------------------------------------------------------------------------
-- The Agda standard library
--
-- An abstraction of various forms of recursion/induction
------------------------------------------------------------------------

-- The idea underlying Induction.* comes from Epigram 1, see Section 4
-- of "The view from the left" by McBride and McKinna.

-- Note: The types in this module can perhaps be easier to understand
-- if they are normalised. Note also that Agda can do the
-- normalisation for you.

module Induction where

open import Level
open import Relation.Unary

-- A RecStruct describes the allowed structure of recursion. The
-- examples in Induction.Nat should explain what this is all about.

RecStruct :  {a}  Set a  (ℓ₁ ℓ₂ : Level)  Set _
RecStruct A ℓ₁ ℓ₂ = Pred A ℓ₁  Pred A ℓ₂

-- A recursor builder constructs an instance of a recursion structure
-- for a given input.

RecursorBuilder :  {a ℓ₁ ℓ₂} {A : Set a}  RecStruct A ℓ₁ ℓ₂  Set _
RecursorBuilder Rec =  P  Rec P ⊆′ P  Universal (Rec P)

-- A recursor can be used to actually compute/prove something useful.

Recursor :  {a ℓ₁ ℓ₂} {A : Set a}  RecStruct A ℓ₁ ℓ₂  Set _
Recursor Rec =  P  Rec P ⊆′ P  Universal P

-- And recursors can be constructed from recursor builders.

build :  {a ℓ₁ ℓ₂} {A : Set a} {Rec : RecStruct A ℓ₁ ℓ₂} 
        RecursorBuilder Rec 
        Recursor Rec
build builder P f x = f x (builder P f x)

-- We can repeat the exercise above for subsets of the type we are
-- recursing over.

SubsetRecursorBuilder :  {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} 
                        Pred A ℓ₁  RecStruct A ℓ₂ ℓ₃  Set _
SubsetRecursorBuilder Q Rec =  P  Rec P ⊆′ P  Q ⊆′ Rec P

SubsetRecursor :  {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} 
                 Pred A ℓ₁  RecStruct A ℓ₂ ℓ₃  Set _
SubsetRecursor Q Rec =  P  Rec P ⊆′ P  Q ⊆′ P

subsetBuild :  {a ℓ₁ ℓ₂ ℓ₃}
                {A : Set a} {Q : Pred A ℓ₁} {Rec : RecStruct A ℓ₂ ℓ₃} 
              SubsetRecursorBuilder Q Rec 
              SubsetRecursor Q Rec
subsetBuild builder P f x q = f x (builder P f x q)