Habilitationsschrift

Tableau and Connection Calculi.

Structure, Complexity, Implementation

Reinhold Letz

December 27, 1999

Contents

3.1
3.2
3.3

34

Introduction
1 Preliminaries
1.1 Classical First-Order Logic
1.1.1 Syntax of First-Order Logic
1.1.2 Semantics of Classical First-Order Logic
1.1.3 Variable Substitutions
1.2 Normal Forms and Normal Form Transformations
1.2.1 Prenex and Skolem Formulae
1.2.2 Herbrand Interpretations
1.2.3 Formulae in Clausal Form
2 Tableau Systems
2.1 First-Order Sentence Tableaux
2.1.1 Quantifier Elimination in Unifying Notation
2.1.2 Completeness of Sentence Tableaux
2.1.3 Refinements of Tableaux
2.2 Free-variable Tableaux

2.2.1 Unification
2.2.2 Generalized Quantifier Rules
2.2.3 Completeness of Free-Variable Tableaux
2.2.4 Proof Procedures for Free-Variable Tableaux

Tableaux with Connections

Clausal Tableaux
Connection Tableaux 0oL
Proof Search in Connection Tableaux
3.3.1 Completeness Bounds for Connection Tableaux
Subgoal Processing
3.4.1 Subgoal Reordering
3.4.2 Subgoal Alternation

14
19
21
21
24
27

29
29
29
33
39
44
44
50
o4
56

CONTENTS

Related Calculi and Connection Conditions 75
4.1 Connection Tableaux and Related Calculi 75
4.1.1 Model Elimination Chains 77
4.1.2 The Connection Method 78
4.1.3 Matings-based Connection Procedures 79
4.2 Other Clausal Tableau Calculi 81
4.2.1 Restart Model Elimination 81
4.2.2 Hyper Tableaux 81
4.2.3 Disconnection Tableaux 84
Search Pruning in Connection Tableaux 87
5.1 Structural Refinements of Connection Tableaux 87
5.1.1 Regularity 87
5.1.2 Tautology Elimination 88
5.1.3 Tableau Clause Subsumption 88
5.1.4 Strong Connectedness 89
5.1.5 Use of Relevance Information 90
5.2 Completeness of Connection Tableaux 91
5.3 Intertableaux Pruning 93
5.3.1 Using Matings for Pruning Tableaux 94
5.3.2 Tableau Subsumption 98
5.3.3 Failure Caching 100
Methods of Shortening Proofs 105
6.1 Controlled Integration of the Cut Rule 106
6.1.1 Factorization and Complement Splitting 106
6.1.2 The Folding UpRule. 109
6.1.3 The Folding Down Rule 112
6.1.4 Enforced Folding and Strong Regularity 113
6.1.5 The Benefit of Controlled Cuts in Proof Search 117
6.2 Liberalizations of the 6-Rule 118
6.3 Liberalization of the Closure Rule 119
6.3.1 Hyper Tableaux with Local Variables 121
Complexities of Minimal Proofs 123
7.1 Proof Complexity Measures 123
7.2 Minimal Proof Lengths in Propositional Logic 125
7.2.1 Results for Cut-free Clausal Tableaux 125
7.2.2 Results for Clausal Tableaux with Controlled Cuts 129
7.3 Semantic Trees and Resolution 140
7.4 Results for First-Order Clausal Tableaux. 143

CONTENTS

8 Complexities of Search Spaces

8.1 Complexities of Iterative-Deepening Bounds
8.1.1 Upper Bounds of Bounded Search Spaces
8.1.2 Lower Bounds for a Concrete Example
8.1.3 Completeness Results wrt. Complexity Classes

8.2 The Reductive Power of Refinements . .
8.2.1 Free Subgoal Selection Functions

9 Implementation of Connection Tableaux
9.1 Basic Data Structures and Operations .
9.1.1 Unification
9.1.2 The Connection Graph

9.2 Prolog Technology Theorem Proving . .
9.3 Extended Warren Machine Technology .
9.3.1 The Warren Abstract Machine .
9.3.2 The SETHEO Abstract Machine

9.4 Prolog as Implementation Language . .
9.5 A Data-Oriented Architecture
9.5.1 The Basic Data Structures . . .
9.5.2 The Proof Procedure
9.5.3 Reuse of Clause Instances

9.6 Existing Connection Tableaux Implementations

10 Constraint Technology

10.1 Reformulating Refinements as Constraints

10.2 Disequation Constraints
10.2.1 Constraint Normalization
10.3 Implementing Disequation Constraints .
10.3.1 Efficient Constraint Generation .
10.3.2 Efficient Constraint Propagation

10.3.3 Internal Representation of Constraints

10.3.4 Constraint Backtracking
10.4 Disequation Constraints in Prolog . . .
10.5 Constraints for Global Pruning Methods

Conclusion
Bibliography

Index

147
147
148
149
150
159
159

161
162
162
166
167
170
170
173
175
177
178
181
181
183

185
185
187
187
189
189
190
191
192
193
194

197

201

210

CONTENTS

Introduction

In the last years considerable progress has been made in the development of
tableau-based proof systems for automated deduction. While the tableau frame-
work always was very influential in proof theory and in the development of logics,
particularly non-classical ones, it had almost no influence on automated deduc-
tion in classical logic. This changed about ten years ago, when it was recognized
that it is more natural to view automated deduction calculi like model elimina-
tion or the connection method as particular refinements of the tableau calculus.
The central new feature of those refinements is the active use of connections as a
control mechanism for guiding the proof search. In order to emphasize this, the
term ”connection tableaux” was introduced. This view had a very fruitful ef-
fect on the research in the area. In the meantime, many proof systems developed
in automated deduction have been reformulated in tableau style. As a positive
result of these activities, the similarities and differences between many calculi
with formerly unclear relations could be identified. Furthermore, new calculi have
been developed which are based on tableaux and integrate connections in differ-
ent manners. Currently, some of the most powerful theorem proving systems are
based on tableaux with connections. So, within the last decade, tableaux have
become one of the favorite paradigms for automated deduction in classical logic,
too. The crucial feature which accounts for this fact is the active integration of
connections. In this work we will attempt to give a comprehensive presentation
of the state of the art of tableau and connection calculi for classical first-order
logic.

The material is organized in ten chapters. The first chapter provides the gen-
eral background on first-order logic with function symbols; the syntax and the
classical model-theoretic semantics of first-order logic are introduced and the
fundamental properties of variable substitutions are described. Furthermore, we
mention the most important normal forms of first-order logic and present basic
concepts like Herbrand interpretations.

In the second chapter, we turn to the tableau system for first-order logic due
to Smullyan and Fitting. Using uniform notation, first, tableau calculi for closed
formulae are developed. We prove Hintikka’s Lemma and the completeness of
first-order tableaux by using a systematic tableau procedure. Furthermore, basic
refinements of tableaux are considered like strictness, regularity and the Herbrand
condition, and the properties of confluence and nondestructiveness are introduced,

6 CONTENTS

which are important for the classification of tableau-based proof systems. Then
we turn to the crucial weakness of the traditional tableau systems with respect
to proof search. It lies in the nature of the standard v-rule, which enforces that
instantiations have to be chosen too early. The standard approach to remedy this
weakness is to permit free variables in a tableau which are treated as placeholders
for terms, as so-called "rigid” variables; the instantiation of rigid variables then
is guided by unification. Unfortunately, systematic procedures for free-variable
tableaux cannot be devised as easily as for sentence tableaux. Therefore, typically,
tableau enumeration procedures are used instead. We analyze the consequences
of this design decision with respect to the use of tableaux as decision procedures
for certain formula classes and concerning the possibility of model generation.

Following the tableau enumeration approach of free-variable tableaux, the
crucial demand is to reduce the number of tableaux to be considered by the
search procedure. The central such concept in clause logic is the notion of a
connection, which can be employed in various ways to guide the tableau con-
struction. In Chapter 3, we incorporate connections into tableaux. From here on,
we concentrate on tableaux for formulae in clausal form. Clause logic permits a
more condensed representation of tableaux and hence a simplification of the tab-
leau rules. Two connection conditions of increasing restrictiveness are introduced
which define the so-called connection tableaux. These calculi are compared with
the previous tableau systems and with each other with respect to proof search
and the preservation of properties like confluence and nondestructiveness.

In the fourth chapter, we illustrate the relation of connection tableaux with
other calculi for automated deduction like model elimination and the connection
calculi used in the connection method. Furthermore, we consider alternative ap-
proaches of integrating connections into tableaux that are preserving confluence
and hence facilitate a limited possibility of model generation. First, we introduce
and compare different variants of hyper tableaux. Hyper tableau systems have
the general problem that they still need a version of the traditional problem-
atic y-rule. This rule can only be avoided for a restricted class of formulae. We
also present the so-called disconnection method, which does not suffer from this
weakness and which represents the first confluent integration of unification into
a tableau branch saturation procedure. Both proof systems are nondestructive.

In Chapter 5, a number of refinements of tableau procedures are discussed
which drastically reduce the number of permitted deductions and hence increase
the suitability of the respective tableau systems for automatic proof search. On
the one hand, we consider further restrictions on the structure of tableaux. On
the other hand, a significant problem in proof search is that typically certain
deductions are redundant in the presence of other ones. These global approaches
of inter-tableau pruning form the second class of methods for redundancy elim-
ination. This chapter also includes a completeness proof for structurally refined
connection tableaux. Since connection tableaux are both nonconfluent and de-
structive, also a fundamentally different technique for proving completeness has
to be used.

In Chapter 6 methods are developed which can produce significantly shorter

CONTENTS 7

tableau proofs. The techniques can be subdivided into three different classes. The
mechanisms of the first type are centered around controlled integrations of the
cut rule; these methods are also related to the use of lemmata. Second, so-called
liberalizations of the §-rule are mentioned, which may lead to even nonelementar-
ily smaller tableau proofs. Finally, we consider an improvement which concerns
tableaux with free variables, which typically are considered as rigid. We consider
conditions under which free variables may be treated as universally quantified on
the respective branch. This can lead to exponentially smaller proofs.

Chapter 7 contains a number of complexity results on the various calculi
developed in this work and their relation to other important proof systems. In
this chapter, the criterion for comparing calculi is their relation concerning the
minimal complexities of proofs that can be generated by the calculi. We present a
wealth of so-called polynomial simulation results between the considered calculi
and with other calculi from automated deduction like resolution and semantic
trees.

As a matter of fact, the classification of calculi according to polynomial simu-
latability must not be the only criterion for comparing calculi, since it completely
abstracts from the problem of proof search. In Chapter 8, we concentrate on
the complexities of search spaces. Since in general the search spaces are infinite,
we study the sizes of the finite initial segments defined by the different types of
iterative-deepening bounds, the inference, the depth, and the multiplicity bounds.
It turns out that, for all three cases, one can obtain completeness results with
respect to well-known complexity classes like NP or NEXPTIME.

In Chapter 9, we turn to the implementation of deduction systems based on
tableaux with connections. Here, we concentrate on the techniques developed for
the non-confluent and destructive connection tableau systems, since those are the
most successful tableau-based systems in automated deduction. When consider-
ing the implementation of such systems, we have a very special situation. This is
because such connection tableaux are very close to SLD-resolution, which is the
basic inference system of the programming language Prolog. Consequently, one
can exploit this proximity by using as much as possible from the implementation
techniques developed for Prolog. One successful such approach is to extend ab-
stract machine technology from the Horn case to the full clausal case. Another
possibility consists in taking Prolog itself as a programming language, by which
often reasonably efficient implementations of connection tableaux can be obtained
with no or only very little implementational effort. Both of these approaches will
be described in detail. However, both approaches suffer from some inflexibility
problems. Therefore we also consider in detail an implementation approach which
is not directly based on Prolog. The key idea for achieving high efficiency in this
approach is the extensive re-use of the results of expensive operations.

The development of a redundancy elimination technique is one thing, its ef-
ficient implementation is another one. Fortunately, many of the refinements de-
veloped for connection tableaux may be formulated in a uniform general setting,
as conditions on the instantiations of variables, so-called disequation constraints.
In Chapter 10, we develop the general framework of disequation constraints in-

8 CONTENTS

cluding universal variables and normalization, and describe in detail how efficient
constraint handlers may be implemented.

In the Conclusion, we summarize our work and sketch promising future ex-
tensions of tableau systems with connections.

Acknowledgements

I would like to thank Gernot Stenz and Andreas Wolf for valuable support and
discussions during the completion of this work.

Chapter 1

Preliminaries

1.1 Classical First-Order Logic

The theory of first-order logic is a convenient and powerful formal abstraction
from expressions and concepts occurring in natural language, and, most signif-
icantly, in mathematical discourse. In this section we present the syntax and
semantics of first-order logic with function symbols. Furthermore, the central
modification operation on first-order expressions is introduced, the replacement
of variables, and some of its invariances are studied.

1.1.1 Syntax of First-Order Logic

Propositional logic deals with sentences and their composition, hence the alphabet
of a propositional language consists of only three types of symbols, propositional
variables, logical symbols, and punctuation symbols. First-order logic does not
stop at the sentence level, it can express the internal structure of sentences. In
first-order logic, the logical structure and content of assertions of the following
form can be studied that have no natural formalization in propositional logic.

Ezxample 1.1 If every person that is not rich has a rich father, then some rich
person must have a rich grandfather.

In order to express such formulations, a first-order alphabet has to provide
symbols for denoting objects, functions, and relations. Furthermore, it must be
possible to make universal or existential assertions, hence we need quantifiers.
Altogether, the alphabet or signature of a first-order language will be defined as
consisting of six disjoint sets of symbols.

Definition 1.2 (First-order signature) A first-order signature is a pair X = (A, a)
consisting of a denumerably infinite alphabet A and a partial mapping a: A —
Np, associating natural numbers with certain symbols in A, called their arities,

9

10 CHAPTER 1. PRELIMINARIES

such that A can be partitioned into the following six pairwise disjoint sets of
symbols.

1. An infinite set V of variables, without arities.

2. An infinite set of function symbols, all with arities such that there are in-
finitely many function symbols of every arity. Nullary function symbols are
called constants.

3. An infinite set of predicate symbols, all with arities such that there are
infinitely many predicate symbols of every arity.

4. A set of connectives consisting of five distinct symbols =, A, V, —, and
¢, the first one with arity 1 and all others binary. We call = the negation
symbol, A is the conjunction symbol, V is the disjunction symbol, — is the
material implication symbol, and < is the material equivalence symbol,

5. A set of quantifiers consisting of two distinct symbols V, called the universal
quantifier, and 3, called the existential quantifier, both with arity 2.

6. A set of punctuation symbols consisting of three distinct symbols without
arities, which we denote with the symbols ‘(’, ©)’, and *,’.

Notation 1.3 Normally, we will denote variables and function symbols with lower-
case letters and predicate symbols with upper-case letters. Preferably, we use for
variables letters from ‘u’ onwards; for constants the letters ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’;
for function symbols with arity > 1 the letters ‘f’, ‘g’ and ‘h’; and for predicate
symbols the letters ‘P’, ‘Q’ and ‘R’; nullary predicate symbols shall occasionally
be denoted with lower-case letters. Optionally, subscripts will be used. We do not
distinguish between symbols and unary strings consisting of symbols, the context
will clear up possible ambiguities. We will always talk about symbols of first-order
languages and never give examples of concrete expressions within a specific object
language.

Given a first-order signature X, the corresponding first-order language is de-
fined inductively! as a set of specific strings over the alphabet of the signature. In
our presentation of first-order languages we use prefix notation for the representa-
tion of terms and atomic formulae, and infix notation for the binary connectives.
Let in the following ¥ = (A, a) be a fixed first-order signature.

Definition 1.4 (Term)
1. Every variable in A is said to be a term over X.

2. If f is an m-ary function symbol in A with n > 0 and ¢q,..., t, are terms

3 3

over ¥, then the concatenation f(ty,...,t,) is a term over X.

n inductive definitions we shall, conveniently, omit the explicit formulation of the necessity
condition.

1.1. CLASSICAL FIRST-ORDER LOGIC 11

Definition 1.5 (Atomic formula) If P is (the unary string consisting of) an n-
ary predicate symbol in A with n > 0 and ¢4,...,t, are terms over X, then the
concatenation P(t1,...,t,) is an atomic formula, or atom, over X.

Notation 1.6 Terms of the form a() and atoms of the form P() are abbreviated
by writing just a and P, respectively.

Definition 1.7 (Formula)
1. Every atom over X is a formula over X.

2. If ® and ¥ are formulae over ¥ and z is (the unary string consisting of) a
variable in A, then the following concatenations are also formulae over X:
—®, called the negation of @,

(® A U), called the conjunction of ® and ¥,

(® Vv ¥), called the disjunction of ® and ¥,

(® — U), called the material implication of ¥ by ®,
(® +»), called the material equivalence of ® and ¥,
Vz®, called the universal quantification of ® in x, and
Jx®, called the existential quantification of ® in x.

Definition 1.8 ((Well-formed) expression) All terms and formulae over ¥ are
called (well-formed) expressions over X.

Definition 1.9 (First-order language) The set of all (well-formed) expressions over
Y is called the first-order language over X.

Definition 1.10 (Complement) The complement of any negated formula —® is ®
and the complement of any unnegated formula & is its negation —®; we denote
the complement of a formula ® with ~®.

Definition 1.11 (Literal) Every atomic formula and every negation of an atomic
formula is called a literal.

Recalling the assertion given in Example 1.1: “if every person that is not rich
has a rich father, then some rich person must have a rich grandfather,” a possible
(abstracted) first-order formalization would be the following formula.

Ezample 1.12 Yz (=R(z) — R(f(x))) — Jz(R(z) A R(f(f(z)))).

Definition 1.18 (Subexpression) If an expression @ is the concatenation of strings
Wi,..., Wy, in concordance with the Definitions 1.4 to 1.7, then any expression
among these strings is called an immediate subexpression of ®. The sequence
obtained by deleting all elements from W7y, ..., W,, that are not expressions is
called the immediate subexpression sequence of ®. Among the strings Wy, ..., W,
there is a unique string W whose symbol is a connective, a quantifier, a function

symbol, or a predicate symbol; W is called the dominating symbol of ®. An

12 CHAPTER 1. PRELIMINARIES

expression U is said to be a subexpression of an expression ® if the pair (¥, ®)
is in the transitive closure of the immediate subexpression relation. Analogously,
the notions of (immediate) subterms and (immediate) subformulae are defined.

Example 1.14 According to our conventions of denoting symbols and strings, a
formula of the form P(z, f(a,y),z) has the immediate subexpression sequence
z, f(a,y), x; the immediate subexpressions = and f(a,y); the subexpressions z,
f(a,y), a, and y; and, lastly, P as dominating symbol.

We have to provide a means for addressing different occurrences of symbols
and subexpressions in an expression E. One could simply address occurrences by
giving the first and last word positions in E. Although this way occurrences of
symbols and subexpressions in an expression could be uniquely determined, this
notation has the disadvantage that whenever expressions are modified, e.g., by
concatenating them or by replacing an occurrence of a subexpression, then the
addresses of the occurrences may change completely. We will use a notation which
is more robust concerning concatenations of and replacements in expressions. This
notation is motivated by a symbol tree representation of logical expressions, as
displayed in Figure 1.1.

v
2N
3

z 2N
/VY

Y
P v

VNN
r Yy x -
1|
P

VN

y oz

Figure 1.1: Symbol tree of the formula Vz3y(P(z,y) V Vz—P(y, z)).

Each occurrence of a symbol or a subexpression in an expression can be
uniquely determined by a sequence of natural numbers that encodes the edges
to be followed in the symbol tree. Formally, tree positions can be defined as
follows.

Definition 1.15 (Position) For any expression E,

1. if s is the dominating symbol of an expression E, then the position both of
E and of the dominating occurrence of s in E is the empty sequence ().

1.1. CLASSICAL FIRST-ORDER LOGIC 13

2. if By, ..., E, is the immediate subexpression sequence of E and if py,...,pn
is the position of an occurrence of an expression or a symbol W in E;,
1 < i < n, then the position of that occurrence of W in FE is the sequence

%P1y« Pn-

An occurrence of a symbol or an expression W with position py,...,p, in an
expression F is denoted with Pt»-Pn ¥/,

For example, the occurrences of the variable z in the formula Vz3y(P(z,y) Vv
Vz-P(y,r)) are ‘z, 22bly 2221y and 2222127 Since it is essential to as-
sociate variable occurrences in an expression with occurrences of quantifiers, we
need the concept of the scope of a quantifier occurrence.

Definition 1.16 (Scope of a quantifier occurrence) If 1P Q is the occurrence
of a quantifier in a formula ®, then the occurrence of the respective quantification
P1Pm QW is called the scope of P1>Pm Q in ®; every occurrence of the structure
PLroPmoPmttsPr 1 (m < n) of symbols or expressions in @ is said to be in the
scope of P1=Pm Q in @,

Referring to the formula in Figure 1.1, the occurrence 22! P(z,y) is in the
scope of only one quantifier occurrence, namely, Y, whereas 22221 P(y, z) is in
the scope of both occurrences of the universal quantifier.

Definition 1.17 (Bound and free variable occurrence) If an occurrence of a vari-
able P1»-Pm:Pmi1:5Pn g <, in an expression @ is in the scope of a quantifier
occurrence Pt-Pm Q. then that variable occurrence is called a bound occurrence
of z in ®; the variable occurrence is said to be bound by the rightmost such quan-
tifier occurrence in the string notation of ®, i.e., by the one with the greatest
index m < n. A variable occurrence is called free in an expression if it is not
bound by some quantifier occurrence in the expression.

Accordingly, the rightmost occurrence 22:2:2:12z of z in the formula in Fig-

ure 1.1 is bound by the universal quantifier at position 2,2,2. Note that every
occurrence of a variable in a well-formed expression is bound by at most one
quantifier occurrence in the expression.

Definition 1.18 (Closed and ground expression, sentence) If an expression does
not contain variables, it is called ground, and if it does not contain free variables,
it is termed closed. Closed formulae are called sentences.

Definition 1.19 (Closures of a formula) Let ® be a formula and {z1,...,z,} the

set of free variables of ®, then the sentence Vz;---Vz,® is called a universal
closure of ®, and the sentence 3z - - - Jx, ® is called an ezistential closure of ®.

Notation 1.20 In order to gain readability, we shall normally spare brackets. As
usual, we permit to omit outermost brackets. Furthermore, for arbitrary binary
connectives o1, 09, any formula of the shape ® oy (¥ 0y Z) may be abbreviated by

14 CHAPTER 1. PRELIMINARIES

writing just ® oy U oy = (right bracketing). Accordingly, if brackets are missing,
the dominating infix connective is always the leftmost one.

1.1.2 Semantics of Classical First-Order Logic

Now we are going to present the classical model-theoretic semantics of first-order
logic due to [Tarski, 1936]. In contrast to propositional logic, where it is sufficient
to work with Boolean valuations and where the atomic formulae can be treated
as the basic meaningful units, the richer structure of the first-order language
requires a finer analysis. In first-order logic the basic semantic components are
the denotations of the terms, a collection of objects termed universe.

Definition 1.21 (Universe) Any non-empty collection? of objects is called a uni-
verse.

The function symbols and the predicate symbols of the signature of a first-
order language are then interpreted as functions and relations over such a uni-
verse.

Notation 1.22 For every universe U, we denote with U/ the collection of mappings
Upen, U™ — U, and with Up the collection of relations |J, oy, BU") with
PB(U") being the power set of U. Note that any nullary mapping in Ur is from
the singleton set {@#} to U, and hence, subsequently, will be identified with the
single element in its image. Any nullary relation in Up is just an element of the
two-element set {0, {#}} (= {0,1}, according to the Zermelo-Fraenkel definition
of natural numbers). We call the sets § and {0} ¢ruth values, and abbreviate them
with L and T, respectively.

This way the mapping of atomic formulae to truth values as performed for
the case of propositional logic is captured as a special case by the more general
framework developed now. In the following, we denote with £ a first-order lan-
guage, with V, F, and P the sets of variables, function symbols, and predicate
symbols in the signature of L, respectively, and with 7 and W the sets of terms
and formulae in £, respectively.

Definition 1.23 (First-order structure, interpretation) A (first-order) structure is
a pair (£,U) consisting of a first-order language £ and a universe U. An inter-
pretation for a first-order structure (£,U) is a mapping Z: F UP — Ur UlUp
such that

1. 7 maps every n-ary function symbol in F to an n-ary function in Ur.

2. T maps every n-ary predicate symbol in P to an n-ary relation in Up.

2Whenever the term ‘collection’ will be used, no restriction is made with respect to the
cardinality of an aggregation, whereas the term ‘set’ indicates that only denumerably many
elements are contained.

1.1. CLASSICAL FIRST-ORDER LOGIC 15

Since formulae may contain free variables, the notion of variable assignments
is be needed.

Definition 1.24 (Variable assignment) A wvariable assignment from a first-order
language L to a universe U is a mapping A: V — U.

Once an interpretation and a variable assignment have been fixed, the meaning
of any term and any formula in the language is uniquely determined.

Definition 1.25 (Term assignment) Let Z be an interpretation for a structure
(L,U), and let A be a variable assignment from £ to . The term assignment of
T and A is the mapping ZA: T — U defined as follows.

1. For every variable = in V: T4(z) = A(x).

2. If f is a function symbol of arity n > 0 and #y, ..., t,, are terms, then

3 3

I(F)TA (), - .., TA(tn))-

N
=
)
=
=
~
2
I

Finally, we come to the assignment of truth values to formulae, which is defined
by simultaneous induction.

Definition 1.26 (Formula assignment) Let Z be an interpretation for a structure
(L,U), and let A be a variable assignment from £ to . The formula assignment
of T and A is the mapping Z4: W — {T, L} defined as follows. Let ® and ¥
denote arbitrary formulae of L.

1. For any nullary predicate symbol P in the signature of £: Z4(P) = Z(P).

2. If P is a predicate symbol of arity n > 0 and ¢q,..., t, are terms, then

3 3

T if (IA(tl),...,IA(tn)) € I(P)
1 otherwise.

TAP(t, ...) ={

if TA — T A —
s P@B={] e T
T if7A(®) = L
4. IA(ﬁ(I)) - { 1 otherwise.
5. TA(® A D)) = TA(~(=d V -T)).
6. TA(® = 0)) = TA((=® vV T)).

7. TA((® &) = TA(((@ — T) A (T - 3))).

16 CHAPTER 1. PRELIMINARIES

8. A variable assignment is called an z-variant of a variable assignment if both
assignments differ at most in the value of the variable z.

IA(thI)) _J T if IAI(‘?) = T for all z-variants A’ of A
1 otherwise.
9. IA(gxq)) = IA(—MJ:—'(I)),

We extend the definition to sets S of formulae by setting Z4(S) = T if and only
if ZA(®) = T, for all formulae & € S.

Particularly interesting is the case of interpretations for sentences, i.e., closed
formulae. From the definition of formula assignments (items 8 and 9) it follows
that, for any sentence and any interpretation Z, the respective formula assign-
ments are all identical, and hence do not depend on the variable assignments.
Consequently, for sentences, we shall speak of the formula assignment of an inter-
pretation Z, and write it Z, too. Possible ambiguities between an interpretation
and the corresponding formula assignment will be clarified by the context.

To comprehend the manner in which formula assignments give meaning to ex-
pressions, see Example 1.27. The example illustrates how formulae are interpreted
in which an occurrence of a variable is in the scopes of different quantifier oc-
currences. Loosely speaking, Definition 1.26 guarantees that variable assignments
obey “dynamic binding” rules (in terms of programming languages), in the sense
that a variable assignment to a variable z for an expression ® is overwritten by
a variable assignment to the same variable z in a subexpression of ®.

Ezample 1.27 Two sentences ® = Vz(3zP(z) A Q(z)) and ¥ = Vz3z(P(x) A
Q(z)). Given a universe U = {uy, us}, let an interpretation Z(P) = Z(Q) = {u1 }.
Then Z(®) = L and Z(¥) = T.

The central semantic notion is that of a model.

Definition 1.28 (Model) Let Z be an interpretation for a structure (£,U), A a
collection of variable assignments from £ to U, and & a first-order formula. We say
that 7 is an A-model for ® if TA(®) = T, for every variable assignment A € A; if
T is an A-model for & and A is the collection of all variable assignments, then 7 is
called a model for ®. If 7 is an (A-)model for every formula in a set of first-order
formulae S, then we also call Z an (A-)model for S.

The notions of satisfiability and validity abstract from the consideration of
specific models.

Definition 1.29 (Satisfiability, validity) Let T be a (set of) formula(e) of a first-
order language £ (and A a collection of variable assignments). The set T" is called
(A-)satisfiable if there exists an (A-)model for I'. We call T walid if every inter-
pretation is a model for I'.

1.1. CLASSICAL FIRST-ORDER LOGIC 17

Definition 1.30 (Implication, equivalence) Let I and A be two (sets of) first-order
formulae.

1. We say that T' implies A, written ' = A, if every model for ' is a model
for A; obviously, if T' = @), then A is valid, and we simply write = A.

2. T strongly implies A if, for every universe i and every variable assignment
A from L to U: every {A}-model for I' is an {A}-model for A.

If T and A (strongly) imply each other, they are called (strongly) equivalent.

Note that according to this definition any first-order formula is equivalent to
any-one of its universal closures. Obviously, for (sets of) sentences, implication
and strong implication coincide. Furthermore, the notion of material (object-
level) implication and the strong (meta-level) implication concept of first-order
formulae are related as follows.

Theorem 1.81 (Implication Theorem) Given two first-order formulae ® and U,
® strongly implies U if and only if the formula ® — ¥ is valid.

Proof For the “if”-part, assume & — ¥ be valid. Let 4 be any variable assignment
and 7 an arbitrary {A}-model for ®. By Definition 1.26, Z4(®) = L or Z4(¥) =
T. By assumption, Z4(®) = T; hence T4(¥) = T, and Z is an {A}-model
for ¥. For the “only-if”-part, suppose that & strongly implies ¥. Let A be any
variable assignment and Z an arbitrary interpretation. Now, either Z4(®) = L;
then, by Definition 1.26, TA(® — ®¥) = T. Or, Z4(®) = T; in this case, by
assumption, Z(¥) = T; hence ZA(® — ¥) = T. Consequently, in either case 7
is an {A}-model for & — . O

It is obvious that strongly equivalent formulae can be substituted for each
other in any context without changing the meaning of the context.

Lemma 1.832 (Replacement Lemma) Given two strongly equivalent formulae F
and G and any formula ® with F as subformula, if the formula ¥ can be obtained
from ® by replacing an occurrence of F in ® with G, then ® and ¥ are strongly
equivalent.

Another more subtle useful replacement property is the following.

Lemma 1.33 If = F — G, then |= Vo F — VzG.

Proof Assume |= F — G. Let Z be any interpretation and A any variable assign-
ment with Z4(VzF) = T. Then, for all z-variants A’ of A: Z4 (F) = T and, by
assumption, Z4 (G) = T. Consequently, ZA(VzG) = T .]

The subsequently listed basic strong equivalences between first-order formulae
can also be demonstrated easily.

18 CHAPTER 1. PRELIMINARIES

Proposition 1.3/ Let F, G, and H be arbitrary first-order formulae. All formulae
of the following structures are valid.

(1) ——F < F

(2) ~(FAG) & (=FV -G) (De Morgan law for A)
(3) ~(FVG) & (=F A-G) (De Morgan law for V)
(4) (FV(GAH) ¢ (FVG)A(FVH)) (V-distributivity)
(5) (FA(GVH) & (FAG)V (FAH)) (A-distributivity)
(6) ~3F ¢ Va—-F (AY-conversion)
(7) ~VzF < 3z-F (V3-conversion)
(8) V2(F A G) & (VoF AV2G) (VA-distributivity)
(9) J(FV G) & (JzF V L2G) Av-distributivity)

We conclude this part with proving a technically useful property of variable
assignments.

Definition 1.35 Two variable assignments A and B are said to overlap on a set
of variables V' if for all z € V : A(z) = B(z).

Notation 1.36 For any mapping® f, its modification by changing the value of z
to u, i.e., (f\ {{z, f(x))}) U{{z,u)}, will be denoted with f7.

Proposition 1.37 Let ® be a formula of a first-order language L with V being
the set of free variables in ®, and U a universe. Then, for any two variable
assignments A and B from L to U that overlap on V:

(1) TA(®) = IB(®), and
(2) if ® =320, then {u €U | T4 (V) = T}y ={uel | IB:(¥) =T}

Proof (1) is obvious from Definition 1.26 of formula assignments. For (2), consider
an arbitrary element u € U with 74 (¥) = T. Since A% and BZ overlap on
V U {z}, by (1), ZB:(¥) = T, which proves the set inclusion in one direction.
The reverse direction holds by symmetry. |

3Mappings are considered as sets of ordered pairs.

1.1. CLASSICAL FIRST-ORDER LOGIC 19

1.1.3 Variable Substitutions

The concept of variable substitutions, which we shall introduce next, is the ba-
sic modification operation performed on logical expressions. Let in the following
denote T the set of terms and V the set of variables of a first-order language.

Definition 1.38 ((Variable) substitution) A (variable) substitution is any map-
ping o: V — T where V is a finite subset of V and = # o(z), for every z in the
domain of o. A substitution is called ground if no variables occur in the terms of
its range.

Definition 1.39 (Binding) Any element (z,t) of a substitution, abbreviated z/t,
is called a binding. We say that a binding x/t is proper if the variable = does not
occur in the term t.

Now, we consider the application of substitutions to logical expressions.

Definition 1.40 (Instance) If ® is any expression and o is a substitution, then the
o-instance of ®, written ®o, is the expression obtained from ® by simultaneously
replacing every occurrence of each variable z € domain(o) that is free in ® by
the term o(z). If ® and ¥ are expressions and there is a substitution o with
¥ = &g, then VU is called an instance of ®. Similarly, if S is a (collection of)
set(s) of formulae, then So denotes the (collection of the) set(s) of o-instances of
its elements.

As a matter of fact, bound variable occurrences are not replaced. Furthermore,
we are interested in substitutions which preserve the models of a formula. In order
to preserve modelhood for arbitrary logical expressions, the following property is
sufficient.

Definition 1.41 (Free substitution) A substitution o is said to be free for an
expression ® provided, for every free occurrence °z of a variable in ®, all variable
occurrences in *zo are free in ®o.

While no bound variable occurrence can vanish when a substitution is applied,
for free substitutions, no additional bound variable occurrences are imported. This
means that the following proposition holds.

Proposition 1.42 A substitution o is free for an expression ® if and only if any
variable occurs bound at the same positions in ® and in Po.

Bringing in additional bound variables can lead to unsoundness, as shown
with the following example.

Ezample 1.43 Consider a formula ® of the form 3z(P(z,y,2) A =P(y,y, z)) and
the substitutions oy = {y/z} and oy = {y/x}. While oy is free for ® and
¢ | Yoy = Fz(P(z,2,2) N -P(z,2,2)), 02 is not, and indeed ® £ Poy =
Jx(P(z,z,2) AN -P(z,2,2)).

20 CHAPTER 1. PRELIMINARIES

The following fundamental result relates substitutions and interpretations.

Notation 1.44 If 7 is an interpretation, A a variable assignment, and o = {z; /¢,
..., Tn/t,} a substitution, then the variable assignment A?A(tl) e §§(tn) (using
Notation 1.36) will be denoted with Acoz. If the underlying interpretation is clear
from the context, we will sometimes omit the subscript and simply write Ao.

Lemma 1.45 If 0 is a substitution that is free for a first-order expression E, then,
for any interpretation T and any variable assignment A: T4(Eo) = T4 (E).

Proof The proof is by induction on the structural complexity of the expression
E. First, for any term, the result is immediate from the Definition 1.25 of term
assignments. The cases of quantifier-free formula are also straightforward from
items (1) — (7) of the Definition 1.26 of formula assignments. We consider the
case of a universal formula V2 F in more detail. Z4(VzFo) = T if and only if (by
item (8) of formula assignment) for all z-variants A’ of A: T = Z4 (Fo) = (by
the induction hypothesis) Z4'7 (F) iff (since o is assumed to be free for F) for
all z-variants Ao’ of Ao: T4 (F) = T iff (by item (8) of formula assignment)
TA?(VzF) = T. The existential case is similar. i

Now we can state a very general soundness result for the application of substi-
tutions to logical expressions. Let V denote the set of variables of the underlying
first-order language.

Proposition 1.46 (Substitution soundness) Given a first-order formula ® and a
substitution o = {x1 [t1,. .., Tn[ty} that is free for ®, let V C V be any set of

variables containing x1,...,x, and A any collection of all variable assignments

that overlap on V \ V. If an interpretation T is an A-model for ®, then T is an
A-model for ®o.

Proof Consider an arbitrary variable assignment A4 € A. Now, by assumption, A
contains all variable assignments that overlap on V \ V' where V is any superset
of {z1,...,2,}. Therefore, Ao € A and hence Z#(®s) = T. Since o is free for
®, Lemma 1.45 can be applied which yields that 747 (®) = Z4(®0) = T. m|

As a special instance of this proposition we obtain the following corollary
(simply set V' =V and A will be the collection of all variable assignments).

Corollary 1.47 For any formula ® and any substitution o which is free for ® :
d = do.

Definition 1.48 (Composition of substitutions) Assume o and 7 to be substitu-
tions. Let ¢’ be the substitution obtained from the set {(z,tr) | z/t € o} by
removing all pairs for which 2z = ¢7, and let 7/ be that subset of 7 which contains
no binding =/t with 2 € domain(o). The substitution o' U7’, written o7, is called
the composition of ¢ and 7.

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 21

Proposition 1.49 Let o, 7 and 8 be arbitrary substitutions and ® any logical ez-
pression such that o is free for ®.

1. o = Po = o, for the empty substitution (.
2. (Po)T = ®(oT).
3. (o7)0 = o(10).

Proof (1) is immediate. For (2) consider any free occurrence *z of a variable
in ®. We distinguish three cases. First, 2 ¢ domain(o) and = ¢ domain(7); then
$(xo)T = *z = Sz(o7). If, secondly, © ¢ domain(o) but z € domain(r), then
$(xzo)T = %x17 = %x(oT). Lastly, assume x € domain(o); as ¢ was assumed free
for ®, no variable occurrence in *zo is bound in ®o, therefore *(zo)r = *z(o7).
Since ®*z was chosen arbitrary and only free variable occurrences were modified,
we have the result for ®. For (3) let be any variable. The repeated application
of (2) yields that z((o7)0) = (z(07))0 = ((xo)7)8 = (xz0)(78) = x(0(70)). This
means that the substitutions (o7)f and o(76) map every variable to the same
term, hence they are identical. |

Summarizing these results, we have that () acts as a left and right identity for
composition; (2) expresses that under the given assumption substitution applica-
tion and composition permute; and (3), the associativity of substitution compo-
sition, permits to omit parentheses when writing a composition of substitutions.
As a consequence of (1) and (3), the set of substitutions with the composition
operation forms a semi-group.

1.2 Normal Forms and Normal Form Transfor-
mations

A logical problem for a first-order language consists in the task of determining
whether a relation holds between certain first-order expressions. For an efficient
solution of a logical problem, it is very important to know whether it is possible
to restrict attention to a proper sublanguage of the first-order language. This
is because certain sublanguages permit the application of more efficient solution
techniques than available for the full first-order format. For classical logic, this
can be strongly exploited by using prenex and Skolem forms.

1.2.1 Prenex and Skolem Formulae

Definition 1.50 (Prenex form) A first-order formulae ® is said to be a prenez
formula or in prenex form if it has the structure Qiz1 - - - Qnz, F', n > 0, where
the Q;, 1 <i < n, are quantifiers and F' is quantifier-free. We call F' the matriz
of ®.

Proposition 1.51 For every first-order formula ® there is a formula in prenex
form which is strongly equivalent to .

22 CHAPTER 1. PRELIMINARIES

Proof We give a constructive method to transform any formula ® over the connec-
tives =, A, and V into prenex form—by the definition of formula assignment, the
connectives <> and — can be eliminated before, without affecting strong equiva-
lence. If Q is any quantifier, V or 3, with O we denote the quantifier 3 respectively
V. Now, for any formula which is not in prenex form, one of the following two
cases holds.

1. ® has a subformula of the structure -Qz F'; then, by Proposition 1.34(6) and
(7), and the Replacement Lemma (Lemma 1.32), the formula ¥ obtained
from ® by substituting all occurrences of ~QzF in ® by Qz—F is strongly
equivalent to ®.

2. @ has a subformula ¥ of the structure (QzF o G) or (G o QzF) where o
is A or V; let y be a variable not occurring in ®, then, clearly ¥ and ¥’ =
Qy(F{z/y}oG) or Qu(G o F{z/y}), respectively, are strongly equivalent;
therefore, by the Replacement Lemma, the formula obtained by replacing
all occurrences of ¥ in ® by ¥’ is strongly equivalent to ®.

Consequently, in either case one can move quantifiers in front without affecting
strong equivalence, and after finitely many iterations prenex form is achieved. O

It is obvious that, except for the case of formulae containing <, the time
needed for carrying out this procedure is bounded by a polynomial in the size of
the input, and the resulting prenex formula has less than double the size of the
initial formula. The removal of <>, however, can lead to an exponential increase
of the formula size (see [Reckhow, 1976]).

Definition 1.52 (Skolem form) A first-order formula @ is said to be a Skolem
formula or in Skolem form if it has the form Vz,---Vz,F and F is quantifier-
free.

The possibility of transforming any first-order formula into Skolem form is
fundamental for the field of automated deduction. This is because the removal of
existential quantifiers facilitates a particularly efficient computational treatment
of first-order formulae. Furthermore, the single step in which an existential quan-
tifier is removed, occurs as a basic component of any calculus for full first-order
logic.

Definition 1.58 (Skolemization) Let S be a set of formulae containing a formula
® with the structure Yy - --Vy,,JyF, m > 0, and z1,...,x, the variables that
are free in JyF'. If f is an n-ary function symbol not occurring in any formula of
S (we say that f is new to S), then the formula Vy; - - - Yy (F{y/f(z1,...,2n)})
is named a Skolemization of ® wrt. S.

We have introduced a general form of Skolemization which is applicable to
arbitrary, not necessarily closed, sets of first-order formulae in prenex form. This
is necessary for the free-variable tableau systems developed in Section 4. When

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 23

moving to a Skolemization of a formula, for any variable assignment 4, the col-
lection of {A4}-models does not increase.

Proposition 1.5/ Given a formula ® of a first-order language L, if U is a Skolem-
ization of ® wrt. a set of formulae S, then U strongly implies ®.

Proof Let & = Yy ---Vy,,yF. First, we show that, for any term ¢, the sub-
formula JyF of ® is strongly implied by F' = F{y/t}. Let A be any variable
assignment and Z any {.4}-model for F’. By Lemma 1.45, Z*{¥/!}(F) = T. Since
A{y/t} is an y-variant of A, by the definition of formula assignments, Z(3yF) =
T. Then, a repeated application of Lemma 1.33 yields that ¥ = Vy; - - Vy,, F’
strongly implies ®. |

When moving to a Skolemization of a formula, the collection of models may
decrease, however. Consequently, for the transformation of formulae into Skolem
form, equivalence must be sacrificed, but the preservation of A-satisfiability can
be guaranteed, for any collection A of variable assignments.

Proposition 1.55 Let ¥ be a Skolemization of a formula ® wrt. a set of formulae
S and A any collection of variable assignments. If S is A-satisfiable, then SU{¥}
is A-satisfiable.

Proof By assumption, & € S has the structure Vy; - - - Vy,, JyF (m > 0); ¥ has
the form Vy; ---Vy, F' where F' = F{y/f(z1,...,z,)}; f is an n-ary function
symbol new to S; and z1, ..., z, are the free variables in JyF'. Now let A be any
collection of variable assignments that has an A-model Z for S. Z need not be an
A-model for ¥, but we show that with a modification of merely the meaning of
the function symbol f an A-model for S U {¥} can be specified. First, we define
a total and disjoint partition P on the collection of variable assignments A by
grouping together all elements in A that overlap on the variables zi,...,z,. By
Proposition 1.37, for any two variable assignments B and C in any element of
P:{u €U | I8 (F)=T}={u €U | I%(F) = T}, ie., for any element of
the partition P, the collection of objects “with the property” F' is unique; we
abbreviate with U,, ... v, (F') the collection of objects determined by the variable
assignments that map z1,...,z, to the objects uy,...,u,, respectively. By the
assumption of Z being an A-model for ®, none of these collections of objects is
empty. In order to be able to identify elements in those possibly nondenumer-
able collections, which is necessary to define a mapping, we have to assume the
existence of a well-ordering? < on U. For any collection M C U, let uM de-
note the smallest element modulo <. Now we can define a total n-ary mapping f:
U™ — U by setting f(uq, ..., up) = plhy, ... u, (F') and an interpretation Zg = Iff
(using Notation 1.36). Since the symbol f does not occur in any formula of S,

4A total ordering < on a collection of objects S is a well-ordering on S if every non-empty
subcollection M of objects from S has a smallest element modulo <. Note that supposing the
existence of a well-ordering amounts to assuming the aziom of choice (for further equivalent
formulations of the axiom of choice, consult, for example, [Krivine, 1971]).

24 CHAPTER 1. PRELIMINARIES

Ty is an A-model for S. To realize that Zy is an A-model for ¥, too, consider
an arbitrary variable assignment A € A. Clearly, Zg'(3yF) = T. Let P4 be
the element of the partitiop P that contains A. Deﬁne the variable assignment
A = A?(A(x1)7...7A(xn))' T3 (F) = T and hence Zg' (F{y/f(z1,...,z,)}) = T.
Now A and A’ are identical except for the value of y, but y does not occur free
in F{y/f(z1,...,2,)}, therefore, Zg'(F{y/f(v1,...,2,)}) = T. m|

Theorem 1.56 (Skolemization Theorem) Given a formula ® of a first-order lan-
guage L, let U be a Skolemization of ® wrt. a set of formulae S and A any
collection of variable assignments. S is A-satisfiable if and only if S U {¥} is
A-satisfiable.

Proof Immediate from the Propositions 1.54 and 1.55. |

Concerning the space and time complexity involved in a transformation into
Skolem form, the following estimate can be formulated.

Proposition 1.57 Given a prenex formula ® of a first-order language L, if ¥ is a
Skolem formula obtained from ® via a sequence of Skolemizations, then size(V),
i.e., the length of the string W, is smaller than size(®)?, and the run time of the
Skolemization procedure is polynomially bounded by the size of .

Proof Every variable occurrence in @ is bound by exactly one quantifier occur-
rence in ®, and every variable occurrence in an inserted Skolem term is bound
by a universal quantifier. This entails that, throughout the sequence of Skolem-
ization steps, whenever a variable occurrence is replaced by a Skolem term, then
no variable occurrence within an inserted Skolem term is substituted afterwards.
Moreover, the arity of each inserted Skolem function is bounded by the number
of free variables in ® plus the number of variables in the quantifier prefix of ®.
Therefore, the output size is quadratically bounded by the input size. Since in
the Skolemization operation merely variable replacements are performed, any de-
terministic execution of the Skolemization procedure can be done in polynomial
time. O

Prenexing and Skolemization only work for classical logic, but not for intu-
itionistic or other logics. In those cases, more sophisticated methods are needed
to encode the nesting of the connectives and quantifiers. Some of those are con-
sidered in [Wallen, 1989], [Ohlbach, 1991].

Y

1.2.2 Herbrand Interpretations
The standard theorem proving procedures are based on the following obvious

proposition.

Proposition 1.58 Given a set of sentences T' and a sentence F, T' = F if and
only if T U{=F} is unsatisfiable.

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 25

Accordingly, the problem of determining whether a sentence is logically im-
plied by a set of sentences can be reformulated as an unsatisfiability problem.
Demonstrating the unsatisfiability of a set of formulae of a first-order language
L, however, means to prove, for any universe I, that no interpretation for (£,)
is a model for the set of formulae. A further fundamental result for the efficient
computational treatment of first-order logic is that, for formulae in Skolem form,
it is sufficient to examine only the interpretations for one particular domain, the
Herbrand universe of the set of formulae. Subsequently, let £ denote a first-order
language and a, a fixed constant in the signature of L.

Definition 1.59 (Herbrand universe) Let S be (a set of) formula(e) of £. With
Sc we denote the set of constants occurring in (formulae of) S. The constant
base of S is S¢ if S is non-empty, and the singleton set {as} if S¢ = . The
function base Sp of S is the set of function symbols occurring in (formulae of)
S with arities > 0. Then the Herbrand universe of S is the set of terms defined
inductively as follows.

1. Every element of the constant base of S is in the Herbrand universe of S.

2. If t1,...,t, are in the Herbrand universe of S and f is an n-ary function
symbol in the function base of S, then the term f(¢1,...,¢,) is in the
Herbrand universe of S.

Definition 1.60 (Herbrand interpretation) Given a (set of) formula(e) S of a first-
order language £ with Herbrand universe . A Herbrand interpretation for S is
an interpretation Z for the pair (£,U) meeting the following properties.

1. 7 maps every constant in S¢ to itself.

2. T maps every function symbol f in Sy with arity n > 0 to the n-ary function
that maps every n-tuple of terms (t1,...,t,) € U™ to the term f(t1,...,t,).

Proposition 1.61 For any (set of) first-order formulae S in Skolem form, if S has
a model, then it has a Herbrand model.

Proof Let 7' be an interpretation with arbitrary universe &' which is a model
for S, and let U denote the Herbrand universe of S. First, we define a mapping
h:U — U’', as follows.

1. For every constant ¢ € U: h(c) = Z'(c).

B(F (b stn)) = T'(F) (hh1). ... h(ta)).
Next, we define a Herbrand interpretation Z for S.

3. For every n-ary predicate symbol P, n > 0, and any n-tuple of objects

(t1,...,tn) € U™ {t1,...,t,) € I(P) if and only if (h(t1),...,h(ty)) €
T'(P).

26 CHAPTER 1. PRELIMINARIES

Now let A be an arbitrary variable assignment A from £ to . With A’ we denote
the functional composition of A and h. It can be verified easily by induction on the
construction of formulae that J’A,(S’) = T entails 34(S) = T. The induction
base is evident from the definition of Z, and the induction step follows from
Definition 1.26. Consequently, Z is a model for S. |

For formulae in Skolem form, the Herbrand universe is always rich enough to
be used as a representative for any other universe, and the question whether a
model exists can always be solved by restricting attention to Herbrand interpreta-
tions. For formulae that are not in Skolem form, this does not work, as illustrated
with the following simple example.

Ezample 1.62 The formula 32(P(x)A—-P(a)) is satisfiable, but it has no Herbrand
model.

The fact that Herbrand interpretations are sufficient for characterizing mod-
elhood in the case of Skolem formulae can be used for proving the Léwenheim-
Skolem theorem.

Theorem 1.63 (Léwenheim-Skolem theorem) Every satisfiable (set of) first-order
formula(e) S has a model with a countable universe.

Proof Given any satisfiable (set of) first-order formula(e) S, let S’ be a (set
of) first-order formula(e) obtained from S by prenexing and Skolemization.” By
Propositions 1.51 and 1.55, S’ must be satisfiable, too. Then, by Proposition 1.61,
there exists a Herbrand model Z for S’ with a countable Herbrand universe, since
obviously every Herbrand universe is countable. By Propositions 1.51 and 1.54,
7 must be a model for S. |

Working with Herbrand interpretations has the advantage that interpretations
can be represented in a very elegant manner.

Definition 1.6/ (Herbrand base) Given a (set of) formula(e) S of a first-order
language £ with Herbrand universe Y. The predicate base Sp of S is the set of
predicate symbols occurring in (formulae of) S. The Herbrand base of S, written
Bs, is the set of all atomic formulae P(t1,...,t,), n > 0, with P € Sp and t; € U,
for every 1 <i < n.

Notation 1.65 Every Herbrand interpretation H of a (set of) formula(e) S can
be uniquely represented by a subset H of the Herbrand base Bg of S by defining

’H(L):{ T ifLeH

1 otherwise
for any ground atom L € Bg. We shall exploit this fact and occasionally use
subsets of the Herbrand base for denoting Herbrand interpretations.

5If S is an infinite set of formulae and the Herbrand universe of S already contains almost all
function symbols of a certain arity, then it may be necessary to move to an extended first-order
language £’ that contains enough function symbols of every arity.

1.2. NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS 27

1.2.3 Formulae in Clausal Form

After prenexing and Skolemizing a formula, it is a standard technique in auto-
mated deduction to transform the resulting formula into clausal form.

Definition 1.66 (Clause) Any formula ¢ of the form Vz; ---Va,(Ly V -+ V Lp,),
with m > 1 and the L; being literals, is a clause. Each literal L; is said to be
(contained) in c.

Definition 1.67 (Clausal form)
1. Any clause is in clausal form.

2. If F is in clausal form and ¢ is a clause, then ¢ A F is in clausal form.

Proposition 1.68 For any first-order formula ® in Skolem form there exists a
strongly equivalent formula ¥ in clausal form.

Proof Let F be the matrix of a first-order formula ® in Skolem form. We perform
the following four equivalence preserving operations. First, by items 7 and 6 of
Definition 1.26 of formula assignment, successively, the connectives <+ and —
are removed. Secondly, the negation signs are pushed immediately before atomic
formulae, using recursively Proposition 1.34(1) and de Morgan’s laws (2) and (3).
Finally, apply V-distributivity from left to right until no conjunction is dominated
by a disjunction. The resulting formula is in clausal form. |

It can easily be verified that, even for matrices not containing <, the given
transformation may lead to an exponential increase of the formula size. In fact,
there exists no equivalence preserving polynomial transformation of a matrix
into clausal form, even if <+ does not occur in the matrix (see [Reckhow, 1976]).
But there are polynomial transformations if logical equivalence is sacrificed (see
[Eder, 1985, Plaisted and Greenbaum, 1986, Boy de la Tour, 1990]). Those trans-
formations are satisfiability and unsatisfiability preserving, and the transformed
formula logically implies the source formula, so that the typical logical problems—
unsatisfiability detection or model finding if possible—can be solved by consider-
ing the transformed formula.

28

CHAPTER 1. PRELIMINARIES

Chapter 2

Tableau Systems

2.1 First-Order Sentence Tableaux

The tableau method was introduced by Beth in [Beth, 1955, Beth, 1959] and elab-
orated by Hintikka in [Hintikka, 1955] and others, but the most influential stan-
dard format was given by Smullyan in [Smullyan, 1968] (cf. Section 2 in the first
chapter of this book). Therefore, the tableau calculus for closed first-order for-
mulae, which is developed in this section, will be essentially Smullyan’s.

2.1.1 Quantifier Elimination in Unifying Notation

The tableau method for propositional logic exploits the fact that all proposi-
tional formulae that are not literals can be partitioned into two syntactic types,
a conjunctive type, called the a-type, or a disjunctive type, named the [-type.
Accordingly, only two inference rules are needed, the a- and the S-rule. This
uniformity extends to the first-order language, in that just two more syntactic
types are needed to capture all first-order formulae, the universal type, called
the y-type, and the existential type, named the d-type. Likewise, just two further
inference rules will be needed, called the - and the d-rule.

Altogether, this results in the following classification and decomposition sche-
ma for first-order sentences—arbitrary first-order formulae containing free vari-
ables will be treated in the next section. To any first-order sentence F' of any
connective type (a or 3) a sequence of sentences different from F will be as-
signed, called the a- or 3-subformulae sequence of F, respectively, as defined in
Table 2.1, for all formulae over the connectives —, V, A and —. Note that, by ex-
ploitation of the associativity of the connectives V and A, we permit subformulae
sequences of more than two formulae. This straightforward generalization speeds
up the decomposition of formulae.

While the subformula sequence and hence the decomposition of any formula
of a connective type is always finite, this cannot be achieved in general. A first-
order sentence F' of any quantification type (v or §) has possibly infinitely many

29

30 CHAPTER 2. TABLEAU SYSTEMS

Conjunctive Disjunctive
Q a-subformulae Ié) (B-subformulae
sequence sequence
——F F
FiA---ANF, Fy,...,F, FiV---VF, Fy,...,F,
~(FV---VFE,) | -F,...,-F, | -(FAAN---NF,) | =Fy,...,—F,
-(F = Q) F,-G F—-G -FG

Table 2.1: Connective types and a-, -subformulae sequences.

~- or §-subformulae, respectively, as defined in Table 2.2 where ¢ ranges over the
set of ground terms and c over the set of constants of a first-order language.

Universal Existential
5 ~-subformulae) d-subformulae
VzF F{z/t} dzF F{z/c}
—dzF -F{z/t} -V F -F{x/c}

Table 2.2: Quantification types and -, d-subformulae.

Definition 2.1 Any a-, 3-, -, or d-subformula F' of a formula F' is named an
immediate tableau subformula of F. A formula F' is called a tableau subformula
of F if the pair (F',F) is in the transitive closure of the immediate tableau
subformula relation.

Obviously, the decomposition schema guarantees that all tableau subformulae
of a sentence are sentences. Moreover, the decomposition rules have the following
fundamental proof-theoretic property.

Definition 2.2 (Formula complezxity) The formula complezity of a formula F is
the number of occurrences of formulae in F.

Proposition 2.3 Every tableau subformula of a formula F has a smaller formula
complexity than F.

This assures that there can be no infinite decomposition sequences.

Notation 2.4 We shall often use suggestive meta-symbols for naming formulae of
a certain type. Thus, a formula of the a- or -type will be denoted with ‘@’ or
‘3’, and the formulae in its subformula sequence with ‘aq’,...,'a,’ or ‘B1,..., By,
respectively; for a formula of the - or é-type and its subformula wrt a term ¢,
we will write “y’ or ‘6’ and ‘“y(t)’ or ‘0(t)’, respectively.

As in the propositional case, first-order tableaux are particular formula trees,
i.e, ordered trees with the nodes labelled with formulae. We do not formally intro-
duce trees, and we permit trees to be infinite. Trees will be viewed as downwardly

2.1. FIRST-ORDER SENTENCE TABLEAUX 31

growing from the root. As the depth of a tree or a tableau we take the maximal
number of edges on a branch. Furthermore, the following abbreviations will be
used.

Definition 2.5 If a formula is the label of a node on a branch B of a formula tree
T, we say that F' appears or is on B and in T. With B&Fy | - -+ | F,, we mean the
result of attaching n > 0 new successor nodes Ny, ..., N,, in this order, fanning
out of the end of B and labelled with the formulae F1,..., F,, respectively. Any
such sequence Ny, ..., N, is termed a node family in T. We shall often treat the
branch B of a formula tree as the set of formulae appearing on B. All nodes
above a node N on a branch are called its ancestors, the ancestor immediately
above N is termed its predecessor. If two nodes in a tableau are labelled with
complementary formulae, we shall also call the nodes complementary.

Based on the developed formula decomposition schema, first-order tableaux
for sentences are defined inductively.

Definition 2.6 (Sentence tableau) (inductive) Let S be any set of sentences of a
first-order language L.

e Every one-node formula tree labelled with a formula from S is a sentence
tableau for S.

e If B is a branch of a sentence tableau T for S, then the formula trees
obtained from the following five expansion rules are all sentence tableauz

for S:

(a) B @ a, if a; is an a-subformula of a formula o on B!

(B) B®B1 |-+ | Bn,if B1,..., By is the B-subformula sequence of a formula
(B on B,

(v) B®~(t), if t is a ground term and a formula v occurs on B,

(6) B@d(c), if ¢ is a constant new to S and to the formulae in T, and a
formula ¢ appears on B,

(F) B@ F, for any formula F € S.

If T is a sentence tableau for a singleton set {®}, we also say that T is a sentence
tableau for the formula ®. When a decomposition rule is performed on a formula
F at a node N, we say that F or N is used.

Obviously, if the input set contains just one formula, the formula rule denoted
with (F) can be omitted. The inference rules of sentence tableaux for formulae
are summarized in Figure 2.1.

INote that this rule is slightly more flexible than the standard a-rule as presented in
[Smullyan, 1968] according to which B has to be modified to B ® a1 @ -+ ® an in a single
inference step. The need for this will become clear at the end of the section when we introduce
the regularity refinement.

32 CHAPTER 2. TABLEAU SYSTEMS

@ 8 5)
a; Bul-|Bn () é(c)
for any ground for any new
term ¢ constant c

Figure 2.1: Inference rules of sentence tableaux for formulae.

Definition 2.7 (Closed tableau) A branch B of a tableau is called (atomically)
closed if an (atomic) formula F and its negation appear on B, otherwise the
branch is termed (atomically) open. Similarly, a node N is called (atomically)
closed if all branches through N are (atomically) closed, and (atomically) open
otherwise. Finally, a tableau is termed (atomically) closed if its root node is
(atomically) closed, otherwise the tableau is called (atomically) open.

(1) ~3z(VyVzP(y, f(x,y,2)) = (YyP(y, f(z,y,x)) AVy3zP(g(y),2)))

‘ ~(1)
(2) =(VyVzP(y, f(a,y, 2)) = (VyP(y, f(a,y,a)) AVy3zP(g(y),2)))
o(2)
(3) VyVzP(y, f(a,y, 2))
| a2)
(4) ~(VyP(y, f(a,y,a)) ANVy3zP(g(y),z))
B(4)
(5) =Yy P(y, f(a,y,a)) (6) =VyI=2P(g(y), 2)
5(5) | 566)
(7) =P(b, f(a,b,a)) (10) =32P(g(b), 2)
| +3) | +(10)
(8) V2P(b, f(a, b, 2)) (11) =P(g(b), f(a,g(b),a))
| ~8) |3
(9) P(b, f(a,b,a)) (12) V2P(g(b), f(a, g(b),2))
| ~v(12)

(13) P(g(b), f(a, g(b), a))

Figure 2.2: An atomically closed sentence tableau.

In Figure 2.2, a larger sentence tableau for a first-order sentence is displayed
that illustrates the application of each tableau rule. For every tableau expansion
step, the respective type of tableau expansion rule and the used ancestor node
are annotated at the connecting vertices. Note that all branches of the tableau

2.1. FIRST-ORDER SENTENCE TABLEAUX 33

are atomically closed. A closed sentence tableau for a set of sentences S repre-
sents a correct proof of the unsatisfiability of S. The correctness of the tableau
approach as a proof method for first-order sentences is based on the fact that the
decomposition rules are satisfiability preserving.

Proposition 2.8 Let S be any satisfiable set of first-order sentences.
(1) If « € S, then SU{«;} is satisfiable, for every a-subformula a; of a.
(2) If B € S, then SU{B;} is satisfiable, for some B-subformula (3; of (.
(8) If vy € S, then SU {v(¢t)} is satisfiable, for any ground term t.
(4) If 6 € S, then SU{d(c)} is satisfiable, for any constant c that is new to S.

Proof Ttems (1) and (2) are immediate from the definition of formula assign-
ment; (3) is a consequence of the soundness of substitution application (Propo-
sition 1.46); lastly, since 0 is assumed as closed and ¢ is new to S, d(c) is a
Skolemization of § wrt S, hence (4) follows from Proposition 1.55. m|

Proposition 2.9 (Soundness of sentence tableaux) If a set of sentences S is satis-
fiable, then every sentence tableau for S has an open branch.

Proof We use the following notation. A branch of a tableau for a set of formulae
S is called satisfiable if S U B is satisfiable where B is the set of formulae on
the branch. Clearly, every satisfiable branch must be open. We prove, by induc-
tion on the number of tableau expansion steps, that every sentence tableau for a
satisfiable set of sentences S has a satisfiable branch. The induction base is evi-
dent. For the induction step, consider any tableau T for S generated with n+1
expansion steps. Let T’ be a tableau for S from which T can be obtained by a
single expansion step. By the induction assumption, 7' has a satisfiable branch
B. Now, either T contains B, in which case T' has a satisfiable branch. Or B is
expanded; in this case, Proposition 2.8 guarantees that one of the new branches
in T' is satisfiable. |

A fundamental proof-theoretic advantage of the tableau method over syn-
thetic proof systems like axiomatic calculi [Hilbert and Ackermann, 1928] is the
analyticity of the decomposition rules. The formulae in a tableaux are in the
reflexive-transitive closure of the tableau subformula relation on the input set.
For certain formula classes, this permits the generation of decision procedures
based on tableaux, which will be discussed below.

2.1.2 Completeness of Sentence Tableaux

First-order logic differs from propositional logic in that there are no decision
procedures for the logical status of a set of formulae, but merely semi-decision
procedures. More precisely, there exist effective mechanical methods for verifying

34 CHAPTER 2. TABLEAU SYSTEMS

the unsatisfiability of sets of first-order formulae (or the logical validity of first-
order formulae?), whereas, when subscribing to Church’s Thesis, the satisfiability
of sets of first-order formulae (or the non-validity of first-order formulae) cannot
be effectively recognized.?

The tableau calculus represents such an effective mechanical proof method. In
this part, we will provide a completeness proof of sentence tableaux. An essential
concept used in this proof is that of a downward saturated set of sentences.

Definition 2.10 (Downward saturated set) Let S be a set of first-order sentences
and U the Herbrand universe of S. The set S is called downward saturated pro-
vided:

1. if S contains an «, then it contains all its a-subformulae,

2. if S contains a 3, then it contains at least one of its S-subformulae,
3. if S contains a 7y, then it contains all y(¢) with ¢ € U,
4

. if S contains a d, then it contains a §(c) with ¢ being a constant in U.

Definition 2.11 (Hintikka set) By an (atomic) Hintikka set we mean a downward
saturated set which does not contain an (atomic) formula and its negation.

Lemma 2.12 (Hintikka’s Lemma) Every atomic Hintikka set (and hence every
Hintikka set) is satisfiable.

Proof Let S be an atomic Hintikka set. We show that some Herbrand interpre-
tation for S is a model for S. Let H denote the set of ground atoms in S, which
defines a Herbrand interpretation #, using Notation 1.65. We prove, by induction
on the formula complexity, that 7 is a model for all formulae in S. The induction
base is evident. For the induction step, assume that H(F) = T, for all formulae
F in S with formula complexity < n. First, since S does not contain an atomic
formula and its negation, H is a model for all literals in S. Now consider any
non-literal formula F' € S with formula complexity n. The formula complexity of
every tableau subformula of F is < n.

1. If Fis an a, then, by the definition of downward saturation, every «; is in
S. Since, by the induction assumption, H(a;) = T, H(F) = T.

2. If F is a (3, then, again by the definition of downward saturation, some [;
is in S. By the induction assumption, H(8;) = T, therefore, H(F) = T.

3. If Fisay =VzF', by the downward saturatedness of S and the induction
assumption, H(v(t)) = T, for any term ¢ in the Herbrand universe I/ of S.
Since U is the universe of # and since H (being a Herbrand interpretation)
maps every term ¢ to itself, for all variable assignments A to U, HA(F') =
H(F'{x/A(z)}) = T. Therefore, H(F) =T.

2This result was first demonstrated by Godel in [G&del, 1930].
3Thus settling the undecidability of first-order logic, which was proved by Church in
[Church, 1936] and Turing in [Turing, 1936].

2.1. FIRST-ORDER SENTENCE TABLEAUX 35

4. Finally, if F' is a §, by downward saturation and the induction assumption
H(d(c)) = T, for some constant ¢ € T, therefore H(F) = T. |

After these preliminaries, we can come back to tableaux. The tableau calculus
is indeterministic, i.e., many possible expansion steps are possible in a certain
situation. We are now going to demonstrate that the tableau construction can
be made completely deterministic and yet it can be guaranteed that the tableau
will eventually close if the set of input formulae is unsatisfiable. Such tableaux
are called systematic tableauz. In order to make the expansion deterministic, we
have to determine,

1. from where the next formula has to be taken, and

2. for the case of the quantifier rules, to which closed term the respective
variable has to be instantiated.

Furthermore, since systematic tableaux shall be introduced for the most general
case in which the set of input formulae may be infinite, we have to provide means
for making sure that any formula in the set will be taken into account in the
tableau construction, if necessary.

For the node selection, we equip the nodes of tableaux with an additional
number label, expressing whether the formula at the node can be used for a
tableau expansion step or not. If a node carries a number label, then the formula
at the node will be a possible candidate for a tableau expansion step, otherwise
not.

Definition 2.13 (Usable node) If a tableau T' contains nodes with number labels,
then from all the nodes labelled with the smallest number the leftmost one with
minimal tableau depth is called the usable node of T'; otherwise T' has no usable
node.

For the term selection needed in the quantifier rules, we employ a total or-
dering on the set of closed terms. Both selection functions together can be used
to uniquely determine the next tableau expansion steps. Concerning the fairness
problem in case the set of input formulae be infinite, we use an additional total
ordering on the formulae.

Definition 2.14 (Systematic tableau (sequence)) (inductive) Let 7 be a mapping
from Ny onto the set of ground terms and < a total ordering on the set of for-
mulae of a first-order language £, respectively, and S any set of closed first-order
formulae. The systematic tableau sequence of S wrt m and < is the following
sequence 7T of tableaux for S. Let ® be the smallest formula in S modulo <.

e The one-node tableau Ty with root formula ® and number label 0 is the
first element of 7.

36 CHAPTER 2. TABLEAU SYSTEMS

e If T, is the n-th element in 7 and has nodes with number labels, let N be
the usable node of T, with formula F' and number k. Furthermore, if some
formula in S is not on some branch passing through N, let G denote the
smallest such formula modulo <. Now expand each open branch B passing
through N to:

1. B[®G] ®ay @+ ® ay, if F is of type a with a-subformula sequence

A1, ...,Qnp,
2. B[®G]| ®B1 | | Bn,if F is of type § with S-subformula sequence
ﬂla v aﬂn:

3. B[&G | @y(n(k)), if F is of type 7,

4. B[@G] @®d(c) if F is of type ¢ and ¢ is the smallest constant modulo
7w not occurring in 7.

Then give every newly attached node the number label 0 if its formula label
is not a literal. Next, remove the number labels from all nodes that have
become atomically closed through the expansion steps. Finally, if F' is not
of type 7, remove the number label from N; otherwise change the number k
at N to k+1. The tableau resulting from the entire operation is the n+1-st
element of the sequence 7.

e If T}, has no usable node, it is the last element of 7.

In Figure 2.3, a closed systematic tableau is shown with 7(0) = a and (1) = b.
The following structural property of sentence tableaux plays an important role.
We formulate it generically, for any system of tableau inference rules.

Definition 2.15 (Nondestructiveness) A tableau calculus C' is called nondestruc-
tive if, whenever a tableau T can be deduced from a tableau T' according to
the inference rules of C, then T’ is an initial segment of T'; otherwise C' is called
destructive.

Since obviously the calculus of sentence tableaux is nondestructive, one can
form the (tree) union of all the tableaux in a systematic tableau sequence.

Definition 2.16 (Saturated systematic tableau) Let T be a systematic tableau se-
quence for a set of first-order formulae S. With T* we denote the smallest formula
tree containing all tableaux in T as initial segments; T™ is called a saturated sys-
tematic tableau of S.

Proposition 2.17 For any (atomically) open branch B of a saturated systematic
tableau, the set of formulae on B is a(n atomic) Hintikka set.

Proof Let B be any (atomically) open branch of a saturated systematic tableau.
According to the definition of systematic tableau, it is guaranteed that the branch
B satisfies the following condition: for any formula F' on B,

2.1. FIRST-ORDER SENTENCE TABLEAUX

3.
4.

(1) 3y3zVz(P(z,y) A (P(z,2) = =P(y,y)))

| 501
(2) 32Vx(P(x,a) A (P(z,x) = —P(a,a)))
| 52
(3) Ve(P(z,a) A (P(b,x) = —P(a,a)))
| @)
(4) (P(a,a) A (P(b,a) = =P(a,a)))
|)
(5) P(a,a)
| o
(6) (P(b,a) & ~P(a,a))
B(6)
(7) ~P(b,a) (8) ~P(a,a)
| v(3)
(9) (P(b,a) A (P(b,b) = —P(a,a)))
| a0
(10) P(b,a)
| a9)

(11) (P(b,b) = —P(a,a))

Figure 2.3: An atomically closed systematic tableau.

. if F is of type «, then all a-subformulae of F' must be on B.

. if F is of type (3, then some (-subformula of F must be on B.

if F is of type -, then all v-subformulae of F' must be on B.

if F is of type §, then some é-subformulae of F' must be on B.

37

So the set S of formulae on B is downward saturated. Since B is (atomically)
open, no (atomic) formula and its negation are in S, hence S is a(n atomic)
Hintikka set.

Now the refutational completeness of tableaux is straightforward.

O

Theorem 2.18 (Completeness of sentence tableau) If S is an unsatisfiable set of
first-order sentences, then there exists a finite atomically closed sentence tableau

for S.

38 CHAPTER 2. TABLEAU SYSTEMS

Proof Let T be a saturated systematic tableau for S. First, we show that T must
be atomically closed. Assume, indirectly, that T contains an atomically open
branch B. Then, by Proposition 2.17, there would exist an atomic Hintikka set
for the set S’ of formulae on B and, by Hintikka’s Lemma, a model Z for S’.
Now, by the definition of saturated systematic tableau, S C S’, hence Z would
be a model for S, contradicting the unsatisfiability assumption. This proves that
every branch of 7' must be atomically closed. In order to recognize the finiteness
of T, note that the closedness of any branch of a systematic tableau entails that
it cannot have a branch of infinite length. Since the branching rate of any tableau
is finite, (by Konig’s Lemma) T' must be finite. m|

The generality of our systematic tableau procedure permits an easy proof of
a further fundamental property of first-order logic.

Theorem 2.19 (Compactness Theorem) Any unsatisfiable set of first-order sen-
tences has a finite unsatisfiable subset.

Proof Let S be any unsatisfiable set of first-order sentences. By Theorem 2.18,
there exists a finite closed tableau T for S. Let S’ be the set of formulae in
S appearing in T. S’ is finite and, by the soundness of tableaux, S’ must be
unsatisfiable. |

Sentence tableaux can also be used to illustrate the basic Herbrand-type prop-
erty of first-order logic that with any unsatisfiable set of prenex formulae one can
associate unsatisfiable sets of ground formulae as follows.

Definition 2.20 A tableau is called quantifier preferring if on any branch all ap-
plications of quantifier rules precede applications of the connective rules. Such a
tableau begins with a single branch containing only quantifier rule applications
up to a node N below which only connective rules are applied; the set of formulae
on this branch up to the node N is called the initial set of the tableau, and the
set of ground formulae in the initial set is termed the initial ground set of T.

It is evident that we can reorganize any tableau for a set of prenex formulae in
such a way that it is quantifier preferring, without increasing its size or affecting
its closedness. None of those properties is guaranteed to hold for sets containing
formulae which are not in prenex form.

Proposition 2.21 If T is a closed quantifier preferring tableau for a set S of first-
order formulae, then the initial ground set of T is unsatisfiable.

Since, for any unsatisfiable set S of prenex formulae, a closed quantifier pre-
ferring tableau exists, we can associate with S the collection of the initial ground
sets of all closed quantifier preferring sentence tableaux for S. The sets in this
collection, in particular the ones with minimal complexity, play an important role
as a complexity measure.

2.1. FIRST-ORDER SENTENCE TABLEAUX 39

Definition 2.22 (Herbrand complexity) The Herbrand complexity of an unsatisfi-
able set S of prenex formulae is the minimum of the complexities* of the initial
ground sets of all closed quantifier preferring sentence tableaux for S.

Since the quantifier rules of tableaux are not specific to the tableau calcu-
lus, the Herbrand complexity can be used as a calculus-independent refutation
complexity measure for unsatisfiable sets of formulae. This measure may also be
extended to formulae which are not in prenex form, by working with transforma-
tions of the formulae in prenex form (see also [Baaz and Leitsch, 1992]).

Next, we come to an important proof-theoretic virtue of sentence tableaux,
which we introduce generically for any system of tableau rules.

Definition 2.28 (Confluence) A tableau calculus C is called proof confluent or
just confluent (for a class of formulae) if, for any unsatisfiable set S of formulae
(from the class), from any tableau T for S constructed with the rules of C' a
closed tableau for S can be constructed with the rules of C.

Loosely speaking, a confluent (tableau) calculus does never run into dead
ends.?

Proposition 2.24 Sentence tableauz are confluent for first-order sentences.

Proof Let T be any sentence tableau generated for an unsatisfiable set of sentences
S. By the completeness of sentence tableaux, for any branch B in T, there exists
a closed sentence tableau Tg for S U B. At the leaf of any branch B of T, simply
repeat the construction of Tg. O

In the subsequent sections, we shall introduce tableau calculi and procedures
that are not confluent and for which no systematic procedures of the type pre-
sented in this section exist. Nonconfluence may have strong consequences on the
termination behaviour and the functionality of a calculus, particularly, when one
is interested in decision procedures or in model generation for (sublanguages of)
first-order logic. As we shall see, the lack of confluence may also require com-
pletely different approaches towards proving completeness.

2.1.3 Refinements of Tableaux

The calculus of sentence tableaux permits the performance of certain inference
steps that are redundant in the sense that they do not contribute to the closing
of the tableau. In order to avoid such redundancies, one can restrict the tableau
rules and/or impose conditions on the tableau structure. First, we discuss the
notion of strictness which is a refinement of the tableau rules. Adapted to our
framework, it reads as follows.

4As the complexity of a set of formulae one may take the cardinality of the set plus the
number of occurrences of symbols in the elements of the set.

5Note that the notion of confluence used here slightly differs from its definition in the area
of term rewriting (see, e.g., [Huet, 1980].

40 CHAPTER 2. TABLEAU SYSTEMS

Definition 2.25 (Strict tableau) A tableau construction is strict if
e every (- and é-node is used only once on a branch and
e for any a-node, any occurrence of an a; in « is used only once a branch.

The strictness condition is motivated by the definition of systematic tab-
leaux, since obviously any systematic tableau construction is strict. Consequently,
the strictness condition is completeness-preserving. Strictness can also be imple-
mented very efficiently by simply labelling nodes (or occurrences of tableau sub-
formulae at nodes) as already used on a branch. But strictness does not perform
optimal redundancy elimination, since it does not prevent that one and the same
formula may appear twice on a branch. This is particularly detrimental if it hap-
pens in a S-rule application where new branches with new proof obligations are
produced, which obviously is completely useless. A stronger tableau restriction
concerning the connective rules is achieved with the following structural condi-
tion.

Definition 2.26 (Regularity) A formula tree is called regular if on no branch a
formula appears more than once.

The main reason why regularity has not been used in the traditional presen-
tation of tableaux lies in the different definition of the a-rule here and there.
We permit that only one a-subformula can be attached, whereas the traditional
format requires to append all a-subformulae at once, one below the other. It
is straightforward to realize that regularity is not compatible with the tradi-
tional definition of the a-rule. An obvious example is the unsatisfiable formula
(p A q) A (p A=—q), for which no closed regular tableau exists if the traditional
a-rule is used. Since (wrt. the connective rules) the regularity condition is a more
powerful mechanism of avoiding suboptimal proofs than the strictness condition,
we have generalized the a-rule in order to achieve compatibility with regular-
ity.% The following demonstrates that tableaux which are irregular can be safely
ignored.

Procedure 2.27 (Removwal of irregularities) Given any tableau T, repeat the fol-
lowing operation, until the resulting formula tree is regular.

e Select a node N in T with an ancestor node N’ such that both nodes
are labelled with the same literal. Remove the edges originating in the
predecessor N" of N and replace them with the edges originating in N.

Proposition 2.28 Every closed sentence tableau of minimal size” is reqular.

6This is an interesting illustration of the fact that an unfortunate presentation of inference
rules can block certain obvious pruning mechanisms.

TA precise measure for the size of a tableau is given in Definition 7.3. But this result is
compatible with any reasonable measure.

2.1. FIRST-ORDER SENTENCE TABLEAUX 41

Proof We show the contraposition, i.e., that every closed irregular sentence tab-
leau T is not minimal in size. Let T be any closed irregular sentence tableau for
a set S. Obtain a formula tree T’ by performing Procedure 2.27 on T. Clearly,
T' is a sentence tableau for S, it is smaller than T', and it is closed. O

In order to integrate the d-rule restriction of strictness, we call a tableau
strictly regular if it is strict and regular. The regularity restriction can easily be
integrated into systematic tableaux, by simply omitting the attachment of nodes
B & Fy | ---| F, if one of the F; is already on the branch B.

A further fundamental refinement of sentence tableau concerns the ~-rule.

Definition 2.29 (Herbrand tableau) Herbrand tableaux are defined like sentence
tableaux, but with the 7y-rule replaced by the Herbrand v-rule:

where t is from the Herbrand universe of the branch.

The Herbrand restriction on the y-rule may significantly improve the termi-
nation behaviour of sentence tableaux, as illustrated with the formula F' given
in Example 2.30. The formula is satisfiable. But unfortunately, infinitely large
sentence tableau can be constructed for F', as shown in Figure 2.30, since the
~-rule can be applied again and again using the formula (4). Any strict Herbrand
tableau construction terminates, since the number of ground terms that can be
selected for (4) is finite.

Ezample 2.30 F = -Nz(JyP(z,y) — JyP(y,x))

The Herbrand restriction on tableaux is as reasonable as regularity, since it
preserves minimal proof size.

Proposition 2.81 For every (atomically) closed sentence tableau T for a set S,
there exists a(n atomically) closed Herbrand tableau T' for S with less or equal
size than T'.

Proof Without increasing the size, we can rearrange T in such a way that all
formula rule applications are performed first. Now consider any ~-step in the
tableau that is not Herbrand, attaching a formula v(t) to the leaf N of a branch
B. Replace any occurrence of ¢ below N with a constant from the Herbrand
universe of B. Obviously, the modified formula tree is (atomically) closed and
does not increase in size. It is straightforward to recognize that the formula tree
is a sentence tableau for S. Finitely many applications of this operation produce
a(n atomically) closed Herbrand tableau T' for S equal or smaller in size than
T. |

Proposition 2.32 Strictly reqular Herbrand tableaux are confluent for first-order
sentences.

42 CHAPTER 2. TABLEAU SYSTEMS

(1) ~Vz(3yP(z,y) — IyP(y,)) (1) =Vz(3yP(z,y) — JyP(y,z))
| s01) | 1)
(2) ~(3yP(a,y) = FyP(y,a)) (2) ~(3yP(a,y) = FyP(y,a))
| a2 | ae2)
(3) JyP(a,y) (3) JyP(a,y)
| a2 | a2
(4) ~3yP(y,a) (4) ~3yP(y,a)
| s(3) | 5(3)
(5) P(a,b) (5) P(a,b)
|) | ey
(6) =P(a,a) (6) =P(a,a)
| v | aa(a)
(7) =P(b,a) (7) =P(b,a)
| v(4) all Herbrand terms
(8) =P(c,a)

selected for (4)

Figure 2.4: Sentence and Herband tableau for Example 2.30.

Proof Let T be any strictly regular Herbrand tableau for an unsatisfiable set
of sentences S. By the completeness of sentence tableaux, there exists a closed
sentence tableau T' for S. Simply repeat the construction of T', at any leaf
of T. Now modify the resulting sentence tableau, as described in the proofs of
Propositions 2.28 and 2.31. The procedure results in a closed strictly regular
Herbrand tableaux T for S. Since the modification operation is performed from
the leaves towards the root, it does not affect the inital tree T', hence T'" is as
desired. |

The Herbrand tableau rule also has an effect on the systematic tableau con-
struction. Since the Herbrand universe may increase during branch expansion,
the enumeration of ground terms must be organized differently.

Definition 2.33 (Systematic Herbrand tableau) Systematic Herbrand tableauz are
defined like systematic tableaux except that the ~y-rule application is controlled
differently. Whenever a v at a node N is selected, for any atomically open branch
B through N, select the smallest term ¢ (modulo the ordering 7) from the Her-
brand universe of B that has not been selected at N on B; if all terms from the
Herbrand universe of B have already been selected at NV on B, v cannot be used
for expanding the current leaf of B.

In particular, this entails that, for different branches, different Herbrand terms
may be selected in the systematic tableau construction. Imposing the Herbrand

2.1. FIRST-ORDER SENTENCE TABLEAUX 43

restriction on systematic tableaux preserves completeness, since Proposition 2.17
also holds for Herbrand tableaux.

Proposition 2.84 Every (atomically) open branch B of a saturated regular sys-
tematic Herbrand tableau is a(n atomic) Hintikka set, moreover, the set of atoms
on B defines a Herbrand model for B.

Proof See the proof of Proposition 2.17. |

Herbrand tableaux provide a higher functionality than sentence tableaux,
since a larger class of first-order formulae can be decided.

Definition 2.35 (Weak Skolem, datalogic form) A sentence ® is said to be in weak
Skolem form if ® has no tableau subformula of type 7 that has a tableau sub-
formula of type . A sentence ® is said to be in (weak) datalogic form if ® is in
(weak) Skolem form, respectively, and ® has no function symbol of arity > 0.

The set of weak datalogic formulae is a generalization of the Bernays-Schonfin-
kel class [Bernays and Schonfinkel, 1928].

Proposition 2.36 Every strictly reqular Herbrand tableau for any finite set S of
weak datalogic formulae is finite.

Proof The formula structure and the tableau rules guarantee that only §-formulae
can appear on a branch which occur as subformulae in the elements of S. Since S
is assumed as finite, this entails that the number of §-formulae on any branch must
be finite. Because of the strictness condition on the d-rule, only finitely many new
constants can occur on a branch. Since no function symbols of arity > 0 occur in
the elements of S, the Herbrand universe of any branch must be finite, and hence
the set of formulae occurring on a branch. Regularity then assures that also the
length of any branch must be finite. m|

Both properties demonstrate that Herband tableaux are decision procedures
for the class.

Proposition 2.837 Given any finite set S of weak datalogic formulae, any reqular
systematic Herbrand tableau construction terminates,

o cither with a closed tableau if S is unsatisfiable,

e or with an open branch which defines a Herbrand model for S.

44 CHAPTER 2. TABLEAU SYSTEMS

2.2 Free-variable Tableaux

The tableau approach is traditionally useful as an elegant format for present-
ing proofs. With the increasing importance of automatic deduction, however,
the question arises whether the tableau paradigm is also suited for proof search.
In principle, systematic tableau procedures could be used for this purpose. But
systematic procedures, even regular Herbrand ones, are still too inefficient for
a broad application. As an illustration, see the tableau displayed in Figure 2.2,
which is not systematic. A systematic tableau would be much larger. The essen-
tial difference concerns the applications of the «-rule. Consider, e.g., the y-step
from node (10) =3zP(g(b),2) to node (11) =P(g(b), f(a, g(b),a)) in which the
"right” substitution {z/f(a, g(b),a))} has been selected. Since a systematic pro-
cedure has to enumerate all (Herbrand) instances in a systematic and therefore
”blind” manner, it would normally perform the substitution {z/f(a,g(b),a))}
much later. The obvious weakness of the v-rule is that it enforces to perform
ground instantiations too early, at a time when it is not clear whether the sub-
stitution will contribute to the closing of a branch. The natural approach for
overcoming this problem is to postpone the term selection completely by permit-
ting free variables in a tableau and to determine the instances later when they
can be used to immediately close a branch. The free variables are then treated in
a rigid manner, i.e., they are not being considered universally quantified but as
placeholders for arbitrary (ground) terms. This view of free variables dates back
to work of Prawitz [Prawitz, 1960], was applied by Bibel [Bibel, 1981] and An-
drews [Andrews, 1981], and incorporated into tableaux, for example, by Fitting
[Fitting, 1990] (see also [Reeves, 1987]). In this section, we will investigate this
approach. Closure of a branch means producing two complementary formulae,
i.e., a formula and its negation, on the branch. Since we can confine ourselves
to atomic closures, the problem can be reduced to finding a substitution ¢ such
that for two literals K and L on the branch: Ko = ~Lo. So one has to integrate
unification into the tableau calculus.

2.2.1 Unlification

Unification is one of the most successful advances in automated deduction, be-
cause it permits to make instantiation optimal with respect to generality. Unifica-
tion will be introduced here for arbitrary finite sets of quantifier-free expressions.

Definition 2.38 (Unifier) For any finite set S of quantifier-free expressions and
any substitution o, if |So| = 1, then o is called a unifier for S. If a unifier exists
for a set S, then S is called unifiable.

Subsequently, we will always assume that S denotes finite sets of quantifier-
free expressions. The general notion of a unifier can be subclassified in certain
useful ways.

8With | M| we denote the cardinality of a set M.

2.2. FREE-VARIABLE TABLEAUX 45

Definition 2.89 (Most general unifier) If o and 7 are substitutions and there is
a substitution 6 such that 7 = 06, then we say that o is more general than 7.
A unifier for a set S is called a most general unifier, MGU for short, if ¢ is more
general than any unifier for S.

Most general unifiers have the nice property that any unifier for two atoms can
be generated from a most general unifier by further composition. This qualifies
MGUs as a useful instantiation vehicle in many inference systems. The central
unifier concept in automated deduction, however, is the following.

Definition 2.40 (Minimal unifier) If a unifier o for a set S has the property that
for every unifier 7 for S: |o| < |7, then we say that o is a minimal unifier for S.

For a minimal unifier the number of substituted variables is minimal.

Ezample 2.41 Given the set of terms S = {z, f(y)}, the two substitutions o =
{y/z,z/f(x)} and 7 = {z/f(y)} are both Maus for S, but only 7 is a minimal
unifier.

In fact, every minimal unifier is a most general unifier, as will be shown in
the Unification Theorem (Theorem 2.50) below. How can we a find a minimal
unifier for a given setl’ For this purpose, the procedurally oriented concept of a
computed unifier will be developed.

Definition 2.42 (Disagreement set) Let S be a finite set of quantifier-free expres-
sions. A disagreement set of S is any two-element set { £y, F»} of expressions such
that the dominating symbols of F; and E» are distinct and F; and E5 occur at
the same position as subexpressions in two of the expressions in S.

Ezample 2.48 The set of terms S = {z,g(a,y,u),g(z,b,v)} has the following
disagreement sets: {a, z}, {y, b}, {u,v}, {z,g9(a,y,u)}, {z,9(z,b,0)}.

Obviously, a set of expressions S has a disagreement set if and only if |S| > 1.
The following facts immediately follow from the above definitions.

Proposition 2.44 If o is a unifier for a set S and D is a disagreement set of S,
then o unifies D, each member of D is a term, and D contains a variable which
does not occur in the other term of D.

The last item of the proposition expresses that any binding formed from any
disagreement set of a unifiable set must be a proper binding. Operationally, the
examination whether a binding is proper is called the occurs-check. A particularly
useful technical tool for proving the Unification Theorem below is the Decompo-
sition Lemma.

Lemma 2.45 (Decomposition Lemma) Let o be a unifier for a set S with |S| > 1
and let {z,t} be any disagreement set of S with © # zo. If T = 0 \ {z/x0}, then

o= {z/t}r.

46 CHAPTER 2. TABLEAU SYSTEMS

Proof First, since o unifies any disagreement set of S, zo = to. By Proposi-
tion 2.44, x does not occur in ¢, which gives us to = t7. Consequently, zo = t7
and x # tr. Furthermore, ¢ domain(7), and by the composition of substitu-
tions, {z/t}m = {x/tT} U 7. Putting all this together yields the chain {z/t}T =
{z/tr}Ur = {z/zoc}UT = 0. m|

Now we shall introduce a concept which captures the elementary operation
performed when making a set of expressions equal by instantiation. It works by
eliminating exactly one variable x from all expressions of the set and by replacing
this variable with another term ¢ from a disagreement set {z,t} of S provided
that = does not occur in t.

Definition 2.46 (Variable elimination) If S is a finite set of expressions such that
from the elements of one of its disagreement sets a proper binding z/t can be
formed, then S{z/t} is said to be obtainable from S by a variable elimination wrt
x/t.

Proposition 2.47 Let S be any finite set of quantifier-free expressions and let Vg
be the set of variables occurring in S.

1. If S is unifiable, so are all sets obtainable from S by a variable elimination.
2. Only finitely many sets can be obtained from S by a variable elimination.

3. If S" has been obtained from S by a wvariable elimination wrt a binding
{z/t} and Vs is the set of variables occurring in S', then |S'| < |S| and
VSI = VS \ {CU}

4. The transitive closure of the relation
{{(S",S) | S" can be obtained from S by a variable elimination step}

is well-founded where S and S' are arbitrary finite sets of quantifier-free
expressions, i.e., there are no infinite sequences of successive variable elim-
ination steps.

Proof For the proof of (1), let S’ = S{z/t} be obtained from S by a variable
elimination wrt to the binding z/t composed from a disagreement set of S, and
suppose o unifies S. Since ¢ unifies every disagreement set of S, it follows that zo
=to. Let 7 = 0\ {z/x0}. By the Decomposition Lemma (Lemma 2.45), we have
{z/t}r = 0. Therefore, S({z/t}7) = (S{z/t})T = S'r. Hence 7 unifies S'. For
(2) note that since there are only finitely many disagreement sets of S and each
of them is finite, only finitely many proper bindings are induced, and hence only
finitely many sets can be obtained by a variable elimination. To recognize (3), let
S’ = S{x/t} be any set obtained from S by a variable elimination. Then S’ is the
result of replacing any occurrence of z in S by the term ¢. Therefore, |S'| < S|,
and, since x/t is proper and t already occurs in S, we get Vg, = Vs \ {z}. Lastly,
(4) is an immediate consequence of (3). m|

2.2. FREE-VARIABLE TABLEAUX 47

Now we are able to introduce the important notion of a computed unifier,
which is defined by induction on the cardinality of the unifier.

Definition 2.48 (Computed unifier) (inductive)

1. § is a (the only) computed unifier for any singleton set of quantifier-free
expressions.

2. If a substitution o of cardinality n is a computed unifier for a finite set S’
and S’ can be obtained from S by a variable elimination wrt a binding z/t,
then the substitution o U{z/to} = {x/t}o of cardinality n+1 is a computed
unifier for S.

The definition of a computed unifier can be seen as a declarative specification
of an algorithm for really computing a unifier for a given set of expressions, which
we will present now using a procedural notation. The procedure is a generalization
of the algorithm given by Robinson in [Robinson, 1965].°

Definition 2.49 (Unification algorithm) Let S be any finite set of quantifier-free
expressions. o9 =}, So = S, and k = 0. Then go to 1.

1. If |Sk| = 1, output o as a computed unifier for S. Otherwise select a
disagreement set Dy of Si and go to 2.

2. If Dy, contains a proper binding, choose one, say z/t; then set o1 =
op{z/t}, set Sgr1 = Sip{z/t}, increment k£ by 1 and go to 1. Otherwise
output "not unifiable”.

Note that the unification algorithm is a nondeterministic procedure. This is
because there may be several different choices for a disagreement set and for a
binding. Evidently, the unification procedure can be directly read off from the
definition of a computed unifier: it just successively performs variable elimination
operations, until either there are no variable elimination steps possible, or the
resulting set is a singleton set. Conversely, the notion of a computed unifier is an
adequate declarative specification of the unification algorithm. It follows immedi-
ately from Proposition 2.47 (1) and (4) that each unifier output of the unification
algorithm is indeed a computed unifier and that the procedure terminates, re-
spectively.

We shall demonstrate now that the notions of a minimal and a computed
unifier coincide, and that both of them are most general unifiers.

Theorem 2.50 (Unification Theorem) Let S be any unifiable finite set of quantifier-
free expressions.

1. If o is a minimal unifier for S, then o is a computed unifier for S.

2. If o is a computed unifier for S, then o is a minimal unifier for S.

9Historically, the first unification procedure was given by Herbrand in [Herbrand, 1930].

48 CHAPTER 2. TABLEAU SYSTEMS

3. If o is a computed unifier for S, then o is an MGU for S.

Proof We will prove (1) to (3) by induction on the cardinalities of the respective
unifiers. First, note that (} is the only minimal and computed unifier for any
singleton set of quantifier-free expressions S and that (} is an MGU for S. Assume
the result to hold for any set of expressions with minimal and computed unifiers
of cardinalities < n. For the induction step, suppose S has only minimal or
computed unifiers of cardinality > n > 0. Let ¢ be an arbitrary unifier for S and
x/t any proper binding from a disagreement set of S with z # xo (which exists by
Proposition 2.44). Let S’ = S{z/t} and set 7 = o \ {z/x0}, which is a unifier for
S', by the Decomposition Lemma (Lemma, 2.45). For the proof of (1), let o be a
minimal unifier for S. We first show that 7 is minimal for S'. If §' is any minimal
unifier for S’', then § = {z/t}#' is a unifier for S and all variables in domain(6')
occur in S’. Therefore, the Decomposition Lemma can be applied yielding that
0’ =0\ {z/x0}. And from the chain [#'| = |#] —1 > |o| — 1 = |7] it follows that
7 is a minimal unifier for S’. Since |7| < n, by the induction assumption, 7 is a
computed unifier for S’. Hence, by definition, o = {z/¢}7 is a computed unifier
for S. For (2) and (3), let o be a computed unifier for S. Then, by definition, 7 is
a computed unifier for S’. Let 6 be an arbitrary unifier for S. Since x is in some
disagreement set, of S, either 2 € domain(f) or there is a variable y and y/x € 6.
Define
|6 if z € domain(0)
n= { 6{xz/y} otherwise.

Since € domain(n), the Decomposition Lemma yields that if n' = n\ {z/zn},
then {x/t}n' = n, and n' is a unifier for S’. The minimality of o can be recognized
as follows. By the induction assumption, 7 is minimal for S’. Then consider the
chain

6l =1Inl=n'l+1>|r|+1=|ol.

For (3), note that 7 is an MGU for S’, by the induction assumption, i.e., there is
a substitution v: n’ = 7. On the other hand, 8 = 8{z/y}{y/z}, hence there is a
substitution v: § = nv. This gives us the chain

S0 = Snyv = S{z/tin'v = S{z/t}Tyv = Soyv

demonstrating that ¢ is an MGU for S. This completes the proof of the Unification
Theorem. O

Concerning terminology, notions are treated differently in the literature (see
[Lassez et al., 1988] for a comparison). We have chosen a highly indeterministic
presentation of the unification algorithm, it is even permitted to select between
alternative disagreement sets. Furthermore, we have stressed the importance of
minimal unifiers. Therefore our Unification Theorem is stronger than normally
presented, it also states that each minimal unifier indeed can be computed by the
unification algorithm.

2.2. FREE-VARIABLE TABLEAUX 49

Polynomial unification

Unification is the central ingredient applied in all advanced proof systems for
first-order logic. As a consequence, the complexity of unification is a lower bound
for the complexity of each advanced calculus. While the cardinality of a most
general unifier o for a set of expressions S is always bounded by the number of
variables in S, the range of the unifier may contain terms with a size exponential
in the size of the initial expressions. Of course, this would also entail that So
contains expressions with an exponential size. The following class of examples
demonstrates this fact.

Ezample 2.51 If P is an (n + 1)-ary predicate symbol and f a binary function
symbol, then, for every n > 1, define S,, as the set containing the atomic formulae

P(x1,x2,...,%n,Ty,), and
P(f(iEo,CUo), f(xhwl)v - '7f(wn—1=xn—1)=mn)'

Obviously, any unifier for an S, must contain a binding z, /t such that the
number of symbol occurrences in ¢ is greater than 2. As a consequence, we have
the problem of exponential space and, therefore, also of exponential time, when
working with such structures. Different solutions have been proposed for doing
unification polynomially. In [Paterson and Wegman, 1978], a linear unification al-
gorithm is presented. Furthermore, a number of “almost” linear algorithms have
been developed, for example, in [Huet, 1976] and [Martelli and Montanari, 1976,
Martelli and Montanari, 1982]. Similar to the early approach in [Herbrand, 1930],
all of the mentioned efficient algorithms reduce the unification problem to the
problem of solving a set of equations. However, all of those procedures—particular-
ly the one in [Paterson and Wegman, 1978—mneed sophisticated and expensive
additional data structures, which render them not optimal for small or average
sized expressions. Therefore, Corbin and Bidoit rehabilitated Robinson’s expo-
nential algorithm by improving it with little additional data structure up to a
quadratic worst-case complexity [Corbin and Bidoit, 1983, Letz, 1993a]. This al-
gorithm turns out to be very efficient in practice.

We cannot treat polynomial unification in detail here, but we give the essential
two ideas contained in any of the mentioned polynomial unification algorithms.

1. The representation of expressions has to be generalized from strings or trees
to directed acyclic graphs, dags for short. This way, the space complex-
ity can be reduced from exponential to linear, as shown with the directed
acyclic graph representing the term z,0 in the example above:

fZf==.f 32

n—times

2. In order to reduce the time complexity—which may still be exponential even
if graphs are used, since there may be exponentially many paths through a
graph—, the following will work. One must remember

50 CHAPTER 2. TABLEAU SYSTEMS

e which pairs of expressions have already been unified in the graph (e.g.,
during the unification of x,0 with itself at the last argument positions
of the atoms),

e and in occurs-checks: for which expressions the occurrence of the re-
spective variable was already checked (e.g., during the check whether
x, occurs in f(x,_1,Zn_1)o at the n-th argument positions of the
atoms),

and one must not repeat those operations. How sophisticated this is or-
ganized determines whether the worst-case complexity can be reduced to
linear or just to quadratic time.

2.2.2 Generalized Quantifier Rules

Using the unification concept, the y-rule of sentence tableaux can be modified
in such a way that instantiations of y-formulae are delayed until a branch can
be immediately closed. Two further modifications have to be performed. On the
one hand, since now free variables occur in the tableau, one has to generalize the
d-rule to full Skolemization in order to preserve soundness.

Ezample 2.52 Consider the satisfiable formula Jy(-=P(z,y) A P(z,z)). An appli-
cation of the §-rule of sentence tableaux would result in an unsatisfiable formula
-P(z,a) A P(z,x).

One the other hand, substitutions have to be applied to the formulae in a
tableau. With T'o we denote the result of applying a substitution o to the formulae
in a tableau T. Before defining tableau with unification, we introduce a tableau
system in which arbitrary substitutions can be applied. This system will serve as
a very general reference system, which also subsumes sentence tableaux,

Definition 2.58 (General free-variable tableau) General free-variable tableauz are
defined as sentence tableaux are, but with the v- and the §-rule replaced by the
following three rules. Let B be (the set of formulae on) the actual tableau branch
and S the set of input sentences of the current tableau T'.

(y*) Zt) where ¢ is any term of the language £
7 and {z/t} is free for vy(z)
0 .
(61) where f is new to S and T, and
0(f(z1,y...) . .
Z1,...,T, are the free variables in 6,
(S) Modify T to To where o is free for all formulae in T

The 6" -rule [Hihnle and Schmitt, 1994, Fitting, 1996] we use here is already
an improvement of the original d-rule used in [Fitting, 1990]. The difference be-
tween both rules will be discussed in Section 6.2. The additional substitution rule

2.2. FREE-VARIABLE TABLEAUX o1

denoted with (S), which is now needed to achieve closure of certain branches,
differs strongly from the tableau rules presented up to now. While all those rules
were conservative in the sense that the initial tableau was not modified but just
expanded, the substitution rule is destructive. This has severe consequences on
free-variable tableaux, both proof-theoretically and concerning the functionality
of the calculus, which will be discussed below.

But how do we know that the calculus of general free-variable tableau produces
correct proofsI'It is clear that the method of proving the correctness of sentence
tableaux (using Proposition 2.8) will not work. In free-variable tableaux, branches
cannot be treated separately, because they may share free variables. As an exam-
ple, consider a tableau T' with the two branches P(z) ® —P(a) and Q(z) & —~Q(b)
which cannot be closed using the rules of general free-variable tableaux, although
both branches are unsatisfiable. The notion of satisfiability is too coarse for free-
variable tableaux. What will work here is the following finer notion which was
developed in [Hahnle and Schmitt, 1994] and also used in [Fitting, 1996].

Definition 2.54 (V-satisfiability)) A collection C of sets of first-order formulae is
called V-satisfiable if there is an interpretation Z such that, for every variable
assignment A, 7 is an {A}-model for some element of C.

It is evident that, for closed first-order formulae, V-satisfiability of a collection
coincides with ordinary satisfiability of some element of the collection. In order to
illustrate the difference of this concept for formulae with free variables, consider
the tableau 7" mentionend above. The collection consisting of the two sets of
formulae {P(z),-~P(a)} and {Q(x),~Q(b)} is V-satisfiable (set, e.g., U = {0, 1},
I(P) = {0}, Z(Q) = {1}, Z(a) = 1, and Z(b) = 0).

We now give a generalized version of Proposition 2.8 which can be used to
prove correctness of both sentence tableaux and general free-variable tableaux.

Proposition 2.55 Let C' = C U {S} be a V-satisfiable collection of sets of first-
order formulae.

1. If a € S, then CU{SU{a;}} is V-satisfiable, for every a-subformula o; of
Q.

2. IfBe€ S, then CU{SU{B1},..., SU{Bn}} is V-satisfiable where By, .., By

3 3

is the B-subformula sequence of (.

3. IfVeF =~ € S, then CU{S U {v(t)}} is V-satisfiable, for any term t of
the language L provided {x/t} is free for F.

4. If 6 € S, then C U {S U{6(t)}} is V-satisfiable for any Skolemization §(t)
of 6 wrt UYC'.

5. C'o is V-satisfiable, for any substitution o which is free for all formulae in

el

52 CHAPTER 2. TABLEAU SYSTEMS

Proof By the definition of V-satisfiability, there is an interpretation Z such that,
for every variable assignment A, 7 is an {.A}-model for some member of C'. The
non-trivial case for proving items (1) to (4) is the one in which S is {A4}-satisfied
by Z and no element of C' is. Let A be the collection of all variable assignments, for
which this holds. Items (1) and (2) are immediate from the definition of formula
assignment. For (3), let A4 be an arbitrary element from A. Then, be item (8)
of formula assignments, Z4' (F) = T, for all z-variants of A. Since Ao is an -
variant of A, ZA?(F) = T. Now o is free for F, therefore, Lemma 1.45 can be
applied yielding that ZA(Fo) = ZA7(F). Ttem (4): since §(t) is a Skolemization of
0 wrt |J C’, by Proposition 1.55, there exists an A-model Z' for SU{d(¢)} which is
identical to Z except for the interpretation of the new function symbol f in ().
Since f does not occur in C, for all variable assignment A ¢ A, some element of
C is {A}-satisfied by Z'. Consequently, 7' is a V-model for C' U {S U {d(t)}}. For
(5), let A be any variable assignment. Consider its modification Ag. Since C' is
assumed as V-satisfiable, 747 (S') = T, for some S’ € C'. Now o is free for F,
therefore, again by Lemma 1.45, TA(So) = Z47(S). m|

Proposition 2.56 (Soundness of general free-variable tableauz) If a set of formu-
lae S is satisfiable, then every general free-variable tableau for S has an open
branch.

Proof First, note that the satisfiability of a set of formulae S entails the V-satis-
fiability of the collection {S}. Then the proof is by induction on the number of
inference steps, using Proposition 2.55 on the collection of the sets of formulae
on the branches of a general free-variable tableau. |

The completeness of general free-variable tableaux is trivial, because the cal-
culus is obviously a generalization of the calculus of sentence tableaux. So general
free-variable tableaux are only relevant as a common framework but not as a cal-
culus supporting the finding of proofs. What we are interested in is to apply a
substitution only if this immediately leads to the closure of a branch, and we will
even restrict this to an atomic closure.

Definition 2.57 (Free-variable tableau) Free-variable tableaux with atomic closure,
or just free-variable tableauz, are defined as general free-variable tableaux, but
with the following two modifications. The ~*-rule is replaced with the weaker
~'-rule and the substitution rule (S) is replaced with the weaker closure rule (C)

(v") 7 where z is a variable new to S and T,
()
(C) Modify T to To if two literals K and L are on a branch

such that o is a minimal unifier for {K,~L}.

Note that the applied substitution will be automatically free for the formulae
in the tableau. This is because the v'-rule guarantees that no variable occurs

2.2. FREE-VARIABLE TABLEAUX 93

(1) =Fz(VyVzP(y, f(z,y,2)) = (YyP(y, f(z,y,2)) AVy3zP(g(y),2)))

(2) ~(VyVYzP(y, f(z1,y,2)) = (VyP(y, f(z1,y,71)) AVy3zP(g(y),2)))
| a2
(3) VyVzP(y, f(z1,y,2))
| a2
(4) ~(VyP(y, f(z1,y,21)) AVy3zP(9(y),2))
B(4)
(5) “VyP(y, f(z1,y,21)) (6) =Vy32P(g(y),)
|55 | 576)
(7) =P(h(z1), f(z1, h(21), 21)) (10) —32P(g(b),2)
RZE) | +7(10)
(8) V2P(y1, f(z1,41,2)) (11) =P(g(b), 22)
BZO Rz
(9) Py1, f(z1,y1,21)) (12) V2P (y2, f(z1,9y2,2))
o1 = {1 /h(21), 21 a1} |+

(13) P(y2, f(®1,y2,23))
o2 = {y2/g(b), 22/ f(z1, g(b), z3) }

Figure 2.5: Closed free-variable tableau.

bound and free in formulae of the tableau and, since K and L are quantifier-free,
the minimal unifier o has only free variables in the terms of its range.

Let us now consider an example. It is apparent that the destructive modi-
fications render it more difficult to represent a free-variable tableau deduction.
We solve this problem by not applying the substitutions oy, ..., 0, explicitly to
the tableau T', but by annotating them below the nodes at the respective leaves.
The represented tableau then is T'oy - - - 0,,. In Figure 2.5, a free-variable tableau
for the same first-order sentence is displayed for which in Figure 2.2 a sentence
tableau is displayed. Comparing both tableaux, we can observe that it is much
easier to find the closed free-variable tableau than the closed sentence tableau.
The substitutions that close the branches need not be blindly guessed, they can
be automatically computed from the respective pairs of literals to be unified, viz.
(7) and (9) on the left and (11) and (13) on the right branch.

54 CHAPTER 2. TABLEAU SYSTEMS

2.2.3 Completeness of Free-Variable Tableaux

The completeness of free-variable tableaux is not difficult to prove for formulae
in Skolem or weak Skolem form!?, since the construction of any atomically closed
sentence tableau can be simulated step by step by the calculus of free-variable
tableaux. This is evident, because only the y-rule has a different effect for this class
of formulae. The simulation then proceeds by simply delaying the instantiations
of y-formulae and performing the substitutions later by using the closure rule.
Unfortunately, for general formulae, no identical simulation of sentence tableaux
is possible, as becomes clear when comparing Figure 2.5 with Figure 2.2. The
problem is that more complex Skolem functions may be necessary in free-variable
tableaux. But modulo such a modification, a so-called Skolem wvariant, a tree-
isomorphic simulation exists.

Definition 2.58 (Skolem variant of a sentence tableau) (inductive)
1. Any sentence tableau T is a Skolem variant of itself.

2. If ¢ is a constant introduced by a é-rule application on a branch B of a
Skolem variant T' of a sentence tableau T and t is any ground term whose
dominating function symbol is new to B, then the formula tree obtained
from replacing any occurrence of ¢ in 7' by ¢ is a Skolem variant of T

It is clear that Skolem variants preserve the closedness of a formula tree.

Lemma 2.59 Any Skolem wvariant of a(n atomically) closed sentence tableau is
(atomically) closed.

Another problem is that the order in which a free-variable tableau is con-
structed can influence the arity of the Skolem functions in §*-rules. Consider, for
example, a tableau consisting of a left branch P(z) & —P(a) and a right branch
Jy(Q(z,y) A =Q(a,y)). If we decide to close the left branch first using the unifier
{z/a}, then the performance of the 6 "-rule on the instantiated right branch will
produce a Skolem constant. If the right branch is selected first, then we have to
introduce a complex Skolem term f(z), since z is still free. So, in the presence of
d-formulae, different orders of constructing a free-variable tableau can make a dif-
ference in the final tableau, as opposed to sentence tableaux which are completely
independent of the construction order. As a matter of fact, we want complete-
ness of free-variable tableaux independent of the construction order. The order
of construction is formalized with the notion of a (branch) selection function.

Definition 2.60 (Selection function) A (branch) selection function ¢ is a mapping
assigning an open branch to every tableau T' which is not atomically closed. Let
¢ be a branch selection function and let Ty,...,T, be a sequence of successive
tableaux, i.e., each T; 11, can be obtained from T; by a tableau inference step. The
tableau T, is said to be (constructed) according to ¢ if each T;y1 can be obtained
from T; by performing an inference on the branch ¢(77;).

107 e., in which no tableau subformula of type + has a tableau subformula of type d.

2.2. FREE-VARIABLE TABLEAUX 35

Lemma 2.61 Let T' be any atomically closed sentence tableau. Then, for any
branch selection function ¢, there exists an atomically closed free-variable tableau
T for S constructed according to ¢ such that T is more general than a Skolem
variant of T'; and if every formula F € S is in weak Skolem form, then T is
even more general than T'.

Proof Let T' be any atomically closed sentence tableau and ¢ any branch se-
lection function. We define sequences T, ..., T, of free-variable tableaux which
correspond to initial segments of T" as follows. T; is the one-node initial tableau
of T'. Let T; be the i-th element of such a sequence T4, ..., Ty, 1 <i < m, and B
the inital segment of the branch in 7" which corresponds to the selected branch

é(T;) in T;, i.e., B and ¢(T;) are paths from the root to the same tree position.

1. If B is atomically open, then some expansion step has been performed in
the construction of T' to expand B. T;i; is the result of performing a
corresponding free-variable tableau expansion step on ¢(73).

2. If B is atomically closed (and ¢(T3) is atomically open), then two comple-
mentary literals must be on B. Let K and L be the corresponding literals
on ¢(T;). Tiy1 is the result of applying a minimal unifier of {K,~L} to T;.

We show by induction on the sequence length that any of the tableaux in such a
sequence is more general than an initial segment of some Skolem variant of T".
The induction base is evident. For the induction step, let T; be more general than
an initial segment T;°* of a Skolem variant of T". For case (1), we consider first
the subcase in which B is not expanded by a §-step. Then an expansion of ¢(73)
corresponding to the sentence tableau expansion of B is possible and produces a
tableau Tjy; that is more general than the respective expansion of T;°%, which is
an initial segment of some Skolem variant of 7". The subcase of J-expansion is
the problematic one, since one (possibly) has to move to another Skolem variant
of T'. Let 6(f(x1,...,2,)), n > 0, be the formula by which T; was expanded.
Each variable z;, 1 < j < n, has been introduced in T; by a ~y'-step using a
node N;. If t1,...,t, are the respective ground terms at the same term positions
in T7%, then let T3k be the formula tree obtained by expanding the branch
corresponding to B with 6(f(¢1,...,t,)). By construction, T;;1 is more general
than T}5% , which is an initial segment of a Skolem variant of T". In case (2), ¢(T;)
is atomically open, but B is atomically closed. By the induction assumption, 7T; is
more general than T, which has the branch atomically closed. Therefore, there
exists a minimal unifier for the literals K and the complement of L on ¢(T;), and
T;+1 = T;o is more general than TiSk. Now any such sequence Ti,...,T,, must
be of finite length, since in each simulation step a different node position of T is
either expanded or closed, i.e., m is less or equal to the number of nodes of T".
Consequently, T' = T}, is an atomically closed free-variable tableau for S that is
more general than a Skolem variant of 7". Finally, if S is in weak Skolem form, no
free variable can occur in a d-formula in a free-variable tableau for S. In this case,
one can always use the same Skolem constants in the construction of T' and T"

o6 CHAPTER 2. TABLEAU SYSTEMS

and never has to move to a proper Skolem variant of T'. Then T is more general
than T". |

From this lemma immediately follows the refutational completeness of free-
variable tableaux.

Theorem 2.62 (Free-variable tableau completeness) If S is an unsatisfiable set of
first-order sentences, then there exists a finite atomically closed free-variable tab-
leau for S.

2.2.4 Proof Procedures for Free-Variable Tableaux

We have proven the completeness of free-variable tableaux via a simulation of
sentence tableaux instead of providing an independent completeness proof. The
advantage of this approach is that we are assured that, for any atomic sentence
tableau proof, there is a free-variable tableau proof of the same tree size. The
disadvantage of this completeness proof, however, is that it is proof-theoretically
weaker than the one given for sentence tableaux, since we do not specify how to
systematically construct a closed free-variable tableau, as it is done with the sys-
tematic sentence tableau procedure. The simple reason for this is the following.
Since the calculus of free-variable tableaux is destructive, in general, the (tree)
union of the tableaux in a successive tableau sequence cannot be performed. The
fundamental proof-theoretic difference from sentence tableaux is that with the
application of substitutions to tableaux the paradigm of saturating a branch (pos-
sibly up to a Hintikka set) is lost. A notion of saturated systematic free-variable
tableau can only be defined for the fragment of the calculus without the closure
rule. Completeness could then be shown in the standard way by using any one-to-
one association between the set of variables and the set of all ground terms which
is then applied to the saturated tableaux at the end (cf. p. 195 in [Fitting, 1996]).
This is proof-theoretically possible, but useless for efficient proof search, because
the employment of a fixed association between variables and ground terms de-
grades free-variable tableaux to sentence tableaux. The question is whether there
exists a systematic procedure for free-variable tableaux of the same type and
functionality as for sentence tableaux but with variable instantiations guided by
unification’ The problem can at best be recognized with an example.

Consider the formula on top of Figure 2.6. Since the formula is a satisfiable
datalogic formula, any regular Herbrand tableau construction will terminate with
an open branch which is a Hintikka set. Let us contrast this with the behaviour of
free-variable tableaux. Referring to the figure, after eight steps we have produced
the displayed two-branch tableau. What shall we do nextD’ If we close the left
branch by unifying —P(z1,y1,v1) and the complement of =P(c, a,b), the applied
unifier blocks the immediate closure of the right branch. We could proceed and
try another four v’'-steps, producing a similar situation than before. Since always
new free variables are imported by the ~'-rule, the procedure never terminates,
even if we only permit regular tableaux. How do we know when to stop and
how can we produce a modell’ In fact, no systematic procedure for free-variable

2.2. FREE-VARIABLE TABLEAUX o7

(1) =P(a,b,c) A P(c,a,b) ANVaVyVoVw(P(z,y,v) = P(y,z,w))

| a(1)
(2) =P(a,b,c)
| (1)
(3) P(c,a,b)
| a(1)
(4) VavVyVovw(P(z,y,v) = P(y, =, w))
24*1’
(8) P(z1,y1,v1) = P(y1, x1,w1)
B(8)
(9) ~P(z1,y1,v1) (10) P(y1,z1,w1)

Figure 2.6: Free-variable tableau for a datalogic formula (see Definition 2.35).

tableaux has been devised up to now that both is guided by unification and
has the same functionality as sentence tableaux. It was only very recently that
such a procedure has been proposed for the restricted class of formulae in clausal
form [Billon, 1996]. This procedure, which is based on a nondestructive variant
of free-variable tableaux, is described in Section 4.2.3.

But we will further pursue the destructive line and discuss a radically different
paradigm of searching for tableau proofs. Instead of saturation of a single tab-
leau, one considers all tableaux that can be constructed. If all existing tableaux
are enumerated in a fair manner, for any unsatisfiable input sentence, one will
eventually find a closed free-variable tableau. The fair enumeration is facilitated
by the fact that the set of all existing tableaux can be organized in the form of a
tree.

Definition 2.63 (Search tree) Let S be a set of sentences, C' a tableau calculus,
and ¢ a branch selection function. The search tree of C and ¢ for S is a tree T
with its non-root nodes labelled with tableaux defined as follows.

1. The root of T consists of a single unlabelled node.
2. The successors of the root are labelled with all single-node tableaux for S.

3. Every non-leaf node NV in 7 labelled with a tableau T has as many successor
nodes as there are successful applications of a single inference step in C
applied to the branch in T selected by ¢, and the successor nodes of N in
T are labelled with the respective resulting tableaux.

If the input set is finite, the search tree branches finitely, and a fair enu-
meration can be achieved by simply inspecting the search tree levelwise from
the top to the leaves. Any closed tableau will eventually be found after finitely
many steps. In practice, this could be implemented as a procedure which explic-
itly constructs competitive tableaux and thus investigates the search tree in a

o8 CHAPTER 2. TABLEAU SYSTEMS

breadth-first manner. The explicit enumeration of tableaux, however, suffers from
two severe disadvantages. The first one is that, due to the branching rate of the
search tree, an enormous amount of space is needed to store all tableaux. The
second disadvantage is that the cost for adding new tableaux increases during
the proof process as the sizes of the proof objects increase. In contrast, for reso-
lution procedures mainly the number of new proof objects (clauses) is generally
considered the critical parameter. These weaknesses give sufficient reason why in
practice no-one has succeeded with an explicit tableau enumeration approach up
to now.

The customary and successful paradigm therefore is to perform tableau enu-
meration in an implicit manner, using iterative deepening search procedures. With
this approach, iteratively increasing finite initial segments of a search tree are ex-
plored. Although, according to this methodology, initial parts of the search tree
are explored several times, no significant efficiency is lost if the initial segments
increase exponentially [Korf, 1985]. Due to the construction process of tableaux
from the root to the leaves, many tableaux have identical or structurally identical
subparts. This motivates one to explore finite initial segments of the search tree
in a depth-first manner by strongly exploiting structure sharing techniques and
backtracking. Using this approach, at each time only one tableau is kept in mem-
ory, which is extended following the branches of the search tree, and truncated
when a leaf node of the respective initial segment of the search tree is reached.
The advantage is that, due to the application of Prolog techniques, very high
inference rates can be achieved this way (see [Stickel, 1988], [Letz et al., 1992], or
[Beckert and Posegga, 1994]). The respective initial segments are determined by
so-called completeness bounds.

Definition 2.64 (Completeness bound) A size bound is a total mapping s assign-
ing to any tableau T' a nonnegative integer n, the s-size of T. A size bound s is
called a completeness bound for a tableau calculus C if, for any finite set S of
formulae and any n > 0, there are only finitely many C-tableaux with s-size less
or equal to n.

The finiteness condition qualifies completeness bounds as suitable for iterative
deepening search. Given a completeness bound s and an iterative deepening level
with size limit n, an implicit deduction enumeration procedure works as follows.
Whenever an inference step is applied to a tableau, it is checked whether the
s-size of the new tableau is < n, otherwise backtracking is performed. A common
methodology of developing completeness bounds for the strict (or strictly regular)
free-variable tableau calculus C is to limit the application of +'-steps in certain
ways (see also [Fitting, 1996]). We give three concrete examples. First, one may
simply limit the application of v'-steps permitted in the tableau (1) or on each
branch of the tableau (2). Another variant (3) is the so-called multiplicity bound
which has also been used in other frameworks [Prawitz, 1960] and [Bibel, 1987].
The natural definition of this bound is for finite sets S of formulae in Skolem
form and for tableaux in which every F' € S is used in the tableau only once at

2.2. FREE-VARIABLE TABLEAUX 59

the beginning. Then, with multiplicity n, to each y-node in the tableau, at most
n v'-steps are permitted.

It is obvious that all mentioned size bounds are completeness bounds for the
tableau calculus C, that is, for any finite input set of formulae S: for every n,
there are only finitely many C-tableaux of size n for S, and if S is unsatisfiable,
then, for some n, there is a closed C-tableau with size n.

Interestingly, one can make complexity assessments about the problem of de-
termining whether a tableau with a certain limit exists. For example, for the
bounds (1) and (3), one can demonstrate that, for some finite input set S,
the recognition problem of the existence of a closed tableau for S with a cer-
tain limit is complete for the complexity class ¥5 in the polynomial hierarchy
[Garey and Johnson, 1979]. We will consider this topic later in Chapter 8.

A general disadvantage of completeness bounds of the v-type is that they are
too uniform to be useful in practice. Normally, the first initial segment of the
search tree containing a closed tableau with size n may have an astronomic size,
with the obvious consequence that in practice a proof will not be found. In the
next section, we shall mention completeness bounds in which normally the first
proof is in a much smaller initial segment.

We conclude this section with mentioning an obvious method for reducing
the effort for finding closed free-variable tableaux. In fact, it is not necessary to
consider all free-variable tableaux in an initial segment of a search tree. Since only
the closure rule is destructive, we can work with the following refined calculus
which, at least concerning the tableau expansion rules, is deterministic, similar
to the systematic tableau procedures.

Definition 2.65 (Expansion-deterministic free-variable tableau) Ezxpansion-deter-
ministic free-variable tableauz are defined like systematic sentence tableaux, but
with the respective free-variable rules plus the closure rule.

So the only way indeterminism can occur in this calculus is by the application
of closure steps. In order to minimize the search effort, one should even prefer
the closure rule (if applicable) to all expansion rules. The completeness of this
refinement of free-variable tableaux immediately follows from Lemma 2.61, since
the calculus can simulate the construction of any systematic sentence tableau.

As a final remark of this section, it should be emphasized that, from a search-
theoretic perspective, tableau enumeration procedures are not optimally suited
for confluent calculi (like the ones mentioned so far). This is because, for confluent
tableau calculi, on any branch of the search tree there must be a closed tableau
if the input set is unsatisfiable. A tableau enumeration procedure, however, does
not take advantage of this proof-theoretic virtue of the calculus.

60

CHAPTER 2. TABLEAU SYSTEMS

Chapter 3

Tableaux with Connections

3.1 Clausal Tableaux

The efforts in automated deduction for classical logic have been mainly devoted
to the development of proof procedures for formulae in clausal form. This has two
reasons. First, as discussed in Section 2, in classical logic, any first-order formula
can be transformed into clausal form without affecting the satisfiability status and
with only a polynomial increase of the formula size. Since, for formulae in clausal
form, the tableau rules can be reduced and presented in a more condensed form,
simpler and more efficient proof procedures can be achieved this way. Second and
even more important, due to the uniform structure of formulae in clausal form,
it is much easier to detect additional refinements and redundancy elimination
techniques than for the full first-order format. This section will provide plenty of
evidence for this fact.

Since in clause logic negations are only in front of atomic formulae, only atomic
branch closures can occur. Accordingly, when a closed free-variable tableau for
a set of clauses S is to be constructed and a clause in S has been selected for
branch expansion, one can deterministically decompose it to the literal level.
Such a macro step consists of a formula rule application, a sequence of ~'-steps
and possibly a (-step. It is convenient to ignore the intermediate formulae and
reformulate such a sequence of inference steps as a single condensed tableau
expansion rule. In order to simplify the presentation, we consider only clauses
without quantifier prefixes. This is no restriction, since every clause is logically
equivalent to its universal closures.

Definition 3.1 (Renaming, variant) Let F' be a formulae, S a set of formulae,
and o = {z1/y1,..., Zn/yn} a substitution such that all y,..., yn are distinct

variables new to S. Fo is called a renaming or variant of xq,..., ZTp in F wrt S.

Clausal tableaux are trees labelled with literals (and other control informa-
tion) inductively defined as follows.

61

62 CHAPTER 3. TABLEAUX WITH CONNECTIONS

Definition 3.2 (Clausal tableau) Let S be any set of clauses. A tree consisting of
just one unlabelled node is a clausal tableau for S. The single branch of this tree
is considered as open. If B is a branch of a clausal tableau T for S, then the
formula trees obtained from the following two inference rules are clausal tableauz

for S:

(E)y B&Ly|---| L, where Ly V ---V Ly, is a renaming of the free variables in
a clause of S wrt the formulae in T'; the rule (E) is called clausal expansion
rule or just expansion rule. The new branches are considered as open. Its
leaf nodes are called subgoals.

(C) the closure rule of free-variable tableaux, also called reduction rule. Now
the respective branch is considered as closed.

Definition 3.8 (Tableau clause) For any non-leaf node N in a clausal tableau, the
set of nodes Ny, ..., N,,, immediately below N is called the node family below N;
if the nodes Ny,..., N, are labelled with the literals L, ..., L,,, respectively,

then the clause L1 V ---V L,, is named the tableau clause below N; The tableau
clause below the root node is called the start or top clause of T'.

/ﬂR(‘f(w)) ﬂR(f(f’%
R(Mf(f(w))) R(f(f(fw(f(f(x)))))
ﬂR(Nf(f(a:))) ﬂR(f(f(xw(f(f(w)))))
R(z) R(f(z)) R(f(f(z))) R(f(f(£(2))))

Figure 3.1: Closed clausal tableau.

In Figure 3.1, a closed clausal tableau is displayed. Here the unifiers of closure
steps were already applied. The input is the set of clauses Vz(R(z) V R(f(x)))
and Vz(=R(z) V =R(f(f(x)))) corresponding to the negation of the formula F
presented in Example 1.12. So we have demonstrated that F' is valid. The format
of clausal tableaux provides a relatively concise representation of tableau proofs
containing all relevant information. Note that a full free-variable tableau proof
including all intermediate inference steps would have more than twice the size.

In general, variables in clausal tableaux are considered as rigid, i.e., just as
placeholders for arbitrary ground terms. In Section 6.3, it will be shown that
this condition can be relaxed for certain variables. The example also shows the
necessity of renaming variables. Without renaming it would be impossible to unify
the second literal in the first clause with the complement of the second literal in

3.2. CONNECTION TABLEAUX 63

the second clause, which is done, for example, in the second closure step on the
left. Furthermore, multiple copies of the same input clauses are needed.

Let us make some remarks on the peculiarities of this definition as compared
with the more familiar definition of tableaux used before. On the one hand, we
carry the input set or formula S alongside the tableau and do not put its mem-
bers at the beginning of the tableau. Instead we leave the root unlabelled. This
facilitates the comparison of tableaux for different input sets. For example, one
tableau may be an instance of another tableau, even if their input sets differ.
Second, a branch is considered as closed only if the closure rule was explicitly
applied to it, all other branches are considered as open, even when they are com-
plementary. This precaution simplifies the presentation, in particular, the proof
of the Lifting Lemma (Lemma 5.9), and does more adequately reflect the actual
situation when implementing tableaux.

The completeness and confluence of clausal tableaux for clause formulae follow
immediately from the fact that clausal tableaux can simulate free-variable tab-
leaux, by simply omitting formula steps, 3-steps, and '-steps, and by performing
clausal expansion steps in place.

Clausal tableaux provide a large potential for refinements, i.e., for impos-
ing additional restrictions on the tableau construction. For instance, one can
integrate ordering restrictions (see [Klingenbeck and Héhnle, 1994]) as they are
successfully used in resolution-based systems. The most important structural re-
finement of clausal tableau concerning automated deduction, however, is to use
links or connections to guide the proof search.

3.2 Connection Tableaux

A closer look at the clausal tableau displayed in Figure 3.1 reveals an interesting
structural property. In every node family below the start clause, at least one node
has a complementary ancestor. This property can be formulated in two variants,
a weaker and a stronger one.

Definition 3.4 (Path connectedness, connectedness)

1. A clausal tableau is said to be path connected or called a path connection
tableau if, in every family of nodes except the start clause, there is one node
with a complementary ancestor.

2. A clausal tableau is said to be (tightly) connected or called a (tight) con-
nection tableau if, in every family of nodes except the start clause, there is
one node with a complementary predecessor.

With the connection conditions, every clause has a certain relation with the
start clause. This allows a goal-oriented form which may be used to guide the
proof search. In Figure 3.2 the difference between the two notions is illustrated
with a closed path connection tableau and a closed connection tableau for the
set of propositional clauses p, =p V ¢q, r V —p, and —p V —¢. It is obvious that

64 CHAPTER 3. TABLEAUX WITH CONNECTIONS

p p
/\ /\
-p q -p q
/\ /\
r -p -p —q
-p —q

Figure 3.2: A path connection and a connection tableau.

the tight connection condition is properly more restrictive, since there exists no
closed connection tableau which uses the redundant clause r vV —p.

Let us make some brief historical remarks on the réle of connections in tab-
leaux. The notion of a connection is a central concept in automated deduc-
tion whereas tableau calculi, traditionally, have no reference to connections—
as an illustration, note that the notion does not even occur in [Fitting, 1996].
On the other hand, it was widely not noticed in the area of automated deduc-
tion and logic programming that calculi like model elimination [Loveland, 1968,
Loveland, 1978], SLD-resolution [Kowalski and Kuehner, 1970], or the connec-
tion calculi [Bibel, 1987] are proof-theoretically better viewed as tableau calculi.
This permits, for instance, to view the calculi as cut-free proof systems. The rela-
tion of these calculi to tableaux has not been recognized, although, for example,
the original presentation of model elimination [Loveland, 1968] is clearly in tab-
leau style. The main reason for this may be that until recently both communities
(tableaux and automated deduction) were almost separated. As a further illustra-
tion of this fact, note that unification was not really used in tableaux before the
end ot the eighties [Reeves, 1987, Fitting, 1990]. In Chapter 4, we will expound
the relation of connection tableaux with model elimination, SLD-resolution, and
the connection method.

In order to satisfy the connection conditions, for every tableau expansion
step except the first one, the closure rule has to be applied to one of the newly
attached nodes. This motivates to amalgamate both inference rules into a new
macro inference rule.

Definition 3.5 ((Path) extension rule) The (path) extension rule is defined as fol-
lows: perform a clausal expansion step immediately followed by a closure step
unifying one of the newly attached literals, say L, with the complement of the
literal at its predecessor node (at one of its ancestor nodes); the literal L and its
node are called entry or head literal respectively entry or head node.

The building of such macro inference rules is a standard technique in auto-
mated deduction to increase efficiency. With these new rules the clausal tableau
calculi may be reorganized.

3.3. PROOF SEARCH IN CONNECTION TABLEAUX 65

Definition 3.6 ((Path) connection tableau calculus) The (path) connection tableau
calculus consists of the following three inferences rules:

e the (path) extension rule,
e the closure or reduction rule,

e and the start rule, which is simply the expansion rule, but restricted to only
one application, namely the attachment of the start clause.

A fundamental proof-theoretic property of the two connection tableau calculi
is that they are not proof confluent, as opposed to the general clausal tableau
calculus. This can easily be recognized, for instance, by considering the unsatis-
fiable set of unit clauses S = {p, q, ~q}. If we select p as start clause, then the
tableau cannot be completed to a closed tableau without violating the (path)
connectedness condition. In other terms, using the (path) connectedness condi-
tion, one can run into dead ends. The important consequence to be drawn from
this fact is that, for those tableau calculi, systematic branch saturation proce-
dures of the type presented before do not exist. Since an open connection tableau
branch that cannot be expanded does not guarantee the existence of a model,
connection tableaux are therefore not suited for model generation. Weaker con-
nection conditions that are compatible with model generation were developed in
[Manthey and Bry, 1988, Billon, 1996, Baumgartner, 1998] and will be considered
in Section 4.2.

3.3 Proof Search in Connection Tableaux

When using non-confluent deduction systems like the connection tableau calculi,
in order to find a proof, in general, all possible deductions have to be enumerated
in a fair manner until the first proof is found. It is important to emphasize that
the search spaces of tableau calculi cannot be represented as familiar and-or-
trees in which the and-nodes represent the tableau clauses and the or-nodes the
alternatives for expansion. Such a more compact representation is not possible
in the first-order case, because the branches in a free-variable tableau cannot be
treated independently.

In Figure 3.3, the complete connection tableau search tree for a set of clauses
is given. For this simple example, the search tree is finite. Note that the search
space of the general clausal tableau calculus (without a connection condition) is
infinite for S. This is but one illustration of the search pruning effect achieved by
the connection conditions.

3.3.1 Completeness Bounds for Connection Tableaux

In contrast to the completeness bounds typically used for general tableaux, which
are based on limitations of y-rule applications, for connection tableaux, different
completeness bounds are favourable.

66 CHAPTER 3. TABLEAUX WITH CONNECTIONS

/N | |

—P(z) ~P(f(2)) P(a) P(f(a)
| |
AN /\ AN |

~P(a) 2P(f(a))|PP(f(a))~P(f(f(a))|| =P (a) 7P(f(a)) P(a) P(f(a)) P(f(a))

| | | /" VAN VAN
Pia) P(f(ﬂ)) P(f*(a)) -*P(i)-*P(f(a)) -'P(f(al)-'P(f(f(a))) ﬂP(a)ﬂP(i(a))

| |
/\ dead end /\ | dead end |

*P(|a) *P(|f(a)) ﬂP(|a) ﬂP(|f(a)) /PQ ;(f\(a))
P(a*) P(f*(a)) P(:) P(i‘(a) *P(z)ﬂP(f(a)) *P(|a)~P(£(a))
P(f(a)) P(a)

Figure 3.3: The connection tableau search tree for the set S consisting of the
three clauses =P (z) V =P(f(x)), P(a), and P(f(a)).

Inference bound

The most natural completeness bound is the so-called inference bound which
counts the number of inference steps that are needed to construct a closed tableau.
Using the inference bound, the search tree is explored level-wise; that is, for size n,
the search tree is explored until depth < n. The search effort can be reduced
by using look-ahead information as follows. As soon as a clause is selected for
attachment, its length is taken into account for the current inference number,
since obviously, for every subgoal of the clause at least one inference step is
necessary to solve it. This enables us to detect as early as possible when the
current size limit is exceeded. For example, considering the search tree given in
Figure 3.3, with inference limit 2, one can avoid an expansion step with the first
clause =P(z) V ~P(f(x), since any closed tableau with this clause as start clause
will at least need 3 inference steps. This method was first used in [Stickel, 1988].

Depth bound

A further simple completeness bound is the depth bound, which limits the length of
the branches of the tableaux considered in the current search level. In connection
tableaux, one can relax this bound so that it is only checked when non-unit clauses
are attached. This implements a certain unit preference strategy. An experimental
comparison of the inference bound and the relaxed depth bound is contained in
[Letz et al., 1992].

Both of the above bounds have certain deficiencies in practice. Briefly, the
inference bound is too optimistic, since it implicitly assumes that subgoals which

3.3. PROOF SEARCH IN CONNECTION TABLEAUX 67

are not yet processed may be solved with just one inference step. The weakness
of the depth bound, on the other hand, is that it is too coarse in the sense that
the number of tableaux in a search tree with depth < n+1 is usually much larger
than the number of tableaux with depth < n. In fact, in the worst case, the in-
crease function is doubly exponential whereas, in the case of the inference bound,
the increase function is exponential. Furthermore, both bounds favour tableaux
of completely different structures. Using the inference bound, trees containing
few long branches are preferred, whereas the depth bound prefers symmetrically
structured trees.

A divide-and-conquer optimization of the inference bound

In [Harrison, 1996], the following method was applied for avoiding some of the
deficiencies of the inference bound. In order to comprehend the essence of the
method, assume N; and No be two subgoals (among others) in a tableau and
let the number of remaining inferences be k. Now it is clear that one of the
two subgoals must have a proof of < k/2 inferences in order to respect the size
limit. This suggests the following two-step algorithm. First, select the subgoal
N; and attempt to solve it with inference limit k/2; if this succeeds, solve the
rest of the tableau with whatever is left over from k. If this has been done for
all solutions of the subgoal N, repeat the entire process for Ny. The advantage
of this method is that the exploration of Ny and N5 to the full limit k& is often
avoided. Its disadvantage is that pairs of solutions of the subgoals with size <
k/2 will be found twice, which increases the search space. In order to avoid a
breaking down of this method in the recursive case, methods of failure caching as
presented in Section 5.3.3 are needed. In practice, this method performs better
if instead of k/2 smaller limits like k/3 or k/4 are used, although those do not
guarantee that all proofs on the respective iterative-deepening level can be found.
A possible explanation for this improved behavior is that the latter methods tend
to prefer short or unit clauses which is a generally successful strategy in automated
deduction (see also Section 3.4.2 where a similar effect may be achieved with a
method based on a different idea).

Clause dependent depth bounds

Other approaches aim at improving the depth bound. The depth bound is typi-
cally implemented as follows. For a given tableau depth limit, say &, every node
in the tableau is labelled with the value £ — d where d is the distance from the
root node. If this value of a node is 0, then no tableau extension is permitted
at this node. Accordingly, one may call this value of a node its resource. This
approach permits a straightforward generalization of the depth bound. Instead of
giving the open successors Ny, ..., Ny, of a tableau node N with resource i the
resource j = i — 1, the resource j of each of Ny,..., N, is the value of a function
r of two arguments, the resource i of N and the number m of new subgoals in the
attached clause. We call such bounds clause dependent depth bounds. With clause
dependent depth bounds a smoother increase of the iterative deepening levels can

68 CHAPTER 3. TABLEAUX WITH CONNECTIONS

be achieved. Two such clause dependent depth bounds have been used in practice,
one defined by r(i,m) = i — m (this bound is available in the system SETHEO
since version V.3 [Goller et al., 1994]) and the other by 7(i,m) = (i — 1)/m (this
bound was called sym in [Harrison, 1996]).

Weighted depth bounds

Although with clause dependent depth bounds, a higher flexibility can be ob-
tained, these bounds are all in the spirit of the pure depth bound in the sense
that the resource j of a node is determined at the time the node is attached to
the tableau. In order to increase the flexibility and to permit an integration of
features of the inference bound, the so-called weighted depth bounds have been
developed. The main idea of the weighted depth bounds is to use a bound like
the clause dependent depth bound as a basis, but to take the inferences into
account when eventually allocating the resource to a subgoal. In detail, this is
controlled by three parameterized functions wy, ws, w3 as follows. When entering
a clause with m subgoals from a node with resource 4, first, the maximally avail-
able resource j for the new subgoals is computed according to a clause dependent
depth bound, i.e., j = wi(i,m). Then, the value j is divided into two parts, a
guaranteed part j, = wy(j,m) and an additive part j, = j — j,. Whenever a
subgoal is selected, the additive part is modified depending on the inferences Ai
performed since the clause was attached to the tableau,! i.e., 5| = w3(jq, Ai).
The eventually allocated resource for a selected subgoal then is j, + j.,.

Depending on the parameter choices for the functions wy, we, w3, the respec-
tive weighted depth bound can simulate the inference bound (wq(i,m) =i — m,
wa (4, m) =0, ws(ja, A1) = jo — Ad) or the (clause dependent) depth bound(s) or
any combination of them.

A parameter selection which represents a simple new completeness bound
combining inference and depth bound is, for example, wq (i,m) = 1, wa(j,m) =
j—(m=1), w3(ja, Ai) = jo/(14+A%). On problems with equality, this bound turned
out to be much more successful than each of the other bounds [Moser et al., 1997].
One reason for the success of this strategy that it also performs a unit preference
strategy.

3.4 Subgoal Processing

There is a source of indeterminism in the clausal tableau calculi presented so
far that can be removed without any harm. This indeterminism concerns the
selection of the next subgoal at which an expansion, extension, or closure step is
to be performed.

1We assume that the look-ahead optimization is used, according to which reduction steps
and extension steps into unit clauses do not increase the current inference value. This implies
that A7 = 0 if no extension steps in non-unit clauses have been performed on subgoals of the
current clause.

3.4. SUBGOAL PROCESSING 69

Most complete refinements and extensions of clausal tableau calculi developed
to date are independent of the subgoal selection, i.e., the completeness holds for
any subgoal selection function (for an exception see Section 6.1.4). If a calculus has
this property, then one can decide in advance for one subgoal selection function
¢ and ignore all tableaux in the search tree that are not constructed according
to ¢. This way the search effort can be reduced significantly. As an illustration of
this method of search pruning, consider the search tree displayed in Figure 3.3.
For this simple tree, one can only distinguish two subgoal selection functions ¢,
and ¢s. ¢1 selects the right subgoal and ¢- the left subgoal in the start clause.
When deciding for ¢;, the three leftmost lower boxes will vanish from the search
tree. In case of ¢, only two boxes will be pruned away.

For the clausal tableau calculi presented up to this point, even the following
stronger independence property holds.

Proposition 8.7 (Strong independence of the subgoal selection) Given any closed
(path) (connection) tableau T' for a set of clauses S constructed with n inference
steps, then for any subgoal selection function ¢, there exists a sequence Ty, ..., Ty
of (path) (connection) tableauz constructed according to ¢ such that Ty, is closed
and T' is an instance of T),.

In case a calculus is strongly independent of the subgoal selection, not only
completeness is preserved, but even minimal proof lengths. Furthermore, if a com-
pleteness bound of the sort described above is used, then the iterative-deepening
level on which the first proof is found is always the same, independently of the
subgoal selection. Note that the strong independence of the subgoal selection (and
hence minimal proof lengths) will be lost for certain extensions of the clausal tab-
leau calculus like folding up [Letz et al., 1994] and the local closure rule which is
studied below.

One particularly useful form of choosing subgoals is depth-first selection, i.e.,
one always selects the subgoal of an open branch with maximal length in the
tableau. Depth-first left-most/right-most selection always chooses the subgoal on
the left-most /right-most open branch (which automatically has maximal depth).
Depth-first left-most selection is the built-in subgoal selection strategy of Prolog.
Depth-first selection has a number of advantages, the most important being that
the search is kept relatively local. Furthermore, very efficient implementations
are possible.

3.4.1 Subgoal Reordering

The order of subgoal selection has influences on the size of the search space, as
illustrated with the search tree above. This is because subgoals normally share
variables and thus the solution substitutions of one subgoal have an influence on
the solution substitutions of the other subgoals.

A general least commitment paradigm is to prefer subgoals that produce fewer
solutions. In order to identify a non-closable connection tableau as early as possi-
ble, the solutions of a subgoal should be exhausted as early as possible. Therefore,

70 CHAPTER 3. TABLEAUX WITH CONNECTIONS

subgoals for which probably only few solutions exist should be selected earlier
than subgoals for which many solutions exist. This results in the fewest-solutions
principle for subgoal selection.?

Depth-first selection means that all subgoal alternatives stem from one clause
of the input set. Therefore, the selection order of the literals in a clause can be
determined statically, i.e., once and for all before starting the proof search, as
in [Letz et al., 1992]. But subgoal selection can also be performed dynamically,
whenever the literals of the clause are handled in a tableau. The static version
is cheaper (in terms of performed comparisons), but often an optimal subgoal
selection cannot be determined statically, as can be seen, for example, when
considering the transitivity clause P(z, z)V—P(x,y)V—-P(y, z). Statically, none of
the literals can be preferred. Dynamically, however, when performing an extension
step entering the transitivity clause from a subgoal =P(a, z), the first subgoal
- P(z,y) is instantiated to —P(a,y). Since now it contains only one variable,
is should be preferred according to the fewest-solutions principle. Entering the
transitivity clause from a subgoal —P(z,a) leads to preference of the second
subgoal =P (y, a).

3.4.2 Subgoal Alternation

When a subgoal in a tableau has been selected for solution, a number of comple-
mentary unification partners are available, viz. the connected path literals and
the connected literals in the input clauses. Together they form the so-called choice
point of the subgoal. One common principle of standard backtracking search pro-
cedures in connection tableaux (and in Prolog) is that, whenever a subgoal has
been selected, its choice point must be completely finished, i.e., when retracting
an alternative in the choice point of a subgoal, one has to stick to the subgoal
and try another alternative in its choice point. This standard methodology has
an interesting search-theoretic weakness.

This can be illustrated with the following generic example, variants of which
often occur in practice. Given the subgoals —=P(z,y) and —-Q(z,y) in a tableau,
assume the following clauses be in the input.

(1) P(a,a),

(2) P(z,y)V-P'(z,2)V=P(y,2)
(3) Pl(ai:a’)a 1S'LSTL‘

(4) Q(a;,b), 1<i<n.

Suppose further we have decided to select the first subgoal and perform depth-
first subgoal selection. The critical point, say at time ¢, is after unit clause (1)
in the choice point was tried and no compatible solution instance for the other
subgoal was found. Now we are forced to enter clause (2). Obviously, there are
n? solution substitutions (unifications) for solving clause (2) (the product of the
solutions of its subgoals). For each of those solutions, we have to perform n
unifications with the @-subgoal, which all fail. Including the unifications spent

2 A special case of the fewest-solutions principle is the first-fail principle.

3.4. SUBGOAL PROCESSING 71

P /\
-P(z,y ﬁQ(fv,y)

z,2) -P'(y, 2) n? failures

P'(a;,a),1<i<n P'(aj,a),1<j<n

Figure 3.4: Effort in case of standard subgoal processing.

/\

-P(z,y) -Q(z,y)

P(z,y) —P'(z,z) -P'(y,2) Q(ai,b), 1<i<n

n? failures

Figure 3.5: Effort when switching to another subgoal.

in clause (2), this amounts to a total effort of 1+ n + n? 4+ n® unifications (see
Figure 1). Observe now what would happen when at time ¢ we would not have
entered clause (2), but would switch to the @-subgoal instead. Then, for each
of the n solution substitutions @(a;, b), one would jump to the P-subgoal, enter
clause (2) and perform just n failing unifications for its first subgoal. This sums
up to a total of just n + n(1 +n) = 2n + n? unifications (see Figure 2).

It is apparent that this phenomenon has to do with the fewest-solutions prin-
ciple. Clause (2) generates more solutions for the subgoal =P(X,Y’) than the
clauses in the choice point of the subgoal =Q(X,Y"). This shows that taking the
remaining alternatives of all subgoals into account provides a choice which can
better satisfy the fewest-solution principle. The general principle of subgoal al-
ternation is that one always switches to that subgoal with a next clause that
probably produces the fewest solutions.

One might object that with a different subgoal selection, selecting the Q-
subgoal first, one also could avoid the cubic effort. But it is apparent that the
example could be extended such that the @-subgoal would additionally have a
longer clause as alternative, so that the total number of its solutions would be
even larger than that of the P-subgoal. In this case, with subgoal alternation one
could jump back to the P-subgoal and try clause (2) next, in contrast to standard
subgoal selection. Another possibility of jumping to the @-subgoal after having

72 CHAPTER 3. TABLEAUX WITH CONNECTIONS

| standard backtracking | subgoal alternation |
Al B2 Al B2
Al B4 Al B4
Al B6 Al B6
A3 B2 W B2 A3
A3 B4 B2 A5
A3 B6 W A3 B4
A5 B2 A3 B6
A5 B4 W B4 A5
A5 B6 W A5 B6

Table 3.1: Order of tried clauses for subgoals A and B with clauses of lengths 1,3,5
and 2,4,6 in their choice points, respectively. (U indicates subgoal alternations.

entered clause (2) would be free subgoal selection. In fact, subgoal alternation
under depth-first subgoal selection comes closer to standard free subgoal selection,
but both methods are not identical.

The question is, when it is worthwhile to stop the processing of a choice point
and switch to another subgoall’ As a matter of fact, it cannot be determined in
advance, how many solutions a clause in the choice point of a subgoal produces for
that subgoal. A useful criterion, however, is the shortest-clause principle, since,
in the worst case, the number of subgoal solutions coming from a clause is the
product of the numbers of solutions of its subgoals.?

In summary, subgoal alternation works as follows. The standard subgoal se-
lection and clause selection phases are combined and result in a single selection
phase that is performed before each derivation step. The selection yields the sub-
goal for which the most suitable unification partner exists wrt. the number of
solutions probably produced. For this, the unification partners of all subgoals
are compared with each other using, for instance, the shortest-clause principle. If
more than one unification partner is given the mark of best, their corresponding
subgoals have to be compared due to the principles for standard subgoal selection,
namely the first-fail principle and the fewest-solutions principle.

In order to compare the working of subgoal alternation (using the shortest-
clause principle) with the standard non-alternating variant, consider two subgoals
A and B with clauses of lengths 1,3,5 and 2,4,6 in their choice points, respectively.
Table 1 illustrates the order in which clauses are tried.

Subgoal alternation has a number of interesting effects when combined with
other methods in connection tableaux. First note that the method leads to the
preference of short clauses. A particularly beneficial effect of preferring short
clauses, especially the preference of unit clauses, is the early instantiation of vari-
ables. Unit clauses are usually more instantiated than longer clauses, because

3Also, the number of variables in the calling subgoal and in the head literal of a clause
matter for the number of solutions produced.

3.4. SUBGOAL PROCESSING 73

they represent the "facts” of the input problem, whereas longer clauses in gen-
eral represent the axioms of the underlying theory. Since normally variables are
shared between several subgoals, the solution of a subgoal by a unit clause usu-
ally leads to instantiating variables in other subgoals. These instantiations reduce
the number of solutions of the other subgoals and thus reduce the search space
to be explored when selecting them. Advantage is also taken from subgoal al-
ternation when combined with local failure caching considered in Section 5.3.3.
Failure caching can only exploit information from closed sub-tableaux, thus a
large number of small subproofs provides more information for caching than a
small number of large sub-tableaux that cannot be closed. Since subgoal alter-
nation prefers short clauses and hence small subproofs, the local failure caching
mechanism is supported.

Subgoal alternation leads to simultaneously processing several choice points.
This provides the possibility of computing look-ahead information concerning
the minimal number of inferences still needed for closing a tableau. A simple
estimation of this inference value is the number of subgoals plus the number of
all subgoals in the shortest alternative of each subgoal. In general, when using
standard subgoal selection, every choice point except the current one contains
connected path literals and connected unit clauses, that is, the number of sub-
goals with the shortest alternative for each subgoal equals zero. Using subgoal
alternation, at several choice points the reduction steps and the extension steps
with unit clauses have already been tried, so that only the unification partners
with subgoals are left in the choice points of several subgoals. Thus, one obtains
more information about the needed inference resources than in the standard pro-
cedure. This look-ahead information can be used for search pruning, whenever
the number of inferences has an influence on the search bound.

However, under certain circumstances alternating between subgoals may be
disadvantageous. If a subgoal cannot be solved at all, switching to another sub-
goal may be worse than sticking to the current choice point, since this may earlier
lead to the retraction of the whole clause. Obviously, this is important for ground
subgoals, because they have maximally one solution substitution in the Horn
case. Since ground subgoals do not contain free variables, they normally cannot
profit from early instantiations achieved by subgoal alternation, i.e., switching to
brother subgoals and instantiating their free variables cannot lead to instantia-
tions within a ground subgoal. Therefore, when processing a ground subgoal, the
fewest-solutions principle for subgoal selection becomes more important than the
shortest-clause principle for subgoal alternation. For this reason, subgoal alter-
nation should not be performed when the current subgoal is ground.

74

CHAPTER 3. TABLEAUX WITH CONNECTIONS

Chapter 4

Related Calculi and
Connection Conditions

In this chapter, we illustrate that connection tableaux can be used to capture
other calculi from automated deduction and we discuss calculi with weaker con-
cepts of connectedness.

4.1 Connection Tableaux and Related Calculi

Due to the fact that tableau calculi work by building up tree structures whereas
other calculi derive new formulae from old ones, the close relation of tableaux with
other proof systems is not immediately evident. There exist similarities of tableau
proofs to deductions in other calculi. In order to clarify the interdependencies, it
is helpful to reformulate the process of tableau construction in terms of formula
generation procedures. There are two natural formula interpretations of tableaux
which we shall mention and which both have their merits.

Definition 4.1 The branch formula of a formula tree T is the disjunction of the
conjunctions of the formulae on the branches of T'.

Another finer view is preserving the underlying tree structure of the formula
tree.

Definition 4.2 (Formula of a formula tree (inductive))

1. The formula of a one-node formula tree labelled with the formula F' is
simply F.

2. The formula of a complex formula tree with root N (with label F) and
immediate formula subtrees T4, ..., Ty, in this order, is F A (Fy V-V Fy,)

(or simply Fy V ---V F,, if N is unlabelled) where F; is the formula of T3,
for every 1 <i <n.

75

76 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONS

Evidently, the branch formula and the formula of a formula tree are equivalent.
Futhermore, it is clear that the following proposition holds, from which, as a
corollary, also follows the soundness of the method of clausal tableaux.

Proposition 4.8 If F is the (branch) formula of a clausal tableau for a set of
clauses S, then F is a logical consequence of S.

With the formula notation of tableaux, one can identify a close correspondence
of tableau deductions to calculi of the generative type. This way, the relation of
tableaux with Gentzen’s sequent system was elaborated in [Smullyan, 1968] using
so-called block tableauz. We are interested in recognizing similarities to calculi
from the area of automated deduction. For this purpose, it is helpful to only
consider the open parts of tableaux, which we call goal trees.

Definition 4.4 (Goal tree) The goal tree of a tableau T is the formula tree ob-
tained from T by cutting off all closed branches.

The goal tree of a tableau contains only the open branches of a tableau.
Obviously, for the continuation of the refutation process, all other parts of the
tableau may be disregarded without any harm.

Definition 4.5 (Goal formula)

1. The goal formula of any closed tableau is the falsum —.

2. The goal formula of any open tableau is the formula of the goal tree of the
tableau.

Using the goal formula interpretation, one can view the tableau construction
as a linear deduction process in which always a new goal formula is deduced from
the previous one until eventually the falsum is derived. In Example 4.6, we give
a goal formula deduction that corresponds to a construction of the tableau in
Figure 3.1, under a branch selection function ¢ that always selects the right-most
branch.

Ezample 4.6 (Goal formula deduction) The set of clauses S = {R(z) V R(f(x))
-R(z) V-R(f(f(x)))} has the following goal formula refutation.

—R(z) vV -R(f(f(2)))

Y

—R(x) v (=R(f(f(2))) A R(f(f(f(2)))))

—R(x) Vv (=R(f(f(2))) A R(f(f(f(2)))) A ~R(f(x)))

ﬂggwg V (=R(f(f(2))) AR(F(f(f () A=R(f(2)) A R(f(f(2))))
—R(f(2)) N R(f(f(2)))

—R(f(x)) A R(f(f(2))) A ~R(z)

—R(f(2)) A R(f(f(2))) A =R(z) A R(f(x))

Proposition 4.7 The goal formula of any clausal tableau T is logically equivalent
to the formula of T.

4.1. CONNECTION TABLEAUX AND RELATED CALCULI 7

4.1.1 Model Elimination Chains

Using the goal tree or goal formula notation, one can easily identify a close sim-
ilarity of connection tableaux with the model elimination calculus as presented
in [Loveland, 1978], which we will discuss in some more detail. Originally, model
elimination was introduced as a tree-based procedure with the full generality of
subgoal selection in [Loveland, 1968], although the deductive object of a tableau is
not explicitly used in this paper. As Don Loveland has pointed out, the linearized
version of model elimination presented in [Loveland, 1969, Loveland, 1978] was
the result of an adaptation to the resolution form. Here, we treat a subsystem of
model elimination without factoring and lemmata, called weak model elimination
in [Loveland, 1978], which is still refutation-complete. The fact that weak model
elimination is indeed a specialized subsystem of the connection tableau calculus
becomes apparent when considering the goal formula deductions of connection
tableaux. The weak model elimination calculus can be viewed as that refinement
of the connection tableau calculus in which the selection of open branches is per-
formed in a depth-first right-most or left-most manner, i.e., always the right-most
(left-most) open branch has to be selected. We decide here for the right-most vari-
ant. Due to this restriction of the subgoal selection, a one-dimensional “chain”
representation of goal formulae is possible in which no logical operators are nec-
essary. The transformation from goal formulae with depth-first right-most selec-
tion function to model elimination chains works as follows. To any goal formula
generated with a depth-first right-most selection function, apply the following op-
eration: replace every conjunction L; A-+- A L, A F with [L; - - L,]F and delete
all disjunction symbols.

In a model elimination chain, the occurrences of bracketed literals denote the
non-leaf nodes and the occurrences of unbracketed literals denote the subgoals of
the goal tree of the tableau. For every subgoal N corresponding to an occurrence
of an unbracketed literal L, the bracketed literal occurrences to the left of L
encode the ancestor nodes of N. The model elimination proof corresponding to
the goal formula deduction given in Example 4.6 is depicted in Example 4.8.

Ezample 4.8 (Model elimination chain deduction) The set consisting of the two
clauses R(z) vV R(f(z)) and =R(z) V ~R(f(f(z))) has the following model elimi-
nation chain refutation.

—R(x) —R(f(f(z)))

It is evident that weak model elimination is a refinement of the connection

78 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONS

tableau calculus. Viewing chain model elimination as a tableau refinement has
various proof-theoretic advantages concerning generality and the possibility of
defining extensions and refinements of the basic calculus. Also the soundness and
completeness proofs of chain model elimination are immediate consequences of
the soundness and completeness proofs of connection tableaux, which are very
short and simple if compared with the rather involved proofs in [Loveland, 1978].
Subsequently, we will adopt the original and more general view of model elimina-
tion as intended by Don Loveland [Loveland, 1968] and use the terms connection
tableaux and model elimination synonymously.

It is straightforward to recognize that SLD-resolution, although traditionally
introduced as a resolution refinement, can also be viewed as a restricted form of
model elimination, in which simply reduction steps are omitted. If the underlying
formula is a Horn formula, i.e., contains only Horn clauses, then it is obvious that
this restriction on model elimination preserves completeness.

4.1.2 The Connection Method

Another framework in automated deduction which is related with tableaux is the
connection method. Based on work by Prawitz [Prawitz, 1960, Prawitz, 1969],
the connection method was introduced by Andrews [Andrews, 1981] and Bibel
[Bibel, 1981, Bibel, 1987]—we shall use Bibel’s terminology as reference point.
In contrast to the tableau framework, the kernel of the connection method is
not a deductive system, but a declarative syntactic characterization of logical
validity or inconsistency. While, in the original papers, the connection method
represents logical validity directly, we work with the dual variant representing
inconsistency, which makes no difference concerning the employed notions and
mechanisms. Furthermore, we work on the clausal case only. It is essential for the
presentation of this method that different occurrences of a literal in a clause and
a formula can be distinguished. Occurrences of literals in a clausal formula are
denoted with triples (L, i, j) where L is the literal with unique identifier ¢ in the
clause ¢; in F'.

Definition 4.9 (Path, connection, mating, spanning) Given a set of clauses S =
{c1,...,cn}, apath through S is a set of n literal occurrences in S, exactly one from
each clause in S. A connection in S is a two-element subset {(K, i, k), (L, j, 1)} of
a path through S such that K and L are literals with the same predicate symbol,
one negated and one not. Any set of connections M in S is called a mating in S;
the pair (M, S) is termed a connected formula. A mating M is said to be spanning
for S if every path through S is a superset of a connection in M.

A set of propositional clauses S is unsatisfiable if and only if there is a spanning
mating for S. In the first-order case, the notions of multiplicities and unification
come into play.

Definition 4.10 (Multiplicity, unifiable connection, mating) First, a multiplicity is
just a mapping u : N — Ny which is then extended to clausal formulae, as

4.1. CONNECTION TABLEAUX AND RELATED CALCULI 79

follows. Given a multiplicity u and two sets of clauses S = {c;,...,c,} and
S = {cl,.. .,c’f(l), coch .,cﬁ(")} where every c¥ is a variable-renamed vari-

ant of ¢;, we call S’ a (u-)multiplicity of S. A connection {(K,i,k),(L,j,1)} is
termed wunifiable if the atoms of K and L are. A mating is unifiable if there is a
simultaneous unifier for all its connections.

Theorem 4.11 A set of clauses S is unsatisfiable if and only if there is a unifiable
spanning mating for a multiplicity of S. [Bibel, 1987)

Obviously, it is decidable whether a set of clauses has a unifiable and spanning
mating. In Chapter 8 we will consider the complexity of this decision problem.

4.1.3 Matings-based Connection Procedures

The just mentioned decidability suggests a two-step methodology of iterative-
deepening proof search, as performed with the connection tableau procedures.
The outer loop is concerned with increasing the multiplicity whereas the inner
procedure explores the finite search space determined by the given multiplicity.
Although there are different methods for identifying a unifiable and spanning
mating for some multiplicity of a formula, one of the most natural ways is exem-
plified with a procedure which is similar to the connection tableau calculi, but
without a renaming of the clauses in the given multiplicity.

Definition 4.12 ((Path) connection tableau calculus without renaming) The two cal-
culi are the same as the ones given in Definition 3.6 except that

1. they work on a multiplicity S’ of the input set,
2. no renaming is permitted in a (path) extension step, and
3. the computed substitution o is also applied to the clauses in S'.

How are the matings concepts related with tableauxI' This is obvious for
the calculi without renaming, since the clause copies to be used in a tableau
are determined in advance. Whenever a (path) extension or a reduction step is
performed in the construction of a tableau for a multiplicity S’ which involves
two tableau nodes N and N' with corresponding literal occurrences (K, i, k) and
(L, j,1), respectively, then we say that the connection {(K,i,k),(L,j,0)} in S’
is used in the tableau. With the mating of a tableau for S’ we mean the set of
connections in F' used in the construction of the tableau. For connection tableau
calculi with renaming, one can also define the mating of a tableau, the only
difference being that the set of clause copies may increase during the tableau
construction.

The connection procedure C] on pages 108f. in [Bibel, 1987], for example, is
based on the path connection tableau calculus without renaming. However, there
is a fundamental difference between the two types of calculi, the ones with and
the ones without renaming. For the calculi without renaming, it is guaranteed

80 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONS

that there are only finitely many regular or strict (path) connection tableaux
for each multiplicity of the input formula—in terms of the connection calculus,
strictness means that no literal occurrence appears more than once on a branch
in the tableau. As a consequence, no additional limit on the tableau complexity
has to be given to assure termination of the tableau search procedure for a given
multiplicity.

The crucial difference of this type of tableau calculi from the ones of the
previous section is that with multiplicity-based bounds static complexity limits
are put on the input multiplicity whereas the tableau complexity is not directly
bounded. As a matter of fact, when using strictness or regularity, also the depth of
the tableaux is bounded, viz. by the number of clauses in the input multiplicity.
But one may safely conjecture that the use of the pure multiplicity bound is
much too coarse in order to be successful in practice (think of a multiplicity
with hundreds of clauses). Instead one may limit the cardinality of the matings
to be considered or the number of clauses in a multiplicity, which should work
better in practice. Another drawback of multiplicity-based bounds is that certain
search pruning techniques and extensions of the calculus are not as effective as
for completeness bounds based on tableau complexity. This will be discussed at
the end of Section 5.3.3 and Section 6.1.5.

c1: —P(a) c1: ~P(a)
/\ /\
¢yt P(x1) —Q(y1) c3 :P(22) —Q(y2)
{z/a} N {z2/a}
ca: Q(b) Q(a) s Q(b) Q(a)
s W/} s (e/ad
51 P(2) —Q(y2) ¢y :P(z1) —Q(y1)
{z2/a} {y2/0} {z1/a} {y1/b}

Figure 4.1: Multiplicity-based duplication of connection tableaux.

Furthermore, in the multiplicity-based case, there is a source of redundancy
which has directly to do with the use of multiplicities. Consider the clausal formula

F==P(a) A (P(z) V-Q(y)) A (Q(a) V Q(D)).

In Figure 4.1, two closed connection tableaux for the multiplicity F' = ¢; A ¢3 A
c2 Aez of F are displayed; also, the attached clause variants and the substitutions

to be applied in the inference steps are given. It is evident that the two tableaux
are variants of each other obtainable by exchanging the positions of the clauses ¢}
and c3. A naive procedure would simply generate both tableaux. Fortunately, this
obvious redundancy can be avoided by using the proviso that any variant cf“,
k > 0, of an initial clause ¢; can be selected for extension only if the clause variant

c¥ in the multiplicity was already used in the tableau. This way the redundant

tableau on the right cannot be constructed any more.

4.2. OTHER CLAUSAL TABLEAU CALCULI 81

4.2 Other Clausal Tableau Calculi

In this section, we will review the most important other refinements of clausal
tableaux developed so far. After a short exposition of the so-called restart variants
of model elimination, we describe in some more detail two confluent and nonde-
structive restrictions of clausal tableaux. Both calculi permit non-enumerative
proof search methods like in the systematic tableau procedures, but with the
instantiation rule more or less guided by unification. Both calculi are nondestruc-
tive and hence permit the application of methods for branch saturation. There are
also very recent initiatives of developing non-enumerative proof search methods
for confluent but destructive clausal tableau calculi [Baumgartner et al., 1999],
for which it is too early to give an assessment of their suitability for automated
deduction.

4.2.1 Restart Model Elimination

In connection tableaux, a clause can be entered at any literal in an extension step,
and at any node an extension step can be applied. The restart model elimination
calculi [Loveland, 1991, Baumgartner and Furbach, 1998] restrict this possibility.
In the basic version of restart model elimination, at positive literals no extension
steps are permitted. In order to restore completeness, an alternative inference
possibility is needed. This is the so-called restart step. A restart step is simply a
tableau expansion step applied at subgoals with positive literals. This asymmetric
treatment of literals is motivated by arguments from logic programming, where
clauses also have a procedural reading. Disallowing extension steps at positive
literals means disallowing the entering of a clause at a negative literal. This fits
with the view that procedures with negated predicates seem not to make sense.
Here only the suitability for automated proof search is of interest. The weak point
of restart model elimination is that it is not compatible with regularity, only a
blockwise regularity condition between two restart steps can be used.

Restart model elimination can even be sharpened to the extent that, for ev-
ery clause, one can distinguish exactly one positive literal (if present) at which
the clause may be entered. Further refinements of restart model elimination are
described in [Baumgartner and Furbach, 1998]. The head selection function can
even be generalized to arbitrary literals, but this requires a further weakening of
the connection condition and that more clauses have to be employed for restart
steps [Hahnle and Pape, 1997].

The competitiveness of all those approaches for automated deduction has not
yet been demonstrated convincingly.

4.2.2 Hyper Tableaux

Beginning with the first paper [Manthey and Bry, 1988], in which the term ”tab-
leau” was not used, a number of hyper tableau calculi have been developed in
the last years [Baumgartner, 1998]. A common characteric of all those systems is
that they are based on a macro inference rule of the following form.

82 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONS

Definition 4.18 (Hyper extension rule) The hyper extension rule is just an expan-
sion step immediately followed by reduction steps at all newly attached nodes that
are labelled with negative literals.

It is important to note that such an inference step is possible only if really all
negative literals in the attached clause can be closed by reduction steps. First,
we formulate a very general version of a hyper tableau calculus, which will be
specialized subsequently.

Definition 4.14 (General hyper tableauz) The general hyper tableau calculus con-
sists just of the hyper extension rule.

This calculus is complete and compatible with the regularity restriction. In
contrast to the connection tableau calculi, however, the calculus is also confluent
and so will be all versions of hyper tableaux considered later on. Recall that
confluence means that no proof enumeration is necessary, since any proof attempt
can eventually be completed to a closed tableau. The problem of the general hyper
tableau calculus, however, is to find a closed tableau without performing tableau
enumeration, i.e., to find a strategy of applications of the general hyper extension
rule which guarantees the generation of a closed tableau for any unsatisfiable
clause set. As we will see, there are different solutions to this end.

Historically, the hyper tableau calculus was designed for sets of range restricted
clauses only [Manthey and Bry, 1988].

Definition 4.15 (Range restrictedness) A clause is called range restricted if every
variable occurring in a positive literal of the clause occurs in a negative literal of
the clause.

Ezample 4.16 P(a)V Q(b),
—P(z) Vv P(f(z))VQ(f(z))
-Q(z) VvV P(z)V R(z)
- P(b),
—R(a),
~P(f()),

—P(z) v -Q(f(x)).

In Figure 4.2, a general hyper tableau for a set of range restricted clauses is
given. Observe that the tableau is open, but no further hyper extension step can
be applied without violating the regularity condition, i.e., the tableau is saturated.
Consequently, by the completeness and the confluence of the calculus, the input
set must be satisfiable. This shows the reductive power of the calculus, which
renders it promising for proof search.

A further important property illustrated with the given example is that, in
any hyper extension step, the attached clause is ground. This property is an
obvious consequence of the range restrictedness of the input clauses, which has
the followed further consequence.

4.2. OTHER CLAUSAL TABLEAU CALCULI 83

P(a) Q(b)
/\ /’\
P P(f@) QU) Q0 Py R
: ‘ /\ * ‘ no further
=P(f(a)) —P(a) -Q(f(a)) ~P(b) step possible

Figure 4.2: Saturated hyper tableau for Example 4.16.

Proposition 4.17 For sets of range restricted clauses, the general hyper tableau
calculus is nondestructive.

The importance of the nondestructiveness of a tableau calculus has already
been emphasized in Section 2.1. It permits the definition of a saturated system-
atic tableau. Evidently, the general hyper tableau clauses becomes destructive
for clauses which are not range restricted. Consider, for example, the clause set
{P(z,y)V P(y,z),—P(a,a)}. In order to generate a closed tableau, the variables
in the top clause have to be instantiated. The problem is what to do with clauses
like {P(z,y) V P(y,z) that are not range restricted. The original proposal was
to just use the original -rule of sentence tableau on all variables remaining in a
clause after a hyper extension step. As a matter of fact, only terms of the Herband
universe of the input clause set need to be used [Bry and Yahya, 1996].!

Definition 4.18 (Hyper tableauz) The hyper tableau calculus consists of the hyper
extension rule which is augmented in the following manner: immediately after
each hyper extension step the variables in the new clause have to be instantiated
to ground terms from the Herbrand universe of the input set.

It is clear that, with this modification, the hyper extension rule loses a lot of
its attractiveness for automated proof search, since, in general, the rule permits
infinitely many applications for any clause that is not range restricted. Yet, hyper
tableaux have some interesting properties. For example, we have the following
result.

Proposition 4.19 If S is a finite set of clauses without functions symbols of arity
> 0, then every hyper tableau for S is finite.

This means that hyper tableaux provide a decison procedure for the class of
datalogic formulae and for the Bernays-Schonfinkel class, i.e., the set of prenex
formulae of the form 3*V*® where ® is quantifier-free and contains no function
symbols.

1One can also transform any clause set containing clauses which are not range restricted into
a range restricted clause set by introducing a new domain predicate [Manthey and Bry, 1988].
But this transformation just amounts to encoding the -rule in the input set in a data-oriented
fashion.

84 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONS

For formulae containing proper function symbols, however, the instantiation
problem is more or less similar to the one for sentence tableaux. This accounts
for the fact that, for general first-order theorem proving, hyper tableaux are
not generally successful. This weakness can be remedied to a certain extent by
exploiting the technique of local variables which is developed in Section 6.3.

4.2.3 Disconnection Tableaux

The disconnection tableau calculus was developed in [Billon, 1996]. In order to
comprehend the method, it is helpful to first describe the clause linking mecha-
nism [Lee and Plaisted, 1992], a method which is in the spirit of the first theorem
proving procedures developed in the sixties. Historically, the first theorem proving
systems where direct applications of Herbrand’s approach to proving the com-
pleteness of first-order logic (see [Davis and Putnam, 1960]). Such Herbrand pro-
cedures consist of two subprocedures, a generator for sets of ground instances and
a propositional decision procedure. For some decades this methodology was not
pursued in automated deduction, mainly because no efficient method of ground
instance generation existed. The linking mechanism, and particularly its hyper
linking variant [Lee and Plaisted, 1992], represents an ingenious method of inte-
grating unification into the process of ground instantiation.

Definition 4.20 (Linking instance) Given a set of clauses S, let L be a literal in a
clause ¢ € S and K a renaming wrt. ¢ of another literal in a clause of S. If there
exists a unifier o for L and ~K, then the clause co is called a linking instance of
c wrt. S.

Instead of guessing arbitrary ground instances of clauses as in the theorem
proving procedures of the sixties, one can iteratively form linking instances of the
clause set.? Since this process will not automatically result in ground clauses, one
has to slightly generalize the traditionally used propositional decision procedures.

Definition 4.21 (Ground satisfiability) Given a set S of clauses and a ground term
t, let S(¢) denote the set of clauses obtained by replacing every variable in S uni-
formly with the term ¢. S is called ground satisfiable wrt. ¢ if S(t) is propositionally
satisfiable.

The clause linking method simply consists in forming linking instances of the
currently generated set of clauses and, from time to time, testing the current set S
for ground satisfiability wrt. some arbitrary ground term ¢. If the satisfiability test
fails, i.e., if S(t) is propositionally unsatisfiable, then this obviously demonstrates
the unsatisfiability of the original set of clauses. And when the term ¢ is taken
from the Herbrand universe of S, then every clause in the final propositional set
S(t) is a Herbrand instance of a clause in the original clause set. This method
is complete, i.e., for any unsatisfiable clause set Sy and for any ground term ¢

>The hyper linking variant requires that each literal in the clause c is unified with the
renaming of some literal from the clause set.

4.2. OTHER CLAUSAL TABLEAU CALCULI 85

(not necessarily occurring in Sy), there is a finite sequence of clause linking steps
producing a clause set S such that S(¢) is propositionally unsatisfiable. In order
to find such a clause set S it suffices to require that the linking instances be
generated in a fair manner. Fairness simply means that, for any generated clause
set S and every clause ¢ € S, every linking instance of ¢ wrt. S will eventually be
generated if no ground satisfiability tests are performed.

An important property of the linking method is that only one variant of a
clause ¢ needs to be kept, all other clauses which are renamings of ¢ may be
deleted. With this powerful deletion strategy, the method decides the class of
datalogic formulae and hence the Bernays-Schonfinkel class.

One remaining weakness of the clause linking method is that the propositional
decision procedure is completely separated from the generation of the linking in-
stances. And the interfacing problem between the two subroutines may lead to
tremendous inefficiencies. This has motivated the development of the discon-
nection method, which provides an intimate integration of the two subroutines
[Billon, 1996]. The integration is achieved by embedding the linking process into
a tableau guided control structure. As a further result of this embedding, the
number of linking instances of clauses can be significantly reduced.

Definition 4.22 (Disconnection tableau calculus) Given an initial set S of clauses,
the disconnection tableau calculus has two inference rules for tableau construction:

e the expansion rule applicable to clauses in S.

e the path linking rule which consists in the following operation. Let B be a
tableau branch containing two nodes N and N’ labelled with literals K and
L, respectively, such that there is a unifier o for K and a variant of ~L wrt.
the tableau clause ¢ of NV, then attach the tableau clause co at the leaf of
B.

A tableau T is ground closed for some ground term ¢t if the tableau T'7 is closed
where 7 maps any variable appearing in T to the term ¢.

A disconnection tableau refutation of a clause set S is a pair (T, t) consisting
of a disconnection tableau for S and a ground term t such that 77 is closed.
This calculus is also compatible with the variant restriction, i.e., one can require
that no two clauses which are variants of each other must occur on a branch. Let
us illustrate the reductive power of this calculus with an example also used in
[Billon, 1996]. Given the satisfiable set of the two clauses

P(z) vV Q(z) and =P (f(y)) vV =Q(y),

one can apply the expansion rule twice resulting in the tableau shown on the
left-hand side of Figure 4.3. Now, to the left-most branch only one path linking
step can be applied, resulting in the tableau on the right-hand side of the figure
in which the left-most branch is now ground closed. The new branch with the
leaf literal Q(f(z)) can no more be expanded under the variant restriction and

86 CHAPTER 4. RELATED CALCULI AND CONNECTION CONDITIONS

we can terminate. Since the tableau is not ground closed, the input formula must
be satisfiable. The other tableau calculi considered so far do not terminate for
this input set. Also, saturation based procedures like resolution do not terminate
unless ordering restrictions are used.

P(x) Q(z) /P& Q(z)
—~P(f(y)) Q) —~P(f(y)) Q)

Figure 4.3: Saturated disconnection tableau for {P(z)V Q(z), ~P(f(y))V-Q(y)}.

Chapter 5

Search Pruning in
Connection Tableaux

The pure calculus of connection tableaux is only moderately successful in au-
tomated deduction. This is because the corresponding search trees are still full
of redundancies. In general, there are two different paradigms for reducing the
effort of tableau search procedures. On the one hand, one may attempt to find
further completeness-preserving restrictions on the individual proof objects, the
tableaux. On the other hand, one may work on the level of the search space and
try to demonstrate the redundancy of a certain tableau T', not because T has
certain structural deficiencies, but because of the existence of another (better)
tableau in the search space.

5.1 Structural Refinements of Connection Tab-
leaux

First, we consider methods which attempt to restrict the tableau calculus, that is,
disallow certain inference steps if they produce tableaux of a certain structure—
note that the connection condition is such a structural restriction on general
clausal tableaux. The effect on the tableau search tree is that the respective nodes
together with the dominated subtrees can be ignored so that the branching rate
of the tableau search tree decreases. These structural methods of redundancy
elimination are local pruning techniques in the sense that they can be performed
by looking at single tableaux only.

5.1.1 Regularity

A fundamental structural refinement of connection tableaux is the so-called reg-
ularity condition, which was already introduced in Section 2.1. Recall that a

87

88 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

tableau is regular if no literal occurs more than once on a branch. The term ”reg-
ular” has been introduced to emphasize the analogy to the definition of regular
resolution [Tseitin, 1970]. Imposing the regularity restriction has some impor-
tant unexpected consequences. As opposed to general clausal tableaux, where
regularity preserves minimal proof lengths, minimal closed connection tableaux
may not be regular. In Chapter 7 it will be shown that regular connection tab-
leaux cannot even polynomially simulate connection tableaux. Nevertheless, a
wealth of experimental results clearly shows that this theoretical disadvantage
is more than compensated for by the strong search pruning effect of regularity
[Letz et al., 1992], so that this refinement is indispensable for any practical proof

3

procedure based on connection tableaux.

5.1.2 Tautology Elimination

Normally, it is a good strategy to eliminate certain clauses from the input set
which can be shown to be redundant for finding a refutation. Tautological clauses
are of such a sort.! In the ground case, tautologies may be identified once and for
ever in a preprocessing phase and can be eliminated before starting the actual
proof search. In the first-order case, however, it may happen that tautologies
are generated dynamically. Let us illustrate this phenomenon with the example
of the clause =P(z,y) V =P(y,2) V P(z,z) which expresses the transitivity of a
relation. Suppose that during the construction of a tableau this clause is used
in an extension step (for simplicity renaming is neglected). Assume further that
after some subsequent inference steps the variables y and z are instantiated to
the same term ¢. Then a tautological instance ~P(x,t) V = P(t, t) V P(x,t) of the
transitivity formula has been generated. Since no tautological clause is relevant in
a set of formulae, connection tableaux with tautological tableau clauses need not
be considered when searching for a refutation. Therefore the respective tableau
and any extension of it can be disregarded.

Interestingly, the conditions of tautology-freeness and regularity are partially
overlapping. Thus the non-tautology condition, on the one hand, does cover all
occurrences of identical predecessor nodes, but not the more remote ancestors.
The regularity condition, on the other hand, captures all occurrences of tauto-
logical clauses for backward reasoning with Horn clauses (i.e. with negative start
clauses only), but not for non-Horn clauses.

5.1.3 Tableau Clause Subsumption

An essential pruning method in resolution theorem proving is subsumption dele-
tion, which during the proof process deletes any clause that is subsumed by
another clause, and this way eliminates a lot of redundancy. Although no new
clauses are generated in the tableau approach, a restricted variant of clause sub-

L Although tautologies may facilitate the construction of smaller tableau proofs, since they
can be used to simulate the cut rule. But one certainly wants to avoid an uncontrolled use of
cuts.

5.1. STRUCTURAL REFINEMENTS OF CONNECTION TABLEAUX 89

sumption reduction can be exploited in the tableau framework, too. First, we
shortly recall the definition of subsumption between clauses.

Definition 5.1 (Subsumption for clauses) Given two clauses ¢; and ¢y, we say
that ¢; subsumes co if there is a variable substitution o such that the set of
literals contained in ¢;o is a subset of the set of literals contained in ¢s.

Similar to the dynamic generation of tautologies, it may happen, that a clause
which has been attached in a tableau step during the tableau construction process
is instantiated and then subsumed by another clause from the input set. To give
an example, suppose the transitivity clause from above and a unit clause P(a,b)
be contained in the input set. If now the transitivity clause is used in a tableau
and after some inference steps the variables x and z are instantiated to a and
b, respectively, then the resulting tableau clause =P(a,y) V —=P(y,b) V P(a,b) is
subsumed by P(a,b). Obviously, for any closed tableau using the former tableau
clause a closed tableau exists which uses the latter instead.

Again there is the possibility of a pruning overlap with the regularity and the
non-tautology conditions. Note that, strictly speaking, the avoidance of tableau
clause subsumption is not a pure tableau structure restriction, since a case of
subsumption cannot be defined by merely looking at the tableau. Additionally,
it is necessary to take the respective input set into account.

5.1.4 Strong Connectedness

When employing an efficient transformation from the general first-order for-
mat to clausal form, one has sometimes to introduce new predicates which are
used to abbreviate certain formulae [Eder, 1985, Plaisted and Greenbaum, 1986,
Boy de la Tour, 1990]. Assume, for instance, we have to abbreviate a conjunction
of literals a A b with a new predicate d by introducing a biconditional d < a A b.
This rewrites to the three clauses ~a V ~bV d, a V ~d, and bV ~d. Interestingly,
every resolvent between the three clauses is a tautology. Applied to the tableau
construction, this means that whenever one of these clauses is immediately below
another one, then a hidden form of a tautology has been generated as shown in
Figure 5.1. This example also illustrates that with definitions one can simulate
the effect of the cut rule.

~a ~b d

Figure 5.1: Hidden tautologies in tableaux.

Interestingly, certain cases of such hidden tautologies may be avoided. For this
purpose, in [Letz, 1993a] the notion of connectedness was strengthened to strong

90 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

connectedness.

Definition 5.2 (Strong connectedness) Two clauses ¢; and c¢o are strongly con-
nected if there is a substitution ¢ such that the union of the sets of literals in
c10 and cyo contains exactly two complementary literals, i.e., ¢; and ¢y have a
non-tautological resolvent.

It is evident that strong connectedness is a sharpening of the method of tau-
tology elimination from one to two tableau clauses. In Section 5.2, it will be
proven that, for all pairs of adjacent tableau clauses, strong connectedness may
be demanded without losing completeness. However, is is essential that the two
clauses be adjacent, i.e., one must be located immediately below the other. For
more distant pairs of tableau clauses one dominated by the other, the condition
that they be strongly connected is not compatible with the condition of regularity.
A straightforward counter-example is the set of the four clauses

{-pV-q,~pVa.pV-qnpVaq}

Regardless with which clause we start, we always need a ”tautological” connec-
tion. This holds even when additional inference rules like factorization or folding
up (see Section 6.1) are available.

5.1.5 Use of Relevance Information

By using relevance information, the set of possible start clauses can be minimized.

Definition 5.8 (Essentiality, relevance, minimal unsatisfiability) A formula F is
called essential in a set S of formulae if S is unsatisfiable and S\ { F'} is satisfiable.
A formula F' is named relevant in S if F is essential in some subset of S. An
unsatisfiable set of formulae S is said to be minimally unsatisfiable if each formula
in S is essential in S.

As will be shown in Section 5.2, the connection tableau calculus is complete in
the strong sense that, for every relevant clause in a set S, there exists a closed con-
nection tableau for S with this clause as start clause. Since in any unsatisfiable set
of clauses, some negative clause is relevant, by default one may start with negative
clauses only. The application of this default pruning method achieves a signifi-
cant reduction of the search space. In many cases, however, one has even more
information concerning the relevance of certain clauses. Normally, a satisfiable
subset of the input is well-known to the user, namely, the clauses specifying the
theory axioms and the hypotheses. Such relevance information is also provided in
the TPTP library [Sutcliffe et al., 1994]. A goal-directed system can enormously
profit from the relevance information by considering only those clauses as start
clauses that stem from the conjecture. As an example, consider an axiomatiza-
tion of set theory containing the basic axiom that the empty set contains no set,
which is normally expressed as a negative unit clause. Evidently, it is not very
reasonable to start a refutation with this clause.

5.2. COMPLETENESS OF CONNECTION TABLEAUX 91

It is important to note, however, that when relevance information is being
employed, then all conjecture clauses have to be tried as start clauses and not
only the all-negative ones. Relevance information is normally more restrictive
than the default method except when all negative clauses are stemming from the
conjecture, in which case obviously the default mode is more restrictive.

5.2 Completeness of Connection Tableaux

Let us turn now to the completeness proof of connection tableaux incorporating
the structural refinements of regularity, strong connectedness, and the use of
relevance information. The possibility of eliminating tautologies and subsumed
tableau clauses is evident and will not be considered explicitly. Since the path
connectedness condition is properly less restrictive, it suffices to consider the full
connection condition. Unfortunately, we cannot proceed as in the case of free-
variable tableaux where a direct simulation of sentence tableaux was possible,
just because of the lacking confluence. Instead, an entirely different approach for
proving completeness will be necessary. The proof we give here consists of two
parts. In the first part, we demonstrate the completeness for the case of ground
formulae—this is the interesting part of the proof. In the second part, this result
is lifted to the first-order case by a simulation technique similar to the one used
in the proof of Lemma 2.61. Beforehand, we need some additional terminology.

Definition 5.4 (Strengthening) The strengthening of a set of clauses S by a set of
literals P = {Ly,...,L,}, written P > S, is the set of clauses obtained by first
removing all clauses from S containing literals from P and afterwards adding the
n unit clauses Lq,..., Ly.

Ezample 5.5 For the set of propositional clauses S = {pV¢q,pVs,—pVq, —q}, the
strengthening {p} > S is the set of clauses {p, ~pV ¢, ~q}.

Clearly, every strengthening of an unsatisfiable set of clauses is unsatisfiable,
too. In the ground completeness proof, we will make use of the following further
property.>

Lemma 5.6 (Strong Mate Lemma) Let S be an unsatisfiable set of ground clauses.
For any literal L contained in any relevant clause ¢ in S there exists a clause ¢’
in S such that

(i) ' contains ~L,
(i) every literal in ¢ different from ~L does not occur complemented in ¢, and

(iii) ' is relevant in the strengthening {L} > S.

2In terms of resolution, it expresses the fact that, for any literal L in a clause c that is relevant
in a clause set S, there exists a non-tautological resolvent “over” L with another relevant clause
in S.

92 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

Proof From the relevance of ¢ follows that S has a minimally unsatisfiable subset
Sp containing ¢; every formula in Sy is essential in Sy. Hence, there is an Herbrand
interpretation H for So with H(So \ {c¢}) = T and H(c) = L, i.e., H assigns L
to every literal in ¢, hence H(L) = L. Define another Herbrand interpretation

2y — HU{L} if Lis an atomic formula
~ | H\{~L} otherwise

using Notation 1.65 introduced on Page 26. By construction, H'(c) = T. The
unsatisfiability of Sy guarantees the existence of a clause ¢’ in Sy with H'(¢") = L.
We prove that ¢’ meets the conditions (i) — (iii). First, the clause ¢’ must contain
the literal ~L and not the literal L, since otherwise H(c¢') = L, which contradicts
the selection of H, hence (i). Secondly, for any literal L' in ¢’ different from ~L:
H(L'") =H'(L') = L. As a consequence, L' cannot occur complemented in ¢, since
otherwise H(c) = T; this proves (ii). Finally, the essentiality of ¢’ in Sy entails
that there exists an interpretation H" with H"(So \ {¢'}) = T and H"(¢') = L.
Since ~L isin ¢/, H" (L) = T. Therefore, ¢’ is essential in So U{L} and also in its
unsatisfiable subset {L} > Sp. From this and the fact that {L} 1> Sy is a subset
of {L} > S follows that ¢ is relevant in {L} > S.

Proposition 5.7 (Completeness of regular strong connection tableauz) For any fi-
nite unsatisfiable set S of ground clauses and any clause ¢ which is relevant in S,
there exists a closed regular strong connection tableau for S with top clause c.

Proof Let S be a finite unsatisfiable set of ground clauses and ¢ any relevant clause
in S. A closed regular strong connection tableau 7" for S with top clause ¢ can be
constructed from the root to its leaves via a sequence of intermediate tableaux,
as follows. Start with a tableau consisting simply of ¢ as top clause. Then iterate
the following non-deterministic procedure as long as the intermediate tableau has
a branch whose leaf node has no complementary ancestor.

Choose an arbitrary such leaf node N in the current tableau with literal L.
Let ¢ be the tableau clause of N and let P = {L;,...,L,,, L}, m > 0, be
the set of literals on the path from the root up to the node N. Then, select
any clause ¢’ which is relevant in P [> S, contains ~L, is strongly connected
to ¢, and does not contain literals from the path {Lq,..., Ly, L}; perform

an expansion step with ¢’ at the node N.

First, note that, evidently, the procedure admits solely the construction of regu-
lar strong connection tableaux, since in any expansion step the attached clause
contains the literal ~L, no literals from the path to its parent node (regularity),
nor is a literal different from ~L in ¢’ contained complemented in ¢. Due to reg-
ularity, there can be only branches of finite length. Consequently, the procedure
must terminate, either because every leaf node has a complementary ancestor,
or because no clause ¢’ exists for expansion which meets the conditions stated in
the procedure. We prove that the second alternative does never occur, since for
any open leaf node N with literal L there exists such a clause ¢’. This will be

5.3. INTERTABLEAUX PRUNING 93

demonstrated by induction on the node depth. The induction base, n = 1, is evi-
dent, by the Strong Mate Lemma (5.6). For the step from n ton + 1, with n > 1,
let N be an open leaf node of tableau depth n + 1 with literal L, tableau clause
¢, and with a path set P U {L} such that ¢ is relevant in P > S, the induction
assumption. Let Sy be any minimally unsatisfiable subset of P > S containing c,
which exists by the induction assumption. Then, by the Strong Mate Lemma, S
contains a clause ¢’ which is strongly connected to ¢ and contains ~L. Since no
literal in P’ = PU{L} is contained in a non-unit clause of P’ 1> S and because N
was assumed to be open, no literal in P’ is contained in ¢’ (regularity). Finally,
since Sy is minimally unsatisfiable, ¢’ is essential in Sg; therefore, ¢’ is relevant in
P'> 8. O

The second half of the completeness proof is a standard lifting argument.

Definition 5.8 (Ground (instance) set) Let S be a set of clauses and S’ a set of
ground clauses. If, for any clause ¢’ € S’, there exists a clause ¢ € S such that ¢
is a substitution instance of ¢, then S’ is called a ground (instance) set of S.

Lemma 5.9 Let T' be a closed regular strong connection tableau for a ground set
S’ of a set of clauses S. Then, for any branch selection function ¢, there exists a
closed regular strong connection tableau T for S constructed according to ¢ such
that T is more general than T'.

Proof The proof is exactly as the proof of Lemma 2.61 except that here it is
much simpler, since no é-rule applications can occur. Whenever an expansion or
extension step is performed in the construction of 7' with a clause ¢/, then a clause
c € S is selected with ¢’ being a ground instance of ¢ and a respective expansion
or extension step with ¢ is performed in the construction of T'. Furthermore, as
in the proof of Lemma 2.61, it may be necessary to perform additional closure
steps, which obviously are not needed in the ground proof. O

Theorem 5.10 (Completeness of regular connection tableaux) For any unsatisfiable
set of clauses, any clause c that is relevant in S, and any branch selection function
¢, there exists a closed regular strong connection tableau constructed according to
¢ and with a top clause that is an instance of c.

Proof Immediate from Proposition 5.7 and Lemma 5.9. |

5.3 Intertableaux Pruning

In this section, we consider the second main paradigm of improving proof search
in enumerative tableau procedures. Here the basic idea is to work on the level of
the entire search space. As will be demonstrated with a number of examples, it is
often possible to identify a certain tableau T as redundant, because there exists
another, better tableau 7' in the search space. A natural definition of T’ being
better than T could be that the tableau T can be closed only if the tableau T"
can be closed.

94 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

5.3.1 Using Matings for Pruning Tableaux

As already mentioned in Section 4.1.2, one can associate a mating, i.e., a set of
connections, with any clausal tableau. Interestingly, this mapping is not injective
in general. So one and the same mating may be associated with different tableaux.
This means that the matings concept provides a more abstract view on the search
space and enables us to group tableaux into equivalence classes. Under certain
circumstances, it is not necessary to construct all tableauz in such a class but
only one representative. In order to illustrate this, let us consider the set of
propositional clauses

{~P,V Py, ~P,V Py, P,V ~P;, P,V Ps)}.

As shown in Figure 5.2, the set has 4 closed regular connection tableaux with all-
negative start clause =Py V —Ps. If, however, the involved sets of connections are
inspected, it turns out that the tableaux all have the same mating consisting of 6
connections. The redundancy contained in the tableau framework is that certain
tableaux are permutations of each other corresponding to different possible ways
of traversing a set of connections. Obviously, only one of the tableaux in such an
equivalence class has to be considered.

N N AN
ZAN
/\ /\
N N AN N
P P -Pr P P P P P
A NN ANV
P -PoPr P Py -P, =P P

Figure 5.2: Four closed connection tableaux for the same spanning mating.

The question is, how exactly this redundancy can be avoided. A general line
of development would be to store all matings that have been considered during
the tableau search procedure and to ignore all tableaux which encode a mating
which was already generated before. This approach would require an enormous
amount of space. Based on preliminary work in [Letz, 1993a], in [Letz, 1998b] a
method was developed which can do with very little space and avoid the form
of duplication shown in Figure 5.2. To comprehend the method, note that, in
the example above, the source of the redundancy is that a certain connection
can be used both in an extension step and in a reduction step. This causes the
combinatorial explosion. The idea is now to block certain reduction steps by

5.3. INTERTABLEAUX PRUNING 95

using an ordering < on the occurrences of literals in the input set which has to be
respected during the tableau construction, as follows. Assume, we want to perform
a reduction step from a node N to an ancestor node N'. Let Ny,..., N, be the
node family below N'. The nodes Ny, ..., N, were attached by an extension step
”into” a node complementary to N', say N;. Now we simply do not permit the
reduction step from N to N’ if N; < N where the ordering < is inherited from
the literal occurrences in the input set to the tableau nodes. As can easily be
verified, for any total ordering, in the example above only one closed tableau can
be constructed with this proviso. As shown in detail in [Letz, 1998b], with this
method one may achieve a superexponential reduction of the number of closed
tableaux in the search space with almost no overhead.

On the other hand, there may be problems when combining this method with
other search pruning techniques.

Matings Pruning and Strong Connectedness

For instance, the method is not compatible with the condition of strong connect-
edness presented in Section 5.1.4. As a counterexample, consider the set of the
four clauses given in Example 5.11.

Ezample 5.11 {PV Q(a), PV =Q(a), =PV Q(a), =PV -Q(x)}.

o -P _‘Q(I)
/\ . /\
P _—Q(a) Qéa) P [-P]
CQ(/\
-Q(a) P

Figure 5.3: Deduction process for Example 5.11.

If we take the fourth clause, which is relevant in the set, as top clause, enter the
first clause, then the second one by extension, and finally perform a reduction step,
then the closed subtableau on the left-hand side encodes the mating {Cy, Cs, C5}.
Now, any extension step at the subgoal labelled with =@ (z) on the right-hand side
immediately violates the strong connection condition. Therefore, backtracking has
to occur, up to the state in which only the top clause remains. Afterwards, the
second clause must be entered, followed by an extension step into the first one. But
now the mating pruning forbids a reduction step at the subgoal labelled with P,
since it would produce a closed subtableau encoding the same mating {C3, Cs, C }
as before. Since extension steps are impossible because of the regularity condition,

96 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

the deduction process would fail and incorrectly report that there exists no closed
tableau with the fourth clause as top clause.

This is but one example of an incompatibility between different pruning meth-
ods, here a structural one (strong connectedness) with a global one (avoiding the
repetition of matings). And in this case there is no reasonable reconciliation of
both pruning methods. It depends on the particular input formula which one of
the techniques is more effective for search pruning.

Minimal Matings

A further potential of using matings for pruning tableaux is by exploiting the
minimality of matings.

Definition 5.12 (Minimal mating) A mating M is called minimal for a set of
clauses S if, for each connection C' in M, there is a path through S containing C'
and no other connection from M.

Proposition 5.13 A set of clauses S is unsatisfiable if and only if there is a unifi-
able minimal spanning mating for a multiplicity of S.

Proof If a set of clauses S is unsatisfiable, then, by Theorem 4.11, there exists
a unifiable spanning mating M for a multiplicity S’ of S. Assume M be not
minimal for S’. Then, some connection C' in M can be removed without affecting
the spanning property. This way, after finitely many steps, a minimal spanning
mating for S’ is obtained. |

The general motivation for developing complete refinements of matings is to
achieve redundancy elimination in the first-order case. In contrast to the propo-
sitional case, where always the full set of connections in a formula can be taken,
in the first-order case, with every connection that is added to a mating, an addi-
tional unification problem has to be solved. The restriction to minimal matings
keeps the simultaneous unification problem as easy as possible.

In [Letz, 1999b], it was proven that, for any minimal mating for a set of clauses
S, there exists a closed strict connection tableau for S. Unfortunately, this does
no more hold when strictness is replaced by regularity. In fact, the restriction to
minimal matings is not compatible with the regularity condition.

Proposition 5.14 There is an unsatisfiable set of clauses for which there exists no
closed regqular (path) connection tableauw with a minimal mating.

Proof Let S be the set consisting of the following 7 propositional clauses
(1) —pV s, (2)17 V g, (3)]3 VrVyg, (4) -rV s, (5) sV, (6) sV g, (7) “pVg.

We prove that, when taking the first clause —p V —s as start clause, then there
is no closed regular connection tableau with a minimal mating. For illustration,
consider Figure 5.4. First, it is straightforward to recognize that any regular

5.3. INTERTABLEAUX PRUNING 97

T -p -s -8
e ™~ pd

p —q] —q] -r
T ™~ T

p T q —p q p T q
prd T VA NVAN

-r - p r q -p q S -q
prd VAN

s -r s —q

Figure 5.4: The incompatibility of minimal matings and regularity.

solution of the —p-subgoal in the top clause has the following mating consisting
of the six connections (with upper indices giving the clause numbers):

{_'p1=p2}= {_'plzp3}= {_'q27 q3}7 {T3= _'T4}7 {T3= _'TS}a {_'527 qB}.

Now, the top —1s-subgoal can either be extended with the fifth or the sixth clause.
Let us start with the case of the latter clause s V —g, which is shown on the
left-hand side of the figure. The remaining —g-subgoal can only be extended by
attaching the clause —p V ¢ and afterwards the clause p V r V ¢, or the other
way round. When the respective g-subgoal is solved by a reduction step, a sub-
goal labelled with r remains. At this stage, the tableau has the additional four
connections:

{=s', s}, {=¢, q"}. {-p", p*}, {~d", ¢’ }.

Although the tableau is still open, the ten connections of the tableau are minimal
and spanning for S. In order to extend the r-subgoal in a regular way, only the
clause s V —r can be used. This does not increase the set of connections. But
now the remaining s-subgoal must be solved by a reduction step using the top
—s-subgoal. This requires the additional connection {-s!,s?} and renders the
mating of the tableau nonminimal. The other main case is elaborated on the
right-hand side of the figure. Here the redundant connection {-s!,s®} is used
first. It is straightforward to recognize that the other four connections are still
essential for closing this tableau in a regular manner, so that the minimality of
the mating cannot be achieved. It is easy to verify that the more general case of
path connection tableaux is also captured by this example.

In order to have an example where the incompatibility of minimal matings and
regularity holds for any start clause, we may use the following duplication trick.
We duplicate the clause set by using consistently renamed predicate symbols and
afterwards replace the top clause ¢ = =pV—s and its renamed version ¢’ = —p'V-s’
by the new clause ¢V ¢'. For the resulting clause set, it does not matter with which
clause we start. Whenever the clause ¢V ¢’ is entered from a subgoal for the first

98 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

time on a branch, then the (path) connection condition guarantees that either
no literals from the original or no literals from the renamed part appear on the
branch up to this extension step. This means that, for the respective new part,
say, ¢, we can proceed as if ¢’ would be a top clause. O

In summary, this means that either we have to give up regularity or we cannot
use the minimality restriction on matings. This is a second severe incompatibility
between a structural and a global pruning technique, and again there seems to
be no reasonable remedy.

5.3.2 Tableau Subsumption

A much more powerful application of the idea of subsumption between input
clauses and tableau clauses consists in generalizing subsumption between clauses
to subsumption between entire tableaux. For a powerful concept of subsumption
between formula trees, the following notion of formula tree contractions proves
helpful.

Definition 5.15 ((Formula) tree contraction) A (formula) tree T is called a con-
traction of a (formula) tree T if T' can be obtained from T by attaching n
(formula) trees to n non-leaf nodes of T, for some n > 0.

AA%%

Figure 5.5: Illustration of the notion of tree contractions.

In Figure 5.5, the tree on the left is a contraction of itself, of the second and
the fourth tree but not a contraction of the third one. Furthermore, the third
tree is a contraction of the fourth one, which exhausts all contraction relations
among these four trees. Now subsumption can be defined easily by building on
the instance relation between formula trees.

Definition 5.16 (Formula tree subsumption) A formula tree T subsumes a for-
mula tree T if some formula tree contraction of T' is an instance of T

Since the exploitation of subsumption between entire tableaux has not enough
potential for reducing the search space, we favour the following form of subsump-
tion deletion.

Definition 5.17 (Subsumption deletion) For any pair of different nodes A and N’
in a tableau search tree T, if the goal tree of the tableau at N/ subsumes the goal
tree of the tableau at A/, then the whole subtree of the search tree with root N’
is deleted from 7.

5.3. INTERTABLEAUX PRUNING 99

With subsumption deletion, a further form of global redundancy elimination is
achieved which is complementary to the tableau structural pruning methods like
regularity. Note also that the case of tableau clause subsumption is trivially sub-
sumed by this method. In [Letz et al., 1992] it is shown that, for many formulae,
cases of goal tree subsumption inevitably occur during proof search. Since this
type of redundancy cannot be identified with tableau structure refinements like
connectedness, regularity, or allies, methods for avoiding tableau subsumption
seem to be essential for achieving a well-performing tableau search procedure.

Tableau subsumption vs. regularity

Similar to the case of resolution where certain refinements of the calculus, i.e.,
restrictions of the resolution inference rule, become incomplete when combined
with subsumption deletion, such cases also occur for refinements of tableau cal-
culi. Formally, the compatibility with subsumption deletion can be expressed as
follows.

Definition 5.18 (Compatibility with subsumption) A tableau calculus is said to be
compatible with subsumption if any of its search trees 7 has the following property.
For arbitrary pairs of nodes A', A’ in T, if the goal tree S of the tableau T at N/
subsumes the goal tree S’ of the tableau T" at N and if N’ dominates a success
node, then N dominates a success node.

The (connection) tableau calculus is compatible with subsumption, but the
integration of the regularity condition, for example, poses problems.

Proposition 5.19 The regular connection tableau calculus is incompatible with sub-
sumption.

Clauses: Tableau:
—P(z,y) vV ~Q(z,y) -P(z,y) —Q(z,y)
P(z,y) vV -~Q(z,y) /\

Q(z,y) vV -Q(y, x) P(z,y) -Q(z,y)

(2,9)
Q) v Pla,y) AN
(2,2)

Qz,y) —Q(y,)

/N

Qy,z) P(z,y)

O

2,

(3

Figure 5.6: The incompatibility of subsumption and regularity.

Proof We use the unsatisfiable set of clauses displayed on the left of Figure 5.6.
Taking the first clause as top clause and employing the depth-first left-most se-
lection function, the first subgoal N labelled with —P(z,y) can be solved by

100 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

deducing the tableau T' depicted on the right of the figure. Since N has been
solved optimally, i.e., without instantiating its variables, the goal tree of T' sub-
sumes the goal trees of all other tableaux working on the solution of N. Hence,
all tableaux competing with 7' can be removed by subsumption deletion. But T’
cannot be extended to a solved tableau, due to the regularity condition, the cru-
cial impediment being that an extension step into Q(z, z) is not permitted, since
it would render the already solved subtableau on the left irregular. To obtain a
formula in which subsumption is fatal for any top clause, one can employ the
duplication trick used in the proof of Proposition 5.14. O

With the same example, one can also show the incompatibility of tableau
subsumption and tautology deletion. Exactly in the situation when the tableau
becomes irregular (when z is unified with y), the tableau clause Q(z, y)V—-Q(y, x)
becomes tautological. The obvious problem with regularity and tautology deletion
is that it considers the entire tableau whereas tableau subsumption considers only
the goal trees of the tableau. A straightforward solution therefore is to restrict the
structural conditions to goal trees, too. The respective weakening of regularity is
called goal tree regularity.

5.3.3 Failure Caching

The observation that cases of subsumption inevitably will occur in practice sug-
gests to organize the enumeration of tableaux in such a manner that cases of
subsumption can really be detected. This could be achieved with a proof proce-
dure which explicitly constructs competitive tableaux and thus investigates the
search tree in a breadth-first manner. However, as already mentioned, the explicit
enumeration of tableaux or goal trees is practically impossible. But when per-
forming an implicit enumeration of tableaux by using iterative-deepening search
procedures, at each time only one tableau is in memory. This renders it very
difficult to implement subsumption techniques in an adequate way. A restricted
concept of subsumption deletion, however, can be achieved using so-called ”failure
caching” methods. The idea underlying this approach is to avoid the repetition
of subgoal solutions which apply the same or a more special substitution to the
respective branch. There are two approaches, one is using a permanent cache
[Astrachan and Loveland, 1991], the other a temporary one [Letz et al., 1992].
We describe the latter method, which might be called ”local failure caching” in
more detail, because it turned out to be more successful in practice. Subsequently,
we assume that only depth-first branch selection functions are used.

Definition 5.20 (Solution -, failure substitution) Given a tableau search tree T
for a tableau calculus and a depth-first branch selection function, let N be a
node in 7, T the tableau at A" and N the selected subgoal in T

1. If N7 with tableau T is a node in the search tree 7 dominated by A such
that all branches through N in T’ are closed, let ¢/ = o1 ---0, be the
composition of substitutions applied to the tableau T on the way from N

5.3. INTERTABLEAUX PRUNING 101

to N'. Then the substitution o = {z/z0’ € ¢’ : z occurs in T'}, i.e., the set
of bindings in ¢’ with domain variables occurring in the tableau T, is called
a solution (substitution) of N at N via N'.

2. If 7' is an initial segment of the search tree 7 containing no proof at N’
or below it, then the solution ¢ is named a failure substitution for N at N'
via N in T'.

Briefly, when a solution of a subgoal N with a substitution o does not permit
to solve the rest of the tableau under a given size bound, then this solution
substitution is a failure substitution. We describe how failure substitutions can
be applied in a search procedure which explores tableau search trees in a depth-
first manner employing structure sharing and backtracking.

Definition 5.21 (Generation, application, and deletion of a failure substitution)
Let 7 be a finite initial segment of a tableau search tree.

1. Whenever a subgoal N selected in a tableau T' at a search node A in T
has been closed via (a sub-refutation to) a node A/’ in the search tree, then
the computed solution o is stored at the tableau node N. If the tableau at
N cannot be completed to a closed tableau in 7' and the proof procedure
backtracks over A, then ¢ is turned into a failure substitution.

2. In any alternative solution process of the tableau T below the search node
N, if a substitution 7 = 7y - - - 7,,, is computed with one of the failure sub-
stitutions stored at N being more general than 7, then the proof procedure
immediately backtracks.

3. When the search node A (at which the tableau node N was selected for
solution) is backtracked, then all failure substitutions at N are deleted.

In order to comprehend the mechanism, we show the method at work on an
example, Example 5.22. The search process is documented in Figure 5.7. Assume,
we start with the first clause in S and explore the corresponding tableau search
tree using a depth-first left-to-right branch selection function, just like in Prolog.
Accordingly, in inference step 1, the subgoal —P(z) is solved using the clause
P(a). With this substitution, the remaining subgoals cannot be solved. Therefore,
when backtracking step 1, the failure substitution {z/a} is stored at the subgoal
—P(z). The search pruning effect of this failure substitution shows up in inference
step 5 when the failure substitution is more general than the computed tableau
substitution, i.e., the tableau T% is subsumed by the tableau T;. Without this
pruning method, the steps 2 to 4 would have to be repeated.

Note also that one has to be careful to delete failure substitutions under certain
circumstances, as expressed in item 3 of the procedure. This provision applies,
for example, to the failure substitution {y/a} generated at the subgoal =Q(y)
after the retraction of inference step 2. When the choice point of this subgoal is
completely exhausted, then {y/a} has to be deleted. Otherwise, it would prevent
the solution process of the tableau when, in step 7, this subgoal is again solved
using the clause Q(a).

102

CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

Example 5.22 Let S be the set of the five clauses

—P(z)V-Q(y) vV -R(z), Pla), P(z)V-Q(z), Qa), Qb), R(b).

action subgoals substitution | fail.subs.

To start step -P(z),~Q(y), R(x) 0 0
T P(a) entered —~Q(y),~R(a) {x/a} 0
T, Q(a) entered —R(a) {z/a,y/a} 0
unification failure -R(a) {z/a,y/a} 0

retract step 2 -Q(y),~R(a) {z/a} {y/a}

Ts Q(b) entered - R(a) {z/a,y/b} {y/a}

unification failure - R(a) {z/a,y/a} {y/a}

retract step 3
retract step 1

Ty | P(z) V—=Q(z) entered
Ts Q(a) entered

Ty T subsumed by T}
retract step 5

_'Q(y)a _'R(a)
_'P(‘r)a _'Q(y)a —|R(l’)
_'Q(x)a _'Q(y)a —|R(l’)

—Q(y), ~R(a)

—Q(y), ~R(a)
_'Q(w)v _'Q(y)v —LR(CU)

{y/a}
{z/a}
{z/a}
{z/a}
{z/a}
{z/a}

{z/a}
0

{z/=}
{z/a,x/a}
{z/a,x/a}

{z/z}

To| Q) entered Q). ~R(D) {zbiby | {o/a)
T7 Q(a) entered -R(b) {z/b,z/b,y/a} | {x/a}
Ty R(b) entered {z/b,z/b,y/a} | {z/a}

Figure 5.7: Proof search using failure substitutions.

As already noted in the example, when the failure substitution {z/a} at =P (z)
is more general than an alternative solution substitution of the subgoal, then the
goal tree of the former tableau subsumes the one of the tableau generated later.
The described method preserves completeness, for certain completeness bounds.

Proposition 5.23 Let T be the initial segment of a (connection) tableau search tree
defined by some branch selection function and the depth bound (Section 3.3.1) or
some clause-dependent depth bound (Section 3.8.1) with size limitation k. Assume
a failure substitution o has been generated at a node N selected in a (connection)
tableau T at a search node N in T via a search node N' according to the procedure
in Definition 5.21. If T, is a closed (connection) tableau in the search tree T
below the search node N' and 7 is the composition of substitutions applied when
generating T, from T, then the failure substitution o is not more general than 7.

Proof Assume indirectly, that o is more general than 7, i.e., 7 = 0. Let S. and S
be the subtableaux with root N in T, respectively in the tableau at N”’. Then, re-
placing S, in T, with S results in a closed (connection) tableau T".. Furthermore,
it is clear that T satisfies size limitation k of the respective completeness bound.
Since the (connection) tableau calculus is strongly independent of the selection
function, a variant of 7, must be contained in the tree 7 below the search node
N'. But this contradicts the assumption of o being a failure substitution. |

5.3. INTERTABLEAUX PRUNING 103

The failure caching method described above has to be adapted when com-
bined with other completeness bounds. While, for the (clause-dependent) depth
bounds, exactly the described method can be used, one has to be careful not to
lose completeness when using the inference bound. It may happen that a subgoal
solution with solution substitution o exhausts almost all available inferences so
that there are not enough left for the remaining subgoals, and there might exist
another, smaller solution tree of the subgoal with the same substitution which
would permit the solution of the remaining subgoals. Then the failure substitu-
tion o would prevent this. Accordingly, in order to guarantee completeness, the
number of inferences needed for a subgoal solution has to be attached to a failure
substitution, and only if the solution tree computed later is greater or equal to
the one associated with o, 0 may be used for pruning.

When performing iterative-deepening according to the multiplicity bound,
however, the situation is more difficult. In order to preserve completeness, not only
the solution substitution of a subgoal N (and its branch) has to be considered,
but also the substitutions applied to all clauses used in the subrefutation of N.
This renders failure caching practically useless for the multiplicity-based calculi.

Furthermore, when using failure caching together with structural pruning
methods like regularity, tautology deletion, or tableau clause subsumption, phe-
nomena like the one discussed in Section 5.3.2 (Proposition 5.19) may lead to
incompleteness. A remedy is to restrict the structural conditions to the goal tree
of the current tableau. But even if this condition is complied with, completeness
may be lost, as demonstrated with the following example.

Ezample 5.2/ Let S be the set of the seven clauses
_'P('Ia b) \% _‘Q(‘T)a P(x/ b) \% —|R($) \ _'P(yz b)a P(aa 2), P(l’, b)a R(a)a R(l’), Q(a)

Using the first clause as start clause and performing a Prolog-like search strat-
egy, the clause P(xz,b) V ~R(z) V —P(y,b) is entered from the subgoal —P(z,b).
Solving the subgoal —R(z) with the clause R(a) leads to a tableau structure
violation (irregularity or tautology) when =P(y,b){z/a} is solved with P(a,z).
This triggers the creation of a failure substitution {z/a} at the subgoal —R(x).
The alternative solution of —R(z) (with R(z)) and of —P(y,b) (with P(a,z))
succeeds, so that the subgoal =P(z,b) in the top clause is solved with the empty
substitution (). The last subgoal =Q(z) in the top clause, however, cannot be
solved using the clause Q(a) due to the failure substitution {z/a} at =R(z). This
initiates backtracking, and the solution substitution @) at the subgoal —=P(z,b) is
turned into a failure substitution. As a consequence, any alternative solution of
this subgoal will be pruned, so that the procedure does not find a closed tableau,
although the set is unsatisfiable. The problem is that the first encountered tab-
leau structure violation has mutated to a failure substitution {z/a}. One possible
solution is to simply ignore the fatal failure substitution {z/a} when the respec-
tive node —P(z,b) is solved. In general, this suggests the following modification
of Definition 5.21.

104 CHAPTER 5. SEARCH PRUNING IN CONNECTION TABLEAUX

Definition 5.25 (Failure caching with structural conditions) Items 1 and 3 are as
in Definition 5.21, item 2 has to replaced with the following.

2’. In any alternative solution process of the subgoal N (instead of the entire
tableau T') below the search node N, if a substitution 7 = 7y -7y, is
computed with one of the failure substitutions stored at N being more
general than 7, then the proof procedure immediately backtracks.

In other terms, the failure substitutions at a subgoal have to be deactivated
when the subgoal has been solved. This restricted usage of failure substitutions
for search pruning preserves completeness. It would be interesting to investigate
which weaker restrictions on failure caching and the structural tableau conditions
would guarantee completeness. With the failure caching procedure described in
Definition 5.25 a significant search pruning effect can be achieved, as confirmed
by a wealth of experimental results [Letz et al., 1994, Moser et al., 1997].

Comparison with other methods

The caching technique proposed in [Astrachan and Stickel, 1992] stores the solu-
tions of subgoals independently of the path contexts in which the subgoals ap-
pear. Then, cached solutions can be used for solving subgoals by lookup instead
of search. In the special case in which no solutions for a cached subgoal exist,
the cache acts in the same manner as the local failure caching mechanism. For
propositional Horn sets, this method results in a polynomial decision procedure
[Plaisted, 1994, Plaisted and Zhu, 1997]. One difference is that failure substitu-
tions take the path context into account and hence are compatible with goal tree
regularity whereas the mentioned caching technique is not. On the other hand,
permanently cached subgoals without context have more cases of application than
the temporary and context-dependent failure substitutions. The main disadvan-
tage of the context-ignoring caching technique, however, is that its applicability
is restricted to the Horn case. Note that the first aspect of the mentioned caching
technique, namely, replacing search by lookup, cannot be captured with a tempo-
rary mechanism as described above, since lookup is mainly effective for different
subgoals whereas failure substitutions are merely used on different solutions of
one and the same subgoal.

In [Loveland, 1978] a different concept of subsumption was suggested for
model elimination chains. Roughly speaking, this concept is based on a proof
transformation which permits to ignore certain subgoals if the set of literals at
the current subgoals is subsumed by an input clause. Such a replacement is possi-
ble, for example, if the remaining subgoals can be solved without reduction steps
into their predecessors. In terms of tableaux, Loveland’s subsumption reduces the
current goal tree while our approach tries to prune it.

Chapter 6

Methods of Shortening
Proofs

The analytic tableau approach has proven successful, both proof-theoretically
and in the practice of automated deduction. It is well-known, however, since the
work of Gentzen [Gentzen, 1935] that the purely analytic paradigm suffers from a
fundamental weakness, namely, the poor deductive power. That is, for very simple
examples, the smallest tableau proof may be extremely large if compared with
proofs in other calculi. In this section, we shall review methods which can remedy
this weakness and lead to significantly shorter proofs.

The methods we mention are of three completely different types. First, we
present mechanisms that amount to adding additional inference rules to tableau
systems. The mechanisms are all centered around the (backward) cut rule, which,
in its full form, may lead to nonelementarily smaller tableau proofs. Those mech-
anisms have the widest application, since they already improve the behaviour of
tableaux for propositional logic. Second, we consider so-called liberalizations of
the d-rule which may also lead to nonelementarily smaller tableau proofs. Their
application, however, is restricted to formulae that are not in Skolem form. Since
in automated deduction normally a transformation into Skolem form is performed,
the techniques seem mainly interesting as an improvement of this transformation.
Finally, we consider in some more detail a line of improvement which is first-order
by its very nature, since it can only be effective for free-variable tableaux. It is
motivated by the fact that free variables in tableaux need not necessarily be
treated as rigid by the closure rule. The generalization of the rule results in a
calculus in which the complexity of proofs can be significantly smaller than the
Herbrand complexity of the input formula, which normally is a lower bound to
the length of any analytic tableau proof.

105

106 CHAPTER 6. METHODS OF SHORTENING PROOFS

6.1 Controlled Integration of the Cut Rule

Gentzen’s sequent calculus [Gentzen, 1935] contains the cut rule which in the
tableau format can be formulated as follows.

Definition 6.1 (Tableau) cut rule) The (tableau) cut rule is the following tableau
expansion rule

(Cut)

m where F' is any first-order formula.
The formula F' is called the cut formula of the cut step. If F' is an atomic formula,
we speak of an atomic cut step.

The cut rule is logically redundant, i.e., whenever there exists a closed tableau
with cuts for an input set S, then there exists a closed cut-free tableau for S. Even
the following stronger redundancy property holds. For this, note that the effect of
the cut rule can be simulated by adding, for every applied cut with cut formula F',
the special tautological formula F'V —F to the input set, since then the cuts can
be performed by using the S-rule on those tautologies. So in a sense the power
of the cut can already be contained in an input set if the right tautologies are
contained. That tautologies need not be used as expansion formulae in a tableau
is evident from the fact that, for every interpretation and variable assignment,
one of the tableau subformulae of a tautology will become true.

Although tautologies and therefore the cut rule are redundant, they can lead
to nonelementary reductions of the proof length [Orevkov, 1979, Statman, 1979].
While this qualifies the cut rule as one of the fundamental methods for represent-
ing proofs in a condensed format, obviously, the rule has the disadvantage that
it violates the tableau subformula property. Consequently, from the perspective
of proof search, an unrestricted use of the cut rule is highly detrimental, since it
blows up the search space.

6.1.1 Factorization and Complement Splitting

The problem therefore is to perform cuts in a controlled manner. A controlled
application of the cut rule can be achieved, for instance, by performing a cut in
combination with the §-rule only.

Definition 6.2 (B-rule with cut) Whenever a 3-step is to be applied, first, perform
a cut step with one of the formulae 3; or (5, afterwards perform the 3-step on
the new right branch. The entire operation is displayed in Figure 6.1.

Since one of the new branches is closed, only two open branches have been
added, like in the standard (-rule, but one of the branches has one more for-
mula on it which can additionally be used for closure steps. The (-cut rule
fulfils the weaker tableau subformula property that any formula in a tableau
is either a tableau subformula or the negation of a tableau subformula in the

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 107

B B
o -6 B2 -3
/\ /\
B B2 B Ba

Figure 6.1: S-rule with cut.

input set. This property suffices for guaranteeing that there exist no infinite de-
composition sequences. In first-order logic, even a nonelementary proof length
reduction can be achieved with this method, as demonstrated in [Egly, 1997]. In
the clausal case, which we consider here, this mechanism may lead to a reduc-
tion from exponential to linear proof length even in the propositional case. This
will be considered in detail in Section 7.2.2. A number of different names have
been used for this technique like ” (Prawitz) reduction” [Prawitz, 1960], "folding
down” [Letz et al., 1994], ”lemmas” [d’Agostino, 1999] or ” complement splitting”
[Bry and Yahya, 1996]. We prefer the folding down format introduced later, since
this will permit a closer relation with other techniques.

This method is also closely related with factorization, which we consider
next. The factorization rule was introduced to the model elimination format
in [Kowalski and Kuehner, 1971] (see also [Loveland, 1972]) and used in the con-
nection calculus [Bibel, 1987], Chapter IIL.6, but, due to format restrictions, for
depth-first selection functions only. On the general level of the tableau calculus,
which permits arbitrary branch selection functions, the rule can be motivated as
follows. Consider a closed tableau containing two nodes Ny and Ns labelled with
the same literal. Furthermore, suppose that all ancestor nodes of N, are also an-
cestors of Ni. Then, the closed tableau part T below N5 could have been reused
as a solution and attached to Ny, because all expansion and reduction steps per-
formed in T under N, are possible in T" under Ny, too. This observation leads
to the introduction of factorization as an additional inference rule. Factorization
permits to mark a subgoal N; as solved if its literal can be unified with the literal
of another node N, provided that the set of ancestors of N5 is a subset of the
set of ancestors of Vy; additionally, the respective substitution has to be applied
to the tableaux. Reasonable candidates for N, are all brothers and sisters of Ny,
i.e., all nodes with the same predecessor as Ny, and the brothers and sisters of
its ancestors. In Figure 6.2, with an arrow such a factorization step is displayed.
Obviously, in order to preserve soundness the rule must be constrained to pro-
hibit solution cycles. Thus, in Figure 6.2 factorization of the subgoal N4 on the
right-hand side with the node N3 with the same literal on the left-hand side is
not permitted after the first factorization (node Ny with node N,) has been per-
formed, because this would involve a reciprocal, and hence unsound, employment
of one solution within the other. To avoid the cyclic application of factoriza-
tion, tableaux have to be supplied with an additional factorization dependency
relation.

108 CHAPTER 6. METHODS OF SHORTENING PROOFS

T

&) -p ~a %)

VO

p @ —q q ﬂp

Figure 6.2: Factorization step in a connection tableau.

Definition 6.3 (Factorization dependency relation) A factorization dependency re-
lation on a tableau T is a strict partial ordering < on the tableau nodes (N7 < N
means that the solution of Ny depends on the solution of Ny).

Definition 6.4 (Tableau factorization) Given a tableau T' and a factorization de-
pendency relation < on its nodes. First, select a subgoal Ny with literal L and
another node N, labelled with a literal K such that

1. there is a minimal unifier 0: Lo = Ko,

2. N; is dominated by a node N which has the node N> among its immediate
successors, and

3. N3 A N5, where N3 is the brother node of Ny on the branch from the root
down to and including N;.!

A factorization step consists in the following operation. Modify < by first adding
the pair of nodes (Ny, N3) and then forming the transitive closure of the relation;
then, apply the substitution ¢ to the tableau; finally, consider the branch with
leaf Ny as closed. We say that the subgoal N; has been factorized with the node
N. The tableau construction is started with an empty factorization dependency
relation, and all other tableau inference rules leave the factorization dependency
relation unchanged.

Applied to the example shown in Figure 6.2, when the subgoal N is factorized
with the node N, the pair (Ny, N3) is added to the previously empty relation
<, thus denoting that the solution of the node N3 depends on the solution of
the node N,. After that, factorization of the subgoal Ny with the node N3 is not
possible any more.

It is clear that the factorization dependency relation only relates brother
nodes, i.e., nodes which have the same immediate predecessor. Furthermore, the
applications of factorization at a subgoal N; with a node N, can be subdivided
into two cases. Either, the node N5 has been solved or one of the branches through
N, is open, In the second case we shall speak of an optimistic application of fac-
torization, since the node N;j is marked as solved before it is known whether a

INote that N3 may be N itself.

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 109

solution exists. Conversely, the first case will be called a pessimistic application
of factorization. It is obvious that in the pessimistic case no cyclic factorizations
may occur, therefore a factorization dependency relation is not needed.

Similar to the case of ordinary (connection) tableaux, if the factorization rule
is added, the order in which the tableau rules are applied does not influence the
structure of the tableau.

Proposition 6.5 (Strong selection independency of factorization) Any closed (con-
nection) tableau with factorization for a set of clauses constructed with one selec-
tion function can be constructed with any other selection function.

Switching from one selection function to another may mean that certain opti-
mistic factorization steps become pessimistic factorization steps and vice versa. If
we are working with goal trees, i.e., completely remove solved parts of a tableau,
as done in the chain format of model elimination, then for all depth-first selec-
tion functions solely optimistic applications of factorization can occur. Also, the
factorization dependency relation may be safely ignored, because the depth-first
procedure and the removal of solved nodes render cyclic factorization attempts
impossible. It is for this reason, that the integration approaches of factorization
into model elimination or into the connection calculus have not mentioned the
need for a factorization dependency relation. Note also that if factorization is
integrated into the chain format of model elimination, then the mentioned strong
node selection independency does not hold, since pessimistic factorization steps
cannot be performed.

The addition of the factorization rule increases the deductive power of (con-
nection) tableaux significantly. In fact, the factorization rule is equivalent to the
method of complement splitting, as considered in Section 7.2.2.

6.1.2 The Folding Up Rule

An inference rule which, for connection tableaux, is stronger than factoriza-
tion concerning deductive power, is the so-called folding up rule (in German:
“Hochklappen”). Folding up generalizes the c-reduction rule introduced to the
model elimination format in [Shostak, 1976]. In contrast to factorization, for
which pessimistic and optimistic application do not differ concerning deductive
power, the shortening of proofs achievable with folding up results from its pes-
simistic nature. The theoretical basis of the rule is the possibility of extracting
bottom-up lemmata from solved parts of a tableau, which can be used on other
parts of the tableau (as described in [Loveland, 1968] and [Letz et al., 1992], or
[Astrachan and Loveland, 1991]). Folding up represents a particularly efficient
realization of this idea.

We explain the rule with an example. Given the tableau displayed on the left
of Figure 6.3, where the arrow points to the node at which the last inference
step (a reduction step with the node 3 levels above) has been performed. With
this step we have solved the dominating nodes labelled with the literals r and
q. In the solutions of those nodes the predecessor labelled with p has been used

110 CHAPTER 6. METHODS OF SHORTENING PROOFS

/\
t
s -t p S -p q s -t p]
r -s T -q T —S r
* * /‘ *
p -r -p
* * *

Figure 6.3: Connection tableau before and after three times folding up.

CACIN
T

q
*

®
p P t
q
T

for a reduction step. Obviously, this amounts to the derivation of two lemmata
=7V —=p and —¢ V —p from the underlying formula. The new lemma =gV —p could
be added to the underlying set and subsequently used for extension steps (this
has already been described in [Letz et al., 1992]). The disadvantage of such an
approach is that the new lemmata may be non-unit clauses, as in the example,
so that extension steps into them would produce new subgoals, together with
an unknown additional search space. The redundancy brought in this way can
hardly be controlled.

With the folding up rule a different approach is pursued. Instead of adding
lemmata of arbitrary lengths, so-called contezxt unit lemmata are stored. In the
discussed example, we may obtain two context unit lemmata:

—r, valid in the (path) context p, and
g, valid in the context p.

Also, the memorization of the lemmata is not done by augmenting the input
formula but within the tableau itself, namely, by “folding up” a solved node to
the edge which dominates its solution context. More precisely, the folding up of a
solved node N to an edge E means labelling E with the negation of the literal at
N. Thus, in the example above the edge E above the p-node on the left-hand side
of the tableau is successively labelled with the literals —r and —gq, as displayed
on the right-hand side of Figure 6.3; lists of context-unit lemmata are depicted
as framed boxes. Subsequently, the literals in the boxes at the edges can be used
for ordinary reduction steps. So, at the subgoal labelled with r a reduction step
can be performed with the edge F, which was not possible before the folding up.
After that, the subgoal s could also be folded up to the edge E, which we have not
done in the figure, since after solving that subgoal the part below E is completely
solved. But now the p-subgoal on the left is solved, and we can fold it up above

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 111

the root of the tableau; since there is no edge above the root, we simply fold up
into the root. This folding up step facilitates that the p-subgoal on the right can
be solved by a reduction step.

The gist of the folding up rule is that only unit lemmata are added, so that the
additionally imported indeterminism is not too large. Over and above that, the
technique gives rise to a new form of pruning mechanism called strong regularity,
which is discussed below. Lastly, the folding up operation can be implemented
very efficiently, since no renaming of variables is performed, as in a full lemma
mechanism.

In order to be able to formally introduce the inference rule, we have to slightly
generalize the notion of tableaux.

Definition 6.6 (Edge-labelled tableau, path set) An edge-labelled tableau (E-tableau)
is just a clausal tableau as introduced in Definitions 3.2 with the only modifica-
tions that also the edges and the root node are labelled, namely, with lists of
literals. Additionally, in every extension and reduction step, the closed branch
is marked with the respectively used ancestor literal. The path set of a non-root
node N in an E-tableau is the union of the sets of literals at the nodes dominat-
ing N and in the lists at the root and at the edges dominating the immediate
predecessor of V.

Definition 6.7 (E-tableau folding up) Let T be an E-tableau, N a non-leaf node
with literal L which dominates a closed subtree. The insertion position of the
literal ~L is computed as follows. From the markings of all leaf nodes dominated
by N, select the set M of nodes which dominate N (M contains exactly the
predecessor nodes on which the solution of N depends).

If M is empty or contains the root node only, then add the literal ~L to
the list of literals at the root.

Otherwise, let N’ be the deepest path node in M. Add the literal ~L to
the list of literals at the edge immediately above N'.2

Ag an illustration, consider Figure 6.3, and recall the situation when the ‘¢g’-
node N on the left has been solved completely. The markings of the branches
dominated by N are the ‘r’-node below N and the ‘p’-node above N. Conse-
quently, —¢q is added to the list at the edge E.

Additionally, the reduction rule has to be extended, as follows.

Definition 6.8 (E-tableau reduction) Given a marked E-tableau T', select a sub-
goal N with literal L, then

1. either select a dominating node N' with literal K and a minimal unifier o
for L and ~K, and mark the branch with N,

2The position of the inserted literal exactly corresponds to the C-point in the terminology
used in [Shostak, 1976].

112 CHAPTER 6. METHODS OF SHORTENING PROOFS

2. or select a literal K contained in the list at some dominating edge or at the
root with a minimal unifier ¢ for L and ~K; then mark the branch with
the node immediately below the edge or with the root, respectively.

Finally, apply the substitution o to the literals in the tableau and close the branch.

The tableau and the (path) connection tableau calculus with folding up result
from the ordinary versions by working with edge-labelled tableaux, adding the
folding up rule, substituting the old reduction rule by the new one, starting with
a root, labelled with the empty list, and additionally labelling all newly generated
edges with the empty list. Subsequently, we will drop the prefix ‘E-’ and simply
speak of ‘tableaux’, the context will clear up possibly ambiguities.

The soundness of the folding up operation is expressed in the following propo-
sition.

Proposition 6.9 (Soundness of folding up) Let N be any subgoal with literal L in
a tableau T, P the path set of N, and S a set of clauses. Suppose T' is any tableau
deduced from T using folding up steps and employing only clauses from S in the
intermediate extension steps. Then, for the new path set P' of N inT': PU S
logically implies P'.

Proof The proof is by induction on the number n of folding up steps between
T and T'. The base case for n = 0 is trivial, since P’ = P. For the induction
step, let P’ = P, be the path set of N after the n-th folding up step inserting a
literal, say L', into the path above N. This step was the consequence of solving
a literal ~L' with clauses from S and path assumptions from P,_1, i.e., the path
set of N before the n-th folding up step. This means that P,y US U {~L'} is
unsatisfiable. Now, by the induction assumption, P U S |= P,_;. Consequently,
PUSEP,U{L'}=P.]

In Section 7.2.2, it is proven that, for connection tableaux, the folding up rule
is properly stronger concerning deductive power than complement splitting or the
factorization rule.

6.1.3 The Folding Down Rule

The simulation of factorization by folding up also shows how a restriction of
the folding up rule could be defined which permits an optimistic labelling of
edges. If a strict linear (dependency) ordering < is defined on the successor nodes
Ni,..., N, of any node, then it is permitted to label the edge leading to any
node N;, 1 < i < m, with the set of the negations of the literals at all nodes
which are smaller than N; in the ordering. We call this operation the folding
down rule (in German: “Umklappen”). The folding down operation can also be
applied incrementally, as the ordering is completed to a linear one.

It is obvious that folding down is just Prawitz reduction or complement split-
ting in a slightly different format. The folding down rule can also be viewed as a

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 113

very simple and efficient way of implementing factorization. Over and above that,
if also the literals on the edges are considered as path literals in the regularity
test, an additional search space reduction called strong regularity can be obtained
this way, which is difficult to identify in the factorization framework.

6.1.4 Enforced Folding and Strong Regularity

The folding up operation has been introduced as an ordinary inference rule which,
according to its indeterministic nature, may be applied or not. Alternatively, we
could have defined versions of the (connection) tableau calculi with folding up in
which any solved node must be folded up immediately after it has been solved.
It is clear that whether folding up is performed freely, as an ordinary inference
rule, or in an enforced manner, the resulting calculi are not different concerning
deductive power, since the folding up operation is a monotonic operation which
does not decrease the inference possibilities. But the calculi differ with respect
to their search spaces, since by treating the folding up rule just as an ordinary
inference rule, which may be applied or not, an additional and absolutely useless
form of indeterminism is imported. Consequently, the folding up rule should not
be introduced as an additional inference rule, but as a tableau operation to be
performed immediately after the solution of a subgoal. The resulting calculi will
be called the (connection) tableau calculi with enforced folding up.

The superiority of the enforced folding up versions over the unforced ones also
holds if the regularity restriction is added, according to which no two nodes on
a branch can have the same literal as label. But the manner in which the folding
up and the folding down rules have been introduced raises the question whether
the regularity condition might be sharpened and extended to the consideration
of the literals in the labels of the edges, too. It is clear that such an extension of
regularity does not go together with folding up, since any folding up operation
makes the respective closed branch immediately violate the extended regularity
condition. A straightforward remedy is to apply the extended condition to the
goal trees of tableaux only.

Definition 6.10 (Strong regularity) A tableau T is called strongly regular if it is
regular and no literal at a subgoal N of T' is contained in the path set of N.

When the strong regularity condition is imposed on the connection tableau
calculus with enforced folding up, then a completely new calculus is generated
which is no extension of the regular connection tableau calculus, that is, not every
proof in the regular connection tableau calculus can be directly simulated by the
new calculus. This is because after the performance of a folding up operation cer-
tain inference steps previously possible for other subgoals may become impossible
then. A folding up step may even lead to an immediate failure of the extended
regularity test, as demonstrated below. Since the new calculus is no extension
of the regular connection tableau calculus, we do not even know whether it is
complete, since the completeness result for regular connection tableaux cannot
be applied. In fact, the new calculus is not complete for every selection function.

114 CHAPTER 6. METHODS OF SHORTENING PROOFS

Proposition 6.11 There is an unsatisfiable set S of ground clauses and a selection
function ¢ such that there is no refutation for S in the strongly reqular connection
tableau calculus with enforced folding up.

Example 6.12 The set S consisting of the clauses

—pV sV or, pVsVr, —qVr, qV —r,
-pViVu, pV -tV u, -qV s, qV s,
g Vi, qV —t,
—qVu, qV —u.

Proof Let S be the set of clauses given in Example 6.12, which is minimally
unsatisfiable. The non-existence of a refutation with the top clause pV s Vv r for
a certain unfortunate selection function ¢ is illustrated in Figure 6.4. If ¢ selects
the s-node, then two alternatives exist for extension, separated by a V. For the
one on the left-hand side, if ¢ shifts to the p-subgoal above and completely solves
it in a depth-first manner, then the enforced folding up of the p-subgoal imme-
diately violates the strong regularity, indicated with a ‘4’ below the responsible
—p-subgoal on the left. Therefore, only the second alternative on the right-hand
side may lead to a successful refutation. Following the figure, it can easily be ver-
ified that for any refutation attempt there is a selection possibility which either
leads to extension steps which immediately violate the old regularity condition or
produce subgoals labelled with —p or —r. In those cases, the selection function al-
ways shifts to the respective p- or r-subgoal in the top clause, solves it completely
and folds it up afterwards, this way violating the strong regularity. Consequently,
for such a selection function, there is no refutation with the given top clause.
The same situation holds for any other top clause selected from the set. This can
be verified in a straightforward though tedious manner. Alternatively, in order to
shorten the proof, we may use the duplication trick as used in the proof of Propo-
sition 5.13. We duplicate the clause set by using consistently renamed predicate
symbols and afterwards replace the top clause ¢ and its renamed version ¢’ by
the new clause ¢ V ¢'. For the new clause set, the incompleteness result holds for
any top clause. O

This result demonstrates that there is a trade-off between optimal selection
functions and structural restrictions on tableaux. It would be interesting to in-
vestigate under which weakenings of the strong regularity the completeness for
arbitrary selection functions might be obtained. If we restrict ourselves to depth-
first selection functions, however, the calculus is complete, as shown next.

We are now going to present completeness proofs of two calculi, namely, of
strongly regular connection tableaux with enforced folding up, for depth-first
selection functions, and of strongly regular connection tableaux with enforced
folding down, for arbitrary selection functions. The completeness proofs are based
on the following non-deterministic procedure for generating connection tableaux
which is similar to the one used in the proof of Proposition 5.7 However, in the
following procedure as an additional control structure a mapping a is carried

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 115

p S r
/<V>\
—|p -8 =r q -8

¢ v
-q s -q t —q u -q r
¢ v v v
—|t U —Uu p —|t —Uu -_r —|p -s r

A R

u —p s T

% é g g

Figure 6.4: Incompleteness for free selection functions of the strongly regular
connection tableau calculus with enforced folding up.

along which, upon selection of a subgoal IV, associates with IV a specific subset
a(N) of the input clauses.

Definition 6.13 Let Sy be a finite unsatisfiable set of ground clauses, ¢y any clause
which is relevant in Sp, and ¢ any subgoal selection function. First, perform a
start step with the clause ¢g at the root Ny of a one-node tableau, select a subset S
of Sp with ¢g being essential in S, and set «(Ng) = S. Then, as long as applicable,
iterate the following procedure.

Let N be the subgoal selected by ¢, P the path set of N, L the literal
and ¢ the tableau clause at N, and S = a(N') where N’ is the immediate
predecessor node of N.

— If ~L € P, perform a reduction step at N.

— Otherwise, perform an extension step at N with a clause ¢’ in S such
that ¢ is relevant in (P U {L}) > S, select a subset S’ of S with ¢
being essential in the set (PU{L}) > S’, and set a(N) = S".

116 CHAPTER 6. METHODS OF SHORTENING PROOFS

Additionally, depending on the chosen extension of the calculus, enforced
folding up or folding down operations need to be applied.

It suffices to perform the completeness proofs for the ground case, since the
lifting to the first-order case is straightforward, using the Lifting Lemma (5.9)
from Page 93.

Theorem 6.1/ (Completeness for enforced folding up) For any finite unsatisfiable
set Sy of ground clauses, any depth-first branch selection function, and any clause
co which is relevant in Sy, there exists a refutation of Sy with top clause ¢y in the
strongly reqular connection tableau calculus with enforced folding up.

Proof Let Sy be a finite unsatisfiable set of ground clauses, ¢y any relevant clause
in Sy, and ¢ any depth-first branch selection function. We demonstrate that any
deterministic execution of Procedure 6.13 including enforced folding up opera-
tions leads to a refutation in which only strongly regular connection tableaux are
constructed. We start with a tableau consisting simply of ¢y as top clause, and
let @ map the root to any subset S of Sy in which ¢q is essential. Then we prove
by induction on the number of inference steps needed for deriving a tableau that

(i) any generated tableau T is strongly regular, and

(ii) an inference step can be performed at the subgoal ¢(T') according to Pro-
cedure 6.13.

The induction base, n=0, is evident. For the induction step, let T be a tableau
generated with n > 0 inference steps, N = ¢(T") with literal L and path set P,
¢ the tableau clause at N, N' the immediate predecessor of N, and a(N') = S.
Two cases may be distinguished.

Case 1. Either, the last node selected before N was N'. In this case, by the
induction assumption and the fact that Procedure 6.13 only permits extension
(or start) steps with clauses not containing literals from the path set P, it is
guaranteed that T is strongly regular, hence (i). By the induction assumption, ¢
is essential in P > S. Consequently, due to the Strong Mate Lemma, at N an
inference step according to the procedure can be performed, therefore (ii).

Case 2. Or, the last inference step before the selection of N completely solved
a brother node of N. In this case, after having entered the clause ¢, additional
literals may have been inserted by intermediate folding up operations. We show
that the resulting tableau is still strongly regular. For this, let NV; be an arbitrary
subgoal in T', L; the literal and ¢; the clause at N;, P; its (extended) path set in T,
and N] the immediate predecessor of N;. With S; we denote the clause set a(N}).
Let, furthermore, T* be the former tableau resulting from the extension step at N’
into the clause ¢, and P} the path set of N; in 7*. By the induction assumption,
L; is not contained in P}*. According to Procedure 6.13, in the solutions of brother
nodes of N; only clauses from the set S; \ {¢;} are permitted for extension steps.
Due to the depth-first selection function, the solution process of brother nodes
of N is a subprocess of the solution process of brother nodes of N;. Therefore,

6.1. CONTROLLED INTEGRATION OF THE CUT RULE 117

by the soundness of the folding up rule (Proposition 6.9), the set of literals K;
inserted into P} during the derivation of T' from T™* is logically implied by the
satisfiable set A; = (P}US;)\ {¢;:}. Since, by the induction assumption, 4; U{¢;}
is unsatisfiable, A; U{L;} is unsatisfiable, too. Consequently, L; ¢ K;, and hence
L; ¢ P;. Since this holds for all subgoals of T', T must be strongly regular, which
proves (i). Furthermore, all ¢; remain essential in the sets P; U S;. Therefore, by
the Strong Mate Lemma, at the subgoal N in T an inference step according to
Procedure 6.13 can be performed, hence (ii).

Now we have proven that the procedure produces only strongly regular connection
tableaux and whenever the procedure terminates, it must terminate with a closed
tableau. Finally, the termination of the procedure follows from the fact that, for
any finite set of ground clauses, only strongly regular tableaux of finite depth
exist. |

Theorem 6.15 (Completeness for enforced folding down) For any finite unsatisfi-
able set Sy of ground clauses, any subgoal selection function, and any clause cq
which is relevant in Sy, there exists a refutation of Sy with top clause co in the
strongly reqular connection tableau calculus with enforced folding down.

Proof The structure of the proof is the same as the one for folding up, viz., by
induction on the number of inference steps, the two properties given above have
to be shown. Therefore, only the induction step is carried out. Suppose a subgoal
N is selected with literal L, tableau clause ¢, path set P, and a(N') = S for
the immediate predecessor N’ of N. The enforced folding down operation inserts
the negations of the literals at the unsolved brother nodes of N into the edge
leading to N before the subgoal N is solved. First, we prove that such steps al-
ways preserve the strong regularity condition. Clearly, folding down operations
can only violate this condition for tautological tableau clauses. Since no tau-
tological clause can be relevant in a set and Procedure 6.13 only permits the
use of relevant clauses, no tautological clause can occur in a generated tableau.
It remains to be shown that any selected subgoal can be extended in concor-
dance with Procedure 6.13. By the induction assumption, ¢ is essential in P > S.
Hence, there is an interpretation Z with Z(¢) = L and Z((P > S)\ {¢}) = T.
We prove that any folding down operation preserves the essentiality of the clause
c. Let P! = {~Ky,..., ~K,} be the set of literals inserted above N in a folding

down operation on the literals Ki,..., K, at the other subgoals in ¢. Clearly,
I(~K;) = T, for all literals in P’. Therefore, ¢ is essential in P’ U (P > S) and
hence also in its unsatisfiable subset (P'U P) > S. m|

6.1.5 The Benefit of Controlled Cuts in Proof Search

Except for the case of strong regularity, all tableau calculi with controlled variants
of the cut rule increase the inferential possibilities. This means that also the
search space increases in general. So how can one profit from these methods in
proof searchI’ The crucial point is that the search for closed connection tableaux
is performed by employing iterative-deepening procedures. Since the size of the

118 CHAPTER 6. METHODS OF SHORTENING PROOFS

search space is normally exponential or even doubly exponential wrt. the applied
tableau completeness bound (e.g., the inference or the depth bound), the real
benefit of using variants of the cut rule is when this way the first proof can
be found on an earlier level of the iterative-deepening search. This is possible
and frequently happens in practice for tableau size bounds like the inference or
the depth bound. Interestingly, such a gain is not possible for the multiplicity-
based bounds. This is one explanation for the observation that multiplicity-based
iterative-deepening procedures are relatively unsuccessful in practice.

6.2 Liberalizations of the §-Rule

Our completeness proof of free-variable tableaux has revealed that, for any atomic
sentence tableau proof, there is a free-variable tableau proof of the same tree size.
Interestingly, the converse, does not hold. The reason lies in the use of the §*-rule
in free-variable tableaux taken from [Hahnle and Schmitt, 1994, Fitting, 1996],
which can lead to significantly shorter tableau proofs [Baaz and Fermiiller, 1995].

Ezample 6.16 Any closed sentence tableau for the formula V(P (z) A 3y—P(y))
requires two applications of the 7-rule whereas there is a closed free-variable
tableau with only one application of the ~'-rule.?

Interestingly, in the first edition of Fitting’s book [Fitting, 1990], a more re-
strictive variant of the 6T-rule was given, in which the new Skolem term had to
contain all variables on the branch and not only the ones contained in the re-
spective d-formula. Liberalization of the d-rule means mainly reducing the num-
ber of variables to be considered in the respective Skolem term. So, the §T-rule
introduced in Section 2.2 is already a liberalization of the original d-rule in free-
variable tableaux. In a sense, however, this older version of free-variable tableaux
is conceptually cleaner with respect to the “rigid” treatment of free-variables.
The original idea of a rigid interpretation of the free variables in a tableau is that
they may stand for arbitrary ground terms. Accordingly, the notion of ground
satisfiability was introduced [Fitting, 1990].

Definition 6.17 (Ground satisfiability) A collection C of sets of formulae is ground
satisfiable if every ground instance of C has a satisfiable element.

Evidently, V-satisfiability (as defined on Page 51) entails ground satisfiability,
but the converse does not hold. As an example consider the ground satisfiable
collection {{P(z),3y—P(y)}} which is not V-satisfiable. The difference between
the old and the new d*-rule is that the old one preserves ground satisfiability,
but the new one does not. The closure rule (C), however, preserves ground sat-
isfiability and hence subscribes to a rigid interpretation of the free variables. So,

30n should mention, that this weakness has already been recognized in [Smullyan, 1968],
who identified a condition under which a Skolem term in a d-rule application need not be new.
With this liberalization, shorter sentence tableau proofs can be constructed.

6.3. LIBERALIZATION OF THE CLOSURE RULE 119

the system of free-variable tableaux (Definition 2.57) introduced in Section 2.2 is
somewhat undecided in its treatment of free variables. One may argue, however,
that with the new system, smaller tableau proofs can be formulated, and this is
what counts. In the next subsection, we will therefore draw the consequence and
also liberalize the closure rule in such a manner that ground satisfiability is no
more preserved. The gain is that with the new rule an additional size reduction
of tableau proofs may be achieved.

The 6T -rule is by far not the “best” Skolemization rule, in the sense that
it includes a minimal number of variables in the Skolem term. Consider, for
example, the d-formula Jz(P(y) A P(x)). With the §*-rule a unary Skolem term
f(y) has to be used. But it is evident that y is irrelevant and a Skolem constant
a could be used instead. There are a number of improvements of the §*-rule
which shall briefly be mentioned here. In [Beckert et al., 1993], it is shown that
for each d-formula stemming from the same formula occurrence in the input
set and each number n of free variables in 4, always the same Skolem function
symbol f§# may be used without affecting the soundness of the rule. The thus

improved d-rule is named 5", In [Baaz and Fermiiller, 1995], this method is
further liberalized by identifying a relevant subset of the free variables in § and
excluding the other variables from the Skolem term. This method can identify
the irrelevancy of the variable y in the aforementioned example. Furthermore, the
notion of relevancy defined there can be decided in linear time. The corresponding
rule is called 0*. In the paper, a pairwise comparison between the four mentioned
Skolemization methods (the one in [Fitting, 1990], 6+, 6*", and §*) is made
wrt. the proof shortening effect that may be obtained. Interestingly, for each of
the improvements, there are examples for which a nonelementary proof length
reduction can be achieved wrt. the previous rule in the sequence.

Note that, in general, there is no notion of relevant free variables in a §-
formula which is both minimal and can be computed efficiently. This can be
illustrated with the following simple consideration. Consider a §-formula of the
form Jy(F A G) containing a free variable z in G but not in F. Suppose further
that 3y(FAG) be strongly equivalent to FAJyG. Then, obviously, the variable x is
not relevant, but this might only be identifiable by proving the strong equivalence
of two formulae, which is undecidable in general. So the constraint for any notion
of relevant variables is that it be efficiently computable.

6.3 Liberalization of the Closure Rule

The final improvement of the tableau rules that we investigate is again of a
quantificational nature. It deals with the problem that the rigid interpretation of
free variables often leads to an unnecessary lengthening of tableau proofs.

Definition 6.18 (Local variable) A variable x occurring free on an open tableau
branch is called local (to the branch) if x does not occur free on other open
branches of the tableau.

120 CHAPTER 6. METHODS OF SHORTENING PROOFS

If a variable is local to a branch, then any formula containing = can be treated
as universally quantified* in z, i.e., the universal closure of the formula wrt. the
variable could be added to the branch. Let us formulate this as a tableau rule.

Definition 6.19 (Generalization rule) The generalization rule is the following ex-
pansion rule which can be applied to any open branch of a tableau

F

(@) VaF

where z is a local variable.

Proposition 6.20 The generalization rule preserves V-satisfiability.

Proof Given a tableau T with a local variable x, assume F' is any formula on an
open branch B of T and T" is the tableau obtained by adding the formula Vz F
to B. We work with the coincidence between V-satisfiability and the satisfiability
of the open branch formula of a tableau. Let B= By V:---V BV ---V B, be the
open branch formula of T' with B = F; A---ANF A --- A Fp,. Then the formula
By V---V(BAVzF)V---V By is the open branch formula B’ of T'. Now B is
equivalent to VzB. Since z does occur free in B only, V2B is strongly equivalent
to B'. Consequently, the satisfiability of B entails the satisfiability of B'. O

It is apparent that the generalization rule does not preserve ground satisfia-
bility. As a matter of fact, the generalization rule is just of a theoretical interest,
since it violates the tableau subformula property. Since we are mainly interested
in calculi performing atomic branch closure, it is clear that the new universal
formula will be decomposed by the ~'-rule, thus producing a renaming of z in F.
And, as instantiations are only performed in closure steps, we would perform the
generalization implicitly, exactly at that moment. This naturally leads to a local
version of the closure rule.

Definition 6.21 (Local closure rule) Let T be a tableau and S the set of formulae
in T. Suppose K and L are two literals in the path set of a branch of T'. Let K7
be a renaming of all local variables in K wrt. S, and L6 a renaming of all local
variables in L wrt. S U {K7}. Then, the local closure rule is the following rule.

(Cr) Modify T to To if o is a minimal unifier for {Kr,~L0}
and consider the branch as closed.

The soundness of the local closure rule follows from the fact that its effect can
be simulated by a number of applications of the generalization rule, the +’-rule,
and the ordinary closure rule.

Using the local closure rule instead of the standard closure rule, one can
achieve a significant shortening of proofs, as illustrated with the following tableau
which is smaller than the one given in Figure 3.1. Assume the tableau construction
is performed using a right-most branch selection function. The crucial difference
then occurs when the right part of the tableau is closed and a tableau clause of

4In [Beckert and Hihnle, 1998], the term universal variable was used for a similar notion.

6.3. LIBERALIZATION OF THE CLOSURE RULE 121

Vz(R(z) V R(f(z))) AVe(-~R(z) V -R(f(f(z))))

-R(x) -~R(f(f(x)))
_—] —
R(y) R(f(y)) R(f(f(x))) R(f(f(f(x))))

Figure 6.5: Closed clausal tableau with local reduction rule.

the form R(y) V R(f(y)) is attached on the left. Since the variable z is now local,
it can be renamed and the two remanining branches can be closed using the local
closure rule.

Although the displayed tableau has no unsatisfiable ground instance, the
soundness of the local reduction rule assures that we have indeed refuted the
input set. Note also that tableau calculi containing the generalization rule or the
local reduction rule are not independent of the branch selection function. As long
as the right part of the tableau is not closed, the variable x is not local on the left
branch and a renaming of z is not permitted. Consequently, the order in which
branches are selected can strongly influence the size of the final tableau. The
gain, however, is that the local reduction rule permits to build refutations that
are significantly smaller than the Herbrand complexity of the input, as shown in
Section 7.4.

Another interesting side-effect of having local variables in a tableau is that
the regularity condition can be sharpened.

Definition 6.22 (Regularity wrt. local variables) A tableau is called regular wrt.
local variables if, for no two formulae ® and ¥ on a branch of the tableau, there
is a substitution ¢ on the local variables of ® such that ®o = .

So with the use of local variables, which permit more inferential possibilities
and hence broaden the search space at first sight, one also obtains a significantly
more powerful notion of regularity. In total, this may even lead to a reduction of
the size of the search space.

6.3.1 Hyper Tableaux with Local Variables

The use of local variables is particularly beneficial on hyper tableaux. Recall that,
in hyper tableaux, every newly attached clause has to be instantiated to a ground
instance. It is straightforward to see that local variables need not be instantiated.

Definition 6.238 (Hyper tableauz with local variables) The calculus is the same as
the hyper tableau calculus except that the local variables are not instantiated

122 CHAPTER 6. METHODS OF SHORTENING PROOFS

after a hyper extension step.

The hyper tableau calculus with local variables is complete and compatible
with the structural condition of regularity wrt. local variables [Baumgartner, 1998].
A particular interesting example is the reflexivity clause P(z,z) contained, for
example, in the axioms of equality. The reflexivity clause is fatal for the stan-
dard hyper tableau calculus, since all Herbrand instances of the clause have to
be used. In the local variant and in the presence of the sharpened regularity con-
dition, no other instance of P(z,z) need to be considered in the entire tableau.
When using local variables, it is obvious that Horn clauses never have to be in-
stantiated after a Hyper extension step, since all remaining variables occur in
the single positive literal and hence are automatically local. As a result, Hyper
tableaux with local variables performs on Horn clauses just as positive hyper reso-
lution [Chang and Lee., 1973], which is known as a particular successful strategy
in Horn clause logic.

Chapter 7

Complexities of Minimal
Proofs

When assessing the general usefulness of a proof procedure for automated de-
duction, the main criterion is the ability to find proofs for as many problems as
possible in some given time. A proof procedure consists of a proof system, i.e.,
a calculus with certain refinements, and a search strategy that controls in which
order the inferences have to be applied. Because of the complex structure of proof
procedures, it is very difficult to compare such procedures mathematically.

A wealth of analytical results, however, exist concerning the relative complex-
ities of minimal proofs in different proof systems. Since those results completely
ignore issues of proof search, they must not be taken as the only quality criterion
of proof systems. However, if, for some interesting class of problems, one proof
system permits only very long proofs whereas minimal proofs in another proof
system are short, then this is useful information, since the complexities of minimal
proofs are lower bounds to the complexities of the respective search spaces.

7.1 Proof Complexity Measures

In this chapter we will give a comprehensive list of relative complexity results
of this type for refinements of tableau calculi and some other important proof
systems for clause logic, namely, truth tables, semantic trees, and some refine-
ments of resolution. Such results have a long tradition in logic beginning with the
results of Gentzen [Gentzen, 1935] on the effect of cut elimination. The first com-
prehensive systematic such analysis of many different propositional calculi was
by Cook and Reckhow [Cook, 1971, Cook and Reckhow, 1974]. Cook introduced
the highly influential notion of polynomial simulation which compares calculi by
abstracting from polynomial differences.

Definition 7.1 (Polynomial simulation) A calculus Cy polynomially simulates a
calculus Cy if there is a polynomial p and, for every formula F' and every proof

123

124 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

P, of (the inconsistency of) F' in Cy with complexity k, there exists a proof P;
of (the inconsistency of) F in C; with a complexity smaller than p(k).

There are a number of possibilities of measuring the complexities of proofs.
In [Letz, 1993a, Letz, 1993b], three natural paradigms of decreasing precision are
introduced, which we will shortly review. The finest and therefore most reliable
measure charges the computation cost needed in a basic machine model to carry
out a proof. This could be, for example, the number of configurations in a non-
deterministic Turing machine or some other realistic machine model. Since such
a measure is normally too detailed to be useful on a more abstract level, two
other coarser measures were developed. The second measure abstracts from the
actual cost of constructing the proof and simply considers the size of the proof
object. In order for such a measure to be reliable, it is necessary that the chosen
size measure is polynomially related to the actual computation cost. This was
called polynomial size-transparency in [Letz, 1993a, Letz, 1993b]). On the high-
est abstraction level, one even disregards the sizes of proofs and only considers
the number of inference steps needed to carry out a proof. Again, in order to be
useful, this measure must be polynomially related to the actual computation cost.
This property was called polynomial transparency in [Letz, 1993a, Letz, 1993b]).
As shown there, some of the most important proof systems like resolution lack
this property, even if only the minimal proofs of a formula are considered. Below
we will also sketch the inadequacy of this measure for tableau systems with local
unification.

As a consequence of these results, we will not use the number of inferences as
a proof complexity measure, but the proof size. A naive size measure of a tableau
would be the sum of the symbol sizes of all occurrences of formulae in the tableau.
However, the investigations of the complexity of unification have shown that even
in one unification step the symbol size may increase exponentially. So the symbol
size is not interesting, since one can do much better by using dags (directed acyclic
graphs) for representing terms. In Figure 7.1, the symbol tree and the minimal
symbol dag of a term are shown. We also permit that a set of formulae can be
represented by a single symbol dag, so that, for example, the size of a clause set
is properly defined.

g/g\g 9
SN N
ANAVARAN

Figure 7.1: Symbol dags of a term g(g(g(a,a), g(a,a)), g(g(a,a), g(a,a))).

N

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 125

Definition 7.2 The size of a symbol dag is the number of its edges plus the number
of its leaf nodes.

It is clear that this size measure is realistic, i.e., polynomially related with the
length of an appropriate string representation of the dag.

Definition 7.8 (Tableau size) The size of a tableau or a general graph labelled
with formulae T is the number of edges and leaf nodes of T' plus the size of the
minimal symbol dag for the set of formulae appearing in 7.

It is straightforward to recognize that this complexity measure is polynomi-
ally size-transparent for the considered tableau calculi provided techniques for
polynomial unification are used. Furthermore, this measure easily applies to tab-
leaux with folding up and folding down where the edges are labelled with lists of
formulae.

7.2 Minimal Proof Lengths in Propositional Logic

7.2.1 Results for Cut-free Clausal Tableaux

We start with results for propositional clause logic. The most primitive approach
to determining the satisfiability status of a propositional formula is the well-
known truth table method. If n is the number of atoms occurring in a formula,
an evaluated truth table always contains n+1 columns and 2" lines. The first n
columns in each line encode the truth assignments for the atoms in the formula,
and the last column contains the truth value of the formula under this assignment.

Proposition 7.4 (Tableauzx vs. truth tables) The method of truth tables cannot poly-
nomially simulate tableaux and vice versa.

Proof For the nonsimulation of tableaux by truth tables, consider the class of
clause sets
{p[)a “Po VP Pn—1V Pn, _‘pn}

which have exponential truth tables but obviously closed tableaux of linear size.
For the other direction, we may use the class of clause sets given in Example 7.5.
A truth table for an S, has 2" lines of length n+1 and hence a refutation of linear
size. In the tableau calculus, however, in any depth k at most k—1 branches of a
tableau clause can be closed. Therefore, any minimal closed tableau has the tree
structure as shown in Figure 7.2, for n = 3. Consequently, taking the number
of nodes with maximal depth in such a tableau T, as a lower bound of its size,
we obtain that the number of nodes of T}, is greater than n x n! while the size
of S, is of the order O(n x 2™). So the complexity of T, is exponential in the
complexity of S,,. |

Ezample 7.5 For any set {pi,...,pn} of distinct propositional atoms, let S,
denote the set of all 2" clauses of the shape L V ...V L, where L; = p; or
Li=-p;,1<i<n.

126 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

Figure 7.2: Tree structure of a minimal closed tableau for Example 7.5, n = 3.

The reason why tableaux can be inferior to truth tables for certain formulae
is that the branching in the standard tableau systems does not partition the set
of interpretations, i.e., the same interpretation may appear on different branches.
When using forms of the cut like factorization or folding up, such a partitioning
is guaranteed and hence these formulae become harmless for tableaux.

Next we consider refinements of tableaux like connectedness, regularity, and
their combination. Nonsimulation results when adding such refinements may be
obtained by using an obvious property of the cut rule. The cut rule may be termed
a data-oriented inference rules in the sense that it can be simulated by adding
tautologies to the input formulae. This is heavily exploited in the subsequent
proofs. First, we consider the weak connection condition of path connectedness,
which requires that every tableau clause below the top clause be connected to
some ancestor literal.

Proposition 7.6 Path connection tableauz cannot polynomially simulate clausal
tableauz.

Proof The following simple modification of Example 7.5 will do, namely, the class
presented in Example 7.7. The additional tautologies® can be used to polynomially
simulate the atomic cut rule in the clausal tableau calculus, hence permitting
short proofs for this example. But in path connection tableaux, except for the
start step, the tautologies do not help, since any path extension step at a node
N with literal L using the tautology L V ~L just lengthens the respective path
by a node labelled with the same literal L. Therefore, the size of any closed path
connection tableau for an input set Sy, is greater than 2n x (n — 1)! while the size
of S, is of the order O(n x 2™). m|

Ezample 7.7 For any set {pi,...,pn} of distinct propositional atoms, let S,
denote the set of clauses given in Example 7.5, augmented with n tautologies of
the shape p; V—p;, 1 <i <n.

Next, we consider the relation of the three connection conditions. In contrast
to path connectedness, the tight connectedness requires that every tableau clause
below the top clause be connected to its predecessor node.

IThat these formula are actually tautologies is not essential for the argument. We could
equally well replace every tautology p; V —p; with two clauses p; V —¢; and ¢; V —p; with the ¢;
being n new distinct propositional atoms.

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 127

Proposition 7.8 Connection tableauz cannot polynomially simulate path connec-
tion tableauz.

Proof For this result we use another modification of Example 7.5, which is given
in Example 7.9. The elements of this class have linear closed path connection
tableaux, since the additional clauses permit the linear simulation of the atomic
cut rule by starting with pg as top clause and successively attaching the clauses
pi V —p; V 1pg, before nontautological clauses are used. It is clear that the tautolo-
gies do help only if entered at the literal ~pgy. In a connection tableau, however,
except for the start step (or for the second inference if we start with the clause
po) this is not possible. Therefore, the size of any closed connection tableau for
an input set S, is greater than 2n x (n — 1)! while the size of S,, is of the order
O(n x 2™). O

Ezample 7.9 For any set {pi,...,pn} of distinct propositional atoms, let S,
denote the set of clauses given in Example 7.5, augmented with the new atom pg
and n tautologies of the shape p; V —p; V —pg, 1 <i < n.

In order for the strong connection condition to be satisfied, recall that it is
necessary that adjacent tableau clauses have a non-tautological resolvent.

Proposition 7.10 Strong connection tableauz cannot polynomially simulate con-
nection tableauz.

Proof Again a modification of Example 7.5 will do, which is given in Exam-
ple 7.11. The new tautologies can be used successively in the connection tableau
calculus, and hence permit a linear closed connection tableaux. The strong con-
nection condition, however, completely excludes the use of tautological clauses,
since any resolvent using a tautological clause will be tautological, too. |

Ezxample 7.11 For any set {pi1,...,pn} of distinct propositional atoms, let S,
denote the set of clauses given in Example 7.5, augmented with 2n—1 tautologies,
viz., the clause p; V —=py and, for 1 <¢ < n—1, the two clauses —p; V pir1 V =pit1
and p; V pit1 V "pit1.

The next refinement to be considered is regularity, which requires that no
literal occurs more than once on a branch. First, we know already from Propo-
sition 2.28 that regularity is a must for general clausal tableaux, since minimal
proofs are always regular. This also holds for the path connectedness condition.

Proposition 7.12 Every minimal closed path connection tableau is reqular.

Proof We show the contraposition, i.e., that every closed irregular path connec-
tion tableau 7' is not minimal in size. Let T" be such a tableau for a set S. Obtain
a formula tree T' by performing Procedure 2.27 (Page40) on T'. Clearly, T" is
smaller than T and it is closed. Finally, the preservation of path connectedness
can be realized by a simple induction on the number of iterations performed in

128 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

Procedure 2.27. For the induction step, consider the situation before the n-th
iteration. Let N be the respective node with an ancestor N’ both labelled with
the same literal. Since, by the induction assumption, the current tableau is path
connected, every tableau clause in the subtableau below N must be connected to
some ancestor node. The critical case is the one in which the respective ancestor
is N, which is missing after the n-th step. But since N’ is labelled with the same
literal, the respective tableau clauses are connected to N’, too, which guarantees
that the property of path connectedness is preserved. |

Corollary 7.13 Connection tableauz cannot polynomially simulate reqular path
connection tableaux.

Proof Tmmediate from the Propositions 7.8 and 7.12. |

Now we come to the interesting result that the regularity condition may be
harmful for the deductive power of tableaux when using the tight connection
condition. The problem is that the removal of irregularities is not guaranteed
to preserve the connectedness. In order to restore connectedness, a global reor-
ganization of the tableau may be necessary which can lead to a significant size
increase of the tableau.

Proposition 7.14 Regular connection tableauz cannot polynomially simulate con-
nection tableauz.

Proof For this result we use another modification of Example 7.5, which is given in
Example 7.15. The elements of this class have linear closed connection tableaux,
since the additional clauses permit the linear simulation of the atomic cut rule, as
illustrated in Figure 7.3, for the case of n = 3; to gain readability, p; is abbreviated
with 4 and —p; with 4 in the figure. These connection proofs are highly irregular.
In order to obtain short proofs, it is necessary to attach the mediating two-literal
clauses of the shape p;Vpe and —p;Vpo again and again. In regular proofs, however,
on each branch such mediating clauses can be used at most once. Consequently,
on each branch tautological clauses can be attached at most twice. Therefore, the
size of any closed regular connection tableau for an S, is greater than 4n x (n—2)!
while the size of S, is of the order O(n x 2™). O

Ezample 7.15 For any set {pi,...,pn} of distinct propositional atoms, let S,
denote the set of clauses given in Example 7.5, augmented with the new atom py
and

1. n tautologies of the shape p; V —p; V —pg, 1 <i < mn,
2. n clauses of the structure p; V pg, 1 < i <n, and

3. n clauses of the structure —p; V pg, 1 <i < n.

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 129

—
=

T 0 1 0
_— N\ _— N
2 2 0 2 2 0
1 1 1
2 0 2 0 2 0 2 0
3 30 3 3 0 3 3 0 3 30
ANV A WAV
1723 1237123123 123 1231231 2 3

Figure 7.3: Polynomial closed connection tableau for Example 7.15, n = 3.

Furthermore, it is evident from all these results, that the various variants of
cut-free clausal tableau calculi cannot be simulated by the respective calculi with
tautology elimination. Additionally, for connection tableaux, even the deletion
of subsumed tableau clauses may be fatal, as can be proven using the same
Example 7.15. Note that all mediating clauses of the form L V pg are subsumed
by the unit clause py and must be deleted. This blocks the construction of a short
proof.

In summary, the presented results illustrate the complementarity of improving
deductive and reductive power for cut-free tableau calculi.

7.2.2 Results for Clausal Tableaux with Controlled Cuts

Next, we will come to the classification of clausal tableau systems which incorpo-
rate the atomic cut rule in some form. As a matter of fact, the more powerful full
cut rule cannot be used, since it contradicts the clausal format. We will see that
some of those calculi are much more robust than the cut-free ones concerning
the addition of structural restrictions. But first, we will consider the unrestricted
atomic cut rule and show that, with respect to minimal proof lengths, the atomic
cut rule has an egalitarian effect on the clausal tableau calculi. For this purpose,
we will introduce a certain pathological form of tableaux with cut.

Definition 7.16 (Cut normal form) A clausal tableau with cut is in cut normal
form if on each branch only the last tableau clause is not attached by a cut step.

130 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

/\
M N
/\/\ AN

p —-q -p q —p -q

Figure 7.4: Tableau in cut normal form for {pV ¢,pV —q,—pV ¢,—pV —q}.

Proposition 7.17 For any closed clausal tableau with cut for a set S there is a
closed regular connection tableau with cut for S in cut normal form such that the
sizes of the tableauz are linearly related.

Proof We show how any tableau inference step can be cast into cut normal form.
Cut and reduction steps are trivial. Any tableau expansion step using a clause
of length n can be linearly simulated by n atomic cuts, an extension step, and n
reduction steps, as shown in Figure 7.5. Finally, regularity may be achieved by

pruning the resulting tree using Procedure 2.27 from Page 40. |
D1 t Pa D1

Pn ~Pn
p1 o Pn
* *

Figure 7.5: Casting tableau expansion into cut normal form.

Proposition 7.18 Every minimal closed clausal tableau T in cut normal form is a
regular connection tableau with atomic cut.

Proof By Proposition 2.28, T' must be regular. Now consider any tableau clause
¢ not resulting from a cut inference. Assume, indirectly, that ¢ be not connected
to its predecessor node. Since, by the cut normal form, all literals in ¢ occur
complemented on the branch from the root up to N, one could prune T by
deleting the cut step above ¢ and shifting ¢ one level up and the tableau would
still be closed. This contradicts the minimal size assumption for 7'. |

So, with uncontrolled atomic cut, the tableau calculi are equally powerful.
More interesting is the investigation of controlled versions of the cut rule like
factorization, folding up, and folding down.

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 131

Proposition 7.19 Tableauxr with atomic cut can linearly simulate tableaux with
factorization.

Proof Given a closed tableau with factorization, each factorization step of a node
N; with a node N, both labelled with a literal L, can be simulated as follows.
First, perform a cut step with ~L and L at the ancestor N of N,, producing
new nodes N4 and Nj; thereupon, move the tableau part formerly dominated
by N below Ny; then, remove the tableau part underneath N, and attach it to
N5; finally, perform reduction steps at Ny and V5. The simulation is graphically
shown in Figure 7.6. |

ol ol

N

™) K L () Ny~

3

®) K ®

L Solution of L Solution of L

L
1

L

Figure 7.6: Simulation of factorization by cut.

Proposition 7.20 (Regular) (path) (connection) tableaux with folding down (or
Prawitz reduction or complement splitting) and (reqular) (path) (connection) tab-
leauz with factorization linearly simulate each other.

Proof For the part of the linear simulation of factorization by folding down,
consider any closed tableau T" with factorization and either of the given structural
conditions. Let < be the factorization dependency relation of T. Now we construct
a tableau T' by simply using < as dependency ordering for folding down, as
follows. Whenever a clause is attached, for every new node N;, we label the
corresponding edge with the literals at all brother nodes N; which are smaller
than N; in <. This permits that any factorization step of a node N with a node
N'in T can be simulated by a reduction step at N in T”, since the literal at N’
was before folded down to the branch above N. The other direction is similar, by
just taking the dependency ordering on the node families used for folding down
as factorization dependency relation. O

132 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

Proposition 7.21 Clausal tableauz cannot polynomially simulate reqular strong
connection tableaux with factorization.

Proof We may again use Example 7.5, which has only exponential closed clausal
tableaux. For this class a closed regular strong connection tableaux of linear
size can be constructed using a Prolog style branch selection function. Whenever
a subgoal with literal L in a tableau clause c is extended, then one uses the
clause which is identical to ¢ except for the sign of the literal L. This guarantees
strong connectedness. On the other hand, this also permits that the subgoals
in ¢ to the right of L can be used for factorization of the subgoals in the new
clause, as illustrated in Figure 7.7. It is straightforward to recognize that this
way every input clause is needed at most once as a tableau clause. By the strong
independence of the selection function, the same proof can be constructed by any
other selection function. O

/!\
M//\

P1 -p D3

A/M

D3

Figure 7.7: Closed regular strong connection tableau with factorization of linear
size for Example 7.5, for the case of n = 3.

Next, we come to the folding up rule. While it is an open problem whether
clausal tableaux with factorization can polynomially simulate clausal tableaux
with folding up or atomic cut, for connection tableaux, the folding up rule is
properly stronger concerning deductive power than the factorization rule.

Proposition 7.22 Path connection tableauz with factorization cannot polynomially
simulate connection tableauz with folding up.

Proof We use the formula class specified in Example 7.23. The size of any such
clause set is of the order O((m+n)?). It can easily be recognized that any closed
path connection tableau for an instance of this class has Y ;. ; m’ branches when
we start with the top clause —p} V ---V =pl . Also, factorization is not possible
under this assumption, since no two subgoals N; and N, with identical literals

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 133

/\

1 1

pi —wi “Pr Dm TPT D

/N(% %

n—1 n n * * *
P —P1 “Pm
. |
n n
p1 Pm
* *

Figure 7.8: Linear connection tableau with folding up for Example 7.23.

can occur where N, is a brother node of (an ancestor of) Nj. Therefore, the
example class is intractable for path connection tableaux with factorization, for
this specific top clause. However, there exist closed connection tableaux with
factorization of linear size if, e.g., one of the clauses

p?71V—|p?V"'V_'p?n7 1<i<m

is taken as top clause. In order to obtain an unsatisfiable class which is intractable
for any selection of the top clause, we can apply the same duplication trick as
used in the proof of Proposition 5.14. We modify the class given in Example 7.23
by adding m literals =q}, ..., =¢}, to the top clause, and by adding consistently
renamed copies (replace p with ¢) of the other clauses. For the resulting clause
set, it does not matter with which clause we start, since now in any minimal
closed path connection tableau a subtableau must occurs which is isomorphic to
the entire closed tableau for the initial clause set. Consequently, the new example
class is intractable for path connection tableau with factorization.

On the other hand, any formula from the class has a linear closed connec-
tion tableau with folding up with the first clause as top clause, as illustrated in
Figure 7.8. Since never reduction steps are needed (the clause set is Horn), the
literal of any solved node can be folded up to the root and used for E-reduction
steps afterwards. This involves that the resulting proof tree contains every input
clause exactly once as a tableau clause. |

Ezample 7.23 For any two natural numbers m,n, let S}, denote the following set
of clauses:
Pl VeV,
prV =piVe Vo mp2 for1<i<m
p?71Vﬁp?v---Vﬂp%, for1<i<m
Py, for 1 <i<m.

134 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

In fact, path connection tableaux with factorization cannot even polynomially
simulate pure clausal tableaux (without atomic cut), which at first sight is a very
surprising result.

Proposition 7.24 Path connection tableauz with factorization cannot polynomially
simulate clausal tableauz.

Proof Any clause set S}, specified in Example 7.23 is a Horn clause set. It is well-
known that, for any unsatisfiable Horn set, there is a unit hyper resolution refu-
tation [Chang and Lee., 1973] of linear complexity [Dowling and Gallier, 1984].
By Proposition 7.47, in propositional logic clausal tableaux can linearly simulate
unit hyper resolution. Consequently, the class S; has closed clausal tableaux of
linear size. O

Next, we come to the consideration of the folding up rule. Although more
powerful than factorization, folding up is still a hidden form of the cut rule.

Proposition 7.25 Clausal tableauz with atomic cut linearly simulate clausal tab-
leauz with folding up.

™) ()

Solution of L

Solution of L

Figure 7.9: Simulation of folding up by cut.

Proof Given a tableau derivation with folding up, each folding up operation at a
node Ny adding the complement ~L of the literal L at a solved node to the label
of an edge above a node N (or to the root), can be simulated as follows. Perform
a cut step at the node N with the atom of L as cut formula, producing two new
nodes N7 and Ny labelled with L and ~L, respectively; shift the solution of L

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 135

from Ny below the node N; and the part of the tableau previously dominated by
N below its new successor node N»; finally, perform a reduction step at the node
Ny. It is apparent that the open branches of both tableaux can be injectively
mapped to each other such that all pairs of corresponding branches contain the
same leaf literals and the same sets of path literals, respectively. The simulation
is graphically shown in Figure 7.9. O

Corollary 7.26 Regular connection tableauz with atomic cut can linearly simulate
clausal tableauz with folding up.

Proof Immediate from the Propositions 7.25, 7.18, and 7.17. |

The possibility of a linear simulation in the other direction, atomic cut by
folding up, is also quite straightforward for the case of clausal tableaux without
connection conditions. When the connection condition is added, then the simu-
lation in the other direction is very hard to prove. There is a proof sketch of this
result in [Mayr, 1993]. It uses involved intermediate calculi and is very difficult
to follow. Here we give a simpler proof which employs no additional concepts.
The gist of this method is that we strongly exploit the fact that the proof size is
preserved for any selection function, as long as it is a depth-first one.

Proposition 7.27 If T is a closed clausal, path connection, or connection tableau
with folding up for a set of clauses S and o is any depth-first subgoal selection
function, then there exists a closed clausal, path connection, or connection tab-
leau, respectively, with folding up for S with the same top clause and constructed
according to o such that T and T’ have the same size.

Proof The key notion used in the proof is the following generalization of the
concept introduced in Definition 2.60. Given any selection function o, we say that
a tableau T is constructed according to o up to inference n if, for any inference
i < n, the node selected in T at inference i is identical to the one selected by o.
We proof the existence of the desired tableau 7" by induction on the number n.
The induction base is trivial. For the induction step, assume that there exists a
tableau T}, with the desired properties which is constructed according to ¢ up to
inference n.

1. If the subgoal selected in inference n + 1 is the same as the one selected by
o, then T\, =T),.

2. Otherwise, let N with literal L be the subgoal selected by o. In case, in
T,, at the subgoal N later an expansion, path extension, extension, or an
ordinary reduction step is performed, then we simply give priority to this
inference and let the rest unchanged. The resulting tableau T),;1 obviously
satisfies the desired properties.

3. The remaining critical case is the one in which, in 7,,, N is solved later by
an E-reduction step with a literal folded up after inference n + 1, since this

136 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

E-reduction step is not yet possible at inference n + 1. According to the
definition of folding up, to this folding up step there corresponds a closed
subtableau in T, with root, say, N’ and literal L. This involves that the
subtableau below N’ must be completely closed before N is selected. Now
o is a depth-first selection function and, by the induction assumption, T}, is
constructed according to o up to inference n. Therefore, N' must be selected
in T}, after inference n. This enables that we can modify the tableau T, by
detaching the tree below N’ and attaching it to N while preserving the size
of the tableau, as depicted in Figure 7.10. As the next inference step, we
perform now the respective extension step at IN. Furthermore, we delay the
selection of N' until the complete closure of N, and the folding up of its
literal L to the same path position as in Tj,. This enables that N’ can be
solved by an E-reduction step later. The resulting tableau T, satisfies the
desired properties.

In all three cases, T),4+1 has the same size and T, 11 is constructed according to
o up to inference n+1. O

A N

Figure 7.10: Possible modification when changing the selection function.

The other ingredient for proving the linear simulation of atomic cut by folding
up is the following important property of connection tableaux.

Lemma 7.28 (1-level clause lifting) If T is a closed connection tableau with fold-
ing up containing a tableau clause ¢ at depth n > 0, then there exists a closed
connection tableau with folding up T' in which c occurs at depth n—1, and T and
T' have the same size.

Proof The proof is by a transformation of the initial tableau into one with the
desired properties. In order to structure the proof, we perform the transforma-
tion in two steps. In the first step, we modify T by using a depth-first selection
function which satisfies a certain condition. In the second step, we perform the
final modification on this tableau.

Step 1. Let ¢ occur at depth n on a branch B in the given tableau T'. Let
further py, ..., p, be the literals at the nodes of B and ¢y, ..., ¢, the sequence of
tableau clauses along B, i.e., ¢; is the top clause in T and ¢, = ¢. By Proposi-
tion 7.27, one may modify T to a tableau T" of the same size by any depth-first
selection function. We use the same transformation procedure as in the proof

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 137

inserted after T}

R~ =

S 7 = 7
RS

V]

~p1 ~p1
*
p1
*
~Pn—2 Pn—1 ~Pn—2 Pn—1
* *
* *
(a) (b) (c)

Figure 7.11: 1-level clause lifting in connection tableaux with folding up.

of this proposition and a depth-first selection function which, in every tableau
clause ¢; (1 < i < n), selects the p;-node first. Accordingly, after the start step,
we successively perform n—1 extension steps at the p;-nodes using the clauses
cit1, respectively. Afterwards, the subtableaux T}, ..., T} are solved, in this order.
The structure of the tableau 7" is illustrated in Figure 7.11 (a).

Step 2. From T" a tableau T' with ¢, at depth n—1 may be constructed
as follows. First, instead of ¢; we attach ¢y as top clause. Then we perform the
same n—2 extension steps as in T". Afterwards we extend the ~p;-subgoal in the
new top clause cs using ¢;. Finally, we attach the subtableaux T7,...,T), at the
respective nodes, as shown in Figure 7.11 (b), and assume that the subtableaux
are solved in the order T,,..., T}, as in T". It is clear that this leads to a closed
tableau only if the p;-path node is not used for a reduction step in one of the
Ts,...,Tp.

Otherwise, we have to repair the current tableau. Let T; be the subtableau
containing the first encountered subgoal N, to be solved by a reduction step
using the p;-path node. Now we simply shift the subtableau below the ~p;-node
below Np,. Afterwards, we attempt to replay the construction of Ty as in T".
This is easily possible except for subgoals which were solved by E-reduction steps
using literals folded up to the root before the solution of Ty in T, since those
literals may not yet be available. Whenever such a subgoal N with literal L is
encountered, we restructure the current tableau. To L there corresponds a closed
subtableau T, with root N’ outside Ty. Since, by assumption, after solving N' in
T", its literal L was folded up to the root, the solution of T, did not use any path
literals between the root and N' for reduction steps. Now, in the solution of T} in
T", the p;-node was used. So N’ cannot be one of the nodes between the root and

138 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

the p;_1-node at the root of T;. Therefore, N' must be in one of the subtableaux
Ti—1,...,T>, and we can modify the current subtableau below N7, by shifting
Tr from N' to N without increasing the tableau size. Then we continue with
the next subgoal in T7. After we have completely solved N, we fold it up to
the root. This permits that N’ can afterwards be solved by an E-reduction step.
The replay of T;, may require further such modification steps, since the order
in which folded up literals are needed may be different from the order in which
their solutions were generated in T". But this will cause no problems, since in the
replay of T, no literals between the the root and the root of T, are needed. If k£
is the number of literals folded up to the root of T" before T} was tackled, then
it is clear that after at most k& such modifications we have completely solved the
node Nr,. Afterwards, we fold up its literal ~p; to the root. This permits that
all subsequently encountered subgoals needing p; as a path literal can be solved
by an E-reduction step. The process is exemplarily illustrated in Figure 7.11 (c).
Since all modifications preserve the tableau size and the connectedness condition,
the resulting tableau T" is as desired. |

Proposition 7.29 (Clause lifting) If ¢ occurs as a tableau clause in a closed con-
nection tableau T with folding up, then there exists a closed connection tableau
T' with folding up with top clause ¢ such that T and T' have the same size.

Proof If n is the minimal depth of ¢ in T', then n—1 applications of Lemma 7.28
will do. m|

It is obvious that this lifting possibility also holds for any subtableau T of a
tableau T", i.e., any clause ¢ in T' may be moved on top of T' while preserving the
size of T' and the connection conditions inside T, and without affecting the rest
of the tableau T" (of course, the connectedness to the root of T may be lost). This
robustness concerning the reversion of tableaux does not hold without folding up.

Theorem 7.80 (Cut elimination for connection tableauz) If T is a closed connec-
tion tableau with folding up and atomic cut for a set of clauses S, then there exists
a closed connection tableau with folding up T' for S such that the size of T' is
less or equal to the size of T'.

Proof The proof is by induction on the number of cuts performed in T', which
we call the cut degree of T. The induction base, for cut degree 0, is trivial. For
the induction step, assume the result to hold for any tableau of cut degree n.
Now consider any tableau 7 with cut degree n+1. First, by Proposition 7.27,
we may transform the tableau into a tableau of the same size and constructed
with a depth-first selection function (the case of cuts is also captured by this
proposition, since one may simulate atomic cuts by simply adding the respective
tautological clauses). We show how the last cut performed in this tableau may be
eliminated. Let IV with literal K be the node at which this cut step is performed,
L the cut literal, and T and T, the subtableaux dominated by the two cut nodes,
respectively. For an illustration, consider Figure 7.12. Our aim is to find a tableau

7.2. MINIMAL PROOF LENGTHS IN PROPOSITIONAL LOGIC 139

Figure 7.12: Cut elimination in connection tableaux with folding up.

clause ¢ below N containing the literal ~K, in order to permit an extension step
in place of the cut. Obviously, the interesting situation is the one in which T
and/or Ty are complex subtableaux, since otherwise cut elimination is trivial.

Pruning. First, we consider the case in which ~K does neither occur in T} nor
in Ty. Then, we prune the tableau by canceling out the tableau clause of the node
N and attach the entire subtableau dominated by N to the predecessor of N. The
problem occurs that in the unpruned tableau one may have folded up K or some
literals occuring during the solution of brother nodes of N, and one may have
used the resulting path literals for E-reduction steps on later selected subgoals
N;. Obviously, after the pruning these folded up literals are no more available.
This can be captured as follows. Whenever such a subgoal N; is selected and the
respective folded up literal is not yet available, then we simply replay the solution
of this literal in the pruned part, in the same manner as in Step 2 of the proof
of the 1-level clause lifting lemma (Lemma 7.28). It is obvious that this way the
size of the resulting tableau decreases just by the size of the node family of V.
This pruning step is repeated until it is no more applicable.

Cut elimination. Afterwards, either the cut has moved up to the top of the
tableau or the literal ~K' at the node N’ above the cut does occur in one of the
subtableaux T7 or T5.

1. In the former case, instead of performing the cut at the root, we attach the
tableau T = Ty, which corresponds to a start step.

2. Otherwise, we may assume w.r.g. that ~K' occurs in some tableau clause
¢ of Ty and that the L-node is selected before the ~L-node (otherwise we
would simply switch to an appropriate selection function including the re-
spective modifications). Now, by Proposition 7.29 (the subtableau variant),
we may revert the subtableau T} and bring ¢ on top. Next, instead of per-
forming the cut at the K'-node we attach the reverted tableau T, which
corresponds to an extension step.

Obviously, some branches in 7] may be open now, namely, the branches whose
nodes were closed by a reduction step with the cut literal L, which is now missing

140 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

in the path. Let N be the first such encountered node. We attach the subtableau
T, at Ny, which corresponds to an extension step, since, by assumption, there is
no cut in Ty. Afterwards we replay the construction of T as usual, i.e., possibly
including further modifications as in Step 2 of the proof of Lemma 7.28. After the
solution of Ty, the literal L may be folded up at least to the edge above the node
N’ or to the root in case T is immediately below the root. This enables that any
later selected subgoal in T with literal L may be solved by an E-reduction step
using the respective path literal. The result of the entire operation is a connection
tableau with folding up and cut for S with cut degree n and a size that is properly
smaller than the size of 7.

Consequently there exists a closed cut-free connection tableau with folding up
T' for S which is not larger than T. O

Corollary 7.31 Connection tableaux with folding up can linearly simulate clausal
tableauz with cut.

Proof Immediate from Theorem 7.30 and Proposition 7.17. |

7.3 Semantic Trees and Resolution

Beside the relation of tableau refinements with each other, it is also important
how tableaux are related with other proof systems. We consider two families of
calculi, resolution systems and semantic tree procedures. Both families operate
with a single inference rule, namely, a condensed variant of the atomic cut rule.
The difference between both families is that resolution systems work by a forward
application of the cut rule whereas semantic tree procedures use the cut rule in
a backward manner.

First, we consider the method of semantic trees, which is a natural improve-
ment of truth tables. Semantic trees [Robinson, 1968, Kowalski and Hayes, 1969]
are typically used as a representation tool for analyzing first-order proof pro-
cedures of the resolution type. A binary version of semantic trees turns out to
be an excellent basis for propositional proof procedures of the Davis, Putnam,
Loveland, Logemann (DPLL) type [Davis et al., 1962]. The simple motivation
for the method is that a formula can often be given a definite truth value on
the basis of merely a partial interpretation. In such a case, the truth value of
the partial interpretation V' of the formula is the same as the truth value of all
total interpretations which are extensions of V. This way, in one inference step,
instead of checking single interpretations, entire sets of interpretations can be
examined. This potential for shortening truth tables was also noticed by Kleene
in [Kleene, 1967]. Semantic trees generalize his method.

Definition 7.82 (Semantic tree) A semantic tree for a set of clauses S is a binary
rooted tree with a total labelling of its edges and a (possibly partial) labelling of
its leaf vertices, meeting the following conditions.

7.3. SEMANTIC TREES AND RESOLUTION 141

1. Each pair of edges originating in the same vertex is labelled with a ground
literal L respectively its complement where L is an instance of a literal in
some clause of S.

2. Any leaf node N may be labelled with a ground instance ¢ of a clause in
S, provided that all literals in ¢ occur complemented on the branch leading
from the root up to N.

A semantic tree is called closed (for S) if every leaf node is labelled with a ground
instance of a clause (in S).

pVyq pV g pVyq -pV g
Figure 7.13: Closed semantic tree for {p V ¢,pV =¢,—pV q,-pV —q}.

An example of a closed semantic tree is depicted in Figure 7.13. There is the
following relationship between semantic trees and tableaux with cut.

Proposition 7.33 Clausal tableaux with atomic cut and semantic trees can linearly
simulate each other.

Proof Any semantic tree is basically a tableau in cut normal form, and vice versa.
For illustration compare Figure 7.13 with Figure 7.4. |

Next, we consider resolution, which consists of a single inference rule. We start
with the fragment of resolution for ground clauses, which is the dual of Quine’s
consensus rule [van Orman Quine, 1955].

Definition 7.84 (Propositional resolution rule) Given two clauses ¢ and ¢, with
¢ — ¢’ we denote the clause obtained from ¢ when removing all literals contained
in ¢’. Let ¢; and ¢z be two clauses with ¢; containing a literal L and ¢3 containing
~L. The clause ¢; — LV ((ca — ~L) — (¢1 — L)) is called a propositional resolvent
of ¢; and ¢s wrt. L. ¢; and ¢y are termed parent clauses of the resolvent.

Example 7.35 The clause pV qV —r is a propositional resolvent of pV —r V s and
pV -sVg.

In the first-order case, the resolution rule is more complicated, since it incor-
porates renaming, factoring, and unification.

142 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

Definition 7.36 (Resolution rule) Given two clauses ¢; and ca, let ¢4 be a renam-
ing of the variables in co wrt. ¢;. Let further S; be a set of literals contained in
¢1 and Sy a set of literals contained in ¢} such that there is a minimal unifier o
for the set Sy U{~L : L € S>}. Then the propositional resolvent of the clauses
c1o and cho is called a resolvent of ¢y and co wrt. Lo.

Ezample 7.37 The clause P(a,a) is a resolvent of the clauses P(a,z) V Q(z,a)
and P(z,2) V =Q(z,y) V =Q(y, z) wrt. Q(a, a).

Definition 7.88 (Resolution proof) A resolution deduction or proof of a a clause
cn from a set of clauses S is a finite sequence D = (¢y,...,c,) of clauses such
that, for each clause ¢; (1 < i < n), either ¢; € S or ¢; is a resolvent of two parent
clauses which both occur in the sequence D at positions < i. A resolution proof
of the empty clause — from a set S is called a resolution refutation of S.

In order to exhibit the close relation of resolution with semantic trees, it will
also be convenient to have a graph notation of a resolution proof.

Definition 7.89 (Resolution dag) A resolution dag of a clause ¢ from a set of
clauses S is a finite directed acyclic graph T" which is rooted and binary branching,
and whose nodes are labelled with clauses in such a way that

1. the root of T is labelled with ¢,
2. the leaf nodes of T are labelled with clauses from S, and

3. the clause at any non-leaf node N in T is a resolvent of the clauses at the
successor nodes of V.

If the dag t of a resolution dag T is a tree, T' is named a resolution tree.

1
/p\ /p\
pVaq pVq pVyq -pV g

Figure 7.14: A tree resolution refutation from {pV ¢,pV —=q,—pV q,—pV —q}.

Proposition 7.40 The semantic tree method can linearly simulate tree resolution.

Proof Let T be a resolution tree of the empty clause — from a set of clauses
S. First, since T is a tree, it is straightforward to realize that we can make T
into a propositional resolution tree 7" for a set S’ consisting of ground instances
of clauses in S by simply inheriting the unifiers from the root down the tree.

7.4. RESULTS FOR FIRST-ORDER CLAUSAL TABLEAUX 143

Furthermore, when using symbol dags, the size of T" is linear in the size of T'.
Now, T" is basically a semantic tree for S, one simply has to add additional edge
labels and disregard the labels of the non-leaf nodes. For an illustration compare
the Figures 7.14 and 7.13. |

Proposition 7.41 Tree resolution can quadratically simulate semantic trees.

Proof Let T be a closed semantic tree for a set of ground clauses S. Construct
a propositional resolution refutation of S by iteratively performing the following
procedure on T.

e In the current tree, select any unlabelled node N whose two successor nodes
N and N are labelled with ground clauses ¢; and cs, respectively. Let L
and ~L be the literals at the respective edges. If ~L is in ¢; and L in ¢y,
then label N with the respective resolvent of ¢; and ¢y. Otherwise, prune
the tree by connecting the edge incident to N to Ny if ~L is not in ¢, or
else to Ns.

It is straightforward to realize that the procedure generates a propositional tree
resolution refutation of S with a size equal or smaller than T. Because of the
explicit representation of the intermediate clauses in the resolution tree, its size
may be quadratic in the size of T. m|

Consequently, concerning minimal proof lengths and when abstracting polyno-
mial differences, semantic trees and tree resolution are equivalent proof systems.
The simulation technique used in the proof above also permits the straightfor-
ward construction of a complete resolution procedure which can do with quadratic
space. In practice, however, the quadratic overhead of tree resolution wrt. seman-
tic trees is a clear argument in favour of semantic trees. This explains the success
of semantic tree procedures like the DPLL method. On the other hand, tree res-
olution cannot polynomially simulate unrestricted resolution where deductions
may be dags [Reckhow, 1976]. So it is clear that semantic trees cannot polynomi-
ally simulate resolution. This is an argument for deduction concepts using dags.
The most successful dag-based framework of propositional decision procedures
are binary decision diagrams (BDD’s). Concerning minimal proof lengths BDD’s
can actually be viewed as refinements of resolution calculi.

7.4 Results for First-Order Clausal Tableaux

When moving from propositional logic to the first-order case, then normally even
more complexity differences may be identified. In particular, this holds for res-
olution calculi. For example, in [Letz, 1993a], it is shown that, in the first-order
case, linear resolution cannot polynomially simulate unrestricted resolution, a
question which is yet unsettled in the propositional case. A resolution deduction
is called a linear or ancestor resolution deduction if any resolvent is used as a
parent clause in the subsequent resolution step.

144 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

The tableau calculi with standard unification, however, have the following
property.

Proposition 7.42 The Herbrand complexity of any unsatisfiable clause set S is a
lower bound to the size of any closed clausal tableau with atomic cut.

Proof The clausal tableau calculus, with or without atomic cut, has the following
ground projection property. If T is a closed clausal tableau (with cut) for a set S,
then any ground instance T'o is a closed tableau (with cut) for an unsatisfiable
set of ground instances of clauses in S. So, we may choose a substitution o which
maps every variable in T' to the same constant from the Herbrand universe of
S. This guarantees that 7' and T'¢ have the same size. By the soundness of the
calculus and the substitution rule, the set of tableau clauses of T'o must be an
unsatisfiable set of ground instances of clauses in S. Consequently, So and hence
S cannot be smaller than the Herbrand complexity of S. |

So there are at first sight no difference between the propositional and the first-
order case. An obvious first-order feature of clausal tableaux which destroys the
ground projection property is the local unification mechanisms. This was already
illustrated in Figure 6.5. We will consider now whether this feature can really
cause superpolynomial differences. For the subsequent investigations we build on
a class of clause sets used, e.g., in [Letz, 1993a, Plaisted and Zhu, 1997], which
encodes a binary counter.

Example 7.438 For any n, let S, be the set of clauses of the following form.

co: P(0,...,0),
C1: _'P(mlz"'awn—lzo) \% P(ﬂf],-.-,wn_l,l),
Co: _|P($1,...,$n,2,0,1) \% P($1,...,$n,2,1,0),

Cpn—1- —|P(:c1,0,1,...,1), \% P($1,1,0,...,0),
cn: —P(0,1,...,1), v P(1,0,...,0),
Cnp: —P(1,....1)

where P denotes an n-ary predicate symbol, and 0 and 1 denote different con-
stants.

Proposition 7.44 Any clause set S, specified in Example 7.43 has a resolution
refutation of a linear size.

Proof Note that, for any 1 < i < n, one can deduce the clause

=P(z1,...,20,..

3

S0V P(zy,...,2,1,..00,1)
in two resolution steps using the clause
=P(z1,...,2i41,0,...,0) V P(z1,...,2i11,1,...,1)

3

7.4. RESULTS FOR FIRST-ORDER CLAUSAL TABLEAUX 145

derived before and the input clause
-P(z1,...,2;,0,1,..., 1)V P(zy,...,2;,1,0,...,0).

Consequently, there is a resolution proof of 2n inference steps. This proof is even
an ancestor resolution proof. m|

Let us consider now the Herbrand complexity of an S,, i.e., the size of a
minimally unsatisfiable set of clauses each of which is an ground instance of a
clause in S,,.

Proposition 7.45 The class of clause sets specified in Example 7.43 has an expo-
nential Herbrand complexity.

Proof Any unsatisfiable set of ground instances of clauses in an S;,, must contain
all Herbrand instances of clauses in S,,, otherwise one could easily construct a
Herbrand model. Since in total these are 2™ + 1 clauses, the class has an expo-
nential Herbrand complexity. O

The class of Example 7.43 has no polynomial closed tableaux with local uni-
fication, but we may use a modification of this class, which has polynomial unit
hyper resolution proofs. This will help, because of the following simulation result.

Proposition 7.46 Clausal tableauz with local unification can linearly simulate unit
hyper resolution.

Proof Let D = ¢y,...,c, be any unit hyper resolution deduction from a set of
clauses S. We prove, by induction on the number of inference steps n in D, that
there exists a tableau T' with at most one open branch B such that

1. the size of T is linear in the size of D, and
2. every unit clause occurring in S or D appears on the branch B.

The induction base holds trivially. For the induction step, let D =c1,...,¢cn, Cpt1
be any unit hyper resolution deduction. By the induction assumption, there exists
a clausal tableau with local unification T,, which satisfies the two conditions for
the deduction ¢y, ..., c,. The nontrivial case is the one in which the clause ¢;41
is a unit hyper resolvent of a nucleus clause ¢; (i < n) and electrons appearing
before ¢;,4+1 in D. This can be simulated in the tableau by an expansion step with
¢; and subsequent local reduction steps with the electrons on the branch B. O

Obviously, in the propositional or ground case, there is no difference between
ordinary and local unification.

Proposition 7.47 For ground clause sets, clausal tableaux can linearly simulate
unit hyper resolution.

146 CHAPTER 7. COMPLEXITIES OF MINIMAL PROOFS

Now, we have all ingredients at hand for proving the desired result.

Proposition 7.48 Clausal tableaux cannot polynomially simulate clausal tableaux
with local unification.

Proof We use the following modification of the above example.

Ezample 7.49 For any n, let S,, be the set of clauses as specified in Example 7.43.
Then the clause set S}, is defined as follows. For any non-unit clause

—|P(a1,...,an)\/P(ﬁl,...,ﬂn)

in Sy, S}, contains the unit clause

I(p(ar,....an),p(Bt,.- -, Bn))-
To the two unit clauses in S,,, there correspond the two unit clauses
I(T,p(1,...,1))andI(p(1,...,1),-)
in S),. Additionally, S}, contains the three-literal clause
=I(z,y)V-I(y,2)VI(z,z)

and the unit clause —=I(T,—). So, in S), there occur four different constants
(0,1, —,T), one n-ary function symbol (p), and one binary predicate symbol (I).

Any clause set S], represents a certain meta-level representation of S,. The
natural interpretation of the predicate symbol I is the material implication re-
lation. Accordingly, the three-literal clause expresses the transitivity of material
implication. S}, is designed in such a manner that every resolution step between
two clauses ¢y, co (deduced) from S, can be simulated within S}, by performing
a unit hyper resolution step with the transitivity clause as nucleus and the cor-
responding clauses ¢/, ¢, as electrons. To the empty clause in the old set, there
corresponds the clause I(T,—). This explains the necessity of the last clause
—I(T,—), which is only used to derive the real empty clause. The advantage of
the new clause set is that any resolution derivation from S,, can be linearly sim-
ulated by a unit hyper resolution derivation from the set S!. In particular, S},
has a unit hyper refutation of linear size. By Proposition 7.46, S;, has a closed
tableau with local unification of linear size. But the Herbrand complexity of any
S}, is still exponential. O

So local unification can significantly imporve the deductive power of free-
variable tableaux. But the use of local unification also has an interesting other
effect on tableau proofs. With standard unification, the number of inference steps
of a tableau proof gives a reliable measure of the actual complexity of the proof.
More precisely, any n-step tableau proof for a formula F' has a polynomial size
wrt. the size of F' plus n. This property is lost when local unification is applied.
Using the same technique as in Example 7.49 and the prime number example from
[Letz, 1993a], one can easily construct a formula with violates this property.

Chapter 8

Complexities of Search
Spaces

While the last chapter was devoted to lengths of minimal proofs, in this chapter
we will present fundamental complexity results on the sizes of the search spaces
of tableau calculi. Concerning the complexities of search spaces, the work of
Plaisted and Lee is of high significance [Plaisted, 1994, Plaisted and Zhu, 1997].
They analyze a wealth of different theorem proving strategies like resolution,
model elimination or clause linking according to their worst-case complexities.
Plaisted and Lee also compare the search spaces of strategies based on calculi with
different behaviour concerning minimal proof lengths, i.e., calculi which cannot
polynomially simulate each other. Since the size of a search space is normally at
least exponential in the size of the length of the minimal proof, it is clear that
this way one may obtain big differences in complexity.

The difference of the results presented there with ours is that we concen-
trate on the finer differences within one framework, namely, the tableau-based
paradigm. We also attempt to keep proof length and search space issues sepa-
rate, in order to precisely identify the influence of a specific refinement on the
corresponding search spaces.

8.1 Complexities of Iterative-Deepening Bounds

When using the tableau enumeration approach, the most successful technique
is to use iterative deepening methods according to completeness bounds, which
are tableau complexity measures. For any tableau search space S, a complete-
ness bound defines a sequence of finite initial segments Sy, S, 83, ... of S. It is
important to know about the worst-case complexities of the S; with respect to
the size of the underlying input formula and tableau calculus. Furthermore, it is
instructive to know whether the existence of a proof in some S; can be related
with some problem class in the area of computational complexity. These topics

147

148 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

will be addressed in this section, for the most important families of completeness
bounds, the inference, the depth, and the multiplicity bounds.

8.1.1 TUpper Bounds of Bounded Search Spaces

We start with providing upper bounds for the number of tableaux contained in a
certain initial segment of a search space. The values are given in dependence on
the number k of clauses, the maximal clause length [and the maximal literal size
s in the underlying set of clauses. The upper bounds are defined for the general
clausal tableau calculus with folding up. For simplicity, we count any extension
step as two steps, as an expansion and a reduction step. Furthermore, we assume
that a subgoal selection function is used.

Proposition 8.1 (Inference bound estimate) The number of clausal tableauz with
folding up constructed with n inferences is bounded from above by an exponential
function in n and the input size.

Proof The number i(1) of clausal tableaux constructed with one inference is k.
The number of clausal tableaux with < m + 1 inferences can be estimated by
performing at most one inference step at the selected subgoal N of each tableau
with < n inferences. First, k expansion steps can be applied at N. The depth of
the node N is < n. Consequently, less than 2n reduction or E-reduction steps can
be performed at N. In total this gives the estimate

in+1)<i(n)-2n+k) < (2n+k)",

which is an exponential upper bound. The size of any tableau in such an initial
segment is quadratic in n and the size of the input. O

Proposition 8.2 (Depth bound estimate) The number of clausal tableauz with fold-
ing up of depth n is bounded from above by a doubly exponential function in n
and the input size.

Proof We simply use the estimate for the inference bound and exploit that any
tableau of depth n has < I™*! nodes and hence less than I" ! inferences. Therefore
the number of tableaux with a depth < nis < (2(1"*')+k)!""", which is a doubly
exponential upper bound. The size of any tableau in such an initial segment is
exponential in n and the size of the input. |

Similarly, results can be obtained for the clause-dependent and the weighted-
depth bounds. Note that, for the preferred parameter set of the weighted-depth
bound, the increase rate is also doubly exponential in the worst case. For the
multiplicity bound, we need a further restriction in order to achieve finiteness of
the initial segments. As pointed out in Section 4.1.3, the strictness condition is
sufficient.

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 149

Proposition 8.8 (Multiplicity bound estimate) The number of strict clausal tab-
leauz with folding up of multiplicity n is bounded from above by a doubly expo-
nential function in the input size plus n.

Proof According to the strictness condition, each of the n copies of any input
clause must appear at most once on a branch. This limits the depth of the tableaux
to n - k and we can use the result for the depth bound. O

8.1.2 Lower Bounds for a Concrete Example

One might argue that the given upper bounds are much to pessimistic. For this
reason, we also give lower complexity bounds for concrete inputs.

Example 8.4 —-P(z

P(a),
P(f(z,y)) vV -P(z) V-P(y).

~—

)

Consider the set of clauses given in Example 8.4. If only the first clause is
used as a start clause and a standard depth-first subgoal selection strategy is
used (i.e., a model elimination strategy), then the number of deductions in each
initial segment with bound n is bounded from below by the number of solu-
tion substitutions for the top subgoal. It is straightforward to recognize that the
number of solution substitutions for the top subgoal is just:

e for the inference bound: the number of all binary trees with < n — 1 nodes,
which is an exponential function, and

e for the depth bound: the number of all binary trees with a depth <n — 1,
which is a doubly exponential function.

So, the aforementioned upper bounds are tight in the sense that they give the
correct order of complexity. One might object, that this example is completely
insignificant, since no actual deduction enumeration procedure will explore the
described search spaces, but stop after the first proof has been found. In order
to invalidate this argument, we simply make the set satisfiable and use the mod-
ification given in Example 8.5. For this example, any actual model elimination
procedure has the aforementioned cost. Note also that, for this example, none
of the developed refinements of model elimination like regularity, failure caching,
etc. reduces the search effort.

Ezample 8.5
—P(z) Vv -Q(z),

P(a), Q(b),
P(f(z,y)) V-P(z)V-P(y), Qg(z,y))V-Q(z)V-Q(y).

150 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

Finally, let us consider the multiplicity bound. Interestingly, the depth bound
result for Example 8.5 cannot be used to obtain a doubly exponential lower bound
for the multiplicity case, since many of the respective tableaux of depth n contain
more than n different instances of the three-literal clauses, and hence have a higher
multiplicity. Under the multiplicity bound, Example 8.5 gives rise to only a single
exponential growth rate. This can be recognized by considering the three-literal
clauses. With start clause =P(z)V—=Q(z) and under multiplicity limit n, for every
closed subtableaux T below the top =P(x)-subgoal, there are at most n different
instances of the clause P(f(z,y)) V —P(z) V =P(y) in T. It is straightforward to
see that therefore the number of such subtableaux is bounded from above by the
number of different rooted dags with < n nodes and outdegree 2. The number of
such graphs is just H?;lliQ which is a single exponential function.

When using the pure connection tableau calculus without any refinements
except strictness, an obvious example with a doubly exponential number of tab-
leaux for the multiplicity bound can be obtained by simplifying Example 8.5 as
follows.

Ezample 8.6

—P(z) vV -Q(z),
P(a), Q(b),
P(a")V=P(z)V-P(y), QO)V-Q(z)V-Q(y).

For this example, in any closed subtableaux below the —P(z)-subgoal, there
are at most four different instances of the three-literal clause P(a') V —=P(z) V
- P(y). Consequently, for n > 4, the multiplicity bound has no effect. So only
the strictness condition works, which merely limits the tableau depth, and the
result for the depth bound applies. However, when using refinements like, e.g.,
regularity, the search space for this example collapses. In order to weaken the
effect of regularity, one could replace ¢’ and b’ with f(z) and g(z), respectively.
Then the search space remains doubly exponential even if regularity is used.
But for both examples, (local) failure caching will have a drastic search pruning
effect. This show that it is much harder to find a concrete example with a doubly
exponential increase rate for the multiplicity bound when powerful search pruning
methods are used.

8.1.3 Completeness Results wrt. Complexity Classes

The estimates for the number of tableaux in a certain initial segment is closely
related to a certain search paradigm, namely, the actual exploration of the re-
spective search space. However, there might exist completely different approaches
to verify the existence of a tableau in a certain initial segment of a search space,
and it is imaginable that those other methods are much more efficient. Therefore,
we investigate the question whether the existence of a tableau proof of a certain
size can be related to some fundamental other problems in the area of compu-
tational complexity. More precisely, we will provide completeness results of the

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 151

respective problems for certain complexity classes. For this purpose, some other
problems are needed which are known to be complete for the considered classes.
For the results concerning the inference and the depth bound we will directly use
reductions from nondeterministic Turing machines. For the multiplicity bound,
we use quantified Boolean formulae.

It is not the place here to provide an intuitive understanding of Turing ma-
chines as, e.g., in [Aho et al., 1974]. We shall just introduce the minimal machin-
ery that is needed for specifying one-tape nondeterministic Turing machines.

Definition 8.7 (Turing Tape) Let X be a finite alphabet and b € ¥ a symbol,
called the blank. If h is an integer and ¢ is a mapping from the integers Z into X
such that for almost all n € Z : #(n) = b (we shall abbreviate t(n) by writing ¢.),
then the pair (z,t) is called a tape for ¥ and b; the integer z is called the head
position of the tape.

Definition 8.8 (Turing machine) A (nondeterministic) Turing machine M is a
tuple (K, ¥, qo,qq,b,7,1,T) where K and ¥ are two finite sets of symbols, the
internal states respectively the tape alphabet of M; qq,q, € K are the initial
respectively the accepting state of M; b € X, the blank; r and [are two symbols
not contained in X, called the left and the right, respectively; and T is a finite set
of quadrupels (¢, a,0,c') with ¢,c’ € K, a € ¥, and o € ¥ U {r,l}. The elements
of T are called the instructions of M. If an instruction has the symbol r or [at
the third tuple position, then it is called a right respectively a left instruction,
otherwise it is called a write instruction.

Definition 8.9 (Turing configuration and input) Let M = (K,X, qo, qq, b, 7,1, T)
be any nondeterministic Turing machine. Any triple (z,t,¢) where ¢ € K and
(z,t) is a tape for ¥ and b is called a configuration for M. A configuration
(z,t,c) for M is said to succeed a configuration (z',t',c') for M if M has an
instruction (¢, t,, s, ¢') such that

1. either ' =tand 2’ =24+1lorz—-1
2. or 2’ =z and t' =t except that t'(2) = s.

An input to a Turing machine is just a tape for the tape alphabet and the blank
of M. A derivation for M is a sequence of successive configurations for M. M is
said to accept an input (z,t) in n steps if there is a derivation of length < n with
(z,t,qo) as first element and a configuration with g, at the last triple position as
last element.

Subsequently, we will use different encodings of Turing machines and their
inputs as logical formulae that are best suited for our purposes. In detail, we give
transformations # which map any Turing machine M and any input tape [into a
set of Horn clauses such that M accepts I if and only if (M, I) is unsatisfiable.
First, we have to explain how tapes are encoded. On every tape for almost all
integers z: ¢, = b. Therefore, every configuration (z,t,¢) encountered during a

152 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

Turing derivation can be finitely represented. Let [and r be the greatest tape
position to the left respectively the smallest tape position to the right of position
z encountered during the derivation. Then we encode the tape to the left of the
head position by the (possibly empty) list term | = [t,_1,...,#;] and the tape
to the right by » = [t.4+1,...,t.]—we use the Prolog conventions for denoting
list terms. The entire configuration can then be uniquely represented by the list
[l t.,r,cl

After these preparations, we come to the definition of the first transforma-
tion, which might be called a linear encoding. The idea is to use a literal of
four arguments A(l,t.,r, ¢) with the meaning that the list [I,¢.,r, c] denotes an
accepting configuration. Accordingly, any possible transition between two config-
urations in the Turing machine is encoded as a material implication of the form
Al ty,rc) = Al ¢, r", ') where [I',t.,7',¢'] can be reached from [I,¢,,r,¢] in
one step. The input and the accepting configurations can be represented with a
negative and a positive unit clause, respectively.

Definition 8.10 (Linear Turing encoding) Given a nondeterministic Turing ma-
chine M = (K, ¥, qo,qq,b,7,1,T) and an input I = (¢, 2) to M, the linear Turing
encoding O(M,I) is the set of clauses defined as follows. Subsequently, w, z, y
and z shall denote four pairwise distinct variables.

1. First, for every write instruction {c¢, a, a’,¢'), §(M, I) contains the two-literal
clause
A(z,a,y,c) V ~A(z,d’,y,c).

2. For every left instruction (c,a,l,c'), 8(M,I) contains the two two-literal
clauses

A([]va:yvc:)\/—'A([Lb: [a ‘ y]ac,) and A([ZE | w],a,y,c)\/—'A(w,a:, [a’ | y]ac,)'

3. For every right instruction {(c, a,r,c'), (M, I) contains the two two-literal
clauses

A(x:aa [] C) V_'A([a ‘ x]sba []70,) and A(x:aa [y ‘ ’U)],C) V_'A(a ‘ x]ayawacl)'

4. Furthermore, §(M, I) contains the unit clause A(z, w,y,qq).

5. Finally, for the input tape I = (t,z), (M, I) contains the negative unit
clause —A(l,t.,7,qo]) where | and r are the list term encodings of the tape
to the left respectively to the right of the head position z.

No other clause is contained in (M, I).

Note that we need two clauses for every right or left instruction in order to
simulate the infinite tape in a finitistic manner. It is straightforward to recognize
that a nondeterministic Turing machine M accepts an input [if and only if
the set of clauses (M, I) is unsatisfiable. In more detail, the following property
holds.

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 153

Proposition 8.11 A nondeterministic Turing machine M accepts an input I in n
steps if and only if there is a closed regular connection tableau T for O(M,I) of
depth < n + 1 and constructed with < n + 1 inference steps.

Proof For the ”only-if” direction, we may restrict ourselves to an accepting Turing
derivation D of minimal length m < n. Then, when starting with the top clause
=R(l,t.,7,qo), which corresponds to the input, one can step by step simulate
the Turing derivation D by an extension step using exactly one of the clauses
corresponding to the instruction used in the respective transition step. From
the minimality assumption for D it follows that no configuration is repeated in
D. This means that regularity of the tableau is preserved. Furthermore, in any
extension step the tableau depth is increased by 1. For the ”if” direction, it suffices
to note that only inference steps are possible which correspond to transitions in
the Turing machine. |

Proposition 8.12 The verification of the existence of a closed reqular connection
tableau with < n inferences for a set of clauses S is NP-complete, where the input
size is the size of S plus n.

Proof By Proposition 8.11, we can reduce the verification of whether any nonde-
terministic Turing machine M accepts an input I in n—1 steps to the verification
of whether (M, I') has a closed regular connection tableau constructed with <n
inferences, and the input sizes are linearly related. This proves the NP-hardness.

For proving the containment of the problem in NP, we nondeterministically
guess a closed regular connection tableau T' constructed with < n inference steps
and the respective pairs of complementary literals. Since T' is connected, it has
< 2n —1nodes and < n branches. When using dags, the size of T'is < 2ns where
s is the maximal size of a literal in the input set. Finally, the complementarity of
the respective literals can be checked in quadratic time in total. O

Note that the complexity of the corresponding problem for tableaux with local
unification is open. This is because in n steps one can construct a tableau of a size
exponential in n. This also holds for binary resolution. In both cases the critical
mechanism is the renaming of variables (see [Letz, 1993a, Letz, 1993b]).

Next, we come to the tableau depth bound. The gist of the encoding employed
here is that we use a binary predicate symbol R in order to express the fact
that from a certain configuration C' a configuration C' can be reached. Now, all
instructions are encoded as unit clauses and we have only one clause of length
three, which expresses the transitivity of the reachability relation.

Definition 8.138 (Reachability Turing encoding) Given a nondeterministic Turing
machine M = (K, ¥, qo, qq,b, 7,1, T) and an input I = (¢, z) to M, the reachability
Turing encoding 6' (M, I) is the set of clauses defined as follows. Again, w, z, y
and z shall denote four pairwise distinct variables.

154 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

1. First, for every write instruction (c,a,a’,c’), 68'(M,I) contains the unit
clause

R([z,a.y,c],[z,a’,y,c]).
2. For every left instruction (c, a,l, '), 6'(M, I) contains the two unit clauses

R([[1;a,y,¢,2, [[1,b,[a | yl, c']) and R({[z | w], a,y, cl, [w,z,[a | y],c]).

3. For every right instruction {c, a, r,c'), 8'(M, I) contains the two unit clauses

R([z,a,[],c,[[a|=],b,[],¢]) and R([z,a, [y | w],c],[a | x],y,w,cT]).

4. Then 6'(M,I) contains the unit clause R([z,w,y, ¢.], [z, w,y, ¢a])-

5. For the input tape I = (t,z), 6'(M,I) contains the negative unit clause
=R([l,t.,7,q0], [T, y,w,c,]) where | and r are the list term encodings of the
tape to the left respectively to the right of the head position z.

6. Finally, 6'(M, I) contains the transitivity clause for R.

R(z,z) V ~R(z,y) V ~R(y, z).
No other clause is contained in 6'(M, I).

Proposition 8.1/ A nondeterministic Turing machine M accepts an input I in n
steps if and only if there is a closed regular connection tableau T for 68'(M,I) of
depth < 3 + logan.

Proof Let Cy,...,C, be any accepting derivation of minimal length. First, we
structure the derivation hierarchically in the form of a binary tree, as follows.
Let ¢ be the smallest integer > n/2. If i < n, we split the derivation into two
subderivations C4,...,C; and C;,...,Cy. This process is repeated recursively
for the subderivations until no more splittings are possible, i.e., until the length
of the subderivation is 2. The depth of the resulting tree is < 1 + logan. This
hierarchical organization of the derivation can be simulated by the reachability
Turing encoding, as shown in Figure 8.1 for a derivation of length 5. Let C' be
the term list encoding of any Turing configuration. We start with the all-negative
clause. To every splitted (sub)derivation Cj, ..., C,, with split configuration Cj,
there corresponds a subgoal with literal ~R(C}, Cy,). Then we perform an exten-
sion step at this subgoal using the transitivity clause, which produces two new
subgoals with literals —R(C}, C}) and =R(C},Cy,), and so forth. For subgoals
corresponding to subderivations of length 2, we simply extend into a unit clause.
The depth of the resulting closed tableau 8'(M, I) is < 3+ logan. The additional
2 come from the start step and the extensions into unit clauses. Regularity is
guaranteed by the minimality of the input derivation. O

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 155

C1,02,C3,04,C5 -R(C1,C%)

/\

C1,C2,Cs C5,C4,C5 R(CL,CL) —R(C},C}) —~R(C},CL)

SN N IS IS

C1,C2 C2,C3 C3,C4 Ca, 05 R(Cy,C3) —R(Cy,C5) —R(Cy, C3) R(Cy, Cg) —=R(Cy, C}) —R(Ca, Cj)

R(C1,C3) R(C3,Cy) R(Cg,Cy) R(CL,Cy)

Figure 8.1: Tree-structured simulation of a Turing derivation.

Proposition 8.15 The verification of the existence of a closed reqular connection
tableau with depth < n for a set of clauses S is NEXPTIME-complete, where the
input size is the size of S plus n.

Proof By Proposition 8.14, we can reduce the verification of whether any nonde-
terministic Turing machine M accepts an input I in 2™ —3 steps to the verification
of whether §(M, I) has a closed regular connection tableau of depth < n, and
the input sizes are linearly related. This proves the NEXPTIME-hardness.

For proving the containment of the problem in NEXPTIME, we nondeter-
ministically guess a closed regular connection tableau T of depth < n and the
respective pairs of complementary literals. T" has < I™ nodes. When using dags,
the size of T is < 14 1™(1 + s) where s is the maximal size of a literal in the
input set. Finally, the complementarity of the respective literals can be checked
in exponential time in total. O

Finally, we come to the multiplicity bound. The existence of a closed tab-
leau with a certain multiplicity is related with the following problem first en-
countered by Prawitz. He was interested in improvements of the well-known
early approaches in automated deduction like the Davis/Putnam procedures
[Davis and Putnam, 1960, Davis et al., 1962]. In those procedures the unsatis-
fiability of a first-order Skolem formula & is demonstrated by systematically
building increasing sets of ground instances of the quantifier-free part—the ma-
triz—of ®, which are then checked by propositional decision procedures. A cru-
cial point which determines the efficiency of this approach concerns the manner
how the respective ground instances are generated. In the original procedures,
no information of the connection structure of the matrix of ® was used, but
a systematic substitution of terms from the Herbrand universe of ® was per-
formed, which is obviously unmanageable in practice. The clause linking method
[Lee and Plaisted, 1992] described in Section 4.2.3 presents one significant im-
provement of the selection of ground instances.

In contrast, Prawitz took another approach [Prawitz, 1960, Prawitz, 1969]. In
order to improve the overall procedure, he proposed not to build ground instances
of the formula but to work directly on variable-renamed copies of the matrix of ®

156 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

and to determine an unsatisfiable set of ground instances by using unification on
the connections in the set of copies. While the recognition of the unsatisfiability
of a ground formula is a coNP-complete problem, the complexity of recogniz-
ing the existence of an unsatisfiable ground instance of a quantifier-free formula
was settled just recently independently in [Voronkov, 1998] and [Letz, 1998a].
Voronkov’s paper contains a number of results on the decidability and the worst-
case complexities of multiplicity-based formula instantiation problems including
different forms of equational reasoning.

Here, we consider the pure clausal problem. The clausal ground instantiation
problem is the following problem: given a set of clauses S, find a ground substi-
tution o for S, i.e., a substitution that maps all variables in S to ground terms,
such that So is unsatisfiable. Interestingly, this problem is closely related with
the problem of finding a unifiable spanning mating for a set of clauses occurring
in the matings approaches of Andrews [Andrews, 1981] and Bibel [Bibel, 1981]
presented in Section 4.1.2. First, if there is a unifiable spanning mating for a set
of clauses S with unifier o, then every ground instance of So is unsatisfiable,
hence S has an unsatisfiable ground instance. In the other direction, when a set
of clauses S has an unsatisfiable ground instance So, then there is a unifiable
spanning mating for S with simultaneous unifier ¢. Furthermore, the mating of
any closed regular connection tableau without renaming for a set of clauses S is
spanning for S; and when a set of clauses has an unsatisfiable ground instance
So, then, by Theorem 5.7, So has a closed regular connection tableau, hence, by
Lemma 5.9, S has a closed regular connection tableau without renaming for S.
So all three problems are equivalent.

We will prove now that these problems are complete for the complexity class
Y% in the polynomial hierarchy [Garey and Johnson, 1979]. ¥ is the set of all
problems solvable (languages recognizable) in nondeterministic polynomial time
with an oracle to a problem in £} = NP. The containment of the problems in X5
can be seen easily by using the problem of finding a unifiable spanning mating.

Proposition 8.16 The problem of finding a unifiable spanning mating for a set of
clauses S is contained in X¥.

Proof First, guess a spanning mating M in S with simultaneous unifier o. The
cardinality of M is quadratically bounded by the number of literals in S. Further-
more, since there are linear unification algorithms [Paterson and Wegman, 1978§],
the simultaneous unifiability of M by o can be verified (even decided) in linear
time wrt. the size of M. Finally, since the verification of the spanning property
is in coNP, the spanning property of M can be decided in polynomial time by an
NP-oracle. |

For proving the completeness of the problem for the complexity class Y5,
we use the well-known fact that language classes in PSPACE can be character-
ized with quantified boolean formulae [Garey and Johnson, 1979]. A quantified
boolean formulae (QBF) is a boolean formula prefixed by a sequence of quantifi-
cations over the boolean variables with the interpretation domain of the variables

8.1. COMPLEXITIES OF ITERATIVE-DEEPENING BOUNDS 157

being the set of the truth values {T, —}. For example, the quantified boolean for-
mula Vp3qar(p — (¢ A 1)) is true, since, for every assignment of a truth value to
p, there is an assignment to ¢ and r that makes the formula p — (¢ A r) true.

We will prove that there is a polynomial reduction of every quantified boolean
formula B of the V*3*-type to a set of clauses S such that B is false if and only if
S has an unsatisfiable ground instance. It suffices to consider the special case of
QBFs whose matrices are in clausal form and in which no clause is tautological,
i.e., does not contains an atom and its negation, since this restricted language
is also complete for ¥ . For any such QBF B, we define a corresponding set of
clauses S.

Definition 8.17 (Clause set corresponding to a QBF) Let B be any QBF of the
mentioned type, i.e., B is of the form Vp; - - - pp,3q1 - - - ¢ C with C =1 A+ Ay,
and each ¢;, 1 < i < k being a non-tautological clause. Let 1, ..., @, be n first-
order predicate symbols with arity m each, x1, ..., z,, first-order variables, and 0
and 1 two constants. Now, for each clause ¢;, 1 < i < k, a corresponding first-order
clause ¢} is defined as follows. The clause ¢} contains the literal (=)Q; (a1, ..., am)
if and only if ¢; occurs positively (negatively) in ¢;; furthermore, all literals in ¢}

have the same arguments

1 if p; occurs positively in ¢;
a; = 0 if p; occurs negatively in ¢;
x; otherwise.

The clause set S corresponding to B is the set of all clauses which correspond to
clauses in C.

Example 8.18 In order to facilitate the understanding of the transformation, we
give a concrete example of a QBF and its transform. Let B be the formula
Vp1p23g192C with the clauses in the conjunction C given on the left-hand side.
The clauses resulting from the transformation are given on the right-hand side.

pVa Ve Q1(1,22) V Q2(1,z2)
mVa Ve Q1(0,72) V Q2(0,z2)
P2V @1 =Q1(z1,1)
—p2 V g2 =Q2(x1,0)
p1Vp2Voq Vg —-Q1(0,0) vV Q2(0,0)

So the g-literals in a clause of the QBF are captured by respective predicate
symbols whereas the p-literals in a clause are uniformly encoded in the arguments
of the corresponding clause.

Proposition 8.19 For any quantified QBF B of the aforementioned type, B is false
if and only if the set of clauses S corresponding to B has an unsatisfiable ground
instance.

158 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

Proof For the “if” direction, consider any minimal subset S’ C S such that S'o
is unsatisfiable for some ground substitution ¢. First, we show that all literals in
S’o have the same argument list aq, . .., a,. From the structure of S it is obvious
that all literals in the same clause in S'c must have the same argument list.
Consider any closed connection tableau for S'c. Then, after the start step, only
clauses can be attached by extension steps with literals of the same argument list.
Therefore, by the minimal unsatisfiability of S’c, all literals in S’c must have the
same argument list. Now we show that B is false. For this consider an arbitrary
Boolean valuation v satisfying that, for all 1 < ¢ < m, v(p;) = T if and only if
a; = 0. Consider the interpretation I defined by I(Q;(a1,...,a,)) = v(g;). By
the unsatisfiability of S’o, there is a clause ¢’ € S’ such that I(¢'o) = —, i.e., for
every literal L contained in ¢'o : I(L) = —. Let ¢ be the clause in the matrix of B
which was transformed to ¢'. Then, by the transformation, for every literal L in
¢ with an atom ¢;, (L) = —. Furthermore, for every literal K in ¢ of the form p;
respectively —p;, v(K) = —, since, by the definition of v, v(p;) = — respectively
T if p; occurs positively respectively negatively in ¢. This proves that B is false.

For the “only-if” direction, assume that B is false. This means that there exists
a partial evaluation v’ with domain {p,...,pn} such that B is false for all total
extensions of v'. Let o be the substitution defined by o(x;) = 0 or 1 depending
on whether v'(p;) = T or —. We show that So is unsatisfiable. For this consider
an arbitrary interpretation I for So. Define the Boolean valuation v by setting
v(pi) =v'(pi), for 1 <i <m,and v(g;) = I(Qi(a1,...,ay)), for 1 <i < n, where
a; = 0 or 1 depending on whether v'(p;) = T or —. By assumption, there exists

a clause ¢ in the matrix of B such that v(L) = — for all literals L in ¢. Let ¢’ be
the clause to which ¢ was transformed. Then, by construction, I(¢'e) = —. So So
is unsatisfiable. m|

Proposition 8.20 The verification of the existence of a closed reqular connection
tableaw with multiplicity < n for a set of clauses S is XE-complete, where the
input size is the size of S plus n.

Proof Since the used transformation is quadratic in the size of the QBF, the re-
sult immediately follows from Proposition 8.16 (containment in ¥%) and Propo-
sition 8.19 (X2-hardness). O

Interestingly, the transformation maps any QBF of the specified type to a set
of datalogic clauses, i.e., clauses in which no function symbols of arity greater the
0 occur. Consequently, the considered verification problem is already ¥5-complete
for this restricted formula class.

We can observe that there is a striking difference between the containment of
the problem in the complexity class ¥4 and the doubly exponential upper bound
estimate for the number of tableaux with a certain multiplicity. Note that the
membership of a verification problem in ¥ means that the problem can be decided
in single exponential time. So this complexity result shows that the standard
iterative-deepening approach seems not suited when used with the multiplicity
bound. A naive algorithm which would enumerate all unifiable matings of the

8.2. THE REDUCTIVE POWER OF REFINEMENTS 159

clause set and test whether they are spanning needs only single exponential time,
even if no refinements are used.

8.2 The Reductive Power of Refinements

In this section, we will consider the effect of the most important refinements
of clausal tableau calculi on the search spaces of certain input formulae. The
motivation for any form of search pruning is that the search space decreases.
For most of the introduced pruning methods, it is relatively straightforward to
demonstrate that there is a class of formulae with infinite search spaces with and
finite search spaces without the pruning method. For instance, the set of clauses
given in Example 8.6 has a finite search space with and an infinite one without
regularity. Similar examples exist for the connection conditions, tautology and
tableau clause subsumption, for the use of relevance information, and for (local)
failure caching. In Section 5.3.1, it was shown that the matings pruning technique
may also have a strong search pruning effect. Moreover, local failure caching is a
very powerful method, which cannot be completely captured by structural prun-
ing paradigms. The caching technique proposed in [Astrachan and Stickel, 1992],
which permanently stores the solutions of subgoals and uses cached solutions for
solving subgoals by lookup instead of search, provides a polynomial decision pro-
cedure for propositional Horn sets [Plaisted, 1994, Plaisted and Zhu, 1997]. An
interesting other topic, which we will discuss in more detail, is the influence of
subgoal selection functions.

8.2.1 Free Subgoal Selection Functions

As discussed in Section 3.4, the used method of subgoal selection may have an
effect on the search space. In particular, it is important to emphasize that the
restriction to depth-first subgoal selection functions (which is enforced in the
chain format of model elimination) can have a very detrimental effect. In order
to illustrate this, let us reconsider the set of clauses

~P(z) vV -Q(z),
P(a), Q(b)7
P(f(z,y))V=P(zx)V=P(y), Qg(z,y)) vV -Q(z) V-Qy)

given in Example 8.5. We have shown that the search space of this clause set
increases exponentially for the inference bound and double exponentially for the
depth bound, for any depth-first selection function. Interestingly, when permit-
ting arbitrary subgoal selection functions, one can improve this behaviour tremen-
dously. Consider any subgoal selection function which always selects a subgoal
with a literal of maximal term size. Assume w.r.g. that we select first the - P(z)-
subgoal. The crucial difference of such a selection function from selection functions
of the pure depth-first type occurs when the clause

P(f(z,y)) V-P(z)V=P(y)

160 CHAPTER 8. COMPLEXITIES OF SEARCH SPACES

is entered for the first time. (This must happen after at most four inference
attempts, since when the unit clause P(a) is tried first, the failure of the other
top subgoal is detected in two further inference attempts.) After the extension
step into the renamed clause

P(f(a",y") vV =P(a') v =P(y)

the variable z is instantiated to f(z’,y') while the variables z',y' in the new sub-
goals are not instantiated. When preferring subgoals with literals of maximal term
size, in the next inference step the other top subgoal with literal =Q(f(z',y")) is
selected. The impossibility of solving the subgoal is detected within two further
inference attempts. Since no further inferences are possible, the search procedure
stops. Consequently, we achieve a reduction of the search space from an expo-
nential respectively doubly exponential size to a constant size of 3, which is even
independent of the limit n of the used completeness bound. This is a striking il-
lustration of the power of subgoal selection strategies. The example also exhibits
the severe limitations of the chain-oriented model elimination format, which only
permits depth-first subgoal selection and hence cannot achieve such a reduction.

Chapter 9

Implementation of
Connection Tableaux

All competitive implementations of connection tableaux are iterative-deepening
search procedures using backtracking. When one envisages the implementation
of such a procedure, one has the choice between fundamentally different archi-
tectures, for the following reason. As sketched at the end of Section 4.1, it is
straightforward to recognize that SLD-resolution (the inference system underly-
ing Prolog) can be viewed as a refinement of connection tableaux obtained by
simply omitting the reduction inference rule. Since highly efficient implementa-
tion techniques for Prolog have been developed, one can profit from these efforts
and design a Prolog Technology Theorem Prover (PTTP). The crucial charac-
teristics of Prolog technology is that input clauses are compiled into procedures
of a virtual or concrete machine which permits a very efficient execution of the
extension operation. There are even two different approaches of exploiting Prolog
technology. On the one hand, one can build on some of the efficient implementa-
tion techniques of Prolog and add the ingredients needed for a sound and complete
connection tableau proof procedure. On the other hand, one can use Prolog itself
as implementation language with the hope that its proximity to connection tab-
leaux permits a short and efficient implementation of a connection tableau proof
search procedure. The PTTP approaches, which will be both described in this
section, have dominated the implementations of connection tableaux in the last
years. The use of Prolog technology, however, has a severe disadvantage, namely,
that the framework is not flexible enough for an easy integration of new techniques
and new inference rules. This inflexibility has almost blocked the implementations
of certain important extensions of connection tableaux, in particular, the integra-
tion of inference mechanisms for an efficient equality handling. Therefore, we also
present a more natural and modular implementation architecture for connection
tableaux, which is better suited for various extensions of the calculus. Although
this approach cannot compete with the PTTP approaches concerning the effi-
ciency by which new instances of input clauses are generated, this drawback can

161

162 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

Vis]e

[L]ofe
Br

T [y

Figure 9.1: Internal representation of the clause P(a, f(z,2)) < Q(b, g(g(z))).

be compensated for by an intelligent mechanism of reusing clause copies, so that,
for the typical problems occurring in automated deduction, about the same high
rates of inferences per seconds can be achieved.

9.1 Basic Data Structures and Operations

When analyzing the actual implementations of connection tableaux, one can iden-
tify some data structures and operations that are more or less common to all
successful approaches and hence form something like a standard basis. The first
subject is the way formulae should be represented internally in order to permit
efficient operations on them. It has turned out that all terms, literals, and clauses
may be represented in a natural tree manner except variables, which should be
shared. In Figure 9.1, such a standard representation of a clause is depicted. The
treatment of variables needs some further explanation. Internally, variables are
typically represented as structures consisting of their actual bindings and their
print names with nil indicating that the variable is currently free. Furthermore,
variables are not identified and distinguished by their print names but by the
addresses of their structures.

9.1.1 TUnlification

The next basic ingredient is the employed unification algorithm, which is
specified generically in Table 9.1. In the displayed procedures, it is left open how
variable bindings are performed and retracted. Unification is specified with two
mutually recursive procedures, the first one for the unification of two lists of terms,
the other for the unification of two terms. The standard in connection tableau
implementations is that a binding is performed destructively by deleting nil from
the variable cell and inserting a pointer to the term to be substituted for the

9.1. BASIC DATA STRUCTURES AND OPERATIONS

procedure unify_lists(argsi,argss)
if (args; =0) then
true;
/* check first arguments */
elseif (unify(binding(first(args;)),binding(first(argss))) then
unify_lists(rest(args;),rest(argss));
/* undo variable bindings made in this procedure */
else
unbind;
false;
endif;

procedure unify(arg;,args)
if (is_var(args)) then
if (occurs(args,arg;)) then
false;
else
bind(args,arg;);
true;
endif;
elseif (is_var(arg;,)) then
if (occurs(argy,args)) then
false;
else
bind(arg,,args);
true;
endif;
elseif (functor(arg;) == functor(args)) then
unify_lists(args(arg;),args(args));
else
false;
endif;

Table 9.1: The unification procedures.

163

164 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

variable. The resulting bound variable cell then does no more denote a variable
but the respective term. The recursive function binding(term) returns term if term
is not a bound variable cell, or otherwise binding(first(term)). On backtracking,
variable bindings have to be retracted. This is done by simply reinserting nil in
the first element of the respective bound variable cells, so that the original state
is restored. Note that the unbind procedure is assumed to retract all variable
bindings performed in the current unification attempt.

Polynomial unification

It is straightforward to recognize that this unification procedure is linear in space
but exponential in time in the worst case. Although this is not a critical weakness
for the typical formulae in automated deduction, one may easily improve the
given procedure to a polynomial time complexity by using methods described on
Page 49. The key idea of such methods is that one attaches an additional tag at
any complex term. This tag is employed to avoid that the same pairs of complex
terms are successfully unified more than once during a unification operation.
Furthermore, this tag can be used to reduce the number of occurs-checks to a
polynomial (see [Corbin and Bidoit, 1983, Letz, 1993a]).

Destructive unification using the trail

In order to know which bound variables have to be unbound, the trail is used as a
typical data structure. The trail is a global list-like structure in the program which
contains the pointers to the bound variables in the order in which they have been
bound. Since all standard backtracking procedures retract bindings exactly in the
reversed order of their generation, a simple one-dimensional list-like structure is
sufficient for the trail. The trailmarker is a global variable which gives the current
position of the trail. The number of bindings performed may differ from one in-
ference step to another. In order to know how many bindings have to be retracted
when an inference step is retracted, there are two techniques. One possibility is to
locally store the number of performed bindings or the trail position at which the
bindings of the previous inference step start. Alternatively, one can use a special
stop label on the trail which is written in a trail cell whenever an inference step
ends; in this case, no local information is needed. Depending on which solution
is selected, the unification procedure has to be modified respectively.

Figure 9.2 documents the entire binding process and the trail modifications
performed during proof search for the set of the four clauses —P(z,y)V -P(y, z),
P(a,z), P(b,v), and Q(a,b). The description begins after the start step in which
the first input clause has been attached (a). First an extension step using the
second input clause is performed, which produces two bindings (b). Then an
extension step with the Q-subgoal is attempted: y (and implicitly z) are bound
to a, but the unification fails when a (the binding of x) is compared with b (c).
Then the two inferences are retracted (d). After extension steps using the third
clause (e) and the fourth clause (f), the proof attempt succeeds. This technique
permits that backtracking can be done very efficiently.

9.1. BASIC DATA STRUCTURES AND OPERATIONS 165

{\Q /N /N

-P(z,y) -Q(y,z) ﬂP(lﬂmy) —Q(y,) ﬂP(lﬂmy) ﬂQ(ly,r)
P(a,z2) P(a,z) Q(a,b)
Trailmarker Trailmarker Trailmarker
vt [T LTI JTI
-
v R FHEEER EEREED
N N
(a) (b) (c)
N /N N
_‘P(zay) _'Q(yax) _'P(xay) —Q(y,a:) _'P(may) _‘Q(y:x)

| | |
P(b,v) Pb.v) Qa.b)

*

Trailmarker Trailmarker Trailmarker

v [T EIRICIC] LT
~

L] v)la]y]

Memory:

RN EEGRER G

ﬁ/

(d) (f)

Figure 9.2: An example of the trail modifications during proof search.

166 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

9.1.2 The Connection Graph

In order to permit an efficient performance of extension steps, it is necesssary that
the connected literals of the current subgoal can be accessed quickly. The set of
connections between the literals of a clause set can be represented in an undirected
graph, the so-called connection graph. When a subgoal is selected for an expansion
step during the proof search, it is sufficient to consider the connections involving
that subgoal.

Ezample 9.1 To demonstrate the concept of the connection graph, we consider the
clauses ~P(g(x))V ~Q (9(x))V-Q(f(2)), Q(x)V—P(f(x)), Qg(y))V P(f(y)) and
P(g(a)). The connection graph of this set of clauses is depicted in Figure 9.3. The
connections are indicated by the solid lines between the literals. The faint dashed
lines show the pairs of literals where, even though they have the same predicate
symbol and complementary signs, the argument terms cannot be unified. These
literals are not connected. Thus, when the literal —=P(g(z)) has been chosen for
an extension step, the clause Q(g(y)) vV P(f(y)) need not be tried.

Since the variables in clauses are all implicitly universally quantified, the con-
nections between literals are independent of any instantiations applied during the
proof search. Therefore, the computation of the literal connections can be done
statically and used as a filter. If there is a connection between two literals P and
@, then P is also said to have a link to () and vice versa. The links of a literal
are stored in its link list. The link lists for the literals in Example 9.1 are:

P(g(a)): [=P(g(x))]
—P(g(z)): [P(g(a))]
—Q(g(z)): [Qg(y)), Q)]
—Q(f(x)): [Q(x)]

Q(z): [~Q(g(x)), ~Q(f(x))]

=P(f(2): [P(f(y))]

P(f(y)): [=P(f(x))]

Qg(y): [-Q(g(x))]

The problem of generating clause variants

One of the main difficulties when implementation connection tableaux is how to
provide renamed variants of input clauses efficiently, because in every extension
step a new variant of an input clause is needed. It is obvious that the generation of
a new variant of an input clause by copying the clause and replacing its variables
consistently with new ones is an expensive operation, all the more since variables
are shared and it is not a tree that has to be copied but a graph. The search for an
efficient solution of this problem naturally leads to the use of Prolog technology.

9.2. PROLOG TECHNOLOGY THEOREM PROVING 167

~P(g(z)) v -Q(g()) v ﬁQ(f(i
P(g(a)) / \Q(w) Vv =P(f(x))

Qg(y)) v P(f(y))

Figure 9.3: The connection graph for the set of clauses =P (g(z)) V —=Q(g(z)) V
—Q(f(2)), Q(z) v -P(f(z)), Qg(y)) vV P(f(y)) and P(g(a)).

9.2 Prolog Technology Theorem Proving

One reason for the high efficiency of current Prolog systems is the fact that many
of the operations to be performed in SLD-resolution steps can be determined in
advance depending on the respective clause and its entry literal. This information
can be used for compiling every Prolog input clause A :- Aj,...,A, (which cor-
responds to the clause AV ~A4; V-V ~A, with entry literal A) into procedures
of some actual or virtual machine. Since SLD-resolution steps are nothing but
extension steps, this technique can also be applied to connection tableaux. The
first to use such a compilation method for connection tableaux was Mark Stickel
[Stickel, 1984] who called his system a PTTP, a Prolog Technology Theorem
Prover.

In summary, the main deficiencies of Prolog as far as first-order automated
reasoning is concerned are the following:

1. the incompleteness of SLD-resolution for non-Horn formulae,
2. the unsound unification algorithm, and
3. the unbounded depth-first search strategy.

To extend the reasoning capabilities of Prolog to full connection tableaux, it
is necessary to extend SLD-resolution to the full extension rule and to add the
start rule and the reduction rule.

Contrapositives

In order to implement the full extension rule and further permit the compilation
of input clauses into efficient machine procedures, one has to account for the fact
that a clause may be entered at every literal. Accordingly, one has to consider all
so-called contrapositives of a clause Ly V- --V Ly, i.e., the n Prolog-style strings of
the form L; :- ~Ly,...,~L; 1,~L;11,...,~Ly. The start rule can also be captured
efficiently, by adding, for every input clause Ly V ---V L,, a contrapositive of

168 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

the form — :- ~Ly,...,~L,. Now, with the Prolog query I~ — as the single start
clause, all start steps can be simulated with extension steps. As a matter of fact,
one can use relevance information here and construct such start contrapositives
only for those subset of the input formulae which are known to contain a relevant
start clause; by default, this will be the set of all-negative input clauses.

Unification in Prolog

Prolog by default uses a unification algorithm that is designed for maximum
efficiency but that can lead to incorrect results. A Prolog program like

X< (X +1).
- (Y + 1) <VY.

can prove that there is a number whose successor is less than itself; the reason for
the unsoundness is that no occurs-check is performed in Prolog unification. Since
the compilation of extension steps into machine procedures also concerns parts
of the unification, this compilation process has to be adapted such that sound
unification is performed. In special cases, however, efficiency can be preserved,
for example, if the respective entry literal L is linear, i.e., if every variable occurs
only once in L. It is straightforward to recognize that in this case, no occurs-
check is needed in extension steps and the highly efficient Prolog unification can
be used. For the general case, an optimal method exploits this optimization by
distinguishing the first occurrence of a variable in a literal from all subsequent
ones. For every first occurrence, the occurs-check may be omitted. In Table 9.2,
a procedure is shown which performs an extension step including the generation
of a new clause variant in a very efficient manner.

Path information and other extensions

Unfortunately, for the implementation of the reduction inference rule, one def-
initely has to provide additional data structures. While in SLD-resolution the
ancestor literals of a subgoal are not needed, for connection tableaux, the tableau
paths have to be stored and every subgoal must have access to its path. This
additional effort cannot be avoided. On the other hand, access to the ancestors of
a subgoal is necessary for the implementation of basic refinements like regularity,
which is also very effective in the pure Horn case.

Finally, the unbounded depth-first search strategy of Prolog has to be ex-
tended to incorporate completeness bounds like the inference bound, the depth
bound or other bounds discussed in Section 3.3.1. Depending on the used bounds,
one has to use different data structures. In order to capture bounds which allocate
remaining resources directly to subgoals like the depth bound, every subgoal has
to be additionally labelled with its current depth. For the inference bound one
needs a global counter. Interestingly, the multiplicity bound is not at all com-
patible with standard Prolog technology. This is because Prolog has no natural
mechanism for instantiating input clause.

9.2. PROLOG TECHNOLOGY THEOREM PROVING 169

Contrapositive: P(a, f(z,z)) - Q(b, g(g(z)))

procedure P(arg;,args)
variable z.t,,args1,argss trail_position;
x = new-_free_variable;
arg; = binding(arg;);
/* mark trail position */
trail _position := trailmarker;
/* unify clause head: check first arguments */

if (is_var(arg;) or (is_const(arg:) and argi == a)) then
if ((is_var(arg;)) then bind(arg;,a);
endif;

/* first arguments unifiable, check second arguments */
args = binding(args);
if (is_var(arg>)) then
bind(args,make_complex_term(f,z,z));
ty := make_complex_term(g, make_complex_term(g,z));
add_subgoal(Q(b,1,));
next_subgoal;
elseif (is_.complex_term(arg>) and functor(args) == f) then
argsy = binding(get_arg(arg2,1));
argss = binding(get_arg(arg2,2));
if ((unify(argsy,argss)) then
t, := make_complex_term(g, make_complex_term(g,args;));
add_subgoal(Q(b,t,));
next_subgoal;
endif;
endif;
endif;
/* undo variable bindings made in this procedure */
unbind(trail_position);

Table 9.2: Compilation of a contrapositive into a procedure.

170 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

9.3 Extended Warren Machine Technology

The main problem of a two-step compilation, first to some real programming
language and then to native code, is that the second compilation process takes
too much time for typical applications, which require a quick response time. In
order to avoid the second compilation phase, an interpreter for the code generated
in the first compilation phase has to be used. Since not the full expressive power of
an actual programming language is needed, this has motivated the development
of a very restricted abstract language tailored specifically for the processing of
Prolog respectively connection tableaux. We begin with outlining the basics of
such a machine for Prolog (see [Warren, 1983] and [Schumann, 1991] for a more
detailed description).

9.3.1 The Warren Abstract Machine

D.H.D. Warren developed a virtual machine for the execution of Prolog pro-
grams [Warren, 1983] which is called the Warren Abstract Machine (WAM).
It combines high efficiency, good portability, and the possibility for compiling
Prolog programs. The WAM is used widely and has become a kernel for com-
mercial Prolog systems implemented as software emulation or even micro-coded
[Taki et al., 1984, Benker et al., 1989] on dedicated hardware. The WAM is struc-
tured as a register-based multi-memory machine as shown in Figure 9.4. Its mem-
ory holds the program (as a sequence of WAM instructions) and data. The register
file keeps a certain set of often used data and control information. The WAM in-
struction, which is located in the memory at the place where the program counter
register points to, is fetched and executed by the control unit.

REGISTERS

tagged MEMORY
STACK

HEAP

TRAIL

CONTROL UNIT

Figure 9.4: The Warren Abstract Machine.

We will describe now how a Prolog program is compiled into machine instruc-
tions of the WAM. We begin with the special case of a deterministic program
which corresponds to a situation in which there is only one possibility for ex-
tending the current subgoal. In this case no backtracking inside the clause is
needed. As already noted, the respective tableau is generated using a depth-first
left-to-right selection function. Then the program can be executed in the same

9.3. EXTENDED WARREN MACHINE TECHNOLOGY 171

manner as in a procedural programming language, that is, the head of a clause
is considered as the head of a procedure and the subgoals as the procedure calls
of other procedures (the parameter passing, however, is quite different). Accord-
ingly, this can be implemented on a machine level exactly in the way it is done
in functional or procedural languages, using a stack with environment control
blocks which hold the control information (return address, dynamic link) and the
local variables. Details about this can be found e.g. in [Aho and Ullman, 1977].
The local variables are addressed using a register F pointing to the beginning of

the current environment. A Horn clause H :- G1,...,Gn. is executed using the
following instructions!.
H: % entry point for clause H.
allocate % generate new environment (on stack) with space for locals

% pass parameters (discussed below)
% set parameters for G1 (discussed below)

call G1 % call first subgoal, remember return address A
A

... % set parameters for Gn (discussed below)

call Gn % call last subgoal, remember return address

deallocate % deallocate control block and return

Each environment contains a pointer to the previous environment (dynamic
link). The entire list represents the path from the root to the current node in
the tableau, the return addresses in the environments point to the code of the
subgoals. The program terminates when the last call in the query returns.

The parameters of the head and the subgoals of the clauses are terms in a
logical sense consisting of constants, logical variables, lists*, and structures (com-
plex terms). A Prolog term is represented by a word of the memory, containing
a value and a tag. The tag distinguishes the type of the term, namely reference,
structure, list, and constant. The tag type “reference” is used to represent the
(logical) variables. Structures are represented in a non structure-sharing manner,
i.e. they are copied explicitly with their functors.

For the purposes of parameter passing, the WAM uses two sets of registers, the
registers Ay, ..., A, for keeping parameters and temporary registers Ty, ..., Ty.
When a subgoal is to be called, its parameters are provided in the registers A;
by using put instructions. There exists one put instruction for each data type. In
the head of a clause, the parameters in the A registers are fetched and matched
against, the respective parameter of the head, using a get or unify instruction.
Here again, a separate instruction for each data type is provided. The matching
algorithm has to check if constants and functors are equal. If a variable has to be
bound to a constant, the value of the constant and the tag “constant” is written
into the memory location where the variable resides; if the variable is bound to
a structure, a pointer to that structure is written into the variable cell, together
with the tag “reference”. Structures itself are created in a separate chunk of the
memory, the heap, which permits a permanent storage of those data.

I Actually, the WAM provides a number of different instructions for the sake of optimization,
e.g., for tail recursion elimination. Here, only the basic instructions are described.

2A list is considered as a data type of its own for reasons of efficiency. A list could also be
represented as a binary structure: list(Head, T'ail) similar to the Lisp function cons.

172 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

The following example illustrates the usage of the instructions for parameter
passing. Let us assume that a subgoal P(a, z) calls a head of a clause P(a, [z|y]) :-
... The variables reside in the environment control block and are accessed via an
offset from the register E pointing to the current environment. In [Warren, 1983]
they are noted as Yi,...,Y,.

put_constant a,Al % put first parameter (constant a) into register Al
put_variable Y4,A2 9, put variable z (in variable cell #4) into A2
call P % call the "P-clause"

P:
allocate 2 % allocate space for 2 variables
get_const a,Al % try to unify 1st parameter with constant a
get_list A2 % get second argument: must be a list or variable
unify_variable Y1 % unify with variable z (in local cell #1)
unify_variable Y2 % unify with variable z (in local cell #2)

% body of clause comes here

The last example also shows that the get and unify instructions must operate
in two modes (“read”,“write”) according to the type of parameter they receive.
If the variable z in the subgoal has been bound to some list prior to this call, for
example, to [a|b], then the list is broken apart by the get_list instruction and
x and y in the head are bound to a respectively to b (read mode). If, however, z in
the subgoal has not yet been bound to a list, a new list, consisting of two variables
is created on the heap by the instructions get_list and unify_variable (write
mode). Note that the creation on the heap is necessary, since the newly created
list has to stay in existence even after the execution of the clause P.

Finally, let us consider the full case of nondeterministic programs, in which a
subgoal is connected to more than one clause head. Now backtracking is needed.
Backtracking is implemented by means of so-called choice points, control blocks
which hold all the information for undoing an inference step. These choice points
are pushed onto the stack. The basic information of a choice point is a link
to its predecessor, a code address to the entry point of the next clause to be
attempted, and the information that is needed to undo all tried extension steps
since that choice point was created. This involves a copy of all registers of the
WAM as well as the variables which have been bound since the generation of
the choice point. For the latter purpose a trail is used, in the same manner as
described in Section 9.1. Whenever a backtracking action has to be performed,
all registers from the current choice point are loaded into the WAM, all stack
modifications are undone, and the respective variables are unbound. Then the
next clause is attempted. The WAM contains a last alternative optimization,
according to which the choice point can be discarded if the last extension clause
is tried. The list of different possibilities is coded by the instructions try me_else,
and trust_me_else fail, the latter representing the last alternative. Assuming
that there be three clauses cl, c¢2, c¢3 for extension, the compiled code is shown
below.

9.3. EXTENDED WARREN MACHINE TECHNOLOGY 173

call P % call the P-clauses
P: % generate a choice-point.
c123:
try_me_else C2a % try cil; if this fails, try c2
cl:
% code of clause cl
c2a:
try_me_else C3a % try c2; if this fails, try c3
c2:
% code of clause c2
c3a:
trust_me_else_fail % there is only one alternative left
c3:

% code of clause c3

The WAM has some additional instructions for optimization which we will
mention briefly. First, a dynamic preselection on the data type of the first pa-
rameter is done (switch_on_term). Its arguments give entry points of lists of
clauses which have to be tried according to the type of the first parameter of the
current subgoal (variable, constant, list, structure). Also hash tables are used for
the selection of a clause head. This is useful when there is a large number of head
literals with constants as first arguments.

9.3.2 The SETHEO Abstract Machine

Motivated by the architecture of the WAM, the connection tableau prover SETHEQO
[Letz et al., 1992] has been implemented. The central part of SETHEO is the
SETHEO Abstract Machine (SAM), which is an extension of the WAM. The
concepts introduced there had to be extended and enhanced for attaining a com-
plete and sound proof procedure for the full connection tableau calculus, and for
facilitating the use of advanced control structures and heuristics. The layout of
the abstract machine is basically the same as in Figure 9.4, except that addi-
tional space is reserved for the proof tree and the constraints, which are discussed
in Chapter 10. The proof tree stores the current state of the generated tableau,
which can be displayed graphically to illustrate the structure of the proof. Addi-
tionally, there are global counters, e.g., for the number of inferences performed.

The reduction step

To successfully handle non-Horn clauses in connection tableaux, extension steps
and reduction steps are necessary. A subgoal in the tableau can be closed by a
reduction step if there exists a complementary unifiable literal in the path from
the root to the current node. The resulting substitution ¢ is then applied to the
entire tableau. How can such a step be implemented within the concepts of an
abstract machinel’ As described above, the tableau is implicitly represented in
the stack of the machine, using a linked list of environment control blocks. This
linked list just represents the path from the root of the tableau to the current

174 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

node®. Thus, the instruction executing the reduction step searches through this
list, starting from the current node, to find a complementary literal which is
unifiable with the current subgoal. The respective unification is carried out in the
standard way. This procedure, however, requires that additional information must
be stored in each environment, namely, the predicate symbol of the head literal
of a contrapositive, its sign, and a pointer to the parameters of that literal. The
detailed structure of an environment of the SAM is displayed in Figure 9.5, the
base pointer points to the current environment in the stack.

base pointer — | dyn.link | link to previous environment
ret_addr | return address
ps_symb | coded predicate symbol and sign
gpr pointer to goal environment in the code
variables | local variables for that clause

Figure 9.5: The SAM environment.

The reduction inference rule itself is nondeterministic in the sense that a
subgoal may have more than one connected predecessor literal in the path. Hence,
we have to store an additional pointer in every choice point, pointing to the
environment which corresponds to the node which has to be tried in the next
reduction step.

Efficiency considerations

To increase the efficiency of the SETHEO machine, a tagged memory is used.
The basic types of variables, terms, constants and reference cells, which are used
in the Warren abstract machine, are divided into further subtypes in order to
gain a better performance (compare also [Vlahavas and Halatsis, 1987]). Thus,
for instance, the type ‘variable’ has the subtypes: ‘free variable’ (T_FVAR), ‘tem-
porary variable’ (T_-TVAR), and ‘bound variable’, i.e. a reference cell (T_BVAR).
Also complex terms are tagged differently depending on whether they contain
variables or not. The additional information contained in these tags can be used
for optimizing the unification operation.

Parameter transfer

In the original WAM, parameters from a subgoal to a head of a clause are trans-
ferred via the A; registers. As a minimal number of registers and a variable
number of parameters were required, this solution was not suitable. Instead,

3For this, no tail recursion optimization may be performed as it is done in the WAM. This
optimization tries to delete environments as soon as possible, e.g., before executing the last
subgoal of a clause.

9.4. PROLOG AS IMPLEMENTATION LANGUAGE 175

the parameters are transferred via an argument vector. This originates from
[Vlahavas and Halatsis, 1987], but it had to be adapted. The number of param-
eters of a subgoal and their types are fixed. The only exception are variables,
which may be unbound or bound to an arbitrary term. Consequently, an argu-
ment vector is generated during compile time in the code area which contains
the values and data types of the parameters. In case of variables an offset into
the current environment is given. When dereferencing this address, the binding
of the variable can be accessed. The only information directly passed during the
execution of a call instruction is the address of the beginning of this argument
vector. It is put into the register gp (goal pointer). After the selection of a clause
head, the parameters of the subgoal are unified with the parameters of the head.
For each parameter in the head, a separate unify instruction is used. It attempts
to unify the respective parameter with the parameter gp points to. In case of
success, gp is incremented. The following example shows the construction of the
argument vector. Consider a subgoal P(a, z, f(z)). It will generate something like
the following argument vector consisting of three words.

gp: T_CONST 16 % 1st argument: constant a as index into symbol table
T_VAR1 1 % 2nd: variable x with offset 1 (w.r.t.\ environment)
T_CREF terml %, 3rd: pointer to term f(x)

terml: T_NGTERM 17

% functor f with index 17
T_VAR2 1 % variable x (second occurrence)
T_EOSTR 0 % end of the structure

9.4 Prolog as Implementation Language

The preceding parts have shown that it is a considerable effort to implement con-
nection tableaux by extending Prolog technology. Since SLD-resolution is very
similar to connection tableaux, many newer implementations of connection tab-
leaux are done directly in Prolog. We will consider now the potential of using
Prolog as an implementation language. It is straightforward to see that a basic
implementation of connection tableaux can easily be obtained in Prolog. First,
we need to provide all contrapositives. Second, the possibility of performing re-
duction steps has to be provided. Both can be done in a straightforward way, as
will be demonstrated with the following formula proposed by J. Pelletier in an
AAR newsletter. We have written the problem in Prolog-like notation, i.e., with
variables in capital letters and function and predicate symbols in small letters. A
semi-colon is used when more than one positive literal is in a clause.

< — p(a,b).

< — q(c,d).

p(X,2) < - pX,Y), p(Y,2).
q(X,Z2) < — q(X,Y), q(¥,2).
p&X,Y) < — p(Y,X).

pX,Y) ; qX,¥V) <-—.

176 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

The transformation starts by forming the Horn contrapositives for the input
clauses, as shown in Section 9.2. To simulate the negation sign, predicate sym-
bols are preceded with labels, p_ for positive literals and n_ for negative literals.
Additionally, start clauses are added as Prolog queries.

Furthermore, to overcome the incompleteness of Prolog for non-Horn formu-
lae, we need to simulate the reduction operation. This is done as follows. First,
we are adding the paths as additional arguments to the logical arguments of the
respective literals. For optimization purposes, we use two path lists, one for the
positive and one for negative literals in the respective path. In each extension
steps, the respective path list is extended by the respective literal. Finally, for ac-
tually enabling the performance of reduction steps, an additional clause is added
for each predicate symbol and sign that tries all unifiable literals in the path list.
The output then looks as follows.

% Start clauses
false :- p_p(a,b, [1,[1).

false :- p_q(c,d, [1,[1.

% Contrapositives
n_p(a,b, P, N).

n_q(c,d, P, N).
p-pX,Z, P,N) :- N1 =

n_p(X,Y, P,N) :- P1 =
n_p(¥,Z, P,N) :- P1 =

(o}

p(X,zZ) | N1, p_p(X,Y, P,N1), p_p(Y,Z, P,N1).
pX,Y) | P 1, n_p(X,Z, P1,N), p_p(¥,Z, P1,N).
p(Y,Z) | P 1, n_p(X,Z, P1,N), p_p(X,Y, P1,N).

[M

(o}

p-aX,Z, P,N) :- N1 =
n_q(X,Y, P,N) :- P1 =
n_q(Y,Z, P,N) :- P1 =

qX,z) | ¥], p_q(X,Y, P,N1), p_q(Y,Z, P,N1).
qx,Y) | P 1, n_q(X,Z, P1,N), p_q(Y,Z, P1,N).
q(¥,z) | P 1, n_q(X,Z, P1,N), p_q(X,Y, P1,N).

[W]

p-p(X,Y, P,N) :- N1 =
n_p(Y,X, P,N) :- P1 =

(e}

pX,Y) | N1, p_p(Y,X, P,N1).
p(¥,X) | P 1, n_p(X,Y, P1,N).

(o}

p-p(X,Y, P,N) :- N1 = [p(X,Y) | N1, n_q(X,Y, P,N1).
p-qX,Y, P,N) :- N1 = [q(X,Y) | N], n_p(X,Y, P,N1).

% Clauses for performing reduction steps
n_p(X,Y, P,N) :- member(p(X,Y), N).
p-p(X,Y, P,N) :- member(p(X,Y), P).
n_q(X,Y, P,N) :- member(q(X,Y), N).
p-aX,Y, P,N) :- member(q(X,Y), P).

member (X,[X | R 1).
member (X,[Y | R]) :- member(X,R).

What is missing in order to perform complete proof search, is the implemen-
tation of a completeness bound and the iterative deepening. We consider the

9.5. A DATA-ORIENTED ARCHITECTURE 177

case of the tableau depth bound (Section 3.3.1), which can be implemented by
adding the remaining depth resource D as an additional argument to the literals
in the contrapositives and start clauses. After having entered a contrapositive, it
is checked whether the current depth resource is > 0, in which case it is decre-
mented by 1 and the new resource is passed to the subgoals of the clause. For
start clauses, the depth may be passed unchanged to the subgoals.

% for contrapositives
p(...,D) :- D > 0, D1 is D-1, P1(...,D1), ..., Pn(...,D1).

% for start clauses
false(D):- P1(...,D), ..., Pn(...,D).

When posing the query, say, false(5), the Prolog backtracking mechanism
will automatically ensure that all connection tableaux up to tableau depth 5
are examined. Finally, the iterative deepening is captured by simply adding the
following clause to the end of the program.

false(D) :- D1 is D+1, false(D1).

After having loaded such a program into Prolog (in certain Prolog systems
the clauses have to be ordered such that all predicates occur consecutively), one
can start the proof search by typing in the query: ?- false(1).

For the discussed example, the Prolog unification (which in general is un-
sound) poses no problem, since no function symbol of arity > 0 occurs. In the
general case, however, one has to use sound unification. Some Prolog systems
offer sound unification, often in various ways. Either the system has a sound
unification predicate in its library or sound unification can be switched on by
setting a global flag. While the latter is more comfortable, it may lead to unnec-
essary run-time inefficiencies, since the occurs-check is always performed even if
it would not be needed according to the optimizations discussed in the previous
parts. Such an optimization may also be achieved in a Prolog implementation
by linearization of the clause heads (for which then Prolog unification may be
used) and a subsequent sound unification of the remaining critical terms (see, for
example, [Plaisted, 1984]).

In summary, this illustrates how astoundingly simple it is to implement a
pure connection tableau proof search procedure in Prolog. Furthermore, such
an implementation also attains a very high performance in terms of inference
steps performed per second. The approach of using Prolog, however, is becoming
more and more problematic when trying to implement connection tableaux proof
procedures including more advanced search pruning mechanisms like, e.g., failure
caching.

9.5 A Data-Oriented Architecture

The architectures described so far have all relied on the approach of compiling the
input clauses and some parts of the inference system into procedures, the latter

178 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

created Prolog source code, the others native or abstract machine instructions.
The inference rules and important subtasks such as the unification algorithm,
the backtracking mechanism, or the subgoal processing are deeply intertwined
and standardized in order to achieve high efficiency. Such an approach is suitable
when a certain kind of optimized proof procedure has evolved for which no ob-
vious improvements are known. In automated theorem proving, however, this is
not the case. New techniques are constantly developed which may lead to signif-
icant improvements. Against this background, the most important shortcoming
of PTTP provers is their inflexibility. Changing the unification such as to add
sorts, for example, or adding new inference rules, e.g., for equality handling, or
generalizing the backtracking procedure becomes extremely cumbersome if not
impossible in such architectures.

Accordingly, as the last of the architectures, we discuss a more natural or
straightforward implementation of the connection tableau procedure, in the sense
that the components of the program are modularized and can be identified more
naturally with their mathematical definitions. Since the most important difference
to PTTP-style provers is that clauses are represented as data structures and do
not become part of the prover program, such an approach will be called a data-
oriented proof procedure, as opposed to the clause compilation procedures. Unlike
the WAM-based architectures, which heavily rely on the implicitit encoding of
the proof in the program execution scheme, here the proof object is the clausal
tableau, which is completely stored in memory. Although this leads to a larger
memory consumption, it causes no problems in practice, as today’s computers
have enough main storage space to contain the proof trees for practically all
feasible proof problems. Only very large proofs, that means proofs with more
than, say, 100,000 inferences become unfeasible with the data-oriented concept.
But in these cases it is to be expected anyway that the connection tableau calculus
is not suitable as a proof system.

9.5.1 The Basic Data Structures

The data objects used in this approach can be distinguished into formula data
objects and proof data objects. The basic formula data objects are the formula,
the clauses, the clause copies and the subgoals. From these, the formula is im-
plicitly represented by the set of its clauses (as there is only one input formula).
Reasonable data structures for the other objects are given here.

Clauses. The most important elements of the clause structure are the original
or generic literals and the list of clause copies used in the proof. Since clauses
may be entered at any subgoal, it is not necessary to compute contrapositives.

List of clause
Generic literals copies

Clause

V] Number| ... | P(2),=Q(y),.. .| --. .

Clause copies. In every extension step, a renamed copy of the original clause

9.5. A DATA-ORIENTED ARCHITECTURE 179

has to be created and added to the tableau.

Subgoals Predecessor

Velsgiy ..y Sgn| ... |Clause| ... |Path
N

Subgoals. Subgoal objects contain the information about the literal they rep-
resent, i.e. the sign, predicate symbol, the argument terms, etc.

Predicate | Argument | Exten- [| Clause Select-

sg | Sign| symbol Terms sion || Copy |Links|ion tag

As a matter of fact, additional control information can be included in these
data objects, which is omitted here for the sake of clarity. Further important
data structures utilized in the proof process are the variable trail (which was
described in Section 9.1.1) and the list of subgoals. The variable trail is one of
the few concepts adopted from the Prolog architecture, since some device for the
bookkeeping of the variable instantiations is required.

" ———

Figure 9.6: The global subgoal list and the corresponding tableau structure.

Global subgoal list. This is the central global data object. It consists of the
sequence of subgoals of all clause copies hitherto in the current tableau. Figure 9.6
illustrates how the subgoals of the clause copies constitute the global subgoal list.
The dotted lines refer to the underlying tree structure, the dashed arrows indicate
the linking between the elements of the global subgoal list. In any inference step,
the literal at which an extension or reduction step is performed, is marked as
selected, as illustrated in Figure 9.6 as a grey shading over the subgoals.

The global access to the list of subgoals liberates us from the need to conform
to some sort of depth-first search. Instead one can employ a subgoal selection

180 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

function that chooses an arbitrary subgoal for the next inference step. This way,
new heuristics become feasible that operate globally on the proof object. For
example, free subgoal reordering can be performed easily.

Subgoal
Exten-
sgl+1P] --- sipn | -
Clause m
Subgoal]
Ve | Yeetor | - Path
Subgoal
Vector
Previous Subgoal Vector of Next Subgoal Vector of
Global Subgoal List ~ 81[5€2]583] *T™ Giobal Subgoal List
Subgoal
sg|+|@ Copy
Subgoal
Exten-
sg|L[P] ... sion Copy
Subgoal
Exten-
sgl+[|R| ... | sion |Copy

Figure 9.7: Cross-referencing between clause copy and subgoal data structures.

In Figure 9.7, a detailed snapshot of the subgoal and clause copy data struc-
tures of a certain proof state is depicted. The tableau structure is only given
implicitly. In fact, all information needed for moving through the tableau, as, for
instance, during a folding up operation, is provided by extensive cross-referencing
among the different data objects. The figure shows the connections between data
objects of the various kinds (original clauses as data objects are not contained
in the tableau). Again, selected subgoals are distinguished by grey shading. The
subgoal P has been chosen for an extension step with the clause C = {R,—P, Q}.
A copy C' of C is linked to P via the extension pointer. The subgoals of C' are ac-
cessible via the subgoal vector pointed to by C’. This subgoal vector is appended
to the global subgoal list. To allow upward movement through the tableau, the
copy is linked to the extended subgoal, while the new subgoals are linked to the
clause copy. The subgoals P and =P are immediately marked as selected, the
subgoal) becomes selected in the next extension step. It should be noted that,
since we rely on clauses instead of contrapositives, the connected literal does not

9.5. A DATA-ORIENTED ARCHITECTURE 181

have to be the first literal in the clause, as is the case here.

9.5.2 The Proof Procedure

Table 9.3 shows a simplified data-oriented proof procedure (not featuring the
reduction rule or start clause selection). Based on the connection graph of the
input formula, to each subgoal the list of its links is attached. The procedure
solve explores the search space by successively applying the extension rule using
the elements in the link list of its subgoal argument sg. The reduction rule can
be incorporated easily as an additional inferential alternative. The procedure
extension checks the resource bound, adds the linked clause to the proof tree,
and modifies the global subgoal list. When a literal can be selected, solve is called
again with the new subgoals, otherwise a proof has been found and the procedure
aborts.

9.5.3 Reuse of Clause Instances

How can high performance be achieved with such an architecturel’ When analyz-
ing what is the most expensive procedure in this approach, one easily recognizes
that it is the generation of a new instance of an input clause, which has to be
performed in every extension step. One of the main reasons for the high perfor-
mance of the PTTP based connection tableau procedures is that this operation
is implemented very efficiently. But the question is, whether it is really necessary
to generate a new clause instance in every extension step. Typically, proof search
procedures based on connection tableaux process relatively small tableaux, but a
large amount of them. That is, in theorem proving, the degree of backtracking is
extremely high if compared with typical Prolog applications. Many Prolog execu-
tions require deep deduction trees including optimizations like tail recursion. For
those applications, a new generation of clause instances is indispensable. This
striking difference of the deduction trees considered in Prolog and in theorem
proving shows that central ingredients of Prolog technology may not be needed
in theorem proving.

The key idea for achieving high performance when clause copying is expensive
is the reuse of clause instances. The clause copies created once are not discarded
upon backtracking but kept in a list of available copies for later reuse, as illus-
trated with the example in Figure 9.8. At startup (subfigure (a)), one uninstan-
tiated copy is provided for each clause. This copy is used in an extension and
instantiated, as shown in subfigure (b). Now no other copy is available. When the
clause is selected for an extension step again, a new copy has to be created. This
situation is shown in subfigure (c). When backtracking occurs during the search
process and the extension step that initiated the creation of the copy in subfigure
(c) is undone, the copy remains in the list of clause copies and only the pointer
to the next available copy is moved backward. This situation is displayed in sub-
figure (d). This way, over the duration of the proof, a monotonically growing list
of clause copies is built and in most cases clause copies can be reused instead of

182 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

procedure solve(sg, links, resource)
if (links #0) then
extension(sg, first(links), resource);
/* try next alternative */
solve(sg, rest(links), resource);
endif;

procedure extension(sg, link, resource)
dec_resource := decrement_resource(resource);
if (dec_resource > (0') then
clause := new_clause_copy(link);
head = head(clause, link);
trail_pos .= trailmarker,
if ((unify_literals(~sg, head)) then
old_subgoals := subgoals;
make_new_subgoals(clause, sg, head);
new-sg := select_subgoal;
if (new_sg)
new links := links(new_sg);
new_resource := resource(new-sg);
solve(new_sg, new_links, new_resource);
else
proof_found;
abort;
endif;
/* backtracking */
unbind(trailpos);
subgoals := old_subgoals;
endif;
endif;

Table 9.3: A rudimentary connection tableau proof procedure.

9.6. EXISTING CONNECTION TABLEAUX IMPLEMENTATIONS 183

[({p(X), -0} [¢] [(p(X),~a(V)} [o]
Next available copy=>|{p(X"), =g(Y")} {p(a), —q(b)}

Next available copy—>

| <o

(a) (b)
[{(p(X), —a(")} | [{p(X), ¢}] 1 |

(), a0 (@), 0]
{p(c),~q(d)} Next available copy=>fp(X""), ~q(Y"")}

-

Next available copy=—>

(c) (d)

Figure 9.8: Clause instance creation and availability during backtracking.

having to be created. As a matter of fact, this requires that all variable bindings
have to be retracted. But when using destructive unification and the trail concept
this can be done very efficiently. Experimental results have shown that with such
an architecture inference rates may be obtained that are comparable to the ones
achieved with PTTP implementations.

9.6 Existing Connection Tableaux Implementa-

tions
Connection Tableaux
proof procedures
PTTP Data-oriented Implementation
/ \ Scheme-SETHEO
Compiling Prolog
Protein
/ \ PTTP '92
native virtual KoMeT
PTTP '88 SETHEO
METEOR

Figure 9.9: An overview of the architectures of connection tableaux systems.

In Figure 9.9, existing implementations of connection tableaux are classified
according to the distinctions used in this section. The references for the de-

184 CHAPTER 9. IMPLEMENTATION OF CONNECTION TABLEAUX

picted systems are: PTTP '88 [Stickel, 1988], SETHEO [Letz et al., 1992], ME-
TEOR [Astrachan and Loveland, 1991], Protein [Baumgartner and Furbach, 1994],
PTTP '92 [Stickel, 1992], KoMeT [Bibel et al., 1994], Scheme-SETHEO (see Sec-
tion 9.5).

Chapter 10

Constraint Technology

When considering the presented tableau refinements like regularity, tautology,
or subsumption freeness, the question may be raised whether it is possible with
tenable cost to check these conditions after each inference step. Note that a
unification operation in one part of a tableau can produce instantiations which
may lead to an irregularity, tautology, or subsumed clause in another distant
part of the tableau. The structure violation can even concern a closed part of
the tableau. Fortunately, there exists a uniform and highly efficient technique
for implementing many of the presented search pruning mechanisms, namely,
syntactic disequation constraints.

10.1 Reformulating Refinements as Constraints

Tautology elimination

Let us illustrate the technique first at the example of dynamic tautology elimina-
tion. Recall that certain input clauses may have tautological instances, which can
be avoided as tableau clauses. When considering the transitivity clause =P (z,y)V
-P(y,z) V P(z,z) from above, there are two classes of instantiations which may
render the formula tautological. Either # and y are instantiated to the same term,
or y and z. Obviously, the generation of a tautological instance can be avoided
if the unification operation is constrained by forbidding that the respective vari-
ables be instantiated to the same terms. In general, this leads to the formulation
of disequation constraints of the form sy,...,s, # t1,...,t, where the s; and ;
are terms. Alternatively, one could formulate this instantiation prohibition as a
disjunction s; # t; V-V s, # t,. A disequation constraint is violated if every
pair (s;, t;) in the constraint is instantiated to the same term. For the transitivity
clause, the two disequation constraints # y and y # z can be generated and
added to the transitivity formula. The non-tautology constraints for the formulae
of a given input set can be generated in a preprocessing phase before starting
the actual proof process. Afterwards, the tableau construction is performed with

185

186 CHAPTER 10. CONSTRAINT TECHNOLOGY

constrained clauses. Whenever a constrained clause is to be used for tableau
expansion, the formula and its constraints are consistently renamed, the tableau
expansion is performed with the clause part, and the constraints are added. If the
constraints are violated, then a tautological tableau clause has been generated,
in which case one can immediately perform backtracking.

Regularity

Regularity can also be captured using disequation constraints. In contrast to
non-tautology constraints, however, regularity constraints have to be generated
dynamically during the proof search. Whenever a new renamed variant ¢ of a
(constrained) clause is attached to a branch in an extension step, then, for every

literal L with argument sequence s1,..., s, in the clause ¢ and for every branch
literal with the same sign and predicate symbol with arguments t¢i,...,%¢,, a
disequation constraint si,...,S, # t1,...,t, must be generated.

Tableau clause subsumption

Tableau clause subsumption is essentially treated in the same manner as tautol-
ogy elimination. Recall the example from Section 5.1.3 where in addition to the
transitivity clause a unit clause P(a, b) is assumed to be in the input set. Then, the
disequation constraint x, z # a,b may be generated and added to the transitivity
clause. Like non-tautology constraints, non-subsumption constraints can be com-
puted and added to the formulae in the input set before the actual proof process
is started.! Interestingly, this mechanism does not capture every case of tableau
clause subsumption, as illustrated with the following example. Assume that the
transitivity clause and a unit clause P(f(v), g(v)) be contained in the input set.
In analogy to the other example, a disequation constraint =,z # f(v), g(v) could
be added to the transitivity formula. But now the constraint contains the variable
v, which does not occur in the transitivity clause. Since clauses (and their con-
straints) are always renamed before being integrated into a tableau, the renaming
of the variable v will occur in the constraint only and nowhere else in the tableau.
Consequently, this variable can never be instantiated by tableau inference steps,
so that the constraint can never be violated and is therefore absolutely useless
for search pruning. Clearly, the case of full subsumption cannot be captured in
this manner. What the constraint mechanism should avoid is that z and z be
instantiated to any terms which have the structures f(t) and g(t), respectively,
regardless what ¢ is. This can be conveniently achieved by using universal vari-
ables in addition to the rigid variables. The respective disequation constraint then
reads Vv z, 2z # f(v), g(v), which is violated exactly when z and z are instantiated
to any terms of the structures f(s) and g(t) with s = ¢.

INote, however, that due to the NP-completeness of subsumption, it might be necessary not
to generate all possible non-subsumption constraints, since this could involve an exponential
preprocessing time.

10.2. DISEQUATION CONSTRAINTS 187

10.2 Disequation Constraints

After this motivation for the potential of constraints, we will now more rigourously
present the framework of disequation constraints, with respect to their use in
pruning tableau proof search.

Definition 10.1 (Disequation constraint) A disequation constraint C is either true
or of the form Vuy ---Vuy, I # 7 (m > 0) with I and r being sequences of terms
S1,..., 8y respectively ¢1,...,t, (n > 0); for any disequation constraint C' of the
latter form, | # r is called the kernel of C, n its length, u, ..., U, its universal
variables, and the disequation constraints s; # t; are termed the subconstraints
of C'. Occasionally, we will use the disjunctive form of a disequation constraint
kernel, which is s1 £ t; V -+ -V 8, # ty.

An example of a disequation constraint of length one and with one universal
variable is

Vz fg(x,a, f(y),v) # f(9(z, 2 f(2)),0).

Since all considered constraints will be disequation constraints, we will simply
speak of constraints in the sequel. Next, we consider what it means that a sub-
stitution violates a constraint.

Definition 10.2 (Constraint violation, equivalence) No substitution wiolates the
constraint true. A substitution o wviolates a constraint of the form Yuy - - -Vu, [# 7
if there is a substitution 7 with domain uy,...,u,, such that Ito = rro. When
a violating substitution exists for a constraint, we say that the constraint can be
violated; a constraint is wviolated, if all substitutions violate it. Two constraints
are equivalent if they have the same set of violating substitutions.

For example, the substitution o = {z/f(a)} violates the constraint Yy = #
f(y), since z7o = f(y)ro for 7 = {y/a}.

10.2.1 Constraint Normalization

The question is, how the violation of a constraint may be detected in an efficient
manner’ The basic property that permits an efficient constraint handling is that
constraints can often be simplified. For example, the complex constraint given
after Definition 10.1 is equivalent to the simpler constraint x,y # a,a, which
obviously can be handled more efficiently. Constraints can always be expressed
in a specific form.

Definition 10.8 (Constraint in solved form) A constraint is in solved form if it is
either true or otherwise its kernel has the form zy,..., 2z, # t1,...,t, where all
variables on the left-hand side are pairwise distinct and non-universal (i.e., do
not occur in the quantifier prefix of the constraint), and no variable z; occurs in

terms of the right-hand side.

188 CHAPTER 10. CONSTRAINT TECHNOLOGY

For example, the constraint z,y # a, a is in solved form whereas the equivalent
constraint z,y # y,a is not. Every constraint can be rewritten into solved form
by using the following nondeterministic algorithm.

Definition 10.4 (Constraint normalization) Let C be any disequation constraint
as input. If the constraint is true or the two sides I and r of its kernel are not
unifiable, then the constraint true is a normal form of C. Otherwise, let o be any
minimal unifier for [and r that contains no binding of the form x/u where u is a
universal variable of C' and z not. (Such a minimal unifier always exists if / and
r are unifiable.) Let {z/t,. .., Zn/tn} be the set of all bindings in o with the z;

being non-universal in C, and let uy, ..., u,, be the universal variables in C' that

occur in some of the terms ¢;. The constraint Yuy - - -V, 1,..., 25 # t1, ...ty
is a normal form of C.

Note that, for preserving constraint equivalence and for achieving solved form,
the use of a minimal unifier is needed in the procedure, employing just most
general unifiers will not always work. Consider, for example, the constraint f(y) #
x and the most general unifier {z/f(z),y/x}. This would yield the constraint
z,y # f(z),r as a normal form, which is not equivalent to f(y) # = and which
cannot even be violated.

Let us illustrate the effect of the normalization procedure by applying it to the
complex constraint Vz f(g(z,a, f(y)),v) # f(9(z,z, f(z)),v) mentioned above.
First, we obtain the minimal unifier {z/a, z/a,y/a}. Afterwards, the binding z/a
is deleted, since z is universal, which eventually yields the normal form constraint
x,y # a,a. As shown with this example, in the normalization process some con-
straint variables may vanish. On the other hand, the length of a constraint may
increase during normalization.

Proposition 10.5 Any normal form of a constraint C is in solved form and equiv-
alent to C.

Proof 1If C is true or if the two sides of its kernel are not unifiable, then the
normal form of C is true, which is in solved form and equivalent to C. It remains
to consider the case of a constraint C = VYuy - --uy,, | # r with unifiable [and
r. When normalizing C according to the procedure in Definition 10.4, first, a
minimal unifier ¢ for [and r is computed which does not bind non-universal
variables to universal ones. The kernel " # ' of the corresponding normal form
C' of C contains exactly the subconstraints x; # t; for every binding z;/t; € o
with non-universal x;. Since minimal unifiers are idempotent, no variable in the
domain of o occurs in terms of its range. Therefore, C’ is in solved form. For
considering the equivalence of C' and C’, first note the following. Since ¢ is a
minimal unifier for [and r, it is idempotent and more general than any unifier
for I and r. Therefore, a substitution p unifies [and r if and only if, for every
binding v/s € o, vp = sp. Let now # be any substitution.

1. If 8 violates C, then there exists a substitution 7 with domain {u1,...,um}
and I76 = r76. Therefore, for any binding v/s € o, v76 = 5760, i.e., 70 is a

10.3. IMPLEMENTING DISEQUATION CONSTRAINTS 189

unifier for I’ and r'. Let 7' be the set of bindings in 7 with domain variables
occurring in C'. Then 7'# unifies I’ and r’. Consequently, 6 violates C".

2. If 6 violates C’, then there exists a substitution 7 with its domain being the
universal variables in C' and I'76 = r'76. Let ¢’ be the set of bindings in
o which bind universal variables. Then, for any binding v/s € o, vo'T0 =
sa'rtf, and hence o' unifies | and r. Since o'7 is a substitution with
domain {uy,...,un}, 8 violates C.

10.3 Implementing Disequation Constraints

We will discuss now how the constraint handling can be efficiently integrated
into a model elimination proof search procedure. First, we consider the problem
of generating constraints in normal form.

10.3.1 Efficient Constraint Generation

Unification is a basic ingredient of the normalization procedure mentioned above.
In the successful implementations of model elimination, a destructive variant
of the unification procedure specified in Table 9.1 is used. If slightly extended,
this procedure can also be used for an efficient constraint generation. First, one
must be able to distinguish universal variables from non-universal ones. The best
way to do this is to extend the internal data structure for variables with an
additional cell where it is noted whether the variable is universal or not. The
advantage of this approach is that the type of a variable may change during
the proof process which nicely goes together with the feature of local variables
mentioned in Section 6.3. Then, the mentioned unification operation must be
modified in order to prevent that a non-universal variable is bound to a universal
one. After these modifications, the generation and normalization of a constraint
can be implemented efficiently by simply misusing the new unification procedure,
as follows.

Definition 10.6 (Constraint generation) Given any two sequences ! and r of terms
that must not become equal by instantiation.

1. Destructively unify [and r and push the substituted variables on the trail.
2. Collect the respective bindings of the non-universal variables only.
3. Finally undo the unification.

After that the term sequences [and r are in their original form, and the collected
bindings represents the desired disequation constraint in normal form.

190 CHAPTER 10. CONSTRAINT TECHNOLOGY

10.3.2 Efficient Constraint Propagation

During proof search with disequation constraints, every tableau is accompanied
by a set of constraints. When an inference step is performed, it produces a sub-
stitution which is applied to the tableau. In order to achieve an optimal pruning
of the search space, after each inference step, it should be checked whether the
computed substitution violates one of the constraints of the tableau. If so, the
respective inference step can be retracted, we call this a constraint failure. If not,
the substitution ¢ has to be propagated to the constraints, i.e., every constraint
C has to be replaced by Co before the next inference step is being executed. As
a matter of fact, if some of the new constraints can no more be violated, they
should be ignored for the further proof attempt. This is important for reducing
the search effort, since normally, a wealth of constraints will be generated during
proof search.

If the constraints are always kept in normal form, then the mentioned opera-
tions can be performed quite efficiently. Assume, for example, that a substitution
o = {z/a} is applied to the current tableau. Then it is obvious that all con-
straints in which z does not occur on the left-hand side may be ignored. In case
no constraint of the current tableau is violated by the substitution o, for every
constraint C' containing = on the left-hand side, a new constraint C'c has to be
created and afterwards normalized, which is still a considerable effort. In order to
do this efficiently, new constraints should not be generated explicitly, but the old
constraints should be reused and modified appropriately. For this purpose, it is
more comfortable to keep the constraints in disjunctive form. Then, for any such
constraint C, only the respective subconstraint (x # t)o needs to be normalized
to, say C’, and the former subconstraint x # ¢ in C can be replaced with the
subconstraints of C’. This operation may also change the actual length of the for-
mer constraint. In summary, this results in the following procedure for constraint
propagation.

Definition 10.7 (Constraint propagation) All constraints are assumed to be nor-
malized and in disjunctive form. Suppose a substitution o = {z1/s1,...,Zn/Sn}
is performed during the tableau constraints, then successively, for every sub-
constraint C; = x;/t; (i.e., with z; in the domain of o) of every constraint C,
compute the normal form C} of s; # t;o with length, say k, and perform the
following operation:

1. if C} = true, ignore C for the rest of the proof attempt (it cannot be vio-
lated),

2. if £ = 0, decrement the actual length of C' by 1; if the actual length 0 is
reached, perform backtracking (the constraint is violated),

3. otherwise replace C; with C} and modify the actual length of C' by adding
kE—1.

In order to guarantee efficiency, all modifications performed on the constraints
have to be stored intermediately and undone on backtracking.

10.3. IMPLEMENTING DISEQUATION CONSTRAINTS 191

10.3.3 Internal Representation of Constraints

Obviously, a precondition for the efficiency of the constraint handling is a suit-
able internal representation of the constraints. When analyzing the described
constraint handling algorithms, one has to satisfy the following requirements.

1. after the instantiation of any variable x, a quick access to all subconstraints
of the form z # ¢ is needed.

2. if a subconstraint C; of a constraint C' is violated, it must be easy to check
without considering the other subconstraints of C' whether C' is violated.

3. whenever a subconstraint C; of a constraint C' normalizes to true, then it
must be easy to deactivate C' and all other subconstraints of C.

-_———
;7 previous
{ subconstraint)

PR
Vs previous N
| subconstraint)

Constraint 1st sub- N nth sub-
- of 4 : \ of xp 4
header constraint S~_2'_ -7 constraint S~ =7
[neciee] [ofs]4]
¥
S1
Figure 10.1: Internal representation of a constraint x1,...,2Z, # $1,..-, Sn-

This can be achieved by using a data structure as displayed in Figure 10.1. In
order to have immediate access from a variable z to all subconstraints of the form
x # t, it is reasonable to maintain a list of the subconstraints corresponding to
each variable. The best solution is to extend the data structure of a variable by a
pointer to the last element in its subconstraint list. From this subconstraint the
previous subconstraint of z can be accessed, and so forth. (The aforementioned
tag which expresses whether a variable is universal or not is omitted in the figure.)

A constraint itself is separated into a constraint header and its subconstraints.
The header contains the actual length of the constraint and a tag whether the
constraint is already true or whether it can still be violated (active). From each
subconstraint there is a pointer to the respective constraint header. If now a
subconstraint is violated, then the length counter in the header is decremented
by 1. If, on the other hand, a subconstraint normalizes to true, then the tag in
the header is set to true. Because of the shared data structure, both modifica-
tions are immediately visible and can be used from all other subconstraints of
the constraint. Interestingly, an explicit access from a constraint header to its
subconstraints is not needed.

It is comfortable to reserve a special part of the memory for the representa-
tion of constraints, which we call the constraint stack. In order to comprehend
the modifications of the constraint stack during the proof process for the case of a

192 CHAPTER 10. CONSTRAINT TECHNOLOGY

[nil] 2 [ni| [7]e]e [nil] o [ni [nit] w [ni]

|ni||v|ni|| |ni||w|ni|||

nilfz | e

Constraint stack

| 1 |active| | ./Lo |ni|||
__—

(b)
Hag wal ife]s |

namjjoam

(c)

Figure 10.2: The constraint stack.

more complex normalization operation, consult Figure 10.2. Assume we are given
a tableau with subgoals P(z) and —Q(z) and a predecessor literal P(f(v,w)).
Assume that no constraints for the variables z, v and w exist (a). Now, a regu-
larity constraint x # f(v, w) may be generated, which requires that a constraint
header and a subconstraint are pushed on the constraint stack (b). Assume that
afterwards an extension step is performed at the subgoal —Q(z) with an entry
literal Q(f(a,b)). The unifier ¢ = {z/f(a,b)} has to be propagated to the con-
straints. This is done by pushing the two new subconstraints v # a and w # b on
the constraint stack, which were obtained after normalization. Furthermore, the
subconstraint lists of v and w have to be extended. Finally, the counter in the
constraint header has to be incremented by 1. Note that nothing has to be done
to the old subconstraint z # f(v,w). Since the variable = has been bound, the
old subconstraint will simply be ignored by all subsequent constraint checks.

10.3.4 Constraint Backtracking

The entire mechanism of constraint generation and propagation has to be em-
bedded into the backtracking driven proof search procedure of model elimination.
Accordingly, also all modifications performed on the constraint stack and in the
subconstraint lists of the variables have to be properly undone when an inference

10.4. DISEQUATION CONSTRAINTS IN PROLOG 193

step is retracted. For this purpose, after each inference step and the corresponding
modifications in the constraint area, one has to remember the following data.

1. the old length values in the affected constraint headers,

2. the old values (active or true) in the second cells of the affected constraint
headers, and

3. the old pointers to the previous subconstraints in the affected variables and
subconstraints.

This is exactly the information that has to be stored for backtracking. A
comfortable method for doing this would be the use of a constraint trail similar
to the variable trail except that here also the old values need to be stored—note
that the variable trail only has to contain the list of bound variables. Additionally,
in order to permit the reuse of the constraint stack, one has to remember the top
of the constraint stack before each sequence of constraint modifications.

10.4 Disequation Constraints in Prolog

Some Prologs offer the possibility of formulating disequation constraints. As an
example, we consider the Prolog system Eclipse [Wallace and Veron, 1993]. Here,
using the infix predicate "= one can formulate syntactic disequation constraints.
This permits that constraints resulting from structural tableau conditions can
be easily implemented. We describe the method for regularity constraints on the
first contrapositive of the transitivity clause

P_P(X9Z9 P9N) :- N1 = [p(X,Z)H\I], P_P(X9Y9 P9N1), P_P(Y;Z; P’Nl)'

taken from the Prolog example in Section 9.4. We show how regularity can be
integrated by modifying the clause as follows.

p_p(X,Z, P,N) :- N1 = [p(X,2) | N1,
not_member (p(X,Z), P),
not_member (p(X,Y), N1),
not_member (p(Y,Z), N1),
p_p(X,Y, P,N1), p_p(Y,Z, P,N1).

where not_member is defined as:

not_member(_,[1).
not_member(E, [FIR]) :- E "= F, not_member (E,R).

194 CHAPTER 10. CONSTRAINT TECHNOLOGY

With similar methods an easy integration of tautology and subsumption con-
straints can be achieved. However, when it comes to the integration of more so-
phisticated constraints like the ones considered next, it turns out that an efficient
Prolog implementation is very hard to obtain.

10.5 Constraints for Global Pruning Methods

In this section, we describe how the matings pruning and the local failure mech-
anism can be implemented efficiently and even improved by using constraints
technology.

Improving the matings pruning using constraints

With the matings pruning mechanism described in Section 5.3.1 one can avoid
that certain permutations of matings are considered more than once. The idea
was to impose an ordering on the literals in the input formula, which is inherited
to the tableau nodes. Now, a reduction step from a subgoal N to an ancestor node
N’ may be avoided if the entry node N" immediately below N’ is smaller than N
in the ordering. In fact, this method can also be captured and even improved by
using disequation constraints, as follows. The prohibition to perform a reduction
step on N using N’ may be reexpressed as a disequation constraint [# r where
I and r are the argument sequences of the literals at N and N’, respectively.
Interestingly, such a constraint does prune not only the respective reduction step,
but all tableaux in which the literals at N and N" become equal by instantiation.
In [Letz, 1998b] it is proven that this extension of the matings pruning preserves
completeness, the main reason being that the matings pruning is compatible with
regularity.

Failure caching using constraints

The failure caching mechanism described in Section 5.3.3 can also be implemented
using disequation constraints. Briefly, the method requires that when a subgoal
N is solved with a solution substitution ¢ and the remaining subgoals cannot be
solved with this substitution, then ¢ is turned into a failure substitution and, for
any alternative solution substitution 7 for N, ¢ must not be more general than
T.

Definition 10.8 (Constraint of a failure substitution) Let o be a failure substitu-
tion generated at a subgoal N and V the set of variables on the path with leaf
N in the last tableau in which the subgoal N was selected for an inference step.
The constraint of the failure substitution o is the normal form of the constraint
Yuy - -V 1,..., Ty # t1,...,t, where uy,...,u,, are the variables occurring
in terms of o that are not in V.

10.5. CONSTRAINTS FOR GLOBAL PRUNING METHODS 195

It is straightforward to recognize that a failure substitution o of a tableau node
N is more general than a solution substitution 7 of N if and only if the constraint
of the failure substitution o is violated by 7. Consequently, the constraint handling
mechanism can be used to implement failure caching. In order to capture failure
caching adequately with constraints, the use of universal variables is also needed,
like for the case of tableau clause subsumption (Section 10.1). This can be seen by
considering, for example, a subgoal N with failure substitution o = {z/f(z,2)}
where z is a variable not occurring in the set V. The constraint of o is Vz x #
f(z,2z). When N can be solved with a solution substitution 7 = {z/f(a,a)}, then
o is more general than 7 and, in fact, the constraint Vz = # f(z, 2) is violated by
7. Obviously, without universal variables it is impossible to capture such a case.

Centralized management of constraints

It is apparent that structural constraints resulting from different sources, tautol-
ogy, regularity, subsumption, or matings, need not be distinguished in the tableau
construction. Furthermore, in general, the constraints need not even be tied to the
respective tableau clauses, but the constraint information can be kept separate
in a special constraint store. This also fits in with the method of forgetting closed
parts of a tableau and working with subgoal trees instead, for all relevant struc-
ture information of the solved part of the tableau is contained in the constraints.
However, when structural constraints are used in combination with constraints
resulting from failure substitutions, in certain states of the proof process con-
straints have to be deactivated, as shown in Section 5.3.2 and Section 5.3.3. In
this case, it is necessary to take the tableau positions into account at which the
respective constraints were generated.

196 CHAPTER 10. CONSTRAINT TECHNOLOGY

Conclusion

Summary

This work is an attempt to provide a comprehensive presentation of tableau and
connection calculi for automated deduction in classical logic. We have introduced
the essential concepts of semantic tableaux for classical first-order logic both for
the closed formula and the free variable case. Structural differences like conflu-
ence and nondestructiveness have been discussed, and we have expounded the
consequences of the violation of these conditions for proof search. With the inte-
gration of connections as "active” control structures into the tableau framework,
a new quality is achieved. We have presented and compared a number of such
connection conditions concerning structural properties like confluence and non-
destructiveness and their use for the pruning of search spaces. Due to the rich
structure of tableau deductions, if compared with flat calculi like resolution, a
wealth of methods for redundancy elimination have been developed. Those tech-
niques can be nicely classified into local and global methods. Local methods work
by identifying structural deficiencies at single tableaux, whereas global methods
consider entire sets of deductions and perform an inter-tableau pruning. We have
analyzed in detail the most influential techniques from each class and have shown
which of the refinements can be combined. An interesting result to be emphasized
here is that the minimality concept from the matings framework is not compatible
with the regularity restriction on tableaux.

A further central topic of this work is the consideration of issues of computa-
tional complexity. A number of results on the polynomial simulation between dif-
ferent tableau variants are given, including a complete and comprehensible proof
of the polynomial simulation of clausal tableaux with atomic cut by connection
tableaux with folding up. We have also addressed the problem of estimating the
sizes of search spaces of bounded search procedures. For all three paradigms,
inference, depth, and multiplicity bound, completeness results with respect to
important complexity classes are given, some of which have interesting conse-
quences for the assessment of certain paradigms of proof search. For example,
there is an exponential decision procedure for multiplicity-bounded search, but
the standard iterative-deepening paradigm needs doubly exponential time. An
interesting open problem here is whether the latter also holds when all pruning
methods are used that have been considered in this work.

197

198 CHAPTER 10. CONSTRAINT TECHNOLOGY

The third topic of this work is the presentation of the techniques for an ef-
ficient implementation of clausal tableaux using the strict connection condition,
which is the most successful tableau calculus in automated deduction. Because
of the close relationship of connection tableaux with SLD-resolution, the basis of
the programming langugae Prolog, all of the existing implementations use Prolog
technology. There are two completely different paradigms which we both describe
in detail. One approach is to extend a Prolog compiler like the Warren abstract
machine towards a theorem prover for full clause logic, the other is to use Prolog
itself as a programming language. Motivated by the missing flexibility of both
paradigms, we also describe a non-compilative approach, which is more modu-
lar and hence offers a higher degree of flexibility, which may be needed for the
implementation of future connection tableau systems. The key idea of achieving
efficiency with this method is the extensive reuse of generated data structures.
Independently of the used architecture, a method for the efficient implementation
of the developed refinements is needed. Here the use of constraint technology is
the most promising alternative. Therefore we have presented all machinery that
is needed to represent pruning methods like regularity or failure caching by using
term disequation constraints.

Future Research

The connection tableau approach is an interesting an successful paradigm in au-
tomated deduction. There are, however, severe deficiencies, which have to be ad-
dressed in the future. One of the fundamental weaknesses of connection tableaux
is the handling of equality. The naive approach, which is to simply add the con-
gruence axioms of equality, suffers from the severe deficiency that equality specific
redundancy elimination techniques are ignored. The most successful paradigm for
treating equality in saturation-based theorem proving, ordered paramodulation,
is not compatible with connection tableaux. There have been attempts to inte-
grate lazy paramodulation, a variant of paramodulation without orderings which
is compatible with model elimination. This method is typically implemented by
means of a transformation (like Brand’s modification method), which eliminates
the equality axioms and compiles certain equality inferences into the formula. A
certain search space pruning might be obtained by using limited ordering con-
ditions [Bachmair et al., 1998], preferable implemented as ordering constraints.
This would fit well with the constraint technology applicable in connection tab-
leaux.

Another, more general weakness of the search procedure is that it typically
performs poor on formulae with relatively long proofs. On the one hand, this has
directly to do with the methodology of iterative-deepening search. On the other
hand, when proofs are becoming longer, the goal-orientedness loses its reductive
power. To prove difficult formulae in one big leap by reasoning backwards from
the conjecture is very hard. An interesting perspective here is the use of lemmata,
intermediate results typically deduced in a forward manner from the axioms. Some
progress has been made in this direction by the development of powerful filtering

10.5. CONSTRAINTS FOR GLOBAL PRUNING METHODS 199

techniques.

A further interesting line of research could be the use of pruning methods
based on semantic information. One could, for example, use small models of the
axioms in order to detect the unsolvability of certain subgoals. Finally, the consid-
eration of confluent and possibly even nondestructive integrations of connection
conditions into the tableau framework definitely deserves attention.

200 CHAPTER 10. CONSTRAINT TECHNOLOGY

Bibliography

[Aho et al., 1974] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974). The
Design and Analysis of Computer Algorithms. Addison-Wesley.

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers —
Principles, Techniques, and Tools. Addison-Wesley, Reading, MA, USA.

[Aho and Ullman, 1977] Aho, A. V. and Ullman, J. D. (1977). Principles of
Compiler Design. Addison-Wesley, Reading, MA, USA. See also the much
expanded subsequent book [Aho et al., 1986].

[Andrews, 1981] Andrews, P. B. (1981). Theorem proving through general mat-
ings. Journal of the Association for Computing Machinery, 28:193-214.

[Astrachan and Stickel, 1992] Astrachan, O. and Stickel, M. (1992). Caching and
Lemmaizing in Model Elimination Theorem Provers. In Kapur, D., editor,
Proceedings, 11th International Conference on Automated Deduction (CADE),
Saratoga Springs, NY, USA, volume 607 of LNAI, pages 224 — 238. Springer.

[Astrachan and Loveland, 1991] Astrachan, O. L. and Loveland, D. W. (1991).
METEORs: High performance theorem provers using model elimination. Tech-
nical Report Technical report DUKE-TR-1991-08, Department of Computer
Science, Duke University. Printed copies available from T.R. Librarian, Dept.
of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129.

[Baaz and Fermiiller, 1995] Baaz, M. and Fermiiller, C. G. (1995). Non-
elementary speedups between different versions of tableaux. In Proceedings
of the 4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, pages 217-230.

[Baaz and Leitsch, 1992] Baaz, M. and Leitsch, A. (1992). Complexity of reso-
lution proofs and function introduction. Amnnals of Pure and Applied Logic,
57(3):181-215.

[Bachmair et al., 1998] Bachmair, L., Ganzinger, H., and Voronkov, A. (1998).
Elimination of equality via transformation with ordering constraints. In Kirch-
ner, C. and Kirchner, H., editors, Proceedings, 15th International Conference
on Automated Deduction (CADE), Lindau, Germany, volume 1421 of LNAI,
pages 175-190. Springer.

201

202 BIBLIOGRAPHY

[Baumgartner, 1998] Baumgartner, P. (1998). Hyper tableau — the next gen-
eration. In de Swart, H., editor, Proceedings, International Conference Tab-
leaux’98, Oisterwijk, The Netherlands, volume 1397 of LNAI, pages 60-76.

[Baumgartner et al., 1999] Baumgartner, P., Eisinger, N., and Furbach, U.
(1999). A confluent connection calculus. In Ganzinger, H., editor, Proceed-
ings, 16th International Conference on Automated Deduction (CADE), Trento,
Italy, LNAT 1632, pages 329-343. Springer.

[Baumgartner and Furbach, 1994] Baumgartner, P. and Furbach, U. (1994).
PROTEIN: A PROver with a Theory Extension INterface. In Bundy, A., edi-
tor, Proceedings of the 12th International Conference on Automated Deduction,
volume 814 of LNAI, pages 769-773, Berlin. Springer.

[Baumgartner and Furbach, 1998] Baumgartner, P. and Furbach, U. (1998).
Variants of clausal tableaux. In Bibel, W. and Schmitt, P. H., editors, Au-

tomated Deduction — A Basis for Applications, volume I: Foundations, pages
73-101. Kluwer, Dordrecht.

[Beckert and Hahnle, 1998] Beckert, B. and Hahnle, R. (1998). Analytic tab-
leaux. In Bibel, W. and Schmitt, P. H., editors, Automated Deduction — A
Basis for Applications, volume I: Foundations, pages 11-41. Kluwer, Dordrecht.

[Beckert et al., 1993] Beckert, B., Hihnle, R., and Schmitt, P. (1993). The even
more liberalized d-rule in free variable semantic tableaux. In Computational
Logic and Proof Theory, Proceedings of the 3rd Kurt Gédel Colloguium, pages
108-119.

[Beckert and Posegga, 1994] Beckert, B. and Posegga, J. (1994). lean¥P: Lean
tableau-based theorem proving. extended abstract. In Bundy, A., editor, Pro-
ceedings, 12th International Conference on Automated Deduction (CADE),
Nancy, France, LNCS 814, pages 793-797. Springer.

[Benker et al., 1989] Benker, H., Beacco, J. M., Bescos, S., Dorochevsky, M.,
Jeffré, T., P6hlmann, A., Noyé, J., Poterie, B., Sexton, A., Syre, J. C., Thibault,
0., and Watzlawik, G. (1989). KCM: A knowledge crunching machine. In Yoeli,
M. and Silberman, G., editors, Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 186-194, Jerusalem, Israel. IEEE
Computer Society Press.

[Bernays and Schonfinkel, 1928] Bernays, P. and Schonfinkel, M. (1928). Zum
Entscheidungsproblem der Mathematischen Logik. Mathematische Annalen,
pages 342-372.

[Beth, 1955] Beth, E. W. (1955). Semantic Entailment and Formal Derivabil-
ity. Mededlingen der Koninklijke Nederlandse Akademie van Wetenschappen,
18(13):309-342.

BIBLIOGRAPHY 203

[Beth, 1959] Beth, E. W. (1959). The Foundations of Mathematics. North—
Holland, Amsterdam.

[Bibel, 1981] Bibel, W. (1981). On Matrices with Connections. Journal of the
Association for Computing Machinery, pages 633—-645.

[Bibel, 1987] Bibel, W. (1987). Automated Theorem Proving. Vieweg, Braun-
schweig, second revised edition.

[Bibel et al., 1994] Bibel, W., Bruening, S., Egly, U., and Rath, T. (1994).
KoMeT. In Proceedings, 12th International Conference on Automated Deduc-
tion (CADE), Nancy, France, volume 814 of LNAI, pages 783-787. Springer.

[Billon, 1996] Billon, J.-P. (1996). The disconnection method: a confluent inte-
gration of unification in the analytic framework. In Migliolo, P., Moscato, U.,
Mundici, D., and Ornaghi, M., editors, Proceedings of the 5th International

Workshop on Theorem Proving with analytic Tableauz and Related Methods
(TABLEAUX), volume 1071 of LNAI pages 110-126, Berlin. Springer.

[Boy de la Tour, 1990] Boy de la Tour, T. (1990). Minimizing the number of
clauses by renaming. In Stickel, M. E., editor, 10th International Conference
on Automated Deduction (CADE), LNCS, pages 558-572, Kaiserslautern, Ger-
many. Springer.

[Bry and Yahya, 1996] Bry, F. and Yahya, A. (1996). Minimal model genera-
tion with positive unit hyper-resolution tableaux. In Miglioli, P., Moscato, U.,
Mundici, D., and Ornaghi, M., editors, 5th International Workshop on Theo-
rem Proving with Analytic Tableaux and Related Methods (TABLEAUX ’96),
LNAI pages 143-159, Terrasini, Palermo, Italy. Springer.

[Chang and Lee., 1973] Chang, C. and Lee., R. (1973). Symbolic Logic and Me-
chanical Theorem Proving. Academic Press.

[Church, 1936] Church, A. (1936). An Unsolvable Problem of Elementary Num-
ber Theory. American Journal of Mathematics.

[Cook, 1971] Cook, S. A. (1971). The Complexity of Theorem-Proving Proce-
dures. In Proceedings of the 3rd Annual ACM Symposium on the Theory of
Computing, pages 151-158.

[Cook and Reckhow, 1974] Cook, S. A. and Reckhow, R. A. (1974). On the
lengths of proofs in the propositional calculus. In Proceedings of the Sizth
Annual ACM Symposium on Theory of Computing, pages 135-148.

[Corbin and Bidoit, 1983] Corbin, J. and Bidoit, M. (1983). A Rehabilitation of
Robinson’s Unification Algorithm. In Information Processing, pages 909-914.
North—Holland.

204 BIBLIOGRAPHY

[d’Agostino, 1999] d’Agostino, M. (1999). Tableau methods for classical propo-
sitional logics. In D’Agostino, M., Gabbay, D., Hihnle, R., and Posegga, J.,
editors, Handbook of Tableau Methods, pages 45-124. Kluwer.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem proving. Communications of the Association for
Computing Machinery, pages 394-397.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A computing pro-
cedure for quantification theory. Journal of the Association for Computing
Machinery, pages 201-215.

[Dowling and Gallier, 1984] Dowling, W. and Gallier, J. (1984). Linear-time al-
gorithms for testing the satisfiability of propositional horn formulae. Journal
of Logic Programming, 1:267-284.

[Eder, 1985] Eder, E. (1985). Properties of Substitutions and Unifications. Jour-
nal of Symbolic Computation, 1:31-46.

[Egly, 1997] Egly, U. (1997). Non-elementary speed-ups in proof length by dif-
ferent variants of classical analytic calculi. In Proceedings of the International

Conference on Theorem Proving with Analytic Tableauz and Related Methods
(TABLEAUX), pages 158-171.

[Fitting, 1990] Fitting, M. C. (1990). First-Order Logic and Automated Theorem
Proving. Springer.

[Fitting, 1996] Fitting, M. C. (1996). First-Order Logic and Automated Theorem
Proving. Springer, second revised edition.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of NP-Completeness. Freeman.

[Gentzen, 1935] Gentzen, G. (1935). Untersuchungen iiber das logische Schliefien.
Mathematische Zeitschrift, 39:176-210, 405-431. Engl. translation in M. E.
Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68-131. North-
Holland, 1969.

[Godel, 1930] Godel, K. (1930). Die Vollstdndigkeit der Axiome des logischen
Funktionenkalkiils. Monatshefte fir Mathematik und Physik, 37:349-360.

[Goller et al., 1994] Goller, C., Letz, R., Mayr, K., and Schumann, J. M. P.
(1994). SETHEO V3.2: Recent developments. In Bundy, A., editor, Proceed-
ings of the 12th International Conference on Automated Deduction, volume 814
of LNAI, pages 778-782, Berlin. Springer.

[Hahnle and Pape, 1997] Héhnle, R. and Pape, C. (1997). Ordered tableaux: Ex-
tensions and applications. In Galmiche, D., editor, Proceedings, International
Conference Tableaux’97, Pont-a-Mousson, France, volume 1227 of LNAI, pages
173-76.

BIBLIOGRAPHY 205

[Hihnle and Schmitt, 1994] Hihnle, R. and Schmitt, P. (1994). The liberalized
d-rule in free variable semantic tableaux. Journal of Automated Reasoning,
pages 211-221.

[Harrison, 1996] Harrison, J. (1996). Optimizing proof search in model elimina-
tion. In McRobbie, M. A. and Slaney, J. K., editors, Proceedings of the Thir-
teenth International Conference on Automated Deduction (CADE-96), volume
1104 of LNAI, pages 313-327, Berlin. Springer.

[Herbrand, 1930] Herbrand, J. J. (1930). Recherches sur la théorie de la dé-
monstration. Travauz de la Société des Sciences et des Lettres de Varsovie,
Cl. I1I, math.-phys., pages 33—160.

[Hilbert and Ackermann, 1928]
Hilbert, D. and Ackermann, W. (1928). Grundziige der theoretischen Logik.
Springer. Engl. translation: Mathematical Logic, Chelsea, 1950.

[Hintikka, 1955] Hintikka, K. J. J. (1955). Form and Content in Quantification
Theory. Acta Philosophica Fennica, 8(7):7-55.

[Huet, 1976] Huet, G. (1976). Resolution d’equations dans les languages d’ordre
1,2,...,w. PhD thesis, Université de Paris VII.

[Huet, 1980] Huet, G. (1980). Confluent Reductions: Abstract Properties and
Applications to Term Rewriting Systems. Journal of the Association for Com-
puting Machinery, pages 797-821.

[Kleene, 1967] Kleene, S. C. (1967). Mathematical Logic. Wiley.

[Klingenbeck and H&hnle, 1994] Klingenbeck, S. and Hahnle, R. (1994). Seman-
tic tableaux with ordering restrictions. In Bundy, A., editor, Proceedings, 12th
International Conference on Automated Deduction (CADE), Nancy, France,
LNCS 814, pages 708-722. Springer.

[Korf, 1985] Korf, R. E. (1985). Iterative-deepening-A: An optimal admissible
tree search. In Joshi, A., editor, Proceedings of the 9th International Joint
Conference on Artificial Intelligence, pages 1034-1036, Los Angeles, CA. Mor-
gan Kaufmann.

[Kowalski and Kuehner, 1971] Kowalski, R. and Kuehner, D. (1971). Linear res-
olution with selection function. Artificial Intelligence, 2:227-260.

[Kowalski and Hayes, 1969] Kowalski, R. A. and Hayes, P. (1969). Semantic tress
in automated theorem proving. Machine Intelligence, pages 87-101.

[Kowalski and Kuehner, 1970] Kowalski, R. A. and Kuehner, D. (1970). Linear
resolution with selection function. Technical report, Metamathematics Unit,
Edinburgh University, Edinburgh, Scotland.

206 BIBLIOGRAPHY

[Krivine, 1971] Krivine, J.-L. (1971). Introduction to Axiomatic Set Theory. Rei-
del, Dordrecht.

[Lassez et al., 1988] Lassez, J.-L., Maher, M. J., and Marriott, K. (1988). Unifica-
tion Revisited. In Foundations of Deductive Databases and Logic Programming,
pages 587—-625. Morgan Kaufmann.

[Lee and Plaisted, 1992] Lee, S.-J. and Plaisted, D. (1992). Eliminating duplica-
tion with the hyper-linking strategy. Journal of Automated Reasoning, pages
25—42.

[Letz, 1993a] Letz, R. (1993a). First-order calculi and proof procedures for auto-
mated deduction. PhD thesis, TH Darmstadt.

[Letz, 1993b] Letz, R. (1993b). On the polynomial transparency of resolution.
In Bajcsy, R., editor, Proceedings of the 13th International Joint Conference
on Artificial Intelligence (IJCAI), Chambery, France, pages 123-129. Morgan
Kaufmann.

[Letz, 1998a] Letz, R. (1998a). On the complexity of the formula instantiation
problem. Technical report, Technische Universitdt Miinchen.

[Letz, 1998b] Letz, R. (1998b). Using matings for pruning connection tableaux.
In Kirchner, C. and Kirchner, H., editors, Proceedings, 15th International Con-
ference on Automated Deduction (CADE), Lindau, Germany, volume 1421 of
LNAI pages 381-396. Springer.

[Letz, 1999a] Letz, R. (1999a). First-order tableaux methods. In D’Agostino,
M., Gabbay, D., Hahnle, R., and Posegga, J., editors, Handbook of Tableau
Methods, pages 125-196. Kluwer.

[Letz, 1999b] Letz, R. (1999b). Properties and relations of tableaux and con-
nection calculi. In Hélldobler, S.; editor, Intellectics and Computational Logic.
Kluwer. To appear.

[Letz et al., 1994] Letz, R., Mayr, K., and Goller, C. (1994). Controlled inte-
gration of the cut rule into connection tableau calculi. Journal of Automated
Reasoning, 13(3):297-338.

[Letz et al., 1989] Letz, R., Schumann, J., and Bayerl, S. (1989). SETHEO: A
SEquentiell THEOremprover for first order logic. Technical Report FKI-97-89,
Technische Universitit Miinchen, Miinchen, Germany.

[Letz et al., 1992] Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992).
SETHEO: A high-performance theorem prover. Journal of Automated Rea-
soning, 8(2):183-212.

[Loveland, 1968] Loveland, D. W. (1968). Mechanical theorem proving by model
elimination. Journal of the Association for Computing Machinery, 15(2):236—
251. Reprinted in: [Siekmann and Wrightson, 1983].

BIBLIOGRAPHY 207

[Loveland, 1969] Loveland, D. W. (1969). A simplified format for the model elim-
ination theorem-proving procedure. Journal of the Association for Computing
Machinery, 16(3):349-363.

[Loveland, 1972] Loveland, D. W. (1972). A unifying view of some linear Her-
brand procedures. Journal of the Association for Computing Machinery,
19(2):366-384.

[Loveland, 1978] Loveland, D. W. (1978). Automated theorem proving: A logical
basis. North Holland, New York.

[Loveland, 1991] Loveland, D. W. (1991). Near-horn Prolog and beyond. Journal
of Automated Reasoning, 7:1-26.

[Manthey and Bry, 1988] Manthey, R. and Bry, F. (1988). Satchmo: a theorem
prover implemented in prolog. In Proceedings of the 9th Conference on Auto-
mated Deduction (CADE), pages 456-459.

[Martelli and Montanari, 1976] Martelli, A. and Montanari, U. (1976). Unifica-
tion in Linear Time and Space: a Structured Presentation. Technical report, Ist.
di Elaboratione delle Informatione, Consiglio Nazionale delle Ricerche, Pisa,
Ttaly.

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982). An ef-
ficient unification algorithm. ACM Transactions on Programming Languages
and Systems, pages 258—282.

[Mayr, 1993] Mayr, K. (1993). Refinements and extensions of model elimina-
tion. In Voronkov, A., editor, Proceedings of the 4th International Conference
on Logic Programming and Automated Reasoning (LPAR’93), volume 698 of
LNAI pages 217-228, St. Petersburg, Russia. Springer Verlag.

[Moser et al., 1997] Moser, M., Ibens, O., Letz, R., Steinbach, J., Goller, C., Schu-
mann, J., and Mayr, K. (1997). SETHEO and E-SETHEO—the CADE-13
systems. Journal of Automated Reasoning, 18(2):237-246.

[Ohlbach, 1991] Ohlbach, H.-J. (1991). Semantics Based Translation Methods
for Modal Logics. Journal of Logic and Computation, 1(5):691-746.

[Orevkov, 1979] Orevkov, V. P. (1979). Lower bounds for increasing complexity
of derivations after cut elimination. Zapiski Nauchnykh Seminarov Leningrad-
skogo Otdeleniya Matematicheskogo Instituta im V. A. Steklova AN SSSR,
pages 137-161.

[Paterson and Wegman, 1978] Paterson, M. S. and Wegman, M. N. (1978). Lin-
ear Unification. Journal of Computer and Systems Sciences, pages 158-167.

[Plaisted, 1984] Plaisted, D. A. (1984). The occur-check problem in prolog. In
198/ International Symposium on Logic Programming. IEEE, New York, USA
ISBN 08186 0522 7. U.S. Copyright Clearance Center Code: CH2007-3/84/000-
0272$01.00.

208 BIBLIOGRAPHY

[Plaisted, 1994] Plaisted, D. A. (1994). The search efficiency of theorem proving
strategies. In Bundy, A., editor, Proceedings of the 12th International Confer-
ence on Automated Deduction (CADE), LNAT 814, pages 57-71. Springer.

[Plaisted and Greenbaum, 1986] Plaisted, D. A. and Greenbaum, S. (1986). A
structure preserving clause form translation. Journal of Symbolic Computation,
2(3):293-304.

[Plaisted and Zhu, 1997] Plaisted, D. A. and Zhu, Y. (1997). The Efficiency of
Theorem Proving Strategies. Vieweg.

[Prawitz, 1960] Prawitz, D. (1960). An improved proof procedure. Theoria,
26:102-139. Reprinted in [Siekmann and Wrightson, 1983].

[Prawitz, 1969] Prawitz, D. (1969). Advances and Problems in Mechanical Proof
Procedures. In Automation of Reasoning, 1983 (reprinted), pages 285-297.
Springer.

[Reckhow, 1976] Reckhow, R. A. (1976). On the Lenghts of Proofs in the Propo-
sitional Calculus. PhD thesis, University of Toronto.

[Reeves, 1987] Reeves, S. V. (1987). Adding equality to semantic tableau. Journal
of Automated Reasoning, 3:225-246.

[Robinson, 1965] Robinson, J. A. (1965). A Machine-oriented Logic Based on the
Resolution Principle. Journal of the Association for Computing Machinery,
pages 23-41.

[Robinson, 1968] Robinson, J. A. (1968). The Generalized Resolution Principle.
Machine Intelligence, pages 77-94.

[Schumann, 1991] Schumann, J. (1991). Efficient Theorem Provers based on an
Abstract Machine. PhD thesis, TU Mnchen.

[Shostak, 1976] Shostak, R. E. (1976). Refutation graphs. Artificial Intelligence,
7:51-64.

[Siekmann and Wrightson, 1983] Siekmann, J. and Wrightson, G., editors (1983).
Automation of Reasoning. Springer, Berlin. Two volumes.

[Smullyan, 1968] Smullyan, R. (1968). First-Order Logic. Springer.

[Statman, 1979] Statman, R. (1979). Lower Bounds on Herbrand’s Theorem.
Proceedings American Math. Soc., pages 104-107.

[Stickel, 1984] Stickel, M. E. (1984). A prolog technology theorem prover. In
1984 International Symposium on Logic Programming. IEEE, New York, USA
ISBN 0 8186 0522 7.

BIBLIOGRAPHY 209

[Stickel, 1988] Stickel, M. E. (1988). A prolog technology theorem prover. In
Lusk, E. and Overbeek, R., editors, 9th International Conference on Automated
Deduction (CADE), LNCS, pages 752-753, Argonne, Ill. Springer.

[Stickel, 1992] Stickel, M. E. (1992). A prolog technology theorem prover: a
new exposition and implementation in prolog. Theoretical Computer Science,
104:109-128.

[Sutcliffe et al., 1994] Sutcliffe, G., Suttner, C., and Yemenis, T. (1994). The
TPTP problem library. In Bundy, A., editor, Proceedings, 12th International
Conference on Automated Deduction (CADE), Nancy, France, LNCS 814,
pages 708-722. Springer. Current version available on the World Wide Web at
the URL http://www.cs.jcu.edu.au/ftp/users/GSutcliffe/TPTP.HTML.

[Taki et al., 1984] Taki, K., Yokota, M., Yamamoto, A., Nishikawa, H., ichi
Uchida, S., Nakashima, H., and Mitsuishi, A. (1984). Hardware Design and
Implementation of the Personal Sequential Inference Machine (PSI). In Pro-

ceedings of the International Conference on Fifth Generation Computer Sys-
tems, pages 398-409, ICOT Research Center, Tokyo, Japan. ICOT.

[Tarski, 1936] Tarski, A. (1936). Der Wahrheitsbegriff in den formalisierten
Sprachen. Studia Philosophica, 1.

[Tseitin, 1970] Tseitin, G. (1970). On the complexity of proofs in propositional
logics. Seminars in Mathematics, 8.

[Turing, 1936] Turing, A. M. (1936). On Computable Numbers, with an Appli-
cation to the Entscheidungsproblem. Proceedings of the London Mathematical
Society, pages 230-265.

[van Orman Quine, 1955] van Orman Quine, W. (1955). A Way to Simplify
Truth Functions. American Mathematical Monthly.

[Vlahavas and Halatsis, 1987] Vlahavas, I. and Halatsis, C. (1987). A new ab-
stract prolog instruction set. In Ezpert systems and their applications (Pro-
ceedings), pages 1025-1050, Avignon.

[Voronkov, 1998] Voronkov, A. (1998). Herbrand’s theorem, automated reasoning
and semantics tableaux. In IEEE Symposium on Logic in Computer Science.

[Wallace and Veron, 1993] Wallace, M. and Veron, A. (1993). Two problems —
two solutions: One system — ECLiPSe. In Proceedings IEE Colloquium on
Advanced Software Technologies for Scheduling, London.

[Wallen, 1989] Wallen, L. (1989). Automated Deduction for Non-Classical Logic.
MIT Press, Cambridge, Mass.

[Warren, 1983] Warren, D. H. D. (1983). An Abstract PROLOG Instruction
Set. Technical Report 309, Artificial Intelligence Center, Computer Science
and Technology Division, SRI International, Menlo Park, CA.

Index

a, 29 closed -, 32
-rule, 31 open -, 32
B, 29 satisfiable -, 33
-rule, 31
with cut, 106 C-point, 111
4,29 clause, 27
-rule, 31 lifting, 138
dT-rule, 50 start -, 62
5*-11119: 119 tableau -, 62
6t -rule, 119 closure rule, 52
3, 10 local -, 120
v, 10 compactness theorem, 38
-satisfiable, 51 complement, 11
7, 29 splitting, 106, 107
, -rule, 31 complementary
7'-rule, 52 nodes, 31
~x-rule, 50 completeness
yu-rule, 41 bound, 58
<, 10 completeness bound, 65
-, 10 confluence, 39
~, 11 . .
’ 31 conjunction, 11
b connected, 63
>, 91
path -, 63
—, 10
strongly, 90
Vv, 10 .
tightly -, 63
A, 10 .
718 connection, 78
w graph, 166
analyticity, 33 me.thod, 78
ancestor, 31 unifiable -, 78
atom, 11 used -, 79
connection method, 78
Bernays-Schonfinkel class, 43, 83, 85 consensus, 141
binary counter example, 144 constraint, 185, 187
binding, 19, 164 disjunctive form, 187
proper -, 19 equivalence, 187
branch, 31 failure, 190

210

INDEX

generation, 189
normal form, 188
propagation, 190
solved form, 187
violation, 187

cut, 106
atomic -, 106
elimination, 138, 139
formula, 106
normal form, 129

dag, 49

symbol -, 124

size of a, 125

data objects

formula, 178

proof, 178
depth bound, 66

weighted -, 68
disagreement set, 45
disequation constraint, 185, 187
disjunction, 11
downward saturated, 34
DPLL, 140
duplication trick, 97

equivalence, 17
material -, 11
strong -, 17

essential formula, 90

expansion rule, 62

expression, 11
closed -, 13
ground -, 13

extension rule, 64
hyper -, 82
path -, 64

factoring, 141
factorization, 108
folding-up, 111
folding down, 112
folding up, 109
formula, 11

a-, 29

ﬂ) 29

211

d-,29

) 29
assignment, 15
atomic -, 11
complexity, 30
datalogic -, 43
essential -, 90
relevant -, 90
tree, 30

global subgoal list, 179
ground, 13
set, 93

Herbrand
complexity, 39
tableau, 41
systematic -, 42
Herbrand complexity, 145
Hintikka set, 34

implication, 17
material -, 11
strong -, 17

inference bound, 66

instance, 19
linking -, 84

interpretation, 14
Herbrand -, 25

lemma, 110
context unit -, 110

link, 166
linking instance, 84
literal, 11
entry -, 64
head -, 64
linear -, 168
mating, 78

minimal -, 96
of a tableau, 79
spanning -, 78
unifiable -, 78
matrix, 21
mgu, 45

212

model, 16
model elimination, 77
chain, 77
weak -, 77
multiplicity, 78
node
entry -, 64
family, 31
head -, 64
usable -, 35

nondestructiveness, 36

occurrence, 12
occurs-check, 45

path connected, 63
path linking rule, 85
path set, 111
path through clause set, 78
polynomial simulation, 123
polynomial transparency, 124
position, 12
Prawitz reduction, 107
predecessor, 31
prenex form, 21
procedure

extension, 181

solve, 181
PTTP, 161, 167

QBF, 156
quantification, 11
quantified Boolean formula, 156

range restricteness, 82
reduction rule, 62
regularity, 40

goal tree -, 100

strong -, 113
relevant formula, 90
renaming, 61
resolution, 142

ancestor -, 143

dag, 142

linear -, 143

proof, 142
propositional -, 141
refutation, 142
SLD -, 78
tree, 142

resolvent, 142
propositional -, 141

resource, 67

restart step, 81

satisfiability, 16
V-, 51
ground -, 118
scope, 13
search tree, 57
selection function, 54
semantic tree, 140
sentence, 13
Skolem form, 22
Skolem variant, 54
spanning, 78
start rule, 65
strengthening, 91
strictness, 80
subconstraint, 187
subgoal, 62
alternation, 70
substitution, 19
composition of -s; 20
failure -, 100

free -, 19

solution -, 100
subsumption

clause -, 89

compatibility with -, 99
deletion, 98
formula tree -, 98
tableau -, 98

symbol dag, 124
size of a, 125

symbol tree, 12

tableau, 30
branch formula, 75
clause, 62
closed -, 32

INDEX

INDEX

connection -, 65
calculus, 65

depth, 31

free-variable -, 52

general hyper -, 82

goal formula, 76

goal tree, 76

ground closed -, 85

Herbrand -, 41
systematic -, 42

hyper -, 83

open -, 32

path connection -, 65
calculus, 65

quantifier preferring -, 38

regular -, 40
sentence -, 31
size, 125

strict -, 40, 80
subsumption, 98
systematic -, 35
tautology
elimination, 88
term, 10
assignment, 15
top
start -, 62
tree, 30
contraction, 98
depth, 31
search -, 57
symbol -, 12
truth table, 125
Turing machine, 151

unification, 44
algorithm, 47
polynomial -, 49, 164
procedure, 163
unifier, 44
computed -, 47
minimal -, 45
most general -, 45
universe, 14
Herbrand -, 25

213

unsatisfiable
minimally -, 90

validity, 16

variable
assignment, 15
bound -, 13
elimination, 46
free -, 13
local -, 119
rigid -, 44, 62

substitution, 19
universal -, 120

variables

universal -, 186
variant, 61

z-, 16

Skolem -, 54

