module TreeSortInstance where
open import Prelude
record ⌜_⌝ (P : Set) : Set where
constructor !
field {{prf}} : P
Total : ∀{A} (R : Rel A) → Set
Total R = ∀ x y → ⌜ R (x , y) ⌝ ⊎ ⌜ R (y , x) ⌝
pattern le = inl !
pattern ge = inr !
compare : Total LEℕ
compare 0 _ = le
compare (suc x) 0 = ge
compare (suc x) (suc y) = compare x y
data Ext (A : Set) : Set where
⊤ : Ext A
# : A → Ext A
⊥ : Ext A
ext : ∀{A} → Rel A → Rel (Ext A)
ext R (_ , ⊤ ) = True
ext R (# x , # y) = R (x , y)
ext R (⊥ , _ ) = True
ext R _ = False
module _ {A : Set} (R : Rel A) (compare : Total R) where
data BST (lu : Ext A × Ext A) : Set where
leaf : {{l≤u : ext R lu}} → BST lu
node : (p : A)
(let (l , u) = lu)
(lt : BST (l , # p))
(rt : BST (# p , u)) → BST lu
insert : ∀{l u : Ext A} (p : A) {{l≤p : ext R (l , # p)}} {{p≤u : ext R (# p , u)}}
(t : BST (l , u)) → BST (l , u)
insert p leaf = node p leaf leaf
insert p (node q lt rt) with compare p q
... | le = node q (insert p lt) rt
... | ge = node q lt (insert p rt)
tree : (xs : List A) → BST (⊥ , ⊤)
tree nil = leaf
tree (cons x xs) = insert x (tree xs)
data OList (lu : Ext A × Ext A) : Set where
[] : {{l≤u : ext R lu}} → OList lu
_∷_ : (p : A)
(let (l , u) = lu)
{{l≤p : ext R (l , # p)}}
(ps : OList (# p , u)) → OList lu
_++_ : ∀{l m u}
(xs : OList (l , m))
(ys : ∀{k} {{k≤m : ext R (k , m)}} → OList (k , u)) → OList (l , u)
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
[] ++ ys = ys
infixr 1 _++_
flatten : ∀{lu} (t : BST lu) → OList lu
flatten leaf = []
flatten (node p lt rt) = flatten lt ++ (p ∷ flatten rt)
sort : (xs : List A) → OList (⊥ , ⊤)
sort xs = flatten (tree xs)