretation. In such a case, the truth value ofthe partial interpretation V of the formula is the same as the truth value of alltotal interpretations which are extensions of V . This way, in one inference step,instead of checking single interpretations, entire sets of interpretations can beexamined. This potential for shortening truth tables was also noticed by Kleenein [Kleene, 1967]. Semantic trees generalize his method.De�nition 7.32 (Semantic tree) A semantic tree for a set of clauses S is a binaryrooted tree with a total labelling of its edges and a (possibly partial) labelling ofits leaf vertices, meeting the following conditions.

7.3. SEMANTIC TREES AND RESOLUTION 1411. Each pair of edges originating in the same vertex is labelled with a groundliteral L respectively its complement where L is an instance of a literal insome clause of S.2. Any leaf node N may be labelled with a ground instance c of a clause inS, provided that all literals in c occur complemented on the branch leadingfrom the root up to N .A semantic tree is called closed (for S) if every leaf node is labelled with a groundinstance of a clause (in S). @@@@@@@@@@BBBBB ����������
�����:p:q :qq qp

:p _ :qp _ q p _ :q :p _ qFigure 7.13: Closed semantic tree for fp _ q; p _ :q;:p _ q;:p _ :qg.An example of a closed semantic tree is depicted in Figure 7.13. There is thefollowing relationship between semantic trees and tableaux with cut.Proposition 7.33 Clausal tableaux with atomic cut and semantic trees can linearlysimulate each other.Proof Any semantic tree is basically a tableau in cut normal form, and vice versa.For illustration compare Figure 7.13 with Figure 7.4. 2Next, we consider resolution, which consists of a single inference rule. We startwith the fragment of resolution for ground clauses, which is the dual of Quine'sconsensus rule [van Orman Quine, 1955].De�nition 7.34 (Propositional resolution rule) Given two clauses c and c0, withc� c0 we denote the clause obtained from c when removing all literals containedin c0. Let c1 and c2 be two clauses with c1 containing a literal L and c2 containing�L. The clause c1 �L _ ((c2 � �L)� (c1 �L)) is called a propositional resolventof c1 and c2 wrt. L. c1 and c2 are termed parent clauses of the resolvent.Example 7.35 The clause p_ q _:r is a propositional resolvent of p_:r _ s andp _ :s _ q.In the �rst-order case, the resolution rule is more complicated, since it incor-porates renaming, factoring, and uni�cation.

142 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSDe�nition 7.36 (Resolution rule) Given two clauses c1 and c2, let c02 be a renam-ing of the variables in c2 wrt. c1. Let further S1 be a set of literals contained inc1 and S2 a set of literals contained in c02 such that there is a minimal uni�er �for the set S1 [f�L : L 2 S2g. Then the propositional resolvent of the clausesc1� and c02� is called a resolvent of c1 and c2 wrt. L�.Example 7.37 The clause P (a; a) is a resolvent of the clauses P (a; x) _ Q(x; a)and P (x; z) _ :Q(x; y) _ :Q(y; z) wrt. Q(a; a).De�nition 7.38 (Resolution proof) A resolution deduction or proof of a a clausecn from a set of clauses S is a �nite sequence D = (c1; : : : ; cn) of clauses suchthat, for each clause ci (1 � i � n), either ci 2 S or ci is a resolvent of two parentclauses which both occur in the sequence D at positions < i. A resolution proofof the empty clause ? from a set S is called a resolution refutation of S.In order to exhibit the close relation of resolution with semantic trees, it willalso be convenient to have a graph notation of a resolution proof.De�nition 7.39 (Resolution dag) A resolution dag of a clause c from a set ofclauses S is a �nite directed acyclic graph T which is rooted and binary branching,and whose nodes are labelled with clauses in such a way that1. the root of T is labelled with c,2. the leaf nodes of T are labelled with clauses from S, and3. the clause at any non-leaf node N in T is a resolvent of the clauses at thesuccessor nodes of N .If the dag t of a resolution dag T is a tree, T is named a resolution tree.����� PPPPPHHH��� ��� HHH:p:p _ qp ?p _ :qp _ q :p _ :qFigure 7.14: A tree resolution refutation from fp _ q; p _ :q;:p _ q;:p _ :qg.Proposition 7.40 The semantic tree method can linearly simulate tree resolution.Proof Let T be a resolution tree of the empty clause ? from a set of clausesS. First, since T is a tree, it is straightforward to realize that we can make Tinto a propositional resolution tree T 0 for a set S0 consisting of ground instancesof clauses in S by simply inheriting the uni�ers from the root down the tree.

7.4. RESULTS FOR FIRST-ORDER CLAUSAL TABLEAUX 143Furthermore, when using symbol dags, the size of T 0 is linear in the size of T .Now, T 0 is basically a semantic tree for S, one simply has to add additional edgelabels and disregard the labels of the non-leaf nodes. For an illustration comparethe Figures 7.14 and 7.13. 2Proposition 7.41 Tree resolution can quadratically simulate semantic trees.Proof Let T be a closed semantic tree for a set of ground clauses S. Constructa propositional resolution refutation of S by iteratively performing the followingprocedure on T .� In the current tree, select any unlabelled node N whose two successor nodesN1 and N2 are labelled with ground clauses c1 and c2, respectively. Let Land �L be the literals at the respective edges. If �L is in c1 and L in c2,then label N with the respective resolvent of c1 and c2. Otherwise, prunethe tree by connecting the edge incident to N to N1 if �L is not in c1, orelse to N2.It is straightforward to realize that the procedure generates a propositional treeresolution refutation of S with a size equal or smaller than T . Because of theexplicit representation of the intermediate clauses in the resolution tree, its sizemay be quadratic in the size of T . 2Consequently, concerning minimal proof lengths and when abstracting polyno-mial di�erences, semantic trees and tree resolution are equivalent proof systems.The simulation technique used in the proof above also permits the straightfor-ward construction of a complete resolution procedure which can do with quadraticspace. In practice, however, the quadratic overhead of tree resolution wrt. seman-tic trees is a clear argument in favour of semantic trees. This explains the successof semantic tree procedures like the DPLL method. On the other hand, tree res-olution cannot polynomially simulate unrestricted resolution where deductionsmay be dags [Reckhow, 1976]. So it is clear that semantic trees cannot polynomi-ally simulate resolution. This is an argument for deduction concepts using dags.The most successful dag-based framework of propositional decision proceduresare binary decision diagrams (BDD's). Concerning minimal proof lengths BDD'scan actually be viewed as re�nements of resolution calculi.7.4 Results for First-Order Clausal TableauxWhen moving from propositional logic to the �rst-order case, then normally evenmore complexity di�erences may be identi�ed. In particular, this holds for res-olution calculi. For example, in [Letz, 1993a], it is shown that, in the �rst-ordercase, linear resolution cannot polynomially simulate unrestricted resolution, aquestion which is yet unsettled in the propositional case. A resolution deductionis called a linear or ancestor resolution deduction if any resolvent is used as aparent clause in the subsequent resolution step.

144 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSThe tableau calculi with standard uni�cation, however, have the followingproperty.Proposition 7.42 The Herbrand complexity of any unsatis�able clause set S is alower bound to the size of any closed clausal tableau with atomic cut.Proof The clausal tableau calculus, with or without atomic cut, has the followingground projection property. If T is a closed clausal tableau (with cut) for a set S,then any ground instance T� is a closed tableau (with cut) for an unsatis�ableset of ground instances of clauses in S. So, we may choose a substitution � whichmaps every variable in T to the same constant from the Herbrand universe ofS. This guarantees that T and T� have the same size. By the soundness of thecalculus and the substitution rule, the set of tableau clauses of T� must be anunsatis�able set of ground instances of clauses in S. Consequently, S� and henceS cannot be smaller than the Herbrand complexity of S. 2So there are at �rst sight no di�erence between the propositional and the �rst-order case. An obvious �rst-order feature of clausal tableaux which destroys theground projection property is the local uni�cation mechanisms. This was alreadyillustrated in Figure 6.5. We will consider now whether this feature can reallycause superpolynomial di�erences. For the subsequent investigations we build ona class of clause sets used, e.g., in [Letz, 1993a, Plaisted and Zhu, 1997], whichencodes a binary counter.Example 7.43 For any n, let Sn be the set of clauses of the following form.c0: P (0; : : : ; 0),c1: :P (x1; : : : ; xn�1; 0) _ P (x1; : : : ; xn�1; 1),c2: :P (x1; : : : ; xn�2; 0; 1) _ P (x1; : : : ; xn�2; 1; 0),� � �cn�1: :P (x1; 0; 1; : : : ; 1), _ P (x1; 1; 0; : : : ; 0),cn: :P (0; 1; : : : ; 1), _ P (1; 0; : : : ; 0),cn+1: :P (1; : : : ; 1)where P denotes an n-ary predicate symbol, and 0 and 1 denote di�erent con-stants.Proposition 7.44 Any clause set Sn speci�ed in Example 7.43 has a resolutionrefutation of a linear size.Proof Note that, for any 1 � i < n, one can deduce the clause:P (x1; : : : ; xi; 0; : : : ; 0) _ P (x1; : : : ; xi; 1; : : : ; 1)in two resolution steps using the clause:P (x1; : : : ; xi+1; 0; : : : ; 0) _ P (x1; : : : ; xi+1; 1; : : : ; 1)

7.4. RESULTS FOR FIRST-ORDER CLAUSAL TABLEAUX 145derived before and the input clause:P (x1; : : : ; xi; 0; 1; : : : ; 1) _ P (x1; : : : ; xi; 1; 0; : : : ; 0):Consequently, there is a resolution proof of 2n inference steps. This proof is evenan ancestor resolution proof. 2Let us consider now the Herbrand complexity of an Sn, i.e., the size of aminimally unsatis�able set of clauses each of which is an ground instance of aclause in Sn.Proposition 7.45 The class of clause sets speci�ed in Example 7.43 has an expo-nential Herbrand complexity.Proof Any unsatis�able set of ground instances of clauses in an Sn must containall Herbrand instances of clauses in Sn, otherwise one could easily construct aHerbrand model. Since in total these are 2n + 1 clauses, the class has an expo-nential Herbrand complexity. 2The class of Example 7.43 has no polynomial closed tableaux with local uni-�cation, but we may use a modi�cation of this class, which has polynomial unithyper resolution proofs. This will help, because of the following simulation result.Proposition 7.46 Clausal tableaux with local uni�cation can linearly simulate unithyper resolution.Proof Let D = c1; : : : ; cn be any unit hyper resolution deduction from a set ofclauses S. We prove, by induction on the number of inference steps n in D, thatthere exists a tableau T with at most one open branch B such that1. the size of T is linear in the size of D, and2. every unit clause occurring in S or D appears on the branch B.The induction base holds trivially. For the induction step, let D = c1; : : : ; cn; cn+1be any unit hyper resolution deduction. By the induction assumption, there existsa clausal tableau with local uni�cation Tn which satis�es the two conditions forthe deduction c1; : : : ; cn. The nontrivial case is the one in which the clause cn+1is a unit hyper resolvent of a nucleus clause ci (i � n) and electrons appearingbefore cn+1 in D. This can be simulated in the tableau by an expansion step withci and subsequent local reduction steps with the electrons on the branch B. 2Obviously, in the propositional or ground case, there is no di�erence betweenordinary and local uni�cation.Proposition 7.47 For ground clause sets, clausal tableaux can linearly simulateunit hyper resolution.

146 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFSNow, we have all ingredients at hand for proving the desired result.Proposition 7.48 Clausal tableaux cannot polynomially simulate clausal tableauxwith local uni�cation.Proof We use the following modi�cation of the above example.Example 7.49 For any n, let Sn be the set of clauses as speci�ed in Example 7.43.Then the clause set S0n is de�ned as follows. For any non-unit clause:P (�1; : : : ; �n) _ P (�1; : : : ; �n)in Sn, S0n contains the unit clauseI(p(�1; : : : ; �n); p(�1; : : : ; �n)):To the two unit clauses in Sn, there correspond the two unit clausesI(>; p(1; : : : ; 1))andI(p(1; : : : ; 1);?)in S0n. Additionally, S0n contains the three-literal clause:I(x; y) _ :I(y; z) _ I(x; z)and the unit clause :I(>;?). So, in S0n there occur four di�erent constants(0; 1;?;>), one n-ary function symbol (p), and one binary predicate symbol (I).Any clause set S0n represents a certain meta-level representation of Sn. Thenatural interpretation of the predicate symbol I is the material implication re-lation. Accordingly, the three-literal clause expresses the transitivity of materialimplication. S0n is designed in such a manner that every resolution step betweentwo clauses c1; c2 (deduced) from Sn can be simulated within S0n by performinga unit hyper resolution step with the transitivity clause as nucleus and the cor-responding clauses c01; c02 as electrons. To the empty clause in the old set, therecorresponds the clause I(>;?). This explains the necessity of the last clause:I(>;?), which is only used to derive the real empty clause. The advantage ofthe new clause set is that any resolution derivation from Sn can be linearly sim-ulated by a unit hyper resolution derivation from the set S0n. In particular, S0nhas a unit hyper refutation of linear size. By Proposition 7.46, S0n has a closedtableau with local uni�cation of linear size. But the Herbrand complexity of anyS0n is still exponential. 2So local uni�cation can signi�cantly imporve the deductive power of free-variable tableaux. But the use of local uni�cation also has an interesting othere�ect on tableau proofs. With standard uni�cation, the number of inference stepsof a tableau proof gives a reliable measure of the actual complexity of the proof.More precisely, any n-step tableau proof for a formula F has a polynomial sizewrt. the size of F plus n. This property is lost when local uni�cation is applied.Using the same technique as in Example 7.49 and the prime number example from[Letz, 1993a], one can easily construct a formula with violates this property.

Chapter 8Complexities of SearchSpacesWhile the last chapter was devoted to lengths of minimal proofs, in this chapterwe will present fundamental complexity results on the sizes of the search spacesof tableau calculi. Concerning the complexities of search spaces, the work ofPlaisted and Lee is of high signi�cance [Plaisted, 1994, Plaisted and Zhu, 1997].They analyze a wealth of di�erent theorem proving strategies like resolution,model elimination or clause linking according to their worst-case complexities.Plaisted and Lee also compare the search spaces of strategies based on calculi withdi�erent behaviour concerning minimal proof lengths, i.e., calculi which cannotpolynomially simulate each other. Since the size of a search space is normally atleast exponential in the size of the length of the minimal proof, it is clear thatthis way one may obtain big di�erences in complexity.The di�erence of the results presented there with ours is that we concen-trate on the �ner di�erences within one framework, namely, the tableau-basedparadigm. We also attempt to keep proof length and search space issues sepa-rate, in order to precisely identify the in
uence of a speci�c re�nement on thecorresponding search spaces.8.1 Complexities of Iterative-Deepening BoundsWhen using the tableau enumeration approach, the most successful techniqueis to use iterative deepening methods according to completeness bounds, whichare tableau complexity measures. For any tableau search space S, a complete-ness bound de�nes a sequence of �nite initial segments S1;S2;S3; : : : of S. It isimportant to know about the worst-case complexities of the Si with respect tothe size of the underlying input formula and tableau calculus. Furthermore, it isinstructive to know whether the existence of a proof in some Si can be relatedwith some problem class in the area of computational complexity. These topics147

148 CHAPTER 8. COMPLEXITIES OF SEARCH SPACESwill be addressed in this section, for the most important families of completenessbounds, the inference, the depth, and the multiplicity bounds.8.1.1 Upper Bounds of Bounded Search SpacesWe start with providing upper bounds for the number of tableaux contained in acertain initial segment of a search space. The values are given in dependence onthe number k of clauses, the maximal clause length l and the maximal literal sizes in the underlying set of clauses. The upper bounds are de�ned for the generalclausal tableau calculus with folding up. For simplicity, we count any extensionstep as two steps, as an expansion and a reduction step. Furthermore, we assumethat a subgoal selection function is used.Proposition 8.1 (Inference bound estimate) The number of clausal tableaux withfolding up constructed with n inferences is bounded from above by an exponentialfunction in n and the input size.Proof The number i(1) of clausal tableaux constructed with one inference is k.The number of clausal tableaux with � n + 1 inferences can be estimated byperforming at most one inference step at the selected subgoal N of each tableauwith � n inferences. First, k expansion steps can be applied at N . The depth ofthe node N is � n. Consequently, less than 2n reduction or E-reduction steps canbe performed at N . In total this gives the estimatei(n+ 1) � i(n) � (2n+ k) � (2n+ k)n;which is an exponential upper bound. The size of any tableau in such an initialsegment is quadratic in n and the size of the input. 2Proposition 8.2 (Depth bound estimate) The number of clausal tableaux with fold-ing up of depth n is bounded from above by a doubly exponential function in nand the input size.Proof We simply use the estimate for the inference bound and exploit that anytableau of depth n has< ln+1 nodes and hence less than ln+1 inferences. Thereforethe number of tableaux with a depth � n is < (2(ln+1)+k)ln+1 , which is a doublyexponential upper bound. The size of any tableau in such an initial segment isexponential in n and the size of the input. 2Similarly, results can be obtained for the clause-dependent and the weighted-depth bounds. Note that, for the preferred parameter set of the weighted-depthbound, the increase rate is also doubly exponential in the worst case. For themultiplicity bound, we need a further restriction in order to achieve �niteness ofthe initial segments. As pointed out in Section 4.1.3, the strictness condition issu�cient.

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 149Proposition 8.3 (Multiplicity bound estimate) The number of strict clausal tab-leaux with folding up of multiplicity n is bounded from above by a doubly expo-nential function in the input size plus n.Proof According to the strictness condition, each of the n copies of any inputclause must appear at most once on a branch. This limits the depth of the tableauxto n � k and we can use the result for the depth bound. 28.1.2 Lower Bounds for a Concrete ExampleOne might argue that the given upper bounds are much to pessimistic. For thisreason, we also give lower complexity bounds for concrete inputs.Example 8.4 :P (x);P (a);P (f(x; y)) _ :P (x) _ :P (y):Consider the set of clauses given in Example 8.4. If only the �rst clause isused as a start clause and a standard depth-�rst subgoal selection strategy isused (i.e., a model elimination strategy), then the number of deductions in eachinitial segment with bound n is bounded from below by the number of solu-tion substitutions for the top subgoal. It is straightforward to recognize that thenumber of solution substitutions for the top subgoal is just:� for the inference bound: the number of all binary trees with � n� 1 nodes,which is an exponential function, and� for the depth bound: the number of all binary trees with a depth � n� 1,which is a doubly exponential function.So, the aforementioned upper bounds are tight in the sense that they give thecorrect order of complexity. One might object, that this example is completelyinsigni�cant, since no actual deduction enumeration procedure will explore thedescribed search spaces, but stop after the �rst proof has been found. In orderto invalidate this argument, we simply make the set satis�able and use the mod-i�cation given in Example 8.5. For this example, any actual model eliminationprocedure has the aforementioned cost. Note also that, for this example, noneof the developed re�nements of model elimination like regularity, failure caching,etc. reduces the search e�ort.Example 8.5:P (x) _ :Q(x);P (a); Q(b);P (f(x; y)) _ :P (x) _ :P (y); Q(g(x; y)) _ :Q(x) _ :Q(y):

150 CHAPTER 8. COMPLEXITIES OF SEARCH SPACESFinally, let us consider the multiplicity bound. Interestingly, the depth boundresult for Example 8.5 cannot be used to obtain a doubly exponential lower boundfor the multiplicity case, since many of the respective tableaux of depth n containmore than n di�erent instances of the three-literal clauses, and hence have a highermultiplicity. Under the multiplicity bound, Example 8.5 gives rise to only a singleexponential growth rate. This can be recognized by considering the three-literalclauses. With start clause :P (x)_:Q(x) and under multiplicity limit n, for everyclosed subtableaux T below the top :P (x)-subgoal, there are at most n di�erentinstances of the clause P (f(x; y)) _ :P (x) _ :P (y) in T . It is straightforward tosee that therefore the number of such subtableaux is bounded from above by thenumber of di�erent rooted dags with � n nodes and outdegree 2. The number ofsuch graphs is just �n�1i=1 i2 which is a single exponential function.When using the pure connection tableau calculus without any re�nementsexcept strictness, an obvious example with a doubly exponential number of tab-leaux for the multiplicity bound can be obtained by simplifying Example 8.5 asfollows.Example 8.6 :P (x) _ :Q(x);P (a); Q(b);P (a0) _ :P (x) _ :P (y); Q(b0) _ :Q(x) _ :Q(y):For this example, in any closed subtableaux below the :P (x)-subgoal, thereare at most four di�erent instances of the three-literal clause P (a0) _ :P (x) _:P (y). Consequently, for n � 4, the multiplicity bound has no e�ect. So onlythe strictness condition works, which merely limits the tableau depth, and theresult for the depth bound applies. However, when using re�nements like, e.g.,regularity, the search space for this example collapses. In order to weaken thee�ect of regularity, one could replace a0 and b0 with f(x) and g(x), respectively.Then the search space remains doubly exponential even if regularity is used.But for both examples, (local) failure caching will have a drastic search pruninge�ect. This show that it is much harder to �nd a concrete example with a doublyexponential increase rate for the multiplicity bound when powerful search pruningmethods are used.8.1.3 Completeness Results wrt. Complexity ClassesThe estimates for the number of tableaux in a certain initial segment is closelyrelated to a certain search paradigm, namely, the actual exploration of the re-spective search space. However, there might exist completely di�erent approachesto verify the existence of a tableau in a certain initial segment of a search space,and it is imaginable that those other methods are much more e�cient. Therefore,we investigate the question whether the existence of a tableau proof of a certainsize can be related to some fundamental other problems in the area of compu-tational complexity. More precisely, we will provide completeness results of the

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 151respective problems for certain complexity classes. For this purpose, some otherproblems are needed which are known to be complete for the considered classes.For the results concerning the inference and the depth bound we will directly usereductions from nondeterministic Turing machines. For the multiplicity bound,we use quanti�ed Boolean formulae.It is not the place here to provide an intuitive understanding of Turing ma-chines as, e.g., in [Aho et al., 1974]. We shall just introduce the minimal machin-ery that is needed for specifying one-tape nondeterministic Turing machines.De�nition 8.7 (Turing Tape) Let � be a �nite alphabet and b 2 � a symbol,called the blank. If h is an integer and t is a mapping from the integers Z into �such that for almost all n 2 Z : t(n) = b (we shall abbreviate t(n) by writing tz),then the pair hz; ti is called a tape for � and b; the integer z is called the headposition of the tape.De�nition 8.8 (Turing machine) A (nondeterministic) Turing machine M is atuple hK;�; q0; qa; b; r; l; T i where K and � are two �nite sets of symbols, theinternal states respectively the tape alphabet of M; q0; qa 2 K are the initialrespectively the accepting state ofM; b 2 �, the blank; r and l are two symbolsnot contained in �, called the left and the right, respectively; and T is a �nite setof quadrupels hc; a; o; c0i with c; c0 2 K, a 2 �, and o 2 � [fr; lg. The elementsof T are called the instructions ofM. If an instruction has the symbol r or l atthe third tuple position, then it is called a right respectively a left instruction,otherwise it is called a write instruction.De�nition 8.9 (Turing con�guration and input) Let M = hK;�; q0; qa; b; r; l; T ibe any nondeterministic Turing machine. Any triple hz; t; ci where c 2 K andhz; ti is a tape for � and b is called a con�guration for M. A con�gurationhz; t; ci for M is said to succeed a con�guration hz0; t0; c0i for M if M has aninstruction hc; tz; s; c0i such that1. either t0 = t and z0 = z + 1 or z � 12. or z0 = z and t0 = t except that t0(z) = s.An input to a Turing machine is just a tape for the tape alphabet and the blankofM. A derivation for M is a sequence of successive con�gurations forM.M issaid to accept an input hz; ti in n steps if there is a derivation of length � n withhz; t; q0i as �rst element and a con�guration with qa at the last triple position aslast element.Subsequently, we will use di�erent encodings of Turing machines and theirinputs as logical formulae that are best suited for our purposes. In detail, we givetransformations � which map any Turing machineM and any input tape I into aset of Horn clauses such thatM accepts I if and only if �(M; I) is unsatis�able.First, we have to explain how tapes are encoded. On every tape for almost allintegers z: tz = b. Therefore, every con�guration hz; t; ci encountered during a

152 CHAPTER 8. COMPLEXITIES OF SEARCH SPACESTuring derivation can be �nitely represented. Let l and r be the greatest tapeposition to the left respectively the smallest tape position to the right of positionz encountered during the derivation. Then we encode the tape to the left of thehead position by the (possibly empty) list term l = [tz�1; : : : ; tl] and the tapeto the right by r = [tz+1; : : : ; tr]|we use the Prolog conventions for denotinglist terms. The entire con�guration can then be uniquely represented by the list[l; tz; r; c].After these preparations, we come to the de�nition of the �rst transforma-tion, which might be called a linear encoding. The idea is to use a literal offour arguments A(l; tz; r; c) with the meaning that the list [l; tz; r; c] denotes anaccepting con�guration. Accordingly, any possible transition between two con�g-urations in the Turing machine is encoded as a material implication of the formA(l; tz; r; c) ! A(l0; t0z; r0; c0) where [l0; t0z; r0; c0] can be reached from [l; tz; r; c] inone step. The input and the accepting con�gurations can be represented with anegative and a positive unit clause, respectively.De�nition 8.10 (Linear Turing encoding) Given a nondeterministic Turing ma-chineM = hK;�; q0; qa; b; r; l; T i and an input I = ht; zi toM, the linear Turingencoding �(M; I) is the set of clauses de�ned as follows. Subsequently, w, x, yand z shall denote four pairwise distinct variables.1. First, for every write instruction hc; a; a0; c0i, �(M; I) contains the two-literalclause A(x; a; y; c) _ :A(x; a0; y; c0):2. For every left instruction hc; a; l; c0i, �(M; I) contains the two two-literalclausesA([]; a; y; c;)_:A([]; b; [a j y]; c0) and A([x j w]; a; y; c)_:A(w; x; [a j y]; c0):3. For every right instruction hc; a; r; c0i, �(M; I) contains the two two-literalclausesA(x; a; []; c)_:A([a j x]; b; []; c0) and A(x; a; [y j w]; c)_:A(a j x]; y; w; c0):4. Furthermore, �(M; I) contains the unit clause A(x;w; y; qa).5. Finally, for the input tape I = ht; zi, �(M; I) contains the negative unitclause :A(l; tz ; r; q0]) where l and r are the list term encodings of the tapeto the left respectively to the right of the head position z.No other clause is contained in �(M; I).Note that we need two clauses for every right or left instruction in order tosimulate the in�nite tape in a �nitistic manner. It is straightforward to recognizethat a nondeterministic Turing machine M accepts an input I if and only ifthe set of clauses �(M; I) is unsatis�able. In more detail, the following propertyholds.

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 153Proposition 8.11 A nondeterministic Turing machineM accepts an input I in nsteps if and only if there is a closed regular connection tableau T for �(M; I) ofdepth � n+ 1 and constructed with � n+ 1 inference steps.Proof For the "only-if" direction, we may restrict ourselves to an accepting Turingderivation D of minimal length m � n. Then, when starting with the top clause:R(l; tz; r; q0), which corresponds to the input, one can step by step simulatethe Turing derivation D by an extension step using exactly one of the clausescorresponding to the instruction used in the respective transition step. Fromthe minimality assumption for D it follows that no con�guration is repeated inD. This means that regularity of the tableau is preserved. Furthermore, in anyextension step the tableau depth is increased by 1. For the "if" direction, it su�cesto note that only inference steps are possible which correspond to transitions inthe Turing machine. 2Proposition 8.12 The veri�cation of the existence of a closed regular connectiontableau with � n inferences for a set of clauses S is NP-complete, where the inputsize is the size of S plus n.Proof By Proposition 8.11, we can reduce the veri�cation of whether any nonde-terministic Turing machineM accepts an input I in n�1 steps to the veri�cationof whether �(M; I) has a closed regular connection tableau constructed with � ninferences, and the input sizes are linearly related. This proves the NP-hardness.For proving the containment of the problem in NP, we nondeterministicallyguess a closed regular connection tableau T constructed with � n inference stepsand the respective pairs of complementary literals. Since T is connected, it has� 2n�1 nodes and < n branches. When using dags, the size of T is < 2ns wheres is the maximal size of a literal in the input set. Finally, the complementarity ofthe respective literals can be checked in quadratic time in total. 2Note that the complexity of the corresponding problem for tableaux with localuni�cation is open. This is because in n steps one can construct a tableau of a sizeexponential in n. This also holds for binary resolution. In both cases the criticalmechanism is the renaming of variables (see [Letz, 1993a, Letz, 1993b]).Next, we come to the tableau depth bound. The gist of the encoding employedhere is that we use a binary predicate symbol R in order to express the factthat from a certain con�guration C a con�guration C 0 can be reached. Now, allinstructions are encoded as unit clauses and we have only one clause of lengththree, which expresses the transitivity of the reachability relation.De�nition 8.13 (Reachability Turing encoding) Given a nondeterministic TuringmachineM = hK;�; q0; qa; b; r; l; T i and an input I = ht; zi toM, the reachabilityTuring encoding �0(M; I) is the set of clauses de�ned as follows. Again, w, x, yand z shall denote four pairwise distinct variables.

154 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES1. First, for every write instruction hc; a; a0; c0i, �0(M; I) contains the unitclause R([x; a; y; c]; [x; a0; y; c0]):2. For every left instruction hc; a; l; c0i, �0(M; I) contains the two unit clausesR([[]; a; y; c; z]; [[]; b; [a j y]; c0]) and R([[x j w]; a; y; c]; [w; x; [a j y]; c0]):3. For every right instruction hc; a; r; c0i, �0(M; I) contains the two unit clausesR([x; a; []; c]; [[a j x]; b; []; c0]) and R([x; a; [y j w]; c]; [a j x]; y; w; c0]):4. Then �0(M; I) contains the unit clause R([x;w; y; qa]; [x;w; y; qa]).5. For the input tape I = ht; zi, �0(M; I) contains the negative unit clause:R([l; tz; r; q0]; [x; y; w; ca]) where l and r are the list term encodings of thetape to the left respectively to the right of the head position z.6. Finally, �0(M; I) contains the transitivity clause for R.R(x; z) _ :R(x; y) _ :R(y; z):No other clause is contained in �0(M; I).Proposition 8.14 A nondeterministic Turing machineM accepts an input I in nsteps if and only if there is a closed regular connection tableau T for �0(M; I) ofdepth < 3 + log2n.Proof Let C1; : : : ; Cn be any accepting derivation of minimal length. First, westructure the derivation hierarchically in the form of a binary tree, as follows.Let i be the smallest integer > n=2. If i < n, we split the derivation into twosubderivations C1; : : : ; Ci and Ci; : : : ; Cn. This process is repeated recursivelyfor the subderivations until no more splittings are possible, i.e., until the lengthof the subderivation is 2. The depth of the resulting tree is < 1 + log2n. Thishierarchical organization of the derivation can be simulated by the reachabilityTuring encoding, as shown in Figure 8.1 for a derivation of length 5. Let C 0 bethe term list encoding of any Turing con�guration. We start with the all-negativeclause. To every splitted (sub)derivation Cj ; : : : ; Cm with split con�guration Ck,there corresponds a subgoal with literal :R(C 0j ; C 0m). Then we perform an exten-sion step at this subgoal using the transitivity clause, which produces two newsubgoals with literals :R(C 0j ; C 0k) and :R(C 0k; C 0m), and so forth. For subgoalscorresponding to subderivations of length 2, we simply extend into a unit clause.The depth of the resulting closed tableau �0(M; I) is < 3+ log2n. The additional2 come from the start step and the extensions into unit clauses. Regularity isguaranteed by the minimality of the input derivation. 2

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 155
����� HHHHH ����� HHHHH��� SSS ��� SSS@@@���C1; C2 C2; C3 C3; C4 C4; C5C3; C4; C5C1; C2; C3C1; C2; C3; C4; C5 ������� PPPPPPP :R(C03; C05)R(C01; C05)R(C01; C03) :R(C01; C02) :R(C02; C03) R(C03; C05) :R(C03; C04) :R(C4; C05):R(C01; C03) :R(C01; C05)

R(C01; C02) R(C03; C04)R(C02; C03) R(C04; C05)Figure 8.1: Tree-structured simulation of a Turing derivation.Proposition 8.15 The veri�cation of the existence of a closed regular connectiontableau with depth � n for a set of clauses S is NEXPTIME-complete, where theinput size is the size of S plus n.Proof By Proposition 8.14, we can reduce the veri�cation of whether any nonde-terministic Turing machineM accepts an input I in 2n�3 steps to the veri�cationof whether �(M; I) has a closed regular connection tableau of depth � n, andthe input sizes are linearly related. This proves the NEXPTIME-hardness.For proving the containment of the problem in NEXPTIME, we nondeter-ministically guess a closed regular connection tableau T of depth � n and therespective pairs of complementary literals. T has < ln nodes. When using dags,the size of T is < 1 + ln(1 + s) where s is the maximal size of a literal in theinput set. Finally, the complementarity of the respective literals can be checkedin exponential time in total. 2Finally, we come to the multiplicity bound. The existence of a closed tab-leau with a certain multiplicity is related with the following problem �rst en-countered by Prawitz. He was interested in improvements of the well-knownearly approaches in automated deduction like the Davis/Putnam procedures[Davis and Putnam, 1960, Davis et al., 1962]. In those procedures the unsatis-�ability of a �rst-order Skolem formula � is demonstrated by systematicallybuilding increasing sets of ground instances of the quanti�er-free part|the ma-trix|of �, which are then checked by propositional decision procedures. A cru-cial point which determines the e�ciency of this approach concerns the mannerhow the respective ground instances are generated. In the original procedures,no information of the connection structure of the matrix of � was used, buta systematic substitution of terms from the Herbrand universe of � was per-formed, which is obviously unmanageable in practice. The clause linking method[Lee and Plaisted, 1992] described in Section 4.2.3 presents one signi�cant im-provement of the selection of ground instances.In contrast, Prawitz took another approach [Prawitz, 1960, Prawitz, 1969]. Inorder to improve the overall procedure, he proposed not to build ground instancesof the formula but to work directly on variable-renamed copies of the matrix of �

156 CHAPTER 8. COMPLEXITIES OF SEARCH SPACESand to determine an unsatis�able set of ground instances by using uni�cation onthe connections in the set of copies. While the recognition of the unsatis�abilityof a ground formula is a coNP-complete problem, the complexity of recogniz-ing the existence of an unsatis�able ground instance of a quanti�er-free formulawas settled just recently independently in [Voronkov, 1998] and [Letz, 1998a].Voronkov's paper contains a number of results on the decidability and the worst-case complexities of multiplicity-based formula instantiation problems includingdi�erent forms of equational reasoning.Here, we consider the pure clausal problem. The clausal ground instantiationproblem is the following problem: given a set of clauses S, �nd a ground substi-tution � for S, i.e., a substitution that maps all variables in S to ground terms,such that S� is unsatis�able. Interestingly, this problem is closely related withthe problem of �nding a uni�able spanning mating for a set of clauses occurringin the matings approaches of Andrews [Andrews, 1981] and Bibel [Bibel, 1981]presented in Section 4.1.2. First, if there is a uni�able spanning mating for a setof clauses S with uni�er �, then every ground instance of S� is unsatis�able,hence S has an unsatis�able ground instance. In the other direction, when a setof clauses S has an unsatis�able ground instance S�, then there is a uni�ablespanning mating for S with simultaneous uni�er �. Furthermore, the mating ofany closed regular connection tableau without renaming for a set of clauses S isspanning for S; and when a set of clauses has an unsatis�able ground instanceS�, then, by Theorem 5.7, S� has a closed regular connection tableau, hence, byLemma 5.9, S has a closed regular connection tableau without renaming for S.So all three problems are equivalent.We will prove now that these problems are complete for the complexity class�p2 in the polynomial hierarchy [Garey and Johnson, 1979]. �p2 is the set of allproblems solvable (languages recognizable) in nondeterministic polynomial timewith an oracle to a problem in �p1 = NP. The containment of the problems in �p2can be seen easily by using the problem of �nding a uni�able spanning mating.Proposition 8.16 The problem of �nding a uni�able spanning mating for a set ofclauses S is contained in �p2.Proof First, guess a spanning mating M in S with simultaneous uni�er �. Thecardinality ofM is quadratically bounded by the number of literals in S. Further-more, since there are linear uni�cation algorithms [Paterson and Wegman, 1978],the simultaneous uni�ability of M by � can be veri�ed (even decided) in lineartime wrt. the size of M . Finally, since the veri�cation of the spanning propertyis in coNP, the spanning property of M can be decided in polynomial time by anNP-oracle. 2For proving the completeness of the problem for the complexity class �p2,we use the well-known fact that language classes in PSPACE can be character-ized with quanti�ed boolean formulae [Garey and Johnson, 1979]. A quanti�edboolean formulae (QBF) is a boolean formula pre�xed by a sequence of quanti�-cations over the boolean variables with the interpretation domain of the variables

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 157being the set of the truth values f>;?g. For example, the quanti�ed boolean for-mula 8p9q9r(p! (q ^ r)) is true, since, for every assignment of a truth value top, there is an assignment to q and r that makes the formula p! (q ^ r) true.We will prove that there is a polynomial reduction of every quanti�ed booleanformula B of the 8�9�-type to a set of clauses S such that B is false if and only ifS has an unsatis�able ground instance. It su�ces to consider the special case ofQBFs whose matrices are in clausal form and in which no clause is tautological,i.e., does not contains an atom and its negation, since this restricted languageis also complete for �p2 . For any such QBF B, we de�ne a corresponding set ofclauses S.De�nition 8.17 (Clause set corresponding to a QBF) Let B be any QBF of thementioned type, i.e., B is of the form 8p1 � � � pm9q1 � � � qnC with C = c1^ � � �^ ck,and each ci, 1 � i � k being a non-tautological clause. Let Q1; : : : ; Qn be n �rst-order predicate symbols with arity m each, x1; : : : ; xm �rst-order variables, and 0and 1 two constants. Now, for each clause ci, 1 � i � k, a corresponding �rst-orderclause c0i is de�ned as follows. The clause c0i contains the literal (:)Qi(�1; : : : ; �m)if and only if qi occurs positively (negatively) in ci; furthermore, all literals in c0ihave the same arguments�i = 8<: 1 if pi occurs positively in ci0 if pi occurs negatively in cixi otherwise.The clause set S corresponding to B is the set of all clauses which correspond toclauses in C.Example 8.18 In order to facilitate the understanding of the transformation, wegive a concrete example of a QBF and its transform. Let B be the formula8p1p29q1q2C with the clauses in the conjunction C given on the left-hand side.The clauses resulting from the transformation are given on the right-hand side.p1 _ q1 _ q2 Q1(1; x2) _Q2(1; x2):p1 _ q1 _ q2 Q1(0; x2) _Q2(0; x2)p2 _ :q1 :Q1(x1; 1):p2 _ :q2 :Q2(x1; 0):p1 _ :p2 _ :q1 _ q2 :Q1(0; 0) _Q2(0; 0)So the q-literals in a clause of the QBF are captured by respective predicatesymbols whereas the p-literals in a clause are uniformly encoded in the argumentsof the corresponding clause.Proposition 8.19 For any quanti�ed QBF B of the aforementioned type, B is falseif and only if the set of clauses S corresponding to B has an unsatis�able groundinstance.

158 CHAPTER 8. COMPLEXITIES OF SEARCH SPACESProof For the \if" direction, consider any minimal subset S0 � S such that S0�is unsatis�able for some ground substitution �. First, we show that all literals inS0� have the same argument list �1; : : : ; �n. From the structure of S it is obviousthat all literals in the same clause in S0� must have the same argument list.Consider any closed connection tableau for S0�. Then, after the start step, onlyclauses can be attached by extension steps with literals of the same argument list.Therefore, by the minimal unsatis�ability of S0�, all literals in S0� must have thesame argument list. Now we show that B is false. For this consider an arbitraryBoolean valuation v satisfying that, for all 1 � i � m, v(pi) = > if and only if�i = 0. Consider the interpretation I de�ned by I(Qi(�1; : : : ; �n)) = v(qi). Bythe unsatis�ability of S0�, there is a clause c0 2 S0 such that I(c0�) = ?, i.e., forevery literal L contained in c0� : I(L) = ?. Let c be the clause in the matrix of Bwhich was transformed to c0. Then, by the transformation, for every literal L inc with an atom qi, I(L) = ?. Furthermore, for every literal K in c of the form pirespectively :pi, v(K) = ?, since, by the de�nition of v, v(pi) = ? respectively> if pi occurs positively respectively negatively in c. This proves that B is false.For the \only-if" direction, assume that B is false. This means that there existsa partial evaluation v0 with domain fp1; : : : ; pmg such that B is false for all totalextensions of v0. Let � be the substitution de�ned by �(xi) = 0 or 1 dependingon whether v0(pi) = > or ?. We show that S� is unsatis�able. For this consideran arbitrary interpretation I for S�. De�ne the Boolean valuation v by settingv(pi) = v0(pi), for 1 � i � m, and v(qi) = I(Qi(�1; : : : ; �n)), for 1 � i � n, where�i = 0 or 1 depending on whether v0(pi) = > or ?. By assumption, there existsa clause c in the matrix of B such that v(L) = ? for all literals L in c. Let c0 bethe clause to which c was transformed. Then, by construction, I(c0�) = ?. So S�is unsatis�able. 2Proposition 8.20 The veri�cation of the existence of a closed regular connectiontableau with multiplicity � n for a set of clauses S is �p2-complete, where theinput size is the size of S plus n.Proof Since the used transformation is quadratic in the size of the QBF, the re-sult immediately follows from Proposition 8.16 (containment in �p2) and Propo-sition 8.19 (�p2-hardness). 2Interestingly, the transformation maps any QBF of the speci�ed type to a setof datalogic clauses, i.e., clauses in which no function symbols of arity greater the0 occur. Consequently, the considered veri�cation problem is already �p2-completefor this restricted formula class.We can observe that there is a striking di�erence between the containment ofthe problem in the complexity class �p2 and the doubly exponential upper boundestimate for the number of tableaux with a certain multiplicity. Note that themembership of a veri�cation problem in �p2 means that the problem can be decidedin single exponential time. So this complexity result shows that the standarditerative-deepening approach seems not suited when used with the multiplicitybound. A na�ive algorithm which would enumerate all uni�able matings of the

8.2. THE REDUCTIVE POWER OF REFINEMENTS 159clause set and test whether they are spanning needs only single exponential time,even if no re�nements are used.8.2 The Reductive Power of Re�nementsIn this section, we will consider the e�ect of the most important re�nementsof clausal tableau calculi on the search spaces of certain input formulae. Themotivation for any form of search pruning is that the search space decreases.For most of the introduced pruning methods, it is relatively straightforward todemonstrate that there is a class of formulae with in�nite search spaces with and�nite search spaces without the pruning method. For instance, the set of clausesgiven in Example 8.6 has a �nite search space with and an in�nite one withoutregularity. Similar examples exist for the connection conditions, tautology andtableau clause subsumption, for the use of relevance information, and for (local)failure caching. In Section 5.3.1, it was shown that the matings pruning techniquemay also have a strong search pruning e�ect. Moreover, local failure caching is avery powerful method, which cannot be completely captured by structural prun-ing paradigms. The caching technique proposed in [Astrachan and Stickel, 1992],which permanently stores the solutions of subgoals and uses cached solutions forsolving subgoals by lookup instead of search, provides a polynomial decision pro-cedure for propositional Horn sets [Plaisted, 1994, Plaisted and Zhu, 1997]. Aninteresting other topic, which we will discuss in more detail, is the in
uence ofsubgoal selection functions.8.2.1 Free Subgoal Selection FunctionsAs discussed in Section 3.4, the used method of subgoal selection may have ane�ect on the search space. In particular, it is important to emphasize that therestriction to depth-�rst subgoal selection functions (which is enforced in thechain format of model elimination) can have a very detrimental e�ect. In orderto illustrate this, let us reconsider the set of clauses:P (x) _ :Q(x);P (a); Q(b);P (f(x; y)) _ :P (x) _ :P (y); Q(g(x; y)) _ :Q(x) _ :Q(y)given in Example 8.5. We have shown that the search space of this clause setincreases exponentially for the inference bound and double exponentially for thedepth bound, for any depth-�rst selection function. Interestingly, when permit-ting arbitrary subgoal selection functions, one can improve this behaviour tremen-dously. Consider any subgoal selection function which always selects a subgoalwith a literal of maximal term size. Assume w.r.g. that we select �rst the :P (x)-subgoal. The crucial di�erence of such a selection function from selection functionsof the pure depth-�rst type occurs when the clauseP (f(x; y)) _ :P (x) _ :P (y)

160 CHAPTER 8. COMPLEXITIES OF SEARCH SPACESis entered for the �rst time. (This must happen after at most four inferenceattempts, since when the unit clause P (a) is tried �rst, the failure of the othertop subgoal is detected in two further inference attempts.) After the extensionstep into the renamed clauseP (f(x0; y0)) _ :P (x0) _ :P (y0)the variable x is instantiated to f(x0; y0) while the variables x0; y0 in the new sub-goals are not instantiated. When preferring subgoals with literals of maximal termsize, in the next inference step the other top subgoal with literal :Q(f(x0; y0)) isselected. The impossibility of solving the subgoal is detected within two furtherinference attempts. Since no further inferences are possible, the search procedurestops. Consequently, we achieve a reduction of the search space from an expo-nential respectively doubly exponential size to a constant size of 3, which is evenindependent of the limit n of the used completeness bound. This is a striking il-lustration of the power of subgoal selection strategies. The example also exhibitsthe severe limitations of the chain-oriented model elimination format, which onlypermits depth-�rst subgoal selection and hence cannot achieve such a reduction.

Chapter 9Implementation ofConnection TableauxAll competitive implementations of connection tableaux are iterative-deepeningsearch procedures using backtracking. When one envisages the implementationof such a procedure, one has the choice between fundamentally di�erent archi-tectures, for the following reason. As sketched at the end of Section 4.1, it isstraightforward to recognize that SLD-resolution (the inference system underly-ing Prolog) can be viewed as a re�nement of connection tableaux obtained bysimply omitting the reduction inference rule. Since highly e�cient implementa-tion techniques for Prolog have been developed, one can pro�t from these e�ortsand design a Prolog Technology Theorem Prover (PTTP). The crucial charac-teristics of Prolog technology is that input clauses are compiled into proceduresof a virtual or concrete machine which permits a very e�cient execution of theextension operation. There are even two di�erent approaches of exploiting Prologtechnology. On the one hand, one can build on some of the e�cient implementa-tion techniques of Prolog and add the ingredients needed for a sound and completeconnection tableau proof procedure. On the other hand, one can use Prolog itselfas implementation language with the hope that its proximity to connection tab-leaux permits a short and e�cient implementation of a connection tableau proofsearch procedure. The PTTP approaches, which will be both described in thissection, have dominated the implementations of connection tableaux in the lastyears. The use of Prolog technology, however, has a severe disadvantage, namely,that the framework is not
exible enough for an easy integration of new techniquesand new inference rules. This in
exibility has almost blocked the implementationsof certain important extensions of connection tableaux, in particular, the integra-tion of inference mechanisms for an e�cient equality handling. Therefore, we alsopresent a more natural and modular implementation architecture for connectiontableaux, which is better suited for various extensions of the calculus. Althoughthis approach cannot compete with the PTTP approaches concerning the e�-ciency by which new instances of input clauses are generated, this drawback can161

162 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX_ � �+ P a � � Q b �f � � g �nil x g �Figure 9.1: Internal representation of the clause P (a; f(x; x)) Q(b; g(g(x))).be compensated for by an intelligent mechanism of reusing clause copies, so that,for the typical problems occurring in automated deduction, about the same highrates of inferences per seconds can be achieved.9.1 Basic Data Structures and OperationsWhen analyzing the actual implementations of connection tableaux, one can iden-tify some data structures and operations that are more or less common to allsuccessful approaches and hence form something like a standard basis. The �rstsubject is the way formulae should be represented internally in order to permite�cient operations on them. It has turned out that all terms, literals, and clausesmay be represented in a natural tree manner except variables, which should beshared. In Figure 9.1, such a standard representation of a clause is depicted. Thetreatment of variables needs some further explanation. Internally, variables aretypically represented as structures consisting of their actual bindings and theirprint names with nil indicating that the variable is currently free. Furthermore,variables are not identi�ed and distinguished by their print names but by theaddresses of their structures.9.1.1 Uni�cationThe next basic ingredient is the employed uni�cation algorithm, which isspeci�ed generically in Table 9.1. In the displayed procedures, it is left open howvariable bindings are performed and retracted. Uni�cation is speci�ed with twomutually recursive procedures, the �rst one for the uni�cation of two lists of terms,the other for the uni�cation of two terms. The standard in connection tableauimplementations is that a binding is performed destructively by deleting nil fromthe variable cell and inserting a pointer to the term to be substituted for the

9.1. BASIC DATA STRUCTURES AND OPERATIONS 163
procedure unify lists(args1,args2)if (args1 = ;) thentrue;/* check first arguments */elseif (unify(binding(�rst(args1)),binding(�rst(args2))) thenunify lists(rest(args1),rest(args2));/* undo variable bindings made in this procedure */elseunbind;false;endif;procedure unify(arg1,arg2)if (is var(arg2)) thenif (occurs(arg2,arg1)) thenfalse;elsebind(arg2,arg1);true;endif;elseif (is var(arg1)) thenif (occurs(arg1,arg2)) thenfalse;elsebind(arg1,arg2);true;endif;elseif (functor(arg1) == functor(arg2)) thenunify lists(args(arg1),args(arg2));elsefalse;endif; Table 9.1: The uni�cation procedures.

164 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXvariable. The resulting bound variable cell then does no more denote a variablebut the respective term. The recursive function binding(term) returns term if termis not a bound variable cell, or otherwise binding(�rst(term)). On backtracking,variable bindings have to be retracted. This is done by simply reinserting nil inthe �rst element of the respective bound variable cells, so that the original stateis restored. Note that the unbind procedure is assumed to retract all variablebindings performed in the current uni�cation attempt.Polynomial uni�cationIt is straightforward to recognize that this uni�cation procedure is linear in spacebut exponential in time in the worst case. Although this is not a critical weaknessfor the typical formulae in automated deduction, one may easily improve thegiven procedure to a polynomial time complexity by using methods described onPage 49. The key idea of such methods is that one attaches an additional tag atany complex term. This tag is employed to avoid that the same pairs of complexterms are successfully uni�ed more than once during a uni�cation operation.Furthermore, this tag can be used to reduce the number of occurs-checks to apolynomial (see [Corbin and Bidoit, 1983, Letz, 1993a]).Destructive uni�cation using the trailIn order to know which bound variables have to be unbound, the trail is used as atypical data structure. The trail is a global list-like structure in the program whichcontains the pointers to the bound variables in the order in which they have beenbound. Since all standard backtracking procedures retract bindings exactly in thereversed order of their generation, a simple one-dimensional list-like structure issu�cient for the trail. The trailmarker is a global variable which gives the currentposition of the trail. The number of bindings performed may di�er from one in-ference step to another. In order to know how many bindings have to be retractedwhen an inference step is retracted, there are two techniques. One possibility is tolocally store the number of performed bindings or the trail position at which thebindings of the previous inference step start. Alternatively, one can use a specialstop label on the trail which is written in a trail cell whenever an inference stepends; in this case, no local information is needed. Depending on which solutionis selected, the uni�cation procedure has to be modi�ed respectively.Figure 9.2 documents the entire binding process and the trail modi�cationsperformed during proof search for the set of the four clauses :P (x; y)_:P (y; x),P (a; z), P (b; v), and Q(a; b). The description begins after the start step in whichthe �rst input clause has been attached (a). First an extension step using thesecond input clause is performed, which produces two bindings (b). Then anextension step with the Q-subgoal is attempted: y (and implicitly z) are boundto a, but the uni�cation fails when a (the binding of x) is compared with b (c).Then the two inferences are retracted (d). After extension steps using the thirdclause (e) and the fourth clause (f), the proof attempt succeeds. This techniquepermits that backtracking can be done very e�ciently.

9.1. BASIC DATA STRUCTURES AND OPERATIONS 165
:P (x; y) :Q(y; x)
nil x nil z nil yTrailmarkerTrail:Memory:

:P (x; y)P (a; z)� :Q(y; x)� �a x � z nil yTrailmarker :P (x; y)P (a; z)� :Q(y; x)Q(a; b)�� � �a x � z a yTrailmarker
:P (x; y) :Q(y; x)� � �nil x nil z nil yTrailmarkerTrail:Memory:

:P (x; y)P (b; v)� :Q(y; x)� � �b x � v nil yTrailmarker :P (x; y)P (b; v)� :Q(y; x)Q(a; b)�� � �b x � v a yTrailmarker
(a) (b) (c)

(d) (e) (f)Figure 9.2: An example of the trail modi�cations during proof search.

166 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX9.1.2 The Connection GraphIn order to permit an e�cient performance of extension steps, it is necesssary thatthe connected literals of the current subgoal can be accessed quickly. The set ofconnections between the literals of a clause set can be represented in an undirectedgraph, the so-called connection graph. When a subgoal is selected for an expansionstep during the proof search, it is su�cient to consider the connections involvingthat subgoal.Example 9.1 To demonstrate the concept of the connection graph, we consider theclauses :P (g(x))_:Q(g(x))_:Q(f(x)), Q(x)_:P (f(x)), Q(g(y))_P (f(y)) andP (g(a)). The connection graph of this set of clauses is depicted in Figure 9.3. Theconnections are indicated by the solid lines between the literals. The faint dashedlines show the pairs of literals where, even though they have the same predicatesymbol and complementary signs, the argument terms cannot be uni�ed. Theseliterals are not connected. Thus, when the literal :P (g(x)) has been chosen foran extension step, the clause Q(g(y)) _ P (f(y)) need not be tried.Since the variables in clauses are all implicitly universally quanti�ed, the con-nections between literals are independent of any instantiations applied during theproof search. Therefore, the computation of the literal connections can be donestatically and used as a �lter. If there is a connection between two literals P andQ, then P is also said to have a link to Q and vice versa. The links of a literalare stored in its link list. The link lists for the literals in Example 9.1 are:P (g(a)): [:P (g(x))]:P (g(x)): [P (g(a))]:Q(g(x)): [Q(g(y)); Q(x)]:Q(f(x)): [Q(x)]Q(x): [:Q(g(x));:Q(f(x))]:P (f(x)): [P (f(y))]P (f(y)): [:P (f(x))]Q(g(y)): [:Q(g(x))]The problem of generating clause variantsOne of the main di�culties when implementation connection tableaux is how toprovide renamed variants of input clauses e�ciently, because in every extensionstep a new variant of an input clause is needed. It is obvious that the generation ofa new variant of an input clause by copying the clause and replacing its variablesconsistently with new ones is an expensive operation, all the more since variablesare shared and it is not a tree that has to be copied but a graph. The search for ane�cient solution of this problem naturally leads to the use of Prolog technology.

9.2. PROLOG TECHNOLOGY THEOREM PROVING 167:P (g(x)) _ :Q(g(x)) _ :Q(f(x))P (g(a)) Q(x) _ :P (f(x))Q(g(y)) _ P (f(y))Figure 9.3: The connection graph for the set of clauses :P (g(x)) _ :Q(g(x)) _:Q(f(x)), Q(x) _ :P (f(x)), Q(g(y)) _ P (f(y)) and P (g(a)).9.2 Prolog Technology Theorem ProvingOne reason for the high e�ciency of current Prolog systems is the fact that manyof the operations to be performed in SLD-resolution steps can be determined inadvance depending on the respective clause and its entry literal. This informationcan be used for compiling every Prolog input clause A :- A1,. . . ,An (which cor-responds to the clause A_�A1 _ � � � _�An with entry literal A) into proceduresof some actual or virtual machine. Since SLD-resolution steps are nothing butextension steps, this technique can also be applied to connection tableaux. The�rst to use such a compilation method for connection tableaux was Mark Stickel[Stickel, 1984] who called his system a PTTP, a Prolog Technology TheoremProver.In summary, the main de�ciencies of Prolog as far as �rst-order automatedreasoning is concerned are the following:1. the incompleteness of SLD-resolution for non-Horn formulae,2. the unsound uni�cation algorithm, and3. the unbounded depth-�rst search strategy.To extend the reasoning capabilities of Prolog to full connection tableaux, itis necessary to extend SLD-resolution to the full extension rule and to add thestart rule and the reduction rule.ContrapositivesIn order to implement the full extension rule and further permit the compilationof input clauses into e�cient machine procedures, one has to account for the factthat a clause may be entered at every literal. Accordingly, one has to consider allso-called contrapositives of a clause L1_� � �_Ln, i.e., the n Prolog-style strings ofthe form Li :- �L1,. . . ,�Li�1,�Li+1,. . . ,�Ln. The start rule can also be capturede�ciently, by adding, for every input clause L1 _ � � � _ Ln, a contrapositive of

168 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXthe form ? :- �L1,. . . ,�Ln. Now, with the Prolog query ?- ? as the single startclause, all start steps can be simulated with extension steps. As a matter of fact,one can use relevance information here and construct such start contrapositivesonly for those subset of the input formulae which are known to contain a relevantstart clause; by default, this will be the set of all-negative input clauses.Uni�cation in PrologProlog by default uses a uni�cation algorithm that is designed for maximume�ciency but that can lead to incorrect results. A Prolog program likeX < (X + 1).:- (Y + 1) < Y.can prove that there is a number whose successor is less than itself; the reason forthe unsoundness is that no occurs-check is performed in Prolog uni�cation. Sincethe compilation of extension steps into machine procedures also concerns partsof the uni�cation, this compilation process has to be adapted such that sounduni�cation is performed. In special cases, however, e�ciency can be preserved,for example, if the respective entry literal L is linear , i.e., if every variable occursonly once in L. It is straightforward to recognize that in this case, no occurs-check is needed in extension steps and the highly e�cient Prolog uni�cation canbe used. For the general case, an optimal method exploits this optimization bydistinguishing the �rst occurrence of a variable in a literal from all subsequentones. For every �rst occurrence, the occurs-check may be omitted. In Table 9.2,a procedure is shown which performs an extension step including the generationof a new clause variant in a very e�cient manner.Path information and other extensionsUnfortunately, for the implementation of the reduction inference rule, one def-initely has to provide additional data structures. While in SLD-resolution theancestor literals of a subgoal are not needed, for connection tableaux, the tableaupaths have to be stored and every subgoal must have access to its path. Thisadditional e�ort cannot be avoided. On the other hand, access to the ancestors ofa subgoal is necessary for the implementation of basic re�nements like regularity,which is also very e�ective in the pure Horn case.Finally, the unbounded depth-�rst search strategy of Prolog has to be ex-tended to incorporate completeness bounds like the inference bound, the depthbound or other bounds discussed in Section 3.3.1. Depending on the used bounds,one has to use di�erent data structures. In order to capture bounds which allocateremaining resources directly to subgoals like the depth bound, every subgoal hasto be additionally labelled with its current depth. For the inference bound oneneeds a global counter. Interestingly, the multiplicity bound is not at all com-patible with standard Prolog technology. This is because Prolog has no naturalmechanism for instantiating input clause.

9.2. PROLOG TECHNOLOGY THEOREM PROVING 169
Contrapositive: P (a; f(x; x)) :- Q(b; g(g(x)))procedure P(arg1,arg2)variable x,tq ,arg21,arg22,trail position;x := new free variable;arg1 = binding(arg1);/* mark trail position */trail position := trailmarker;/* unify clause head: check first arguments */if (is var(arg1) or (is const(arg1) and arg1 == a)) thenif (is var(arg1)) then bind(arg1,a);endif;/* first arguments unifiable, check second arguments */arg2 = binding(arg2);if (is var(arg2)) thenbind(arg2,make complex term(f; x; x));tq := make complex term(g, make complex term(g; x));add subgoal(Q(b; tq));next subgoal;elseif (is complex term(arg2) and functor(arg2) == f) thenarg21 := binding(get arg(arg2,1));arg22 := binding(get arg(arg2,2));if (unify(arg21,arg22)) thentq := make complex term(g, make complex term(g; arg21));add subgoal(Q(b; tq));next subgoal;endif;endif;endif;/* undo variable bindings made in this procedure */unbind(trail position);Table 9.2: Compilation of a contrapositive into a procedure.

170 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX9.3 Extended Warren Machine TechnologyThe main problem of a two-step compilation, �rst to some real programminglanguage and then to native code, is that the second compilation process takestoo much time for typical applications, which require a quick response time. Inorder to avoid the second compilation phase, an interpreter for the code generatedin the �rst compilation phase has to be used. Since not the full expressive power ofan actual programming language is needed, this has motivated the developmentof a very restricted abstract language tailored speci�cally for the processing ofProlog respectively connection tableaux. We begin with outlining the basics ofsuch a machine for Prolog (see [Warren, 1983] and [Schumann, 1991] for a moredetailed description).9.3.1 The Warren Abstract MachineD.H.D. Warren developed a virtual machine for the execution of Prolog pro-grams [Warren, 1983] which is called the Warren Abstract Machine (WAM).It combines high e�ciency, good portability, and the possibility for compilingProlog programs. The WAM is used widely and has become a kernel for com-mercial Prolog systems implemented as software emulation or even micro-coded[Taki et al., 1984, Benker et al., 1989] on dedicated hardware. The WAM is struc-tured as a register-based multi-memory machine as shown in Figure 9.4. Its mem-ory holds the program (as a sequence of WAM instructions) and data. The register�le keeps a certain set of often used data and control information. The WAM in-struction, which is located in the memory at the place where the program counterregister points to, is fetched and executed by the control unit.REGISTERS
CONTROL UNIT tagged MEMORYSTACKHEAPTRAILFigure 9.4: The Warren Abstract Machine.We will describe now how a Prolog program is compiled into machine instruc-tions of the WAM. We begin with the special case of a deterministic programwhich corresponds to a situation in which there is only one possibility for ex-tending the current subgoal. In this case no backtracking inside the clause isneeded. As already noted, the respective tableau is generated using a depth-�rstleft-to-right selection function. Then the program can be executed in the same

9.3. EXTENDED WARREN MACHINE TECHNOLOGY 171manner as in a procedural programming language, that is, the head of a clauseis considered as the head of a procedure and the subgoals as the procedure callsof other procedures (the parameter passing, however, is quite di�erent). Accord-ingly, this can be implemented on a machine level exactly in the way it is donein functional or procedural languages, using a stack with environment controlblocks which hold the control information (return address, dynamic link) and thelocal variables. Details about this can be found e.g. in [Aho and Ullman, 1977].The local variables are addressed using a register E pointing to the beginning ofthe current environment. A Horn clause H :- G1,...,Gn. is executed using thefollowing instructions1.H: % entry point for clause H.allocate % generate new environment (on stack) with space for locals... % pass parameters (discussed below)... % set parameters for G1 (discussed below)call G1 % call �rst subgoal, remember return address AA: % set parameters for Gn (discussed below)call Gn % call last subgoal, remember return addressdeallocate % deallocate control block and returnEach environment contains a pointer to the previous environment (dynamiclink). The entire list represents the path from the root to the current node inthe tableau, the return addresses in the environments point to the code of thesubgoals. The program terminates when the last call in the query returns.The parameters of the head and the subgoals of the clauses are terms in alogical sense consisting of constants, logical variables, lists2, and structures (com-plex terms). A Prolog term is represented by a word of the memory, containinga value and a tag. The tag distinguishes the type of the term, namely reference,structure, list, and constant. The tag type \reference" is used to represent the(logical) variables. Structures are represented in a non structure-sharing manner,i.e. they are copied explicitly with their functors.For the purposes of parameter passing, the WAM uses two sets of registers, theregisters A1; : : : ; An for keeping parameters and temporary registers T1; : : : ; Tn.When a subgoal is to be called, its parameters are provided in the registers Aiby using put instructions. There exists one put instruction for each data type. Inthe head of a clause, the parameters in the A registers are fetched and matchedagainst the respective parameter of the head, using a get or unify instruction.Here again, a separate instruction for each data type is provided. The matchingalgorithm has to check if constants and functors are equal. If a variable has to bebound to a constant, the value of the constant and the tag \constant" is writteninto the memory location where the variable resides; if the variable is bound toa structure, a pointer to that structure is written into the variable cell, togetherwith the tag \reference". Structures itself are created in a separate chunk of thememory, the heap, which permits a permanent storage of those data.1Actually, the WAM provides a number of di�erent instructions for the sake of optimization,e.g., for tail recursion elimination. Here, only the basic instructions are described.2A list is considered as a data type of its own for reasons of e�ciency. A list could also berepresented as a binary structure: list(Head; Tail) similar to the Lisp function cons.

172 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXThe following example illustrates the usage of the instructions for parameterpassing. Let us assume that a subgoal P (a; z) calls a head of a clause P (a; [xjy]) :-: : : The variables reside in the environment control block and are accessed via ano�set from the register E pointing to the current environment. In [Warren, 1983]they are noted as Y1,. . . ,Yn.put_constant a,A1 % put first parameter (constant a) into register A1put_variable Y4,A2 % put variable z (in variable cell #4) into A2call P % call the "P-clause"P: allocate 2 % allocate space for 2 variablesget_const a,A1 % try to unify 1st parameter with constant aget_list A2 % get second argument: must be a list or variableunify_variable Y1 % unify with variable z (in local cell #1)unify_variable Y2 % unify with variable z (in local cell #2)... % body of clause comes hereThe last example also shows that the get and unify instructions must operatein two modes (\read",\write") according to the type of parameter they receive.If the variable z in the subgoal has been bound to some list prior to this call, forexample, to [a|b], then the list is broken apart by the get list instruction andx and y in the head are bound to a respectively to b (read mode). If, however, z inthe subgoal has not yet been bound to a list, a new list, consisting of two variablesis created on the heap by the instructions get list and unify variable (writemode). Note that the creation on the heap is necessary, since the newly createdlist has to stay in existence even after the execution of the clause P.Finally, let us consider the full case of nondeterministic programs, in which asubgoal is connected to more than one clause head. Now backtracking is needed.Backtracking is implemented by means of so-called choice points, control blockswhich hold all the information for undoing an inference step. These choice pointsare pushed onto the stack. The basic information of a choice point is a linkto its predecessor, a code address to the entry point of the next clause to beattempted, and the information that is needed to undo all tried extension stepssince that choice point was created. This involves a copy of all registers of theWAM as well as the variables which have been bound since the generation ofthe choice point. For the latter purpose a trail is used, in the same manner asdescribed in Section 9.1. Whenever a backtracking action has to be performed,all registers from the current choice point are loaded into the WAM, all stackmodi�cations are undone, and the respective variables are unbound. Then thenext clause is attempted. The WAM contains a last alternative optimization,according to which the choice point can be discarded if the last extension clauseis tried. The list of di�erent possibilities is coded by the instructions try me else,and trust me else fail, the latter representing the last alternative. Assumingthat there be three clauses c1, c2, c3 for extension, the compiled code is shownbelow....

9.3. EXTENDED WARREN MACHINE TECHNOLOGY 173call P % call the P-clausesP: % generate a choice-point.c123:try_me_else C2a % try c1; if this fails, try c2c1: ... % code of clause c1c2a:try_me_else C3a % try c2; if this fails, try c3c2: ... % code of clause c2c3a:trust_me_else_fail % there is only one alternative leftc3: ... % code of clause c3The WAM has some additional instructions for optimization which we willmention brie
y. First, a dynamic preselection on the data type of the �rst pa-rameter is done (switch on term). Its arguments give entry points of lists ofclauses which have to be tried according to the type of the �rst parameter of thecurrent subgoal (variable, constant, list, structure). Also hash tables are used forthe selection of a clause head. This is useful when there is a large number of headliterals with constants as �rst arguments.9.3.2 The SETHEO Abstract MachineMotivated by the architecture of the WAM, the connection tableau prover SETHEO[Letz et al., 1992] has been implemented. The central part of SETHEO is theSETHEO Abstract Machine (SAM), which is an extension of the WAM. Theconcepts introduced there had to be extended and enhanced for attaining a com-plete and sound proof procedure for the full connection tableau calculus, and forfacilitating the use of advanced control structures and heuristics. The layout ofthe abstract machine is basically the same as in Figure 9.4, except that addi-tional space is reserved for the proof tree and the constraints, which are discussedin Chapter 10. The proof tree stores the current state of the generated tableau,which can be displayed graphically to illustrate the structure of the proof. Addi-tionally, there are global counters, e.g., for the number of inferences performed.The reduction stepTo successfully handle non-Horn clauses in connection tableaux, extension stepsand reduction steps are necessary. A subgoal in the tableau can be closed by areduction step if there exists a complementary uni�able literal in the path fromthe root to the current node. The resulting substitution � is then applied to theentire tableau. How can such a step be implemented within the concepts of anabstract machine? As described above, the tableau is implicitly represented inthe stack of the machine, using a linked list of environment control blocks. Thislinked list just represents the path from the root of the tableau to the current

174 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXnode3. Thus, the instruction executing the reduction step searches through thislist, starting from the current node, to �nd a complementary literal which isuni�able with the current subgoal. The respective uni�cation is carried out in thestandard way. This procedure, however, requires that additional information mustbe stored in each environment, namely, the predicate symbol of the head literalof a contrapositive, its sign, and a pointer to the parameters of that literal. Thedetailed structure of an environment of the SAM is displayed in Figure 9.5, thebase pointer points to the current environment in the stack.base pointer ! dyn link link to previous environmentret addr return addressps symb coded predicate symbol and signgpr pointer to goal environment in the codevariables local variables for that clause. . .Figure 9.5: The SAM environment.The reduction inference rule itself is nondeterministic in the sense that asubgoal may have more than one connected predecessor literal in the path. Hence,we have to store an additional pointer in every choice point, pointing to theenvironment which corresponds to the node which has to be tried in the nextreduction step.E�ciency considerationsTo increase the e�ciency of the SETHEO machine, a tagged memory is used.The basic types of variables, terms, constants and reference cells, which are usedin the Warren abstract machine, are divided into further subtypes in order togain a better performance (compare also [Vlahavas and Halatsis, 1987]). Thus,for instance, the type `variable' has the subtypes: `free variable' (T FVAR), `tem-porary variable' (T TVAR), and `bound variable', i.e. a reference cell (T BVAR).Also complex terms are tagged di�erently depending on whether they containvariables or not. The additional information contained in these tags can be usedfor optimizing the uni�cation operation.Parameter transferIn the original WAM, parameters from a subgoal to a head of a clause are trans-ferred via the Ai registers. As a minimal number of registers and a variablenumber of parameters were required, this solution was not suitable. Instead,3For this, no tail recursion optimization may be performed as it is done in the WAM. Thisoptimization tries to delete environments as soon as possible, e.g., before executing the lastsubgoal of a clause.

9.4. PROLOG AS IMPLEMENTATION LANGUAGE 175the parameters are transferred via an argument vector. This originates from[Vlahavas and Halatsis, 1987], but it had to be adapted. The number of param-eters of a subgoal and their types are �xed. The only exception are variables,which may be unbound or bound to an arbitrary term. Consequently, an argu-ment vector is generated during compile time in the code area which containsthe values and data types of the parameters. In case of variables an o�set intothe current environment is given. When dereferencing this address, the bindingof the variable can be accessed. The only information directly passed during theexecution of a call instruction is the address of the beginning of this argumentvector. It is put into the register gp (goal pointer). After the selection of a clausehead, the parameters of the subgoal are uni�ed with the parameters of the head.For each parameter in the head, a separate unify instruction is used. It attemptsto unify the respective parameter with the parameter gp points to. In case ofsuccess, gp is incremented. The following example shows the construction of theargument vector. Consider a subgoal P (a; x; f(x)). It will generate something likethe following argument vector consisting of three words.gp: T_CONST 16 % 1st argument: constant a as index into symbol tableT_VAR1 1 % 2nd: variable x with offset 1 (w.r.t.\ environment)T_CREF term1 % 3rd: pointer to term f(x)...term1: T_NGTERM 17 % functor f with index 17T_VAR2 1 % variable x (second occurrence)T_EOSTR 0 % end of the structure9.4 Prolog as Implementation LanguageThe preceding parts have shown that it is a considerable e�ort to implement con-nection tableaux by extending Prolog technology. Since SLD-resolution is verysimilar to connection tableaux, many newer implementations of connection tab-leaux are done directly in Prolog. We will consider now the potential of usingProlog as an implementation language. It is straightforward to see that a basicimplementation of connection tableaux can easily be obtained in Prolog. First,we need to provide all contrapositives. Second, the possibility of performing re-duction steps has to be provided. Both can be done in a straightforward way, aswill be demonstrated with the following formula proposed by J. Pelletier in anAAR newsletter. We have written the problem in Prolog-like notation, i.e., withvariables in capital letters and function and predicate symbols in small letters. Asemi-colon is used when more than one positive literal is in a clause.< � p(a,b).< � q(c,d).p(X,Z) < � p(X,Y), p(Y,Z).q(X,Z) < � q(X,Y), q(Y,Z).p(X,Y) < � p(Y,X).p(X,Y) ; q(X,Y) < �.

176 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXThe transformation starts by forming the Horn contrapositives for the inputclauses, as shown in Section 9.2. To simulate the negation sign, predicate sym-bols are preceded with labels, p for positive literals and n for negative literals.Additionally, start clauses are added as Prolog queries.Furthermore, to overcome the incompleteness of Prolog for non-Horn formu-lae, we need to simulate the reduction operation. This is done as follows. First,we are adding the paths as additional arguments to the logical arguments of therespective literals. For optimization purposes, we use two path lists, one for thepositive and one for negative literals in the respective path. In each extensionsteps, the respective path list is extended by the respective literal. Finally, for ac-tually enabling the performance of reduction steps, an additional clause is addedfor each predicate symbol and sign that tries all uni�able literals in the path list.The output then looks as follows.% Start clausesfalse :- p_p(a,b, [],[]).false :- p_q(c,d, [],[]).% Contrapositivesn_p(a,b, P, N).n_q(c,d, P, N).p_p(X,Z, P,N) :- N1 = [p(X,Z) | N], p_p(X,Y, P,N1), p_p(Y,Z, P,N1).n_p(X,Y, P,N) :- P1 = [p(X,Y) | P], n_p(X,Z, P1,N), p_p(Y,Z, P1,N).n_p(Y,Z, P,N) :- P1 = [p(Y,Z) | P], n_p(X,Z, P1,N), p_p(X,Y, P1,N).p_q(X,Z, P,N) :- N1 = [q(X,Z) | N], p_q(X,Y, P,N1), p_q(Y,Z, P,N1).n_q(X,Y, P,N) :- P1 = [q(X,Y) | P], n_q(X,Z, P1,N), p_q(Y,Z, P1,N).n_q(Y,Z, P,N) :- P1 = [q(Y,Z) | P], n_q(X,Z, P1,N), p_q(X,Y, P1,N).p_p(X,Y, P,N) :- N1 = [p(X,Y) | N], p_p(Y,X, P,N1).n_p(Y,X, P,N) :- P1 = [p(Y,X) | P], n_p(X,Y, P1,N).p_p(X,Y, P,N) :- N1 = [p(X,Y) | N], n_q(X,Y, P,N1).p_q(X,Y, P,N) :- N1 = [q(X,Y) | N], n_p(X,Y, P,N1).% Clauses for performing reduction stepsn_p(X,Y, P,N) :- member(p(X,Y), N).p_p(X,Y, P,N) :- member(p(X,Y), P).n_q(X,Y, P,N) :- member(q(X,Y), N).p_q(X,Y, P,N) :- member(q(X,Y), P).member(X,[X | R]).member(X,[Y | R]) :- member(X,R).What is missing in order to perform complete proof search, is the implemen-tation of a completeness bound and the iterative deepening. We consider the

9.5. A DATA-ORIENTED ARCHITECTURE 177case of the tableau depth bound (Section 3.3.1), which can be implemented byadding the remaining depth resource D as an additional argument to the literalsin the contrapositives and start clauses. After having entered a contrapositive, itis checked whether the current depth resource is > 0, in which case it is decre-mented by 1 and the new resource is passed to the subgoals of the clause. Forstart clauses, the depth may be passed unchanged to the subgoals.% for contrapositivesP(...,D) :- D > 0, D1 is D-1, P1(...,D1), ..., Pn(...,D1).% for start clausesfalse(D):- P1(...,D), ..., Pn(...,D).When posing the query, say, false(5), the Prolog backtracking mechanismwill automatically ensure that all connection tableaux up to tableau depth 5are examined. Finally, the iterative deepening is captured by simply adding thefollowing clause to the end of the program.false(D) :- D1 is D+1, false(D1).After having loaded such a program into Prolog (in certain Prolog systemsthe clauses have to be ordered such that all predicates occur consecutively), onecan start the proof search by typing in the query: ?- false(1).For the discussed example, the Prolog uni�cation (which in general is un-sound) poses no problem, since no function symbol of arity > 0 occurs. In thegeneral case, however, one has to use sound uni�cation. Some Prolog systemso�er sound uni�cation, often in various ways. Either the system has a sounduni�cation predicate in its library or sound uni�cation can be switched on bysetting a global
ag. While the latter is more comfortable, it may lead to unnec-essary run-time ine�ciencies, since the occurs-check is always performed even ifit would not be needed according to the optimizations discussed in the previousparts. Such an optimization may also be achieved in a Prolog implementationby linearization of the clause heads (for which then Prolog uni�cation may beused) and a subsequent sound uni�cation of the remaining critical terms (see, forexample, [Plaisted, 1984]).In summary, this illustrates how astoundingly simple it is to implement apure connection tableau proof search procedure in Prolog. Furthermore, suchan implementation also attains a very high performance in terms of inferencesteps performed per second. The approach of using Prolog, however, is becomingmore and more problematic when trying to implement connection tableaux proofprocedures including more advanced search pruning mechanisms like, e.g., failurecaching.9.5 A Data-Oriented ArchitectureThe architectures described so far have all relied on the approach of compiling theinput clauses and some parts of the inference system into procedures, the latter

178 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXcreated Prolog source code, the others native or abstract machine instructions.The inference rules and important subtasks such as the uni�cation algorithm,the backtracking mechanism, or the subgoal processing are deeply intertwinedand standardized in order to achieve high e�ciency. Such an approach is suitablewhen a certain kind of optimized proof procedure has evolved for which no ob-vious improvements are known. In automated theorem proving, however, this isnot the case. New techniques are constantly developed which may lead to signif-icant improvements. Against this background, the most important shortcomingof PTTP provers is their in
exibility. Changing the uni�cation such as to addsorts, for example, or adding new inference rules, e.g., for equality handling, orgeneralizing the backtracking procedure becomes extremely cumbersome if notimpossible in such architectures.Accordingly, as the last of the architectures, we discuss a more natural orstraightforward implementation of the connection tableau procedure, in the sensethat the components of the program are modularized and can be identi�ed morenaturally with their mathematical de�nitions. Since the most important di�erenceto PTTP-style provers is that clauses are represented as data structures and donot become part of the prover program, such an approach will be called a data-oriented proof procedure, as opposed to the clause compilation procedures. Unlikethe WAM-based architectures, which heavily rely on the implicitit encoding ofthe proof in the program execution scheme, here the proof object is the clausaltableau, which is completely stored in memory. Although this leads to a largermemory consumption, it causes no problems in practice, as today's computershave enough main storage space to contain the proof trees for practically allfeasible proof problems. Only very large proofs, that means proofs with morethan, say, 100,000 inferences become unfeasible with the data-oriented concept.But in these cases it is to be expected anyway that the connection tableau calculusis not suitable as a proof system.9.5.1 The Basic Data StructuresThe data objects used in this approach can be distinguished into formula dataobjects and proof data objects. The basic formula data objects are the formula,the clauses, the clause copies and the subgoals. From these, the formula is im-plicitly represented by the set of its clauses (as there is only one input formula).Reasonable data structures for the other objects are given here.Clauses. The most important elements of the clause structure are the originalor generic literals and the list of clause copies used in the proof. Since clausesmay be entered at any subgoal, it is not necessary to compute contrapositives._ ClauseNumber . . . P (x);:Q(y); : : : . . . �Generic literals List of clausecopiesClause copies. In every extension step, a renamed copy of the original clause

9.5. A DATA-ORIENTED ARCHITECTURE 179has to be created and added to the tableau._c sg1,. . . , sgn . . . Clause . . . PathSubgoals PredecessorSubgoals. Subgoal objects contain the information about the literal they rep-resent, i.e. the sign, predicate symbol, the argument terms, etc.sg Sign PredicateSymbol ArgumentTerms Exten-sion ClauseCopy Links Select-ion tag . . .As a matter of fact, additional control information can be included in thesedata objects, which is omitted here for the sake of clarity. Further importantdata structures utilized in the proof process are the variable trail (which wasdescribed in Section 9.1.1) and the list of subgoals. The variable trail is one ofthe few concepts adopted from the Prolog architecture, since some device for thebookkeeping of the variable instantiations is required.
PR :P Q:Q R

Q �� �Figure 9.6: The global subgoal list and the corresponding tableau structure.Global subgoal list. This is the central global data object. It consists of thesequence of subgoals of all clause copies hitherto in the current tableau. Figure 9.6illustrates how the subgoals of the clause copies constitute the global subgoal list.The dotted lines refer to the underlying tree structure, the dashed arrows indicatethe linking between the elements of the global subgoal list. In any inference step,the literal at which an extension or reduction step is performed, is marked asselected, as illustrated in Figure 9.6 as a grey shading over the subgoals.The global access to the list of subgoals liberates us from the need to conformto some sort of depth-�rst search. Instead one can employ a subgoal selection

180 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXfunction that chooses an arbitrary subgoal for the next inference step. This way,new heuristics become feasible that operate globally on the proof object. Forexample, free subgoal reordering can be performed easily.sg + P . . . Exten-sion . . ._c SubgoalVector . . . Path . . .sg1 sg2 sg3 �sg + Q . . . Exten-sion Copy . . .sg � P . . . Exten-sion Copy . . .sg + R . . . Exten-sion Copy . . .

Subgoal Clause CopySubgoalVector
Subgoal Subgoal SubgoalPrevious Subgoal Vector ofGlobal Subgoal List Next Subgoal Vector ofGlobal Subgoal List

Figure 9.7: Cross-referencing between clause copy and subgoal data structures.In Figure 9.7, a detailed snapshot of the subgoal and clause copy data struc-tures of a certain proof state is depicted. The tableau structure is only givenimplicitly. In fact, all information needed for moving through the tableau, as, forinstance, during a folding up operation, is provided by extensive cross-referencingamong the di�erent data objects. The �gure shows the connections between dataobjects of the various kinds (original clauses as data objects are not containedin the tableau). Again, selected subgoals are distinguished by grey shading. Thesubgoal P has been chosen for an extension step with the clause C = fR;:P;Qg.A copy C 0 of C is linked to P via the extension pointer. The subgoals of C 0 are ac-cessible via the subgoal vector pointed to by C 0. This subgoal vector is appendedto the global subgoal list. To allow upward movement through the tableau, thecopy is linked to the extended subgoal, while the new subgoals are linked to theclause copy. The subgoals P and :P are immediately marked as selected, thesubgoal Q becomes selected in the next extension step. It should be noted that,since we rely on clauses instead of contrapositives, the connected literal does not

9.5. A DATA-ORIENTED ARCHITECTURE 181have to be the �rst literal in the clause, as is the case here.9.5.2 The Proof ProcedureTable 9.3 shows a simpli�ed data-oriented proof procedure (not featuring thereduction rule or start clause selection). Based on the connection graph of theinput formula, to each subgoal the list of its links is attached. The proceduresolve explores the search space by successively applying the extension rule usingthe elements in the link list of its subgoal argument sg. The reduction rule canbe incorporated easily as an additional inferential alternative. The procedureextension checks the resource bound, adds the linked clause to the proof tree,and modi�es the global subgoal list. When a literal can be selected, solve is calledagain with the new subgoals, otherwise a proof has been found and the procedureaborts.9.5.3 Reuse of Clause InstancesHow can high performance be achieved with such an architecture? When analyz-ing what is the most expensive procedure in this approach, one easily recognizesthat it is the generation of a new instance of an input clause, which has to beperformed in every extension step. One of the main reasons for the high perfor-mance of the PTTP based connection tableau procedures is that this operationis implemented very e�ciently. But the question is, whether it is really necessaryto generate a new clause instance in every extension step. Typically, proof searchprocedures based on connection tableaux process relatively small tableaux, but alarge amount of them. That is, in theorem proving, the degree of backtracking isextremely high if compared with typical Prolog applications. Many Prolog execu-tions require deep deduction trees including optimizations like tail recursion. Forthose applications, a new generation of clause instances is indispensable. Thisstriking di�erence of the deduction trees considered in Prolog and in theoremproving shows that central ingredients of Prolog technology may not be neededin theorem proving.The key idea for achieving high performance when clause copying is expensiveis the reuse of clause instances. The clause copies created once are not discardedupon backtracking but kept in a list of available copies for later reuse, as illus-trated with the example in Figure 9.8. At startup (sub�gure (a)), one uninstan-tiated copy is provided for each clause. This copy is used in an extension andinstantiated, as shown in sub�gure (b). Now no other copy is available. When theclause is selected for an extension step again, a new copy has to be created. Thissituation is shown in sub�gure (c). When backtracking occurs during the searchprocess and the extension step that initiated the creation of the copy in sub�gure(c) is undone, the copy remains in the list of clause copies and only the pointerto the next available copy is moved backward. This situation is displayed in sub-�gure (d). This way, over the duration of the proof, a monotonically growing listof clause copies is built and in most cases clause copies can be reused instead of

182 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX
procedure solve(sg, links, resource)if (links 6= ;) thenextension(sg, �rst(links), resource);/* try next alternative */solve(sg, rest(links), resource);endif;procedure extension(sg, link, resource)dec resource := decrement resource(resource);if (dec resource > 0) thenclause := new clause copy(link);head := head(clause, link);trail pos := trailmarker;if (unify literals(�sg, head)) thenold subgoals := subgoals;make new subgoals(clause, sg, head);new sg := select subgoal;if (new sg)new links := links(new sg);new resource := resource(new sg);solve(new sg, new links, new resource);elseproof found;abort;endif;/* backtracking */unbind(trailpos);subgoals := old subgoals;endif;endif;Table 9.3: A rudimentary connection tableau proof procedure.

9.6. EXISTING CONNECTION TABLEAUX IMPLEMENTATIONS 183fp(X);:q(Y)g �fp(X0);:q(Y 0)gNext available copy fp(X);:q(Y)g �fp(a);:q(b)gfp(c);:q(d)gNext available copyfp(X);:q(Y)g �fp(a);:q(b)gfp(c);:q(d)gfp(c);:q(d)gNext available copy fp(X);:q(Y)g �fp(a);:q(b)gfp(X00);:q(Y 00)gNext available copy(a) (b)
(c) (d)Figure 9.8: Clause instance creation and availability during backtracking.having to be created. As a matter of fact, this requires that all variable bindingshave to be retracted. But when using destructive uni�cation and the trail conceptthis can be done very e�ciently. Experimental results have shown that with suchan architecture inference rates may be obtained that are comparable to the onesachieved with PTTP implementations.9.6 Existing Connection Tableaux Implementa-tions Connection Tableauxproof proceduresPTTPCompilingnativePTTP '88 virtualSETHEOMETEOR PrologProteinPTTP '92KoMeT

Data-oriented ImplementationScheme-SETHEO
Figure 9.9: An overview of the architectures of connection tableaux systems.In Figure 9.9, existing implementations of connection tableaux are classi�edaccording to the distinctions used in this section. The references for the de-

184 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUXpicted systems are: PTTP '88 [Stickel, 1988], SETHEO [Letz et al., 1992], ME-TEOR [Astrachan and Loveland, 1991], Protein [Baumgartner and Furbach, 1994],PTTP '92 [Stickel, 1992], KoMeT [Bibel et al., 1994], Scheme-SETHEO (see Sec-tion 9.5).

Chapter 10Constraint TechnologyWhen considering the presented tableau re�nements like regularity, tautology,or subsumption freeness, the question may be raised whether it is possible withtenable cost to check these conditions after each inference step. Note that auni�cation operation in one part of a tableau can produce instantiations whichmay lead to an irregularity, tautology, or subsumed clause in another distantpart of the tableau. The structure violation can even concern a closed part ofthe tableau. Fortunately, there exists a uniform and highly e�cient techniquefor implementing many of the presented search pruning mechanisms, namely,syntactic disequation constraints.10.1 Reformulating Re�nements as ConstraintsTautology eliminationLet us illustrate the technique �rst at the example of dynamic tautology elimina-tion. Recall that certain input clauses may have tautological instances, which canbe avoided as tableau clauses. When considering the transitivity clause :P (x; y)_:P (y; z) _ P (x; z) from above, there are two classes of instantiations which mayrender the formula tautological. Either x and y are instantiated to the same term,or y and z. Obviously, the generation of a tautological instance can be avoidedif the uni�cation operation is constrained by forbidding that the respective vari-ables be instantiated to the same terms. In general, this leads to the formulationof disequation constraints of the form s1; : : : ; sn 6= t1; : : : ; tn where the si and tiare terms. Alternatively, one could formulate this instantiation prohibition as adisjunction s1 6= t1 _ � � � _ sn 6= tn. A disequation constraint is violated if everypair hsi; tii in the constraint is instantiated to the same term. For the transitivityclause, the two disequation constraints x 6= y and y 6= z can be generated andadded to the transitivity formula. The non-tautology constraints for the formulaeof a given input set can be generated in a preprocessing phase before startingthe actual proof process. Afterwards, the tableau construction is performed with185

186 CHAPTER 10. CONSTRAINT TECHNOLOGYconstrained clauses. Whenever a constrained clause is to be used for tableauexpansion, the formula and its constraints are consistently renamed, the tableauexpansion is performed with the clause part, and the constraints are added. If theconstraints are violated, then a tautological tableau clause has been generated,in which case one can immediately perform backtracking.RegularityRegularity can also be captured using disequation constraints. In contrast tonon-tautology constraints, however, regularity constraints have to be generateddynamically during the proof search. Whenever a new renamed variant c of a(constrained) clause is attached to a branch in an extension step, then, for everyliteral L with argument sequence s1; : : : ; sn in the clause c and for every branchliteral with the same sign and predicate symbol with arguments t1; : : : ; tn, adisequation constraint s1; : : : ; sn 6= t1; : : : ; tn must be generated.Tableau clause subsumptionTableau clause subsumption is essentially treated in the same manner as tautol-ogy elimination. Recall the example from Section 5.1.3 where in addition to thetransitivity clause a unit clause P (a; b) is assumed to be in the input set. Then, thedisequation constraint x; z 6= a; b may be generated and added to the transitivityclause. Like non-tautology constraints, non-subsumption constraints can be com-puted and added to the formulae in the input set before the actual proof processis started.1 Interestingly, this mechanism does not capture every case of tableauclause subsumption, as illustrated with the following example. Assume that thetransitivity clause and a unit clause P (f(v); g(v)) be contained in the input set.In analogy to the other example, a disequation constraint x; z 6= f(v); g(v) couldbe added to the transitivity formula. But now the constraint contains the variablev, which does not occur in the transitivity clause. Since clauses (and their con-straints) are always renamed before being integrated into a tableau, the renamingof the variable v will occur in the constraint only and nowhere else in the tableau.Consequently, this variable can never be instantiated by tableau inference steps,so that the constraint can never be violated and is therefore absolutely uselessfor search pruning. Clearly, the case of full subsumption cannot be captured inthis manner. What the constraint mechanism should avoid is that x and z beinstantiated to any terms which have the structures f(t) and g(t), respectively,regardless what t is. This can be conveniently achieved by using universal vari-ables in addition to the rigid variables. The respective disequation constraint thenreads 8v x; z 6= f(v); g(v), which is violated exactly when x and z are instantiatedto any terms of the structures f(s) and g(t) with s = t.1Note, however, that due to the NP-completeness of subsumption, it might be necessary notto generate all possible non-subsumption constraints, since this could involve an exponentialpreprocessing time.

10.2. DISEQUATION CONSTRAINTS 18710.2 Disequation ConstraintsAfter this motivation for the potential of constraints, we will now more rigourouslypresent the framework of disequation constraints, with respect to their use inpruning tableau proof search.De�nition 10.1 (Disequation constraint) A disequation constraint C is either trueor of the form 8u1 � � � 8um l 6= r (m � 0) with l and r being sequences of termss1; : : : ; sn respectively t1; : : : ; tn (n � 0); for any disequation constraint C of thelatter form, l 6= r is called the kernel of C, n its length, u1; : : : ; um its universalvariables, and the disequation constraints si 6= ti are termed the subconstraintsof C. Occasionally, we will use the disjunctive form of a disequation constraintkernel, which is s1 6= t1 _ � � � _ sn 6= tn.An example of a disequation constraint of length one and with one universalvariable is 8z f(g(x; a; f(y)); v) 6= f(g(z; z; f(z)); v):Since all considered constraints will be disequation constraints, we will simplyspeak of constraints in the sequel. Next, we consider what it means that a sub-stitution violates a constraint.De�nition 10.2 (Constraint violation, equivalence) No substitution violates theconstraint true. A substitution � violates a constraint of the form 8u1 � � � 8um l 6= rif there is a substitution � with domain u1; : : : ; um such that l�� = r��. Whena violating substitution exists for a constraint, we say that the constraint can beviolated ; a constraint is violated, if all substitutions violate it. Two constraintsare equivalent if they have the same set of violating substitutions.For example, the substitution � = fx=f(a)g violates the constraint 8y x 6=f(y), since x�� = f(y)�� for � = fy=ag.10.2.1 Constraint NormalizationThe question is, how the violation of a constraint may be detected in an e�cientmanner? The basic property that permits an e�cient constraint handling is thatconstraints can often be simpli�ed. For example, the complex constraint givenafter De�nition 10.1 is equivalent to the simpler constraint x; y 6= a; a, whichobviously can be handled more e�ciently. Constraints can always be expressedin a speci�c form.De�nition 10.3 (Constraint in solved form) A constraint is in solved form if it iseither true or otherwise its kernel has the form x1; : : : ; xn 6= t1; : : : ; tn where allvariables on the left-hand side are pairwise distinct and non-universal (i.e., donot occur in the quanti�er pre�x of the constraint), and no variable xi occurs interms of the right-hand side.

188 CHAPTER 10. CONSTRAINT TECHNOLOGYFor example, the constraint x; y 6= a; a is in solved form whereas the equivalentconstraint x; y 6= y; a is not. Every constraint can be rewritten into solved formby using the following nondeterministic algorithm.De�nition 10.4 (Constraint normalization) Let C be any disequation constraintas input. If the constraint is true or the two sides l and r of its kernel are notuni�able, then the constraint true is a normal form of C. Otherwise, let � be anyminimal uni�er for l and r that contains no binding of the form x=u where u is auniversal variable of C and x not. (Such a minimal uni�er always exists if l andr are uni�able.) Let fx1=t1; : : : ; xn=tng be the set of all bindings in � with the xibeing non-universal in C, and let u1; : : : ; um be the universal variables in C thatoccur in some of the terms ti. The constraint 8u1 � � � 8um x1; : : : ; xn 6= t1; : : : ; tnis a normal form of C.Note that, for preserving constraint equivalence and for achieving solved form,the use of a minimal uni�er is needed in the procedure, employing just mostgeneral uni�ers will not always work. Consider, for example, the constraint f(y) 6=x and the most general uni�er fx=f(x); y=xg. This would yield the constraintx; y 6= f(x); x as a normal form, which is not equivalent to f(y) 6= x and whichcannot even be violated.Let us illustrate the e�ect of the normalization procedure by applying it to thecomplex constraint 8z f(g(x; a; f(y)); v) 6= f(g(z; z; f(z)); v) mentioned above.First, we obtain the minimal uni�er fx=a; z=a; y=ag. Afterwards, the binding z=ais deleted, since z is universal, which eventually yields the normal form constraintx; y 6= a; a. As shown with this example, in the normalization process some con-straint variables may vanish. On the other hand, the length of a constraint mayincrease during normalization.Proposition 10.5 Any normal form of a constraint C is in solved form and equiv-alent to C.Proof If C is true or if the two sides of its kernel are not uni�able, then thenormal form of C is true, which is in solved form and equivalent to C. It remainsto consider the case of a constraint C = 8u1 � � �um l 6= r with uni�able l andr. When normalizing C according to the procedure in De�nition 10.4, �rst, aminimal uni�er � for l and r is computed which does not bind non-universalvariables to universal ones. The kernel l0 6= r0 of the corresponding normal formC 0 of C contains exactly the subconstraints xi 6= ti for every binding xi=ti 2 �with non-universal xi. Since minimal uni�ers are idempotent, no variable in thedomain of � occurs in terms of its range. Therefore, C 0 is in solved form. Forconsidering the equivalence of C and C 0, �rst note the following. Since � is aminimal uni�er for l and r, it is idempotent and more general than any uni�erfor l and r. Therefore, a substitution � uni�es l and r if and only if, for everybinding v=s 2 �, v� = s�. Let now � be any substitution.1. If � violates C, then there exists a substitution � with domain fu1; : : : ; umgand l�� = r��. Therefore, for any binding v=s 2 �, v�� = s��, i.e., �� is a

10.3. IMPLEMENTING DISEQUATION CONSTRAINTS 189uni�er for l0 and r0. Let � 0 be the set of bindings in � with domain variablesoccurring in C 0. Then � 0� uni�es l0 and r0. Consequently, � violates C 0.2. If � violates C 0, then there exists a substitution � with its domain being theuniversal variables in C 0 and l0�� = r0��. Let �0 be the set of bindings in� which bind universal variables. Then, for any binding v=s 2 �, v�0�� =s�0��, and hence �0�� uni�es l and r. Since �0� is a substitution withdomain fu1; : : : ; umg, � violates C.10.3 Implementing Disequation ConstraintsWe will discuss now how the constraint handling can be e�ciently integratedinto a model elimination proof search procedure. First, we consider the problemof generating constraints in normal form.10.3.1 E�cient Constraint GenerationUni�cation is a basic ingredient of the normalization procedure mentioned above.In the successful implementations of model elimination, a destructive variantof the uni�cation procedure speci�ed in Table 9.1 is used. If slightly extended,this procedure can also be used for an e�cient constraint generation. First, onemust be able to distinguish universal variables from non-universal ones. The bestway to do this is to extend the internal data structure for variables with anadditional cell where it is noted whether the variable is universal or not. Theadvantage of this approach is that the type of a variable may change duringthe proof process which nicely goes together with the feature of local variablesmentioned in Section 6.3. Then, the mentioned uni�cation operation must bemodi�ed in order to prevent that a non-universal variable is bound to a universalone. After these modi�cations, the generation and normalization of a constraintcan be implemented e�ciently by simply misusing the new uni�cation procedure,as follows.De�nition 10.6 (Constraint generation) Given any two sequences l and r of termsthat must not become equal by instantiation.1. Destructively unify l and r and push the substituted variables on the trail.2. Collect the respective bindings of the non-universal variables only.3. Finally undo the uni�cation.After that the term sequences l and r are in their original form, and the collectedbindings represents the desired disequation constraint in normal form.

190 CHAPTER 10. CONSTRAINT TECHNOLOGY10.3.2 E�cient Constraint PropagationDuring proof search with disequation constraints, every tableau is accompaniedby a set of constraints. When an inference step is performed, it produces a sub-stitution which is applied to the tableau. In order to achieve an optimal pruningof the search space, after each inference step, it should be checked whether thecomputed substitution violates one of the constraints of the tableau. If so, therespective inference step can be retracted, we call this a constraint failure. If not,the substitution � has to be propagated to the constraints, i.e., every constraintC has to be replaced by C� before the next inference step is being executed. Asa matter of fact, if some of the new constraints can no more be violated, theyshould be ignored for the further proof attempt. This is important for reducingthe search e�ort, since normally, a wealth of constraints will be generated duringproof search.If the constraints are always kept in normal form, then the mentioned opera-tions can be performed quite e�ciently. Assume, for example, that a substitution� = fx=ag is applied to the current tableau. Then it is obvious that all con-straints in which x does not occur on the left-hand side may be ignored. In caseno constraint of the current tableau is violated by the substitution �, for everyconstraint C containing x on the left-hand side, a new constraint C� has to becreated and afterwards normalized, which is still a considerable e�ort. In order todo this e�ciently, new constraints should not be generated explicitly, but the oldconstraints should be reused and modi�ed appropriately. For this purpose, it ismore comfortable to keep the constraints in disjunctive form. Then, for any suchconstraint C, only the respective subconstraint (x 6= t)� needs to be normalizedto, say C 0, and the former subconstraint x 6= t in C can be replaced with thesubconstraints of C 0. This operation may also change the actual length of the for-mer constraint. In summary, this results in the following procedure for constraintpropagation.De�nition 10.7 (Constraint propagation) All constraints are assumed to be nor-malized and in disjunctive form. Suppose a substitution � = fx1=s1; : : : ; xn=sngis performed during the tableau constraints, then successively, for every sub-constraint Ci = xi=ti (i.e., with xi in the domain of �) of every constraint C,compute the normal form C 0i of si 6= ti� with length, say k, and perform thefollowing operation:1. if C 0i = true, ignore C for the rest of the proof attempt (it cannot be vio-lated),2. if k = 0, decrement the actual length of C by 1; if the actual length 0 isreached, perform backtracking (the constraint is violated),3. otherwise replace Ci with C 0i and modify the actual length of C by addingk � 1.In order to guarantee e�ciency, all modi�cations performed on the constraintshave to be stored intermediately and undone on backtracking.

10.3. IMPLEMENTING DISEQUATION CONSTRAINTS 19110.3.3 Internal Representation of ConstraintsObviously, a precondition for the e�ciency of the constraint handling is a suit-able internal representation of the constraints. When analyzing the describedconstraint handling algorithms, one has to satisfy the following requirements.1. after the instantiation of any variable x, a quick access to all subconstraintsof the form x 6= t is needed.2. if a subconstraint Ci of a constraint C is violated, it must be easy to checkwithout considering the other subconstraints of C whether C is violated.3. whenever a subconstraint Ci of a constraint C normalizes to true, then itmust be easy to deactivate C and all other subconstraints of C.nil x1 � : : : nil xn �n active � � � : : : � � �Constraintheader 1st sub-constraint nth sub-constraintprevioussubconstraintof x1 previoussubconstraintof xns1 snFigure 10.1: Internal representation of a constraint x1; : : : ; xn 6= s1; : : : ; sn.This can be achieved by using a data structure as displayed in Figure 10.1. Inorder to have immediate access from a variable x to all subconstraints of the formx 6= t, it is reasonable to maintain a list of the subconstraints corresponding toeach variable. The best solution is to extend the data structure of a variable by apointer to the last element in its subconstraint list. From this subconstraint theprevious subconstraint of x can be accessed, and so forth. (The aforementionedtag which expresses whether a variable is universal or not is omitted in the �gure.)A constraint itself is separated into a constraint header and its subconstraints.The header contains the actual length of the constraint and a tag whether theconstraint is already true or whether it can still be violated (active). From eachsubconstraint there is a pointer to the respective constraint header. If now asubconstraint is violated, then the length counter in the header is decrementedby 1. If, on the other hand, a subconstraint normalizes to true, then the tag inthe header is set to true. Because of the shared data structure, both modi�ca-tions are immediately visible and can be used from all other subconstraints ofthe constraint. Interestingly, an explicit access from a constraint header to itssubconstraints is not needed.It is comfortable to reserve a special part of the memory for the representa-tion of constraints, which we call the constraint stack. In order to comprehendthe modi�cations of the constraint stack during the proof process for the case of a

192 CHAPTER 10. CONSTRAINT TECHNOLOGYnil x nil f � � nil v nil nil w nil(a)nil x � f � � nil v nil nil w nil1 active � � nilConstraint stack (b)� x � f a b f � � nil v � nil w �2 active � � nil a � nil b � nilConstraint stack
(c)Figure 10.2: The constraint stack.more complex normalization operation, consult Figure 10.2. Assume we are givena tableau with subgoals P (x) and :Q(x) and a predecessor literal P (f(v; w)).Assume that no constraints for the variables x, v and w exist (a). Now, a regu-larity constraint x 6= f(v; w) may be generated, which requires that a constraintheader and a subconstraint are pushed on the constraint stack (b). Assume thatafterwards an extension step is performed at the subgoal :Q(x) with an entryliteral Q(f(a; b)). The uni�er � = fx=f(a; b)g has to be propagated to the con-straints. This is done by pushing the two new subconstraints v 6= a and w 6= b onthe constraint stack, which were obtained after normalization. Furthermore, thesubconstraint lists of v and w have to be extended. Finally, the counter in theconstraint header has to be incremented by 1. Note that nothing has to be doneto the old subconstraint x 6= f(v; w). Since the variable x has been bound, theold subconstraint will simply be ignored by all subsequent constraint checks.10.3.4 Constraint BacktrackingThe entire mechanism of constraint generation and propagation has to be em-bedded into the backtracking driven proof search procedure of model elimination.Accordingly, also all modi�cations performed on the constraint stack and in thesubconstraint lists of the variables have to be properly undone when an inference

10.4. DISEQUATION CONSTRAINTS IN PROLOG 193step is retracted. For this purpose, after each inference step and the correspondingmodi�cations in the constraint area, one has to remember the following data.1. the old length values in the a�ected constraint headers,2. the old values (active or true) in the second cells of the a�ected constraintheaders, and3. the old pointers to the previous subconstraints in the a�ected variables andsubconstraints.This is exactly the information that has to be stored for backtracking. Acomfortable method for doing this would be the use of a constraint trail similarto the variable trail except that here also the old values need to be stored|notethat the variable trail only has to contain the list of bound variables. Additionally,in order to permit the reuse of the constraint stack, one has to remember the topof the constraint stack before each sequence of constraint modi�cations.10.4 Disequation Constraints in PrologSome Prologs o�er the possibility of formulating disequation constraints. As anexample, we consider the Prolog system Eclipse [Wallace and Veron, 1993]. Here,using the in�x predicate ~= one can formulate syntactic disequation constraints.This permits that constraints resulting from structural tableau conditions canbe easily implemented. We describe the method for regularity constraints on the�rst contrapositive of the transitivity clausep_p(X,Z, P,N) :- N1 = [p(X,Z)|N], p_p(X,Y, P,N1), p_p(Y,Z, P,N1).taken from the Prolog example in Section 9.4. We show how regularity can beintegrated by modifying the clause as follows.p_p(X,Z, P,N) :- N1 = [p(X,Z) | N],not_member(p(X,Z), P),not_member(p(X,Y), N1),not_member(p(Y,Z), N1),p_p(X,Y, P,N1), p_p(Y,Z, P,N1).where not member is de�ned as:not_member(_,[]).not_member(E,[F|R]) :- E ~= F, not_member(E,R).

194 CHAPTER 10. CONSTRAINT TECHNOLOGYWith similar methods an easy integration of tautology and subsumption con-straints can be achieved. However, when it comes to the integration of more so-phisticated constraints like the ones considered next, it turns out that an e�cientProlog implementation is very hard to obtain.10.5 Constraints for Global Pruning MethodsIn this section, we describe how the matings pruning and the local failure mech-anism can be implemented e�ciently and even improved by using constraintstechnology.Improving the matings pruning using constraintsWith the matings pruning mechanism described in Section 5.3.1 one can avoidthat certain permutations of matings are considered more than once. The ideawas to impose an ordering on the literals in the input formula, which is inheritedto the tableau nodes. Now, a reduction step from a subgoalN to an ancestor nodeN 0 may be avoided if the entry node N 00 immediately below N 0 is smaller than Nin the ordering. In fact, this method can also be captured and even improved byusing disequation constraints, as follows. The prohibition to perform a reductionstep on N using N 0 may be reexpressed as a disequation constraint l 6= r wherel and r are the argument sequences of the literals at N and N 0, respectively.Interestingly, such a constraint does prune not only the respective reduction step,but all tableaux in which the literals at N and N 00 become equal by instantiation.In [Letz, 1998b] it is proven that this extension of the matings pruning preservescompleteness, the main reason being that the matings pruning is compatible withregularity.Failure caching using constraintsThe failure caching mechanism described in Section 5.3.3 can also be implementedusing disequation constraints. Brie
y, the method requires that when a subgoalN is solved with a solution substitution � and the remaining subgoals cannot besolved with this substitution, then � is turned into a failure substitution and, forany alternative solution substitution � for N , � must not be more general than� .De�nition 10.8 (Constraint of a failure substitution) Let � be a failure substitu-tion generated at a subgoal N and V the set of variables on the path with leafN in the last tableau in which the subgoal N was selected for an inference step.The constraint of the failure substitution � is the normal form of the constraint8u1 � � � 8um x1; : : : ; xn 6= t1; : : : ; tn where u1; : : : ; um are the variables occurringin terms of � that are not in V .

10.5. CONSTRAINTS FOR GLOBAL PRUNING METHODS 195It is straightforward to recognize that a failure substitution � of a tableau nodeN is more general than a solution substitution � of N if and only if the constraintof the failure substitution � is violated by � . Consequently, the constraint handlingmechanism can be used to implement failure caching. In order to capture failurecaching adequately with constraints, the use of universal variables is also needed,like for the case of tableau clause subsumption (Section 10.1). This can be seen byconsidering, for example, a subgoal N with failure substitution � = fx=f(z; z)gwhere z is a variable not occurring in the set V . The constraint of � is 8z x 6=f(z; z). When N can be solved with a solution substitution � = fx=f(a; a)g, then� is more general than � and, in fact, the constraint 8z x 6= f(z; z) is violated by� . Obviously, without universal variables it is impossible to capture such a case.Centralized management of constraintsIt is apparent that structural constraints resulting from di�erent sources, tautol-ogy, regularity, subsumption, or matings, need not be distinguished in the tableauconstruction. Furthermore, in general, the constraints need not even be tied to therespective tableau clauses, but the constraint information can be kept separatein a special constraint store. This also �ts in with the method of forgetting closedparts of a tableau and working with subgoal trees instead, for all relevant struc-ture information of the solved part of the tableau is contained in the constraints.However, when structural constraints are used in combination with constraintsresulting from failure substitutions, in certain states of the proof process con-straints have to be deactivated, as shown in Section 5.3.2 and Section 5.3.3. Inthis case, it is necessary to take the tableau positions into account at which therespective constraints were generated.

196 CHAPTER 10. CONSTRAINT TECHNOLOGY

ConclusionSummaryThis work is an attempt to provide a comprehensive presentation of tableau andconnection calculi for automated deduction in classical logic. We have introducedthe essential concepts of semantic tableaux for classical �rst-order logic both forthe closed formula and the free variable case. Structural di�erences like con
u-ence and nondestructiveness have been discussed, and we have expounded theconsequences of the violation of these conditions for proof search. With the inte-gration of connections as "active" control structures into the tableau framework,a new quality is achieved. We have presented and compared a number of suchconnection conditions concerning structural properties like con
uence and non-destructiveness and their use for the pruning of search spaces. Due to the richstructure of tableau deductions, if compared with
at calculi like resolution, awealth of methods for redundancy elimination have been developed. Those tech-niques can be nicely classi�ed into local and global methods. Local methods workby identifying structural de�ciencies at single tableaux, whereas global methodsconsider entire sets of deductions and perform an inter-tableau pruning. We haveanalyzed in detail the most in
uential techniques from each class and have shownwhich of the re�nements can be combined. An interesting result to be emphasizedhere is that the minimality concept from the matings framework is not compatiblewith the regularity restriction on tableaux.A further central topic of this work is the consideration of issues of computa-tional complexity. A number of results on the polynomial simulation between dif-ferent tableau variants are given, including a complete and comprehensible proofof the polynomial simulation of clausal tableaux with atomic cut by connectiontableaux with folding up. We have also addressed the problem of estimating thesizes of search spaces of bounded search procedures. For all three paradigms,inference, depth, and multiplicity bound, completeness results with respect toimportant complexity classes are given, some of which have interesting conse-quences for the assessment of certain paradigms of proof search. For example,there is an exponential decision procedure for multiplicity-bounded search, butthe standard iterative-deepening paradigm needs doubly exponential time. Aninteresting open problem here is whether the latter also holds when all pruningmethods are used that have been considered in this work.197

198 CHAPTER 10. CONSTRAINT TECHNOLOGYThe third topic of this work is the presentation of the techniques for an ef-�cient implementation of clausal tableaux using the strict connection condition,which is the most successful tableau calculus in automated deduction. Becauseof the close relationship of connection tableaux with SLD-resolution, the basis ofthe programming langugae Prolog, all of the existing implementations use Prologtechnology. There are two completely di�erent paradigms which we both describein detail. One approach is to extend a Prolog compiler like the Warren abstractmachine towards a theorem prover for full clause logic, the other is to use Prologitself as a programming language. Motivated by the missing
exibility of bothparadigms, we also describe a non-compilative approach, which is more modu-lar and hence o�ers a higher degree of
exibility, which may be needed for theimplementation of future connection tableau systems. The key idea of achievinge�ciency with this method is the extensive reuse of generated data structures.Independently of the used architecture, a method for the e�cient implementationof the developed re�nements is needed. Here the use of constraint technology isthe most promising alternative. Therefore we have presented all machinery thatis needed to represent pruning methods like regularity or failure caching by usingterm disequation constraints.Future ResearchThe connection tableau approach is an interesting an successful paradigm in au-tomated deduction. There are, however, severe de�ciencies, which have to be ad-dressed in the future. One of the fundamental weaknesses of connection tableauxis the handling of equality. The na��ve approach, which is to simply add the con-gruence axioms of equality, su�ers from the severe de�ciency that equality speci�credundancy elimination techniques are ignored. The most successful paradigm fortreating equality in saturation-based theorem proving, ordered paramodulation,is not compatible with connection tableaux. There have been attempts to inte-grate lazy paramodulation, a variant of paramodulation without orderings whichis compatible with model elimination. This method is typically implemented bymeans of a transformation (like Brand's modi�cation method), which eliminatesthe equality axioms and compiles certain equality inferences into the formula. Acertain search space pruning might be obtained by using limited ordering con-ditions [Bachmair et al., 1998], preferable implemented as ordering constraints.This would �t well with the constraint technology applicable in connection tab-leaux.Another, more general weakness of the search procedure is that it typicallyperforms poor on formulae with relatively long proofs. On the one hand, this hasdirectly to do with the methodology of iterative-deepening search. On the otherhand, when proofs are becoming longer, the goal-orientedness loses its reductivepower. To prove di�cult formulae in one big leap by reasoning backwards fromthe conjecture is very hard. An interesting perspective here is the use of lemmata,intermediate results typically deduced in a forwardmanner from the axioms. Someprogress has been made in this direction by the development of powerful �ltering

10.5. CONSTRAINTS FOR GLOBAL PRUNING METHODS 199techniques.A further interesting line of research could be the use of pruning methodsbased on semantic information. One could, for example, use small models of theaxioms in order to detect the unsolvability of certain subgoals. Finally, the consid-eration of con
uent and possibly even nondestructive integrations of connectionconditions into the tableau framework de�nitely deserves attention.

200 CHAPTER 10. CONSTRAINT TECHNOLOGY

Bibliography[Aho et al., 1974] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974). TheDesign and Analysis of Computer Algorithms. Addison-Wesley.[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers {Principles, Techniques, and Tools. Addison-Wesley, Reading, MA, USA.[Aho and Ullman, 1977] Aho, A. V. and Ullman, J. D. (1977). Principles ofCompiler Design. Addison-Wesley, Reading, MA, USA. See also the muchexpanded subsequent book [Aho et al., 1986].[Andrews, 1981] Andrews, P. B. (1981). Theorem proving through general mat-ings. Journal of the Association for Computing Machinery, 28:193{214.[Astrachan and Stickel, 1992] Astrachan, O. and Stickel, M. (1992). Caching andLemmaizing in Model Elimination Theorem Provers. In Kapur, D., editor,Proceedings, 11th International Conference on Automated Deduction (CADE),Saratoga Springs, NY, USA, volume 607 of LNAI, pages 224 { 238. Springer.[Astrachan and Loveland, 1991] Astrachan, O. L. and Loveland, D. W. (1991).METEORs: High performance theorem provers using model elimination. Tech-nical Report Technical report DUKE{TR{1991{08, Department of ComputerScience, Duke University. Printed copies available from T.R. Librarian, Dept.of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129.[Baaz and Ferm�uller, 1995] Baaz, M. and Ferm�uller, C. G. (1995). Non-elementary speedups between di�erent versions of tableaux. In Proceedingsof the 4th Workshop on Theorem Proving with Analytic Tableaux and RelatedMethods, pages 217{230.[Baaz and Leitsch, 1992] Baaz, M. and Leitsch, A. (1992). Complexity of reso-lution proofs and function introduction. Annals of Pure and Applied Logic,57(3):181{215.[Bachmair et al., 1998] Bachmair, L., Ganzinger, H., and Voronkov, A. (1998).Elimination of equality via transformation with ordering constraints. In Kirch-ner, C. and Kirchner, H., editors, Proceedings, 15th International Conferenceon Automated Deduction (CADE), Lindau, Germany, volume 1421 of LNAI,pages 175{190. Springer. 201

202 BIBLIOGRAPHY[Baumgartner, 1998] Baumgartner, P. (1998). Hyper tableau | the next gen-eration. In de Swart, H., editor, Proceedings, International Conference Tab-leaux'98, Oisterwijk, The Netherlands, volume 1397 of LNAI, pages 60{76.[Baumgartner et al., 1999] Baumgartner, P., Eisinger, N., and Furbach, U.(1999). A con
uent connection calculus. In Ganzinger, H., editor, Proceed-ings, 16th International Conference on Automated Deduction (CADE), Trento,Italy, LNAI 1632, pages 329{343. Springer.[Baumgartner and Furbach, 1994] Baumgartner, P. and Furbach, U. (1994).PROTEIN: A PROver with a Theory Extension INterface. In Bundy, A., edi-tor, Proceedings of the 12th International Conference on Automated Deduction,volume 814 of LNAI, pages 769{773, Berlin. Springer.[Baumgartner and Furbach, 1998] Baumgartner, P. and Furbach, U. (1998).Variants of clausal tableaux. In Bibel, W. and Schmitt, P. H., editors, Au-tomated Deduction | A Basis for Applications, volume I: Foundations, pages73{101. Kluwer, Dordrecht.[Beckert and H�ahnle, 1998] Beckert, B. and H�ahnle, R. (1998). Analytic tab-leaux. In Bibel, W. and Schmitt, P. H., editors, Automated Deduction | ABasis for Applications, volume I: Foundations, pages 11{41. Kluwer, Dordrecht.[Beckert et al., 1993] Beckert, B., H�ahnle, R., and Schmitt, P. (1993). The evenmore liberalized �-rule in free variable semantic tableaux. In ComputationalLogic and Proof Theory, Proceedings of the 3rd Kurt G�odel Colloquium, pages108{119.[Beckert and Posegga, 1994] Beckert, B. and Posegga, J. (1994). leanTAP : Leantableau-based theorem proving. extended abstract. In Bundy, A., editor, Pro-ceedings, 12th International Conference on Automated Deduction (CADE),Nancy, France, LNCS 814, pages 793{797. Springer.[Benker et al., 1989] Benker, H., Beacco, J. M., Bescos, S., Dorochevsky, M.,Je�r�e, T., P�ohlmann, A., Noy�e, J., Poterie, B., Sexton, A., Syre, J. C., Thibault,O., and Watzlawik, G. (1989). KCM: A knowledge crunching machine. In Yoeli,M. and Silberman, G., editors, Proceedings of the 16th Annual InternationalSymposium on Computer Architecture, pages 186{194, Jerusalem, Israel. IEEEComputer Society Press.[Bernays and Sch�on�nkel, 1928] Bernays, P. and Sch�on�nkel, M. (1928). ZumEntscheidungsproblem der Mathematischen Logik. Mathematische Annalen,pages 342{372.[Beth, 1955] Beth, E. W. (1955). Semantic Entailment and Formal Derivabil-ity. Mededlingen der Koninklijke Nederlandse Akademie van Wetenschappen,18(13):309{342.

BIBLIOGRAPHY 203[Beth, 1959] Beth, E. W. (1959). The Foundations of Mathematics. North{Holland, Amsterdam.[Bibel, 1981] Bibel, W. (1981). On Matrices with Connections. Journal of theAssociation for Computing Machinery, pages 633{645.[Bibel, 1987] Bibel, W. (1987). Automated Theorem Proving. Vieweg, Braun-schweig, second revised edition.[Bibel et al., 1994] Bibel, W., Bruening, S., Egly, U., and Rath, T. (1994).KoMeT. In Proceedings, 12th International Conference on Automated Deduc-tion (CADE), Nancy, France, volume 814 of LNAI, pages 783{787. Springer.[Billon, 1996] Billon, J.-P. (1996). The disconnection method: a con
uent inte-gration of uni�cation in the analytic framework. In Migliolo, P., Moscato, U.,Mundici, D., and Ornaghi, M., editors, Proceedings of the 5th InternationalWorkshop on Theorem Proving with analytic Tableaux and Related Methods(TABLEAUX), volume 1071 of LNAI, pages 110{126, Berlin. Springer.[Boy de la Tour, 1990] Boy de la Tour, T. (1990). Minimizing the number ofclauses by renaming. In Stickel, M. E., editor, 10th International Conferenceon Automated Deduction (CADE), LNCS, pages 558{572, Kaiserslautern, Ger-many. Springer.[Bry and Yahya, 1996] Bry, F. and Yahya, A. (1996). Minimal model genera-tion with positive unit hyper-resolution tableaux. In Miglioli, P., Moscato, U.,Mundici, D., and Ornaghi, M., editors, 5th International Workshop on Theo-rem Proving with Analytic Tableaux and Related Methods (TABLEAUX '96),LNAI, pages 143{159, Terrasini, Palermo, Italy. Springer.[Chang and Lee., 1973] Chang, C. and Lee., R. (1973). Symbolic Logic and Me-chanical Theorem Proving. Academic Press.[Church, 1936] Church, A. (1936). An Unsolvable Problem of Elementary Num-ber Theory. American Journal of Mathematics.[Cook, 1971] Cook, S. A. (1971). The Complexity of Theorem-Proving Proce-dures. In Proceedings of the 3rd Annual ACM Symposium on the Theory ofComputing, pages 151{158.[Cook and Reckhow, 1974] Cook, S. A. and Reckhow, R. A. (1974). On thelengths of proofs in the propositional calculus. In Proceedings of the SixthAnnual ACM Symposium on Theory of Computing, pages 135{148.[Corbin and Bidoit, 1983] Corbin, J. and Bidoit, M. (1983). A Rehabilitation ofRobinson's Uni�cation Algorithm. In Information Processing, pages 909{914.North{Holland.

204 BIBLIOGRAPHY[d'Agostino, 1999] d'Agostino, M. (1999). Tableau methods for classical propo-sitional logics. In D'Agostino, M., Gabbay, D., H�ahnle, R., and Posegga, J.,editors, Handbook of Tableau Methods, pages 45{124. Kluwer.[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A ma-chine program for theorem proving. Communications of the Association forComputing Machinery, pages 394{397.[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A computing pro-cedure for quanti�cation theory. Journal of the Association for ComputingMachinery, pages 201{215.[Dowling and Gallier, 1984] Dowling, W. and Gallier, J. (1984). Linear-time al-gorithms for testing the satis�ability of propositional horn formulae. Journalof Logic Programming, 1:267{284.[Eder, 1985] Eder, E. (1985). Properties of Substitutions and Uni�cations. Jour-nal of Symbolic Computation, 1:31{46.[Egly, 1997] Egly, U. (1997). Non-elementary speed-ups in proof length by dif-ferent variants of classical analytic calculi. In Proceedings of the InternationalConference on Theorem Proving with Analytic Tableaux and Related Methods(TABLEAUX), pages 158{171.[Fitting, 1990] Fitting, M. C. (1990). First-Order Logic and Automated TheoremProving. Springer.[Fitting, 1996] Fitting, M. C. (1996). First-Order Logic and Automated TheoremProving. Springer, second revised edition.[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computersand Intractability: A Guide to the Theory of NP-Completeness. Freeman.[Gentzen, 1935] Gentzen, G. (1935). Untersuchungen �uber das logische Schlie�en.Mathematische Zeitschrift, 39:176{210, 405{431. Engl. translation in M. E.Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68{131. North-Holland, 1969.[G�odel, 1930] G�odel, K. (1930). Die Vollst�andigkeit der Axiome des logischenFunktionenkalk�uls. Monatshefte f�ur Mathematik und Physik, 37:349{360.[Goller et al., 1994] Goller, C., Letz, R., Mayr, K., and Schumann, J. M. P.(1994). SETHEO V3.2: Recent developments. In Bundy, A., editor, Proceed-ings of the 12th International Conference on Automated Deduction, volume 814of LNAI, pages 778{782, Berlin. Springer.[H�ahnle and Pape, 1997] H�ahnle, R. and Pape, C. (1997). Ordered tableaux: Ex-tensions and applications. In Galmiche, D., editor, Proceedings, InternationalConference Tableaux'97, Pont-a-Mousson, France, volume 1227 of LNAI, pages173{76.

BIBLIOGRAPHY 205[H�ahnle and Schmitt, 1994] H�ahnle, R. and Schmitt, P. (1994). The liberalized�-rule in free variable semantic tableaux. Journal of Automated Reasoning,pages 211{221.[Harrison, 1996] Harrison, J. (1996). Optimizing proof search in model elimina-tion. In McRobbie, M. A. and Slaney, J. K., editors, Proceedings of the Thir-teenth International Conference on Automated Deduction (CADE-96), volume1104 of LNAI, pages 313{327, Berlin. Springer.[Herbrand, 1930] Herbrand, J. J. (1930). Recherches sur la th�eorie de la d�e-monstration. Travaux de la Soci�et�e des Sciences et des Lettres de Varsovie,Cl. III, math.-phys., pages 33{160.[Hilbert and Ackermann, 1928]Hilbert, D. and Ackermann, W. (1928). Grundz�uge der theoretischen Logik.Springer. Engl. translation: Mathematical Logic, Chelsea, 1950.[Hintikka, 1955] Hintikka, K. J. J. (1955). Form and Content in Quanti�cationTheory. Acta Philosophica Fennica, 8(7):7{55.[Huet, 1976] Huet, G. (1976). Resolution d'equations dans les languages d'ordre1; 2; : : : ; !. PhD thesis, Universit�e de Paris VII.[Huet, 1980] Huet, G. (1980). Con
uent Reductions: Abstract Properties andApplications to Term Rewriting Systems. Journal of the Association for Com-puting Machinery, pages 797{821.[Kleene, 1967] Kleene, S. C. (1967). Mathematical Logic. Wiley.[Klingenbeck and H�ahnle, 1994] Klingenbeck, S. and H�ahnle, R. (1994). Seman-tic tableaux with ordering restrictions. In Bundy, A., editor, Proceedings, 12thInternational Conference on Automated Deduction (CADE), Nancy, France,LNCS 814, pages 708{722. Springer.[Korf, 1985] Korf, R. E. (1985). Iterative-deepening-A: An optimal admissibletree search. In Joshi, A., editor, Proceedings of the 9th International JointConference on Arti�cial Intelligence, pages 1034{1036, Los Angeles, CA. Mor-gan Kaufmann.[Kowalski and Kuehner, 1971] Kowalski, R. and Kuehner, D. (1971). Linear res-olution with selection function. Arti�cial Intelligence, 2:227{260.[Kowalski and Hayes, 1969] Kowalski, R. A. and Hayes, P. (1969). Semantic tressin automated theorem proving. Machine Intelligence, pages 87{101.[Kowalski and Kuehner, 1970] Kowalski, R. A. and Kuehner, D. (1970). Linearresolution with selection function. Technical report, Metamathematics Unit,Edinburgh University, Edinburgh, Scotland.

206 BIBLIOGRAPHY[Krivine, 1971] Krivine, J.-L. (1971). Introduction to Axiomatic Set Theory. Rei-del, Dordrecht.[Lassez et al., 1988] Lassez, J.-L., Maher, M. J., and Marriott, K. (1988). Uni�ca-tion Revisited. In Foundations of Deductive Databases and Logic Programming,pages 587{625. Morgan Kaufmann.[Lee and Plaisted, 1992] Lee, S.-J. and Plaisted, D. (1992). Eliminating duplica-tion with the hyper-linking strategy. Journal of Automated Reasoning, pages25{42.[Letz, 1993a] Letz, R. (1993a). First-order calculi and proof procedures for auto-mated deduction. PhD thesis, TH Darmstadt.[Letz, 1993b] Letz, R. (1993b). On the polynomial transparency of resolution.In Bajcsy, R., editor, Proceedings of the 13th International Joint Conferenceon Arti�cial Intelligence (IJCAI), Chambery, France, pages 123{129. MorganKaufmann.[Letz, 1998a] Letz, R. (1998a). On the complexity of the formula instantiationproblem. Technical report, Technische Universit�at M�unchen.[Letz, 1998b] Letz, R. (1998b). Using matings for pruning connection tableaux.In Kirchner, C. and Kirchner, H., editors, Proceedings, 15th International Con-ference on Automated Deduction (CADE), Lindau, Germany, volume 1421 ofLNAI, pages 381{396. Springer.[Letz, 1999a] Letz, R. (1999a). First-order tableaux methods. In D'Agostino,M., Gabbay, D., H�ahnle, R., and Posegga, J., editors, Handbook of TableauMethods, pages 125{196. Kluwer.[Letz, 1999b] Letz, R. (1999b). Properties and relations of tableaux and con-nection calculi. In H�olldobler, S., editor, Intellectics and Computational Logic.Kluwer. To appear.[Letz et al., 1994] Letz, R., Mayr, K., and Goller, C. (1994). Controlled inte-gration of the cut rule into connection tableau calculi. Journal of AutomatedReasoning, 13(3):297{338.[Letz et al., 1989] Letz, R., Schumann, J., and Bayerl, S. (1989). SETHEO: ASEquentiell THEOremprover for �rst order logic. Technical Report FKI-97-89,Technische Universit�at M�unchen, M�unchen, Germany.[Letz et al., 1992] Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992).SETHEO: A high-performance theorem prover. Journal of Automated Rea-soning, 8(2):183{212.[Loveland, 1968] Loveland, D. W. (1968). Mechanical theorem proving by modelelimination. Journal of the Association for Computing Machinery, 15(2):236{251. Reprinted in: [Siekmann and Wrightson, 1983].

BIBLIOGRAPHY 207[Loveland, 1969] Loveland, D. W. (1969). A simpli�ed format for the model elim-ination theorem-proving procedure. Journal of the Association for ComputingMachinery, 16(3):349{363.[Loveland, 1972] Loveland, D. W. (1972). A unifying view of some linear Her-brand procedures. Journal of the Association for Computing Machinery,19(2):366{384.[Loveland, 1978] Loveland, D. W. (1978). Automated theorem proving: A logicalbasis. North Holland, New York.[Loveland, 1991] Loveland, D. W. (1991). Near-horn Prolog and beyond. Journalof Automated Reasoning, 7:1{26.[Manthey and Bry, 1988] Manthey, R. and Bry, F. (1988). Satchmo: a theoremprover implemented in prolog. In Proceedings of the 9th Conference on Auto-mated Deduction (CADE), pages 456{459.[Martelli and Montanari, 1976] Martelli, A. and Montanari, U. (1976). Uni�ca-tion in Linear Time and Space: a Structured Presentation. Technical report, Ist.di Elaboratione delle Informatione, Consiglio Nazionale delle Ricerche, Pisa,Italy.[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982). An ef-�cient uni�cation algorithm. ACM Transactions on Programming Languagesand Systems, pages 258{282.[Mayr, 1993] Mayr, K. (1993). Re�nements and extensions of model elimina-tion. In Voronkov, A., editor, Proceedings of the 4th International Conferenceon Logic Programming and Automated Reasoning (LPAR'93), volume 698 ofLNAI, pages 217{228, St. Petersburg, Russia. Springer Verlag.[Moser et al., 1997] Moser, M., Ibens, O., Letz, R., Steinbach, J., Goller, C., Schu-mann, J., and Mayr, K. (1997). SETHEO and E-SETHEO|the CADE-13systems. Journal of Automated Reasoning, 18(2):237{246.[Ohlbach, 1991] Ohlbach, H.-J. (1991). Semantics Based Translation Methodsfor Modal Logics. Journal of Logic and Computation, 1(5):691{746.[Orevkov, 1979] Orevkov, V. P. (1979). Lower bounds for increasing complexityof derivations after cut elimination. Zapiski Nauchnykh Seminarov Leningrad-skogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR,pages 137{161.[Paterson and Wegman, 1978] Paterson, M. S. and Wegman, M. N. (1978). Lin-ear Uni�cation. Journal of Computer and Systems Sciences, pages 158{167.[Plaisted, 1984] Plaisted, D. A. (1984). The occur-check problem in prolog. In1984 International Symposium on Logic Programming. IEEE, New York, USAISBN 0 8186 0522 7. U.S. Copyright Clearance Center Code: CH2007-3/84/000-0272$01.00.

208 BIBLIOGRAPHY[Plaisted, 1994] Plaisted, D. A. (1994). The search e�ciency of theorem provingstrategies. In Bundy, A., editor, Proceedings of the 12th International Confer-ence on Automated Deduction (CADE), LNAI 814, pages 57{71. Springer.[Plaisted and Greenbaum, 1986] Plaisted, D. A. and Greenbaum, S. (1986). Astructure preserving clause form translation. Journal of Symbolic Computation,2(3):293{304.[Plaisted and Zhu, 1997] Plaisted, D. A. and Zhu, Y. (1997). The E�ciency ofTheorem Proving Strategies. Vieweg.[Prawitz, 1960] Prawitz, D. (1960). An improved proof procedure. Theoria,26:102{139. Reprinted in [Siekmann and Wrightson, 1983].[Prawitz, 1969] Prawitz, D. (1969). Advances and Problems in Mechanical ProofProcedures. In Automation of Reasoning, 1983 (reprinted), pages 285{297.Springer.[Reckhow, 1976] Reckhow, R. A. (1976). On the Lenghts of Proofs in the Propo-sitional Calculus. PhD thesis, University of Toronto.[Reeves, 1987] Reeves, S. V. (1987). Adding equality to semantic tableau. Journalof Automated Reasoning, 3:225{246.[Robinson, 1965] Robinson, J. A. (1965). A Machine-oriented Logic Based on theResolution Principle. Journal of the Association for Computing Machinery,pages 23{41.[Robinson, 1968] Robinson, J. A. (1968). The Generalized Resolution Principle.Machine Intelligence, pages 77{94.[Schumann, 1991] Schumann, J. (1991). E�cient Theorem Provers based on anAbstract Machine. PhD thesis, TU Mnchen.[Shostak, 1976] Shostak, R. E. (1976). Refutation graphs. Arti�cial Intelligence,7:51{64.[Siekmann and Wrightson, 1983] Siekmann, J. andWrightson, G., editors (1983).Automation of Reasoning. Springer, Berlin. Two volumes.[Smullyan, 1968] Smullyan, R. (1968). First-Order Logic. Springer.[Statman, 1979] Statman, R. (1979). Lower Bounds on Herbrand's Theorem.Proceedings American Math. Soc., pages 104{107.[Stickel, 1984] Stickel, M. E. (1984). A prolog technology theorem prover. In1984 International Symposium on Logic Programming. IEEE, New York, USAISBN 0 8186 0522 7.

BIBLIOGRAPHY 209[Stickel, 1988] Stickel, M. E. (1988). A prolog technology theorem prover. InLusk, E. and Overbeek, R., editors, 9th International Conference on AutomatedDeduction (CADE), LNCS, pages 752{753, Argonne, Ill. Springer.[Stickel, 1992] Stickel, M. E. (1992). A prolog technology theorem prover: anew exposition and implementation in prolog. Theoretical Computer Science,104:109{128.[Sutcli�e et al., 1994] Sutcli�e, G., Suttner, C., and Yemenis, T. (1994). TheTPTP problem library. In Bundy, A., editor, Proceedings, 12th InternationalConference on Automated Deduction (CADE), Nancy, France, LNCS 814,pages 708{722. Springer. Current version available on the World Wide Web atthe URL http://www.cs.jcu.edu.au/ftp/users/GSutcliffe/TPTP.HTML.[Taki et al., 1984] Taki, K., Yokota, M., Yamamoto, A., Nishikawa, H., ichiUchida, S., Nakashima, H., and Mitsuishi, A. (1984). Hardware Design andImplementation of the Personal Sequential Inference Machine (PSI). In Pro-ceedings of the International Conference on Fifth Generation Computer Sys-tems, pages 398{409, ICOT Research Center, Tokyo, Japan. ICOT.[Tarski, 1936] Tarski, A. (1936). Der Wahrheitsbegri� in den formalisiertenSprachen. Studia Philosophica, 1.[Tseitin, 1970] Tseitin, G. (1970). On the complexity of proofs in propositionallogics. Seminars in Mathematics, 8.[Turing, 1936] Turing, A. M. (1936). On Computable Numbers, with an Appli-cation to the Entscheidungsproblem. Proceedings of the London MathematicalSociety, pages 230{265.[van Orman Quine, 1955] van Orman Quine, W. (1955). A Way to SimplifyTruth Functions. American Mathematical Monthly.[Vlahavas and Halatsis, 1987] Vlahavas, I. and Halatsis, C. (1987). A new ab-stract prolog instruction set. In Expert systems and their applications (Pro-ceedings), pages 1025{1050, Avignon.[Voronkov, 1998] Voronkov, A. (1998). Herbrand's theorem, automated reasoningand semantics tableaux. In IEEE Symposium on Logic in Computer Science.[Wallace and Veron, 1993] Wallace, M. and Veron, A. (1993). Two problems {two solutions: One system { ECLiPSe. In Proceedings IEE Colloquium onAdvanced Software Technologies for Scheduling, London.[Wallen, 1989] Wallen, L. (1989). Automated Deduction for Non-Classical Logic.MIT Press, Cambridge, Mass.[Warren, 1983] Warren, D. H. D. (1983). An Abstract PROLOG InstructionSet. Technical Report 309, Arti�cial Intelligence Center, Computer Scienceand Technology Division, SRI International, Menlo Park, CA.

Index�, 29-rule, 31�, 29-rule, 31with cut, 106�, 29-rule, 31�+-rule, 50��-rule, 119�++-rule, 1199, 108, 10-satis�able, 51
, 29-rule, 31
0-rule, 52
�-rule, 50
H-rule, 41$, 10:, 10�, 11�, 31B, 91!, 10_, 10^, 10fxu , 18analyticity, 33ancestor, 31atom, 11Bernays-Sch�on�nkel class, 43, 83, 85binary counter example, 144binding, 19, 164proper -, 19branch, 31

closed -, 32open -, 32satis�able -, 33C-point, 111clause, 27lifting, 138start -, 62tableau -, 62closure rule, 52local -, 120compactness theorem, 38complement, 11splitting, 106, 107complementarynodes, 31completenessbound, 58completeness bound, 65con
uence, 39conjunction, 11connected, 63path -, 63strongly, 90tightly -, 63connection, 78graph, 166method, 78uni�able -, 78used -, 79connection method, 78consensus, 141constraint, 185, 187disjunctive form, 187equivalence, 187failure, 190210

INDEX 211generation, 189normal form, 188propagation, 190solved form, 187violation, 187cut, 106atomic -, 106elimination, 138, 139formula, 106normal form, 129dag, 49symbol -, 124size of a, 125data objectsformula, 178proof, 178depth bound, 66weighted -, 68disagreement set, 45disequation constraint, 185, 187disjunction, 11downward saturated, 34DPLL, 140duplication trick, 97equivalence, 17material -, 11strong -, 17essential formula, 90expansion rule, 62expression, 11closed -, 13ground -, 13extension rule, 64hyper -, 82path -, 64factoring, 141factorization, 108folding-up, 111folding down, 112folding up, 109formula, 11� -, 29� -, 29

� -, 29
 -, 29assignment, 15atomic -, 11complexity, 30datalogic -, 43essential -, 90relevant -, 90tree, 30global subgoal list, 179ground, 13set, 93Herbrandcomplexity, 39tableau, 41systematic -, 42Herbrand complexity, 145Hintikka set, 34implication, 17material -, 11strong -, 17inference bound, 66instance, 19linking -, 84interpretation, 14Herbrand -, 25lemma, 110context unit -, 110link, 166linking instance, 84literal, 11entry -, 64head -, 64linear -, 168mating, 78minimal -, 96of a tableau, 79spanning -, 78uni�able -, 78matrix, 21mgu, 45

212 INDEXmodel, 16model elimination, 77chain, 77weak -, 77multiplicity, 78nodeentry -, 64family, 31head -, 64usable -, 35nondestructiveness, 36occurrence, 12occurs-check, 45path connected, 63path linking rule, 85path set, 111path through clause set, 78polynomial simulation, 123polynomial transparency, 124position, 12Prawitz reduction, 107predecessor, 31prenex form, 21procedureextension, 181solve, 181PTTP, 161, 167QBF, 156quanti�cation, 11quanti�ed Boolean formula, 156range restricteness, 82reduction rule, 62regularity, 40goal tree -, 100strong -, 113relevant formula, 90renaming, 61resolution, 142ancestor -, 143dag, 142linear -, 143

proof, 142propositional -, 141refutation, 142SLD -, 78tree, 142resolvent, 142propositional -, 141resource, 67restart step, 81satis�ability, 168-, 51ground -, 118scope, 13search tree, 57selection function, 54semantic tree, 140sentence, 13Skolem form, 22Skolem variant, 54spanning, 78start rule, 65strengthening, 91strictness, 80subconstraint, 187subgoal, 62alternation, 70substitution, 19composition of -s, 20failure -, 100free -, 19solution -, 100subsumptionclause -, 89compatibility with -, 99deletion, 98formula tree -, 98tableau -, 98symbol dag, 124size of a, 125symbol tree, 12tableau, 30branch formula, 75clause, 62closed -, 32

INDEX 213connection -, 65calculus, 65depth, 31free-variable -, 52general hyper -, 82goal formula, 76goal tree, 76ground closed -, 85Herbrand -, 41systematic -, 42hyper -, 83open -, 32path connection -, 65calculus, 65quanti�er preferring -, 38regular -, 40sentence -, 31size, 125strict -, 40, 80subsumption, 98systematic -, 35tautologyelimination, 88term, 10assignment, 15top start -, 62tree, 30contraction, 98depth, 31search -, 57symbol -, 12truth table, 125Turing machine, 151uni�cation, 44algorithm, 47polynomial -, 49, 164procedure, 163uni�er, 44computed -, 47minimal -, 45most general -, 45universe, 14Herbrand -, 25

unsatis�ableminimally -, 90validity, 16variableassignment, 15bound -, 13elimination, 46free -, 13local -, 119rigid -, 44, 62substitution, 19universal -, 120variablesuniversal -, 186variant, 61x-, 16Skolem -, 54

