module Relation.Binary.List.Pointwise where
open import Function
open import Function.Inverse using (Inverse)
open import Data.Product hiding (map)
open import Data.List hiding (map)
open import Level
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec using (map′)
open import Relation.Binary renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
infixr 5 _∷_
data Rel {a b ℓ} {A : Set a} {B : Set b}
(_∼_ : REL A B ℓ) : List A → List B → Set (a ⊔ b ⊔ ℓ) where
[] : Rel _∼_ [] []
_∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Rel _∼_ xs ys) →
Rel _∼_ (x ∷ xs) (y ∷ ys)
head : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {x y xs ys} →
Rel _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y
head (x∼y ∷ xs∼ys) = x∼y
tail : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {x y xs ys} →
Rel _∼_ (x ∷ xs) (y ∷ ys) → Rel _∼_ xs ys
tail (x∼y ∷ xs∼ys) = xs∼ys
rec : ∀ {a b c ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ}
(P : ∀ {xs ys} → Rel _∼_ xs ys → Set c) →
(∀ {x y xs ys} {xs∼ys : Rel _∼_ xs ys} →
(x∼y : x ∼ y) → P xs∼ys → P (x∼y ∷ xs∼ys)) →
P [] →
∀ {xs ys} (xs∼ys : Rel _∼_ xs ys) → P xs∼ys
rec P c n [] = n
rec P c n (x∼y ∷ xs∼ys) = c x∼y (rec P c n xs∼ys)
map : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} →
_≈_ ⇒ _∼_ → Rel _≈_ ⇒ Rel _∼_
map ≈⇒∼ [] = []
map ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ map ≈⇒∼ xs≈ys
reflexive : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} →
_≈_ ⇒ _∼_ → Rel _≈_ ⇒ Rel _∼_
reflexive ≈⇒∼ [] = []
reflexive ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ reflexive ≈⇒∼ xs≈ys
refl : ∀ {a ℓ} {A : Set a} {_∼_ : Rel₂ A ℓ} →
Reflexive _∼_ → Reflexive (Rel _∼_)
refl rfl {[]} = []
refl rfl {x ∷ xs} = rfl ∷ refl rfl
symmetric : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_≈_ : REL A B ℓ₁} {_∼_ : REL B A ℓ₂} →
Sym _≈_ _∼_ → Sym (Rel _≈_) (Rel _∼_)
symmetric sym [] = []
symmetric sym (x∼y ∷ xs∼ys) = sym x∼y ∷ symmetric sym xs∼ys
transitive :
∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c}
{_≋_ : REL A B ℓ₁} {_≈_ : REL B C ℓ₂} {_∼_ : REL A C ℓ₃} →
Trans _≋_ _≈_ _∼_ → Trans (Rel _≋_) (Rel _≈_) (Rel _∼_)
transitive trans [] [] = []
transitive trans (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) =
trans x∼y y∼z ∷ transitive trans xs∼ys ys∼zs
antisymmetric : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} →
Antisymmetric _≈_ _≤_ →
Antisymmetric (Rel _≈_) (Rel _≤_)
antisymmetric antisym [] [] = []
antisymmetric antisym (x∼y ∷ xs∼ys) (y∼x ∷ ys∼xs) =
antisym x∼y y∼x ∷ antisymmetric antisym xs∼ys ys∼xs
respects₂ : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} →
_∼_ Respects₂ _≈_ → (Rel _∼_) Respects₂ (Rel _≈_)
respects₂ {_≈_ = _≈_} {_∼_} resp =
(λ {xs} {ys} {zs} → resp¹ {xs} {ys} {zs}) ,
(λ {xs} {ys} {zs} → resp² {xs} {ys} {zs})
where
resp¹ : ∀ {xs} → (Rel _∼_ xs) Respects (Rel _≈_)
resp¹ [] [] = []
resp¹ (x≈y ∷ xs≈ys) (z∼x ∷ zs∼xs) =
proj₁ resp x≈y z∼x ∷ resp¹ xs≈ys zs∼xs
resp² : ∀ {ys} → (flip (Rel _∼_) ys) Respects (Rel _≈_)
resp² [] [] = []
resp² (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) =
proj₂ resp x≈y x∼z ∷ resp² xs≈ys xs∼zs
decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} →
Decidable _∼_ → Decidable (Rel _∼_)
decidable dec [] [] = yes []
decidable dec [] (y ∷ ys) = no (λ ())
decidable dec (x ∷ xs) [] = no (λ ())
decidable dec (x ∷ xs) (y ∷ ys) with dec x y
... | no ¬x∼y = no (¬x∼y ∘ head)
... | yes x∼y with decidable dec xs ys
... | no ¬xs∼ys = no (¬xs∼ys ∘ tail)
... | yes xs∼ys = yes (x∼y ∷ xs∼ys)
isEquivalence : ∀ {a ℓ} {A : Set a} {_≈_ : Rel₂ A ℓ} →
IsEquivalence _≈_ → IsEquivalence (Rel _≈_)
isEquivalence eq = record
{ refl = refl Eq.refl
; sym = symmetric Eq.sym
; trans = transitive Eq.trans
} where module Eq = IsEquivalence eq
isPreorder : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} →
IsPreorder _≈_ _∼_ → IsPreorder (Rel _≈_) (Rel _∼_)
isPreorder pre = record
{ isEquivalence = isEquivalence Pre.isEquivalence
; reflexive = reflexive Pre.reflexive
; trans = transitive Pre.trans
} where module Pre = IsPreorder pre
isDecEquivalence : ∀ {a ℓ} {A : Set a}
{_≈_ : Rel₂ A ℓ} → IsDecEquivalence _≈_ →
IsDecEquivalence (Rel _≈_)
isDecEquivalence eq = record
{ isEquivalence = isEquivalence DE.isEquivalence
; _≟_ = decidable DE._≟_
} where module DE = IsDecEquivalence eq
isPartialOrder : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} →
IsPartialOrder _≈_ _≤_ →
IsPartialOrder (Rel _≈_) (Rel _≤_)
isPartialOrder po = record
{ isPreorder = isPreorder PO.isPreorder
; antisym = antisymmetric PO.antisym
} where module PO = IsPartialOrder po
preorder : ∀ {p₁ p₂ p₃} → Preorder p₁ p₂ p₃ → Preorder _ _ _
preorder p = record
{ isPreorder = isPreorder (Preorder.isPreorder p)
}
setoid : ∀ {c ℓ} → Setoid c ℓ → Setoid _ _
setoid s = record
{ isEquivalence = isEquivalence (Setoid.isEquivalence s)
}
decSetoid : ∀ {c ℓ} → DecSetoid c ℓ → DecSetoid _ _
decSetoid d = record
{ isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d)
}
poset : ∀ {c ℓ₁ ℓ₂} → Poset c ℓ₁ ℓ₂ → Poset _ _ _
poset p = record
{ isPartialOrder = isPartialOrder (Poset.isPartialOrder p)
}
Rel≡⇒≡ : ∀ {a} {A : Set a} → Rel {A = A} _≡_ ⇒ _≡_
Rel≡⇒≡ [] = P.refl
Rel≡⇒≡ (P.refl ∷ xs∼ys) with Rel≡⇒≡ xs∼ys
Rel≡⇒≡ (P.refl ∷ xs∼ys) | P.refl = P.refl
≡⇒Rel≡ : ∀ {a} {A : Set a} → _≡_ ⇒ Rel {A = A} _≡_
≡⇒Rel≡ P.refl = refl P.refl
Rel↔≡ : ∀ {a} {A : Set a} →
Inverse (setoid (P.setoid A)) (P.setoid (List A))
Rel↔≡ = record
{ to = record { _⟨$⟩_ = id; cong = Rel≡⇒≡ }
; from = record { _⟨$⟩_ = id; cong = ≡⇒Rel≡ }
; inverse-of = record
{ left-inverse-of = λ _ → refl P.refl
; right-inverse-of = λ _ → P.refl
}
}
decidable-≡ : ∀ {a} {A : Set a} →
Decidable {A = A} _≡_ → Decidable {A = List A} _≡_
decidable-≡ dec xs ys = Dec.map′ Rel≡⇒≡ ≡⇒Rel≡ (xs ≟ ys)
where
open DecSetoid (decSetoid (P.decSetoid dec))