module TreeSortOrd where

open import Prelude

-- Comparing natural numbers

Total : ∀{A} (R : Rel A)  Set
Total R =  x y  R (x , y)  R (y , x)

pattern le z = inl z
pattern ge z = inr z

compare : Total LEℕ
compare 0       _       = le _
compare (suc x) 0       = ge _
compare (suc x) (suc y) = compare x y

-- Extension by a least and a greatest element

data Ext (A : Set) : Set where
   : Ext A
  # : A  Ext A
   : Ext A

ext : ∀{A}  Rel A  Rel (Ext A)
ext R (_   ,   ) = True
ext R (# x , # y) = R (x , y)
ext R (   , _  ) = True
ext R _           = False

module _ {A : Set} (R : Rel A) (compare : Total R) where

  -- Binary search trees

  data BST (lu : Ext A × Ext A) : Set where
    leaf : ext R lu  BST lu
    node : (p : A)
           (let (l , u) = lu)
           (lt : BST (l , # p))
           (rt : BST (# p , u))  BST lu

  insert : ∀{l u : Ext A} (p : A) (l≤p : ext R (l , # p)) (p≤u : ext R (# p , u))
           (t : BST (l , u))  BST (l , u)
  insert p l≤p p≤u (leaf l≤u) = node p (leaf l≤p) (leaf p≤u)
  insert p l≤p p≤u (node q lt rt) with compare p q
  ... | le p≤q = node q (insert p l≤p p≤q lt) rt
  ... | ge q≤p = node q lt (insert p q≤p p≤u rt)


  -- Building a BST

  tree : (xs : List A)  BST ( , )
  tree nil         = leaf _
  tree (cons x xs) = insert x _ _ (tree xs)

  -- Ordered lists

  data OList (lu : Ext A × Ext A) : Set where
    onil  : ext R lu  OList lu
    ocons : (p : A)
            (let (l , u) = lu)
            (l≤p : ext R (l , # p))
            (ps : OList (# p , u))  OList lu

  -- Flattening a BST

  _++_ : ∀{l m u}
         (xs : OList (l , m))
         (ys : ∀{k} (k≤m : ext R (k , m))  OList (k , u))  OList (l , u)
  ocons x l≤x xs ++ ys = ocons x l≤x (xs ++ ys)
  onil l≤m       ++ ys = ys l≤m

  infixr 1 _++_

  flatten : ∀{lu} (t : BST lu)  OList lu
  flatten (leaf l≤u)     = onil l≤u
  flatten (node p lt rt) = flatten lt ++ λ prf  ocons p prf (flatten rt)

  -- Sorting is flatten ∘ tree

  sort : (xs : List A)  OList ( , )
  sort xs = flatten (tree xs)