module Relation.Unary where
open import Data.Empty
open import Data.Unit.Base using (⊤)
open import Data.Product
open import Data.Sum using (_⊎_; [_,_])
open import Function
open import Level
open import Relation.Nullary
open import Relation.Binary.Core using (_≡_)
Pred : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ)
Pred A ℓ = A → Set ℓ
module _ {a} {A : Set a}
where
infix 4 _∈_ _∉_
_∈_ : ∀ {ℓ} → A → Pred A ℓ → Set _
x ∈ P = P x
_∉_ : ∀ {ℓ} → A → Pred A ℓ → Set _
x ∉ P = ¬ x ∈ P
∅ : Pred A zero
∅ = λ _ → ⊥
Empty : ∀ {ℓ} → Pred A ℓ → Set _
Empty P = ∀ x → x ∉ P
{_} : A → Pred A a
{ x } = x ≡_
U : Pred A zero
U = λ _ → ⊤
infix 10 Universal
Universal : ∀ {ℓ} → Pred A ℓ → Set _
Universal P = ∀ x → x ∈ P
syntax Universal P = ∀[ P ]
∁ : ∀ {ℓ} → Pred A ℓ → Pred A ℓ
∁ P = λ x → x ∉ P
infix 4 _⊆_ _⊇_ _⊈_ _⊉_ _⊂_ _⊃_ _⊄_ _⊅_
_⊆_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q
_⊇_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊇ Q = Q ⊆ P
_⊈_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊈ Q = ¬ (P ⊆ Q)
_⊉_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊉ Q = ¬ (P ⊇ Q)
_⊂_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊂ Q = P ⊆ Q × Q ⊈ P
_⊃_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊃ Q = Q ⊂ P
_⊄_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊄ Q = ¬ (P ⊂ Q)
_⊅_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊅ Q = ¬ (P ⊃ Q)
infix 4 _⊆′_ _⊇′_ _⊈′_ _⊉′_ _⊂′_ _⊃′_ _⊄′_ _⊅′_
_⊆′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊆′ Q = ∀ x → x ∈ P → x ∈ Q
_⊇′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
Q ⊇′ P = P ⊆′ Q
_⊈′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊈′ Q = ¬ (P ⊆′ Q)
_⊉′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊉′ Q = ¬ (P ⊇′ Q)
_⊂′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊂′ Q = P ⊆′ Q × Q ⊈′ P
_⊃′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊃′ Q = Q ⊂′ P
_⊄′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊄′ Q = ¬ (P ⊂′ Q)
_⊅′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ⊅′ Q = ¬ (P ⊃′ Q)
infix 4 _≬_
_≬_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _
P ≬ Q = ∃ λ x → x ∈ P × x ∈ Q
infixr 6 _∪_
_∪_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q
infixr 7 _∩_
_∩_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
P ∩ Q = λ x → x ∈ P × x ∈ Q
infixr 8 _⇒_
_⇒_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _
P ⇒ Q = λ x → x ∈ P → x ∈ Q
infix 10 ⋃ ⋂
⋃ : ∀ {ℓ i} (I : Set i) → (I → Pred A ℓ) → Pred A _
⋃ I P = λ x → Σ[ i ∈ I ] P i x
syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P
⋂ : ∀ {ℓ i} (I : Set i) → (I → Pred A ℓ) → Pred A _
⋂ I P = λ x → (i : I) → P i x
syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P
infixr 9 _⊢_
_⊢_ : ∀ {a b} {A : Set a} {B : Set b} {ℓ} → (A → B) → Pred B ℓ → Pred A ℓ
f ⊢ P = λ x → P (f x)
infixr 2 _⟨×⟩_
infixr 2 _⟨⊙⟩_
infixr 1 _⟨⊎⟩_
infixr 0 _⟨→⟩_
infixl 9 _⟨·⟩_
infix 10 _~
infixr 9 _⟨∘⟩_
infixr 2 _//_ _\\_
_⟨×⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} →
Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _
(P ⟨×⟩ Q) (x , y) = x ∈ P × y ∈ Q
_⟨⊙⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} →
Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _
(P ⟨⊙⟩ Q) (x , y) = x ∈ P ⊎ y ∈ Q
_⟨⊎⟩_ : ∀ {a b ℓ} {A : Set a} {B : Set b} →
Pred A ℓ → Pred B ℓ → Pred (A ⊎ B) _
P ⟨⊎⟩ Q = [ P , Q ]
_⟨→⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} →
Pred A ℓ₁ → Pred B ℓ₂ → Pred (A → B) _
(P ⟨→⟩ Q) f = P ⊆ Q ∘ f
_⟨·⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(P : Pred A ℓ₁) (Q : Pred B ℓ₂) →
(P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_)
(P ⟨·⟩ Q) (p , f) = f p
_~ : ∀ {a b ℓ} {A : Set a} {B : Set b} →
Pred (A × B) ℓ → Pred (B × A) ℓ
P ~ = P ∘ swap
_⟨∘⟩_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} →
Pred (A × B) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × C) _
(P ⟨∘⟩ Q) (x , z) = ∃ λ y → (x , y) ∈ P × (y , z) ∈ Q
_//_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} →
Pred (A × C) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × B) _
(P // Q) (x , y) = Q ∘ _,_ y ⊆ P ∘ _,_ x
_\\_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} →
Pred (A × C) ℓ₁ → Pred (A × B) ℓ₂ → Pred (B × C) _
P \\ Q = (P ~ // Q ~) ~
Decidable : ∀ {a ℓ} {A : Set a} (P : Pred A ℓ) → Set _
Decidable P = ∀ x → Dec (P x)